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Abstract: Due the well-known limitations of diffusion tensor imaging (DTI), high angular resolu-
tion diffusion imaging is currently of great interest to characterize voxels containing multiple fiber
crossings. In particular, Q-ball imaging (QBI) is now a popular reconstruction method to obtain
the orientation distribution function (ODF) of these multiple fiber distributions. The latter captures
all important angular contrast by expressing the probability that a water molecule will diffuse into
any given solid angle. However, QBI and other high order spin displacement estimation methods
involve non-trivial numerical computations and lack a straightforward regularization process. In this
paper, we propose a simple linear and regularized analytic solution for the Q-ball reconstruction of
the ODF. First, the signal is modeled with a physically meaningful high order spherical harmonic
series by incorporating the Laplace-Beltrami operator in the solution. This leads to an elegant math-
ematical simplification of the Funk-Radon transform using the Funk-Hecke formula. In doing so, we
obtain a fast and robust model-free ODF approximation. We validate the accuracy of the ODF esti-
mation quantitatively using the multi-tensor synthetic model where the exact ODF can be computed.
We also demonstrate that the estimated ODF can recover known multiple fiber regions in a biological
phantom and in the human brain. Another important contribution of the paper is the development of
ODF sharpening methods. We show that sharpening the measured ODF enhances each underlying
fiber compartment and considerably improves the extraction of fibers. The proposed techniques are
simple linear transformations of the ODF and can easily be computed using our spherical harmonics
machinery.

Key-words: Q-ball imaging, orientation distribution function (ODF), spherical harmonics, funk-
radon transform, funk-hecke formula
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Estimation linéaire et régularisation de l’ODF pour la détection
de croisements de fibres en imagerie par Q-ball

Résumé : Contrairement au tenseur de diffusion classique (DTI), l’IRM de diffusion à haute ré-
solution angulaire permet de décrire les croisements de faisceaux de fibres au sein de la matière
blanche. La reconstruction de la function de distribution d’orientations des fibres (ODF) par Q-ball
est une technique largement répandue dans l’étude de ces croisements dans un cadre de segmenta-
tion ou de tractographie. L’ODF nous renseigne sur la distribution de probabilité des directions de
diffusion des molécules d’eau présentes dans la matière blanche. Cependant, cette méthode ainsi
que les autres techniques d’estimation à haute résolution angulaire sont basées sur des solutions nu-
mériques complexes et sans aucun processus de régularisation. Dans ce rapport, nous proposons une
solution linéaire et régularisée pour l’estimation de l’ODF à partir de l’imagerie par Q-ball. Nous
approximons d’abord le signal par une série d’harmoniques sphériques lissée grâce à l’opérateur
Laplace-Beltrami. Cette formulation nous permet de dériver une simplification élégante de la trans-
formée de Funk-Radon en utilisant le théorême de Funk-Hecke. Nous obtenons alors un algorithme
robuste et rapide pour l’estimation de l’ODF. L’efficacité et la précision de l’approximation sont éva-
luées sur des données synthétiques et réelles. Nous faisons varier les paramètres importants dans la
formation de l’image et observons les différentes répercussions sur la forme des ODFs. Enfin, nous
démontrons que le “sharpening” des ODFs (rehaussement des maxima) améliore considérablement
l’extraction des directions des multiples fibres sousjacentes.

Mots-clés : Imagerie par Q-ball, function de distribution d’orientations (ODF), harmoniques sphé-
riques, transformée de funk-radon, formule de funk-hecke
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fiber distribution true diffusion profile DTI diffusion profile ODF

Figure 1: Diffusion profile estimate from DTI fails to recover multiple fiber orientation. The maxima
of the diffusion profile do not agree with thin green lines corresponding to the true synthetic fiber
directions whereas maxima of the ODF do.

1 Introduction

Diffusion MRI is the only non-invasive tool to obtain information about the neural architecture in
vivo and it is used to understand functional coupling between cortical regions of the brain, for char-
acterization of neuro-degenerative diseases, for surgical planning and for other medical applications.
The method is based on the Brownian motion of water molecules in normal tissues and the obser-
vation that molecules tend to diffuse along fibers when contained in fiber bundles [4, 15]. Using
classical diffusion tensor imaging (DTI), several methods have been developed to segment and track
white matter fibers in the human brain [7, 14, 16, 17, 36, 41, 43]. However, the theoretical basis for
the DTI model assumes that the underlying diffusion process is Gaussian. While this approximation
is adequate for voxels in which there is only a single fiber orientation (or none), it breaks down for
voxels in which there is more complicated internal structure, as seen in Fig. 1 with an example of
two fibers crossing. The model is not flexible enough to describe several major diffusion directions
and therefore gives an over-smoothed estimation of the water molecule diffusion profile. This is
an important limitation, since resolution of DTI acquisition is between 1mm3 and 3mm3 while the
physical diameter of fibers can be less than 1µm and up to 30 µm [27]. From anisotropy measure
maps, we know that many voxels in diffusion MRI volumes potentially have multiple fibers with
crossing, kissing or diverging configurations.

To date, this is a reason why clinicians and neurosurgeons have been skeptical of tracking and
segmentation methods developed on DTI data. They have doubts on the principal direction followed
to track fiber bundles. In the presence of multiple fibers, the diffusion profile is oblate or planar
and there is no unique principal direction (Fig. 1). This is why recent research has been done to
generalize the existing diffusion model with new higher resolution acquisition techniques such as
Q-Space Imaging (QSI) [42] and High Angular Resolution Diffusion Imaging (HARDI) [37]. There
are currently two classes of high order processing methods for these high resolution acquisition
techniques. The first is based on apparent diffusion coefficient (ADC) modeling [2, 9, 12, 21, 22]
and the other is based on the estimation of the probability density function of the average spin
displacement of water molecules [1, 5, 7, 8, 20, 25, 26, 35, 38, 39].

INRIA
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In the first case, the natural generalization of classical DTI is to describe the ADC profile with a
higher order diffusion tensor (HODT) [21, 24, 25]. This formulation has been shown ([10, 21]) to be
equivalent to spherical harmonic series approximation techniques [2, 10, 12], where non-Gaussian
diffusion can be characterized using high order anisotropy measures based on the HODT description
of the spherical harmonic series coefficients of the ADC profile [10]. However, as discussed in [19],
one shortcoming of ADC-based models is that they are based on the assumption that the signal de-
cays mono-exponentially which is not the case for all diffusion encoding directions when there is
an underlying non-Gaussian diffusion. Another disadvantage of ADC modeling is that the ADC is
measured in signal space, q-space, where the maxima of the ADC profile do not match the underly-
ing fiber orientations (Fig. 1). Thus, to date, no robust and theoretically established algorithms have
been developed to extract fiber directions from ADC-based approaches although the recent paper of
Ozarslan et al. [22] shows how to transform the diffusion profile into a probability profile. From the
latter profile, it is possible to extract the fiber orientations. We will discuss this paper in detail later
in Section 7.

The general and proper setting for fiber analysis is real space. Hence, the focus of this paper
is on the second class of algorithms, where functions of interest are defined in real space. In this
case, techniques generally approximate the diffusion probability density function (PDF) or variants
of it arising from various types of high angular resolution signal data. The important functions in the
literature are the Persistent Angular Structure (PAS) [20] of the PDF, the fiber orientation distribution
(FOD) [1, 35] and the diffusion orientation distribution function (ODF) [38]. We will review them
in the next section and mainly focus on the ODF, which captures important angular information and
can be viewed has the probability that the water molecule will diffuse in any solid angle. For all these
high angular functions, the important property is that their maxima agree with the underlying fiber
distribution (e.g. ODF in Fig. 1). However, these methods are all based on non-trivial numerical
methods and lack a straightforward regularization process and fail to take into account the useful
tools for both estimation and regularization that have been developed for the fitting of the ADC
profile.

In this article, we propose a simple linear and regularized solution for the popular Q-ball imag-
ing approximation of the ODF. It is obtained by modeling the signal with a high order spherical
harmonic series using a Laplace-Beltrami regularization method developed for the ADC profile es-
timation in [10]. This spherical harmonics representation leads to an elegant mathematical simplifi-
cation of the Funk-Radon transform of the measured signal using the Funk-Hecke formula. In doing
so, we obtain a fast algorithm for the extraction of a robust model-independent ODF approximation
at each voxel of the raw HARDI data. We evaluate the performance of our algorithm on synthetic
data, where we study the effect of the b-value parameter and noise level in the input signal. We find
that ODF sharpening, i.e. the enhancement of the peaks of the ODF, can improve the characteriza-
tion of the underlying fiber distribution when fibers are close to one another and the estimation is
too smooth. We propose a Laplacian-based approach and a new delta function transform method.
Finally, we illustrate the potential of our fiber detection technique on real data where we recover
multiple fiber crossings in a biological rat spinal chord phantom and on known regions of interest in
the human brain.

RR n° 5768
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2 High Angular Resolution Reconstruction Methods

In this section, we give a survey of the state of the art high resolution imaging techniques designed
to better describe the complexity of water motion. In particular, we develop the theory of the Q-
ball imaging sequence, which will be the main focus of the paper hereafter. We are interested in
recovering the fiber distribution at every voxel of the data. As we will see, many functions are
used in the literature to measure the diffusion properties of the underlying fiber bundles, such as
the diffusion probability density function (PDF), the persistent angular structure (PAS), the fiber
orientation distribution (FOD) and the diffusion orientation distribution function (ODF).

2.1 Q-Space Imaging

Stejskal and Tanner [34] showed that if the gradient pulse duration δ is short enough for the diffusion
of the water molecule to be negligible during that time, then the signal attenuation S(q) is expressed
as the 3-dimensional (3D) Fourier transform F of the ensemble average propagator P ,

S(q)

S0
=

∫

P (r)e−2πiqT rdr = F [P (r)], (1)

where the value of q is given by q = γδG/2π, with γ the nuclear gyromagnetic ratio for water
protons and G the applied diffusion gradient vector, and S0 is the baseline image acquired without
any diffusion gradients. P (r) is the probability averaged over a voxel that a spin starting at a given
point in the voxel will have displaced by some radial vector r in time τ . It is this probability density
function (PDF) that we optimally want to obtain from the raw signal measurements. In classical
DTI, the problem is simplified by assuming that this PDF can be described by a zero-mean Gaussian
distribution which has its well-known limitations in the presence of multiple fibers.

Eq. 1 suggests the fairly straightforward means of extracting the PDF from measurements in q-
space by measuring the signal on a Cartesian grid of points in q-space and then taking the 3D inverse
Fourier transform to obtain an approximated PDF. This technique is called q-space imaging (QSI) or
diffusion spectrum imaging (DSI) [42] and it has been used with some success. It has also been used
with a high order tensor modeling of the diffusion profile in [21]. However, it is restricted by severe
limitations. Firstly, in order to resolve features in the PDF on the order of some scale 1/a, it requires
a box of side length > a in q-space. In practice, this requires many measurements and very large
q-values compared to those used on conventional scanners. As we want δ small to verify the narrow
pulse approximation, the gradients G must be very high which creates eddy current distortions. This
results not only in an engineering limitation as to the maximal q-values attainable, but also in a
signal to noise ratio (SNR) problem. The latter arises from the fact that the measured quantity is
signal attenuation, which is given by

S(q) = S0e
−τqT Dq, (2)

where D(q) = qT Dq is the apparent diffusion profile. Thus, for large q, the true signal quickly
falls off, while the background noise is relatively unaffected, thus resulting in very noisy data mea-
surements for some regions of the grid. It is worth mentioning that the signal attenuation is also

INRIA
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162 points 642 points

Figure 2: Discrete samplings of the sphere for different numbers of gradient directions corresponding
to order 3 and order 4 tessellations of the sphere respectively.

often written with respect to unit vector, u = q/|q|, and the introduced b-factor, b = τ |q|2. We thus
obtain a signal attenuation given by

S(u) = S0e
−τ |q|2uT Du = S0e

−buT Du. (3)

Hence, the grid spacing needs to be on the order of 1/b in order to obtain a box in real space on the
order of side length b. This results in a major practical problem because of the number of samples
required to tightly fill in a large 3D Cartesian grid. This problem is mainly one of imaging time,
which increases like N3 as the size of the grid is increased, and makes it impracticable to obtain very
high resolution images using the q-space method. Note that for visualization, the estimated diffusion
PDF is usually projected onto the sphere to obtain the diffusion ODF which is more illustrative.

2.2 High Angular Resolution Diffusion Imaging

As a result of the DSI limitations, other techniques have been developed to attempt to extract the
desired information in a more efficient way. One such clinically feasible approach is high angular
resolution diffusion imaging (HARDI) [39]. The idea is to sample a single sphere with N discrete
gradient directions, as in Fig. 2, and measure the signal attenuation along each direction. In practice,
one can sample only the hemisphere as the diffusion PDF is assumed to be symmetric. Given these
discrete measurements over the surface of the sphere, several methods have been proposed to extract
the diffusion PDF.

2.2.1 Multi-fiber Gaussian Models

Tuch et al. [39] proposed to model the HARDI signal as a finite mixture of n Gaussians to obtain the
diffusion PDF as

P (r) =

n∑

i=1

(
1

(4πτ)3|Di|

)1/2

exp

(−rT D−1
i r

4τ

)

. (4)

RR n° 5768
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However, this Gaussian mixture modeling requires an iterative gradient descent for the reconstruc-
tion of the PDF which is unstable and sensitive to the starting point selected. It also depends on a
possibly over-simplified and incorrect fiber model when fixing the number of fiber compartments.

2.2.2 Persistent Angular Structure MRI

Jansons and Alexander [20] proposed the radially persistent angular structure (PAS) p̂ of the diffu-
sion PDF by assuming independence of the angular and radial structure,

P (r) =
1

r2
0

p̂(r̂)δ(|r| − r0). (5)

Intuitively, this forces probabilities to be non-zero only on a spherical shell of radius r0. Plugging
Eq. 5 in Eq. 1 and using some maximum entropy cost function, they solve for the PAS function
p̂(r̂) by fitting the raw data with a nonlinear iterative algorithm. The PAS is the function on the
sphere that best describes the signal measurements and intuitively represents the relative mobility of
spins in each direction. Although is it not obvious why the peaks of the PAS should agree with the
underlying fiber distribution, the method seems accurate [1].

2.2.3 Spherical Deconvolution

A different approach proposed by Tournier et al. [35] is to view the HARDI signal on the surface of
the sphere as the convolution over the sphere of the response function of a single fiber with the fiber
orientation distribution (FOD). As we will see in the next section, the FOD is a different function
than the diffusion ODF even though both functions can have multiple peaks each representing an
underlying fiber compartment. In [35], a linear basis of spherical harmonics and rotational harmonics
is used to parametrize the signal and fiber response function respectively. The FOD is then obtained
by simple matrix multiplication. This method shows nice results recovering fibers crossing but has
some reported instabilities ([1, 35]) for high harmonic orders. Alexander recently showed in [1]
that an improved FOD could be extracted using a non-linear maximum entropy implementation of
the spherical deconvolution, inspired by the earlier PAS solution in [20]. In both deconvolution
methods, the disadvantage is that a fiber response function needs to be assumed a priori to use as
deconvolution kernel. In [1], the response function is a standard Gaussian kernel whereas in [35],
the response function is estimated from the signal attenuation profile in 300 voxels with highest
fractional anisotropy, regions likely to have a single coherent fiber population. We now introduce
Q-ball imaging which has the advantage of being model-independent.

2.2.4 Q-Ball Imaging

Tuch [37, 38] showed that the diffusion orientation distribution function (ODF) could be estimated
directly from the raw HARDI measurements on a single sphere of q-space without computing the
full diffusion PDF before projecting onto the sphere. The basic assumption of QBI is that angular
information is enough to recover fiber orientation distributions (forgetting about radial information).
As such, QBI is a modality which takes advantage of the fact that significantly less information is

INRIA



ODF Estimation and Sharpening 9

required to construct an angular function in real space than is required to construct a volume function
as DSI does. Specifically, QBI seeks to reconstruct the diffusion ODF, a function defined as the radial
projection of the diffusion PDF as

Ψ(u) =

∫ ∞

0

P (α · u)dα, (6)

where u is restricted to be a unit vector. Thus, the ODF is a function on the unit sphere describing
the probability averaged over the voxel that a particle will diffuse into any given solid angle.

To calculate the ODF, the QBI modality uses the Funk-Radon transform (FRT) G, a transforma-
tion from the unit sphere to itself [38]. In order to find the Funk-Radon transformed value of the
signal on the sphere at a given point u, one needs to first find the plane through the origin with nor-
mal vector u and then compute the one dimensional integral over the intersection of that plane with
the function on the original sphere. Intuitively, to find the new value at an arbitrarily defined “pole”,
one integrates over the corresponding “equator” or great circle. This can be written explicitly as

G[f(w)](u) =

∫

δ(uT w)f(w)dw (7)

where u and w are constrained to be unit vectors. To see why this spherical transformation is close
to the ODF, Tuch [38, Appendix A] proves that the mathematical relation between the ODF and the
FRT is given by

Ψ(u) ≈ Gq′ [S(q)](u) = 2πq′
∫

P (r, θ, z)J0(2πq′r)rdrdθdz. (8)

In Appendix A, we reproduce a more detailed proof and introduce the important Fourier analysis
tools that clarify the relation between the FRT and the ODF. From this proof and comparing Eqs. 6
and 8, it clear that the FRT is a smoothed version of the true ODF. In fact, the higher q ′, which is
directly proportional to the b-value, the closer the FRT approximation is to the exact ODF as the
zeroth-order Bessel function J0 gets sharper and approaches a Dirac delta function. Fortunately,
the values of b required to satisfy this condition are relatively small (b = 4000s/mm2 used in [37])
compared to the maximal values of b required for the use the DSI technique (b = 20000s/mm2 used
in [42] and b = 60000s/mm2 used in [21]).

In practice, the Funk-Radon transform can be implemented by a matrix multiplication. How-
ever, computing this matrix involves several non-trivial numerical computations. In particular, a
regridding and an interpolation of the spherical input data is needed to compute the equator points
in the FRT integral of Eq. 7 since many points outside the actual measurements are required. The
algorithm is clearly sketched in [38, Tbl. 1]. Note that this interpolation requires a good a priori
basis function and many sampling directions are required to obtain a good QBI reconstruction. In
fact, Tuch’s implementation [38] uses a fivefold tessellated icosahedron (252 samples) and a regrid-
ding of the signal onto equators around vertices of a fivefold tessellated dodecahedron (48 x 755 =
36240 points). Hence, it is a method that is still computationally intensive to implement in practice.
In current research, most often a standard HARDI acquisition is used with relatively low b-values,
from which the diffusion ODF is computed with the Funk-Radon transform.

RR n° 5768
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Regardless, the QBI reconstruction has several advantages that have made it a popular high
angular resolution reconstruction in many recent works [7, 18, 26, 29] for regularization and for
fiber tracking. The ODF description is intuitive and gives a good representation of the underlying
fiber distribution. Moreover, in theory, samples are only taken on a single sphere in q-space and thus,
the imaging time is much smaller than that of the DSI despite significantly higher angular resolution
measurements. Furthermore, since a relatively small constant value of q ′ can be chosen, the signal
to noise ratio (SNR) is greatly improved.

We now apply our recent technique for the approximation of functions on the sphere from noisy
sparse data in order to obtain a robust signal estimation with a regularization procedure. This method
was developed in [10] to model the apparent diffusion profile using spherical harmonics. It was
shown to be very useful to characterize isotropic, 1- and multi-fiber fiber distributions. We will
demonstrate that the use of a modified spherical harmonics basis can describe the input signal and
greatly simplify the Funk-Radon transform integral.

3 Analytic ODF estimation with the Funk-Radon Transform

Before describing our new Funk-Radon derivation based on a spherical harmonics formulation, we
review the important points of our previous approach [10] in which we have developed a simple and
efficient way to estimate the continuous function on a Q-ball from a discrete sampling of measure-
ments. We proposed a real and symmetric modified spherical harmonics basis capturing the physical
constraints of the diffusion MRI acquisition and obtained a simple closed form matrix multiplication
algorithm. Using the smoothing application of the Laplace-Beltrami operator for functions on the
sphere, we showed it is possible to incorporate a regularization term in the estimation. We review
the key parts here and refer the reader to [10] for extensive details and examples.

3.1 Signal Approximation with the Spherical Harmonics

The spherical harmonics (SH), normally indicated by Y m
` (` denotes the order and m the phase

factor), are a basis for complex functions on the unit sphere. Explicitly, they are given as follows

Y m
` (θ, φ) =

√

2` + 1

4π

(` − m)!

(` + m)!
P m

` (cos θ)eimφ (9)

where (θ, φ) obey physics convention (θ ∈ [0, π], φ ∈ [0, 2π)) and P m
` is an associated Legendre

polynomial. For ` = 0, 2, 4, ... , `max and m = −`, ... , 0, ... , `, we let
j = j(`, m) = (`2 + ` + 2)/2 + m and define our modified basis as

Yj =







√
2

2 ((−1)mY m
` + Y −m

` ), if − ` ≤ m < 0
Y 0

l , if m = 0√
2i
2 ((−1)m+1Y m

` + Y −m
` ), if 0 < m ≤ `

(10)

It is designed to be symmetric, as only even order SH are considered and it is shown in [10] to be
real. The angular frequency of the approximation increases with `max and the ratios in front of each

INRIA
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term also ensure that the modified basis is orthonormal with respect to the inner product < f, g >=
∫

Ω f̄gdΩ, where Ω denotes integration over the unit sphere and f̄ is the complex conjugate of f . We
thus approximate the signal at each of the ns gradient direction i as

S(θi, φi) =
N∑

j=1

cjYj(θi, φi) (11)

where N = (` + 1)(` + 2)/2 is the number of terms in the SH series of order `. We can write the set
of equations as an over-determined linear system S = BC+error, where B is the matrix constructed
with the modified spherical harmonics basis

B =






Y1(θ1, φ1) Y2(θ1, φ1) · · · YN (θ1, φ1)
...

...
. . .

...
Y1(θns

, φns
) Y2(θns

, φns
) · · · YN (θns

, φns
)






and C is the vector of SH coefficients cj . We want to solve for the SH series coefficients cj , where
cj =

∫

Ω S(θi, φi)Yj(θi, φi)dΩ. At this point, instead of evaluating the integrals directly [12] or
performing a simple least-squared minimization as in [2, 35], we add local regularization to our
fitting procedure. We define a measure of the deviation from smoothness E of a function f defined
on the unit sphere as E(f) =

∫

Ω(4bf)2, where 4b is the Laplace-Beltrami operator. The Laplace-
Beltrami operator, which is the Laplacian operator in spherical coordinates, is a natural measure of
smoothness for functions defined on the unit sphere. It has a very simple expression as it must satisfy
the relation 4bY

m
` = −`(`+1)Y m

` . Note that this relation also holds for our modified SH basis. As
a result, using the orthornormality of the modified SH basis, the above functional E can be rewritten
straightforwardly as

E(f) =

∫

Ω

4b

(
∑

p

cpYp

)

4b

(
∑

q

cqYq

)

dΩ =
N∑

j=1

c2
j`

2
j (`j + 1)2 = CT LC, (12)

where L is simply the N x N matrix with entries `2
j (`j + 1)2 along the diagonal. Therefore, the

quantity we wish to minimize can be expressed in matrix form as

M(C) = (BC − S)T (BC − S) + λCT LC,

where λ is the weight on the regularization term. The coefficient vector minimizing this expression
can then be determined just as in the standard least-squares fit (λ = 0), from which we obtain the
generalized expression for the desired spherical harmonic series coefficient vector

C = (BT B + λL)−1BT S. (13)

From this SH coefficient vector we can recover the signal on the Q-ball for any (θ, φ) as

S(θ, φ) =

N∑

j=1

cjYj(θ, φ). (14)
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Intuitively, this approach penalizes an approximation function for having higher order terms in its
modified SH series. Therefore, higher order terms will only be included in the fit if they significantly
improve the overall accuracy of the approximation. This eliminates most of the high order terms due
to noise while leaving those that are necessary to describe the underlying function. However, obtain-
ing this balance depends on choosing a good value for the parameter λ. We use the L-curve numerical
method [13] and experimental simulations to determine the best smoothing parameter [10].

3.2 Funk-Radon Transform Using Spherical Harmonics

Not only do spherical harmonics allow the definition a simple regularization procedure but we now
show that they also simplify greatly the computation of the Funk-Radon transform using the Funk-
Hecke formula. Here, we write the dot product between two vectors x,u ∈ R

3 as xT u. The key
observation is that any continuous function f on the interval [−1, 1] extends to a continuous function
of two variables g(x,u) on the sphere defined by g(x,u) = f(xT u). With this formulation, the
Funk-Hecke formula is a theorem that relates the inner product of any spherical harmonic with the
projection on the sphere of any continuous function f(t) defined on the interval [−1, 1]. The theorem
was first published by Funk [1916] and a little later by Hecke [1918] [3, chap.9].

Funk-Hecke Theorem: Let f(t) be continuous on [−1, 1] and H`

any spherical harmonic of order `. Then, given a unit vector x

∫

|u|=1

f(xT u)H`(u)du = λ(`)S`(x), (15)

where

λ(`) =
2π

P`(1)

∫ 1

−1

P`(t)f(t)dt

with P` the Legendre polynomial of degree `.

In particular, this formula gives a powerful tool for evaluating integrals over the sphere where the
integrand is a product of a spherical harmonic and a function continuous on [−1, 1].

In our case, recall that the Funk-Radon transform of the signal in a unit direction x is the integral
over the great circle perpendicular to x. Hence, we have

G[S](x) =

∫

|u|=1

δ(xT u)S(u)du

=

∫

|u|=1

δ(xT u)
∑

j

cjYj(u)du

=
∑

j

cj

∫

|u|=1

δ(xT u)Yj(u)du

︸ ︷︷ ︸

I

(16)

Note that if the Dirac delta function δ were continuous on the interval [−1, 1], I could be directly
evaluated using the Funk-Hecke formula of Eq. 15. However, δ(t) is discontinuous at zero. Hence,
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we approximate the Dirac delta function with a Gaussian of decreasing variance given by

δn(x) =
n√
π

e−n2x2

.

In Appendix B, we show that the latter is a delta sequence. That is, letting the variance of the
Gaussian tend to zero, we show that the sequence of decreasing Gaussians converges to a Dirac delta
function (limn→∞ δn = δ), i.e.

lim
n→∞

∫ ∞

−∞
δn(x)f(x) = f(0). (17)

Since the Gaussian is continuous on the interval [−1, 1], the delta sequence δn is also continuous on
[−1, 1] for all n. Hence, we can evaluate I using the Funk-Hecke formula of Eq. 15 and the delta
sequence property of Eq. 17. We obtain

I(x) =

∫

δ(xT u)Yj(u)du

=

∫

lim
n→∞

δn(xT u)Yj(u)du

= lim
n→∞

∫

δn(xT u)Yj(u)du

= 2π
P`(1)

(

lim
n→∞

∫ 1

−1

δn(t)P`(t)dt

)

Yj(x) (used Eq. 15)

= 2π
P`(j)(0)

P`(j)(1)
Yj(x) (used Eq. 17)

The beauty of the approach is that we have greatly simplified the Funk-Radon integral by finding an
analytic solution. We thus avoid using numerical schemes to perform the FRT.

Therefore, referring back to Eq. 16, the Funk-Radon transform of a function given in terms of
our modified spherical harmonic series in a given unit vector direction x is simply given by

G[S(q)](x) =
∑

j

2π
P`(j)(0)

P`(j)(1)
cjYj(x) (18)

Thus, the spherical harmonics are eigenfunctions of the Funk-Radon transform with eigenvalues
depending only on the order ` of the SH series. When the signal S(q) is parametrized by the vector
C of SH coefficients, i.e. S = BC, the analytic Funk-Radon transform which approximates the
ODF is simply a diagonal linear transformation given by

ODF ≈ G[S] =








. . .

2π
P`(j)(0)

P`(j)(1)

. . .














...
cj

...







= PC = P (BT B − λL)−1BT S. (19)
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14 M. Descoteaux, E. Angelino, S. Fitzgibbons, R. Deriche

Hence, using the spherical harmonics for the approximation of the signal attenuation function at a
given radius in q-space, the Q-ball imaging procedure is optimized in terms of accuracy and compu-
tational efficiency. The accuracy of the modified SH series approximation and the proposed Laplace-
Beltrami regularization for spherical functions was established in [10] and the method is fast because
the matrix of discrete spherical harmonics B and matrices P and L need only be computed once
for the whole volume. This FRT is simpler to compute than the great circle integral proposed by
Tuch [38].

4 Evaluating the ODF estimation

As discussed in [10], there are different existing synthetic fiber models, such as the hindered cylin-
drical model [32] and the multi-tensor model [2]. In this paper, we use the multi-tensor Gaussian
fiber model as it is simple and leads to an analytic computation of the ODF. We generate synthetic
HARDI data with 81 discrete directions on the hemisphere (Fig. 2 left) assuming human brain white
matter profiles Dk with eigenvalues [1700, 200, 200] · 10−6mm2/s. This model assumes that each
fiber has a Gaussian distribution that describes it and that fibers do not exchange water molecules.
Hence, we can generate the signal for n fibers using any rotation of the diffusion tensor Dk as

S(u) =

n∑

k=1

pke−buT Dku (20)

where pk is the proportion of the k-th fiber in the voxel. We randomly select the pk for each fiber
as well as its orientation, subject to a minimum angle constraint. We add Rician noise [30, 31] in
order to have S0 signal with SNR ratio of σ = S0/ζ. SNR with ζ = 35 is a typical value for current
medical scanners [2, 37].

Computing the exact ODF using the multi-tensor is possible. The inverse Fourier transform of a
Gaussian is another Gaussian which means that the diffusion PDF of the multi-tensor signal given in
Eq. 20 is proportional to another sum of Gaussians. The exact ODF is given in Tuch [38, Eq.2] for
a single Gaussian fiber with respect to diffusion time τ . We reproduce the exact ODF derivation in
terms of the b-factor in Appendix C. Therefore, this gives an exact point-wise basis for comparison
of ODFs generated from the multi-tensor Gaussian fiber model.

Hence, we generate 1000 random 1, 2, and 3 fiber distributions using the multi-tensor model de-
scribed above for different b-values and noise levels, each time calculating the optimal regularization
λ parameter (see [10]). We vary the noise level ζ = 5, 10, 20, 35 to have a variation of poor, average
and high quality signals. We use an order-8 SH approximation of the signal to obtain the coefficients
C given by Eq. 13 and then apply the linear transformation P given in Eq. 19 to obtain the estimated
ODF, f ′.

Letting f represent the exact ODF for the fiber distribution, we can compute a simple Euclidean
average of the squared error between f and f ′ over all ns sampled points on the sphere as

[f, f ′] =
1

ns

ns∑

i=1

(f ′
i − fi)

2. (21)
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Figure 3: Plot of angular similarity measured with the inner product < f, g > and with the point-
wise Euclidean average [f, g] versus b-value for optimal λ-regularization. Highest accuracy and
lowest error are respectively observed for a plateau of high b-values between 2000 and 6000.

Moreover, we can compute another interesting comparison measure if we also describe f with an
order-8 SH series. Although this last step is not exact, it leads to a very simple expression of the
inner product between the two functions on the sphere. Recalling that our modified SH basis is
real-valued and orthonormal, the inner product is

< f, f ′ >=

∫

Ω

f · f ′dΩ =
∑

j

cj · dj , (22)

which is CT D in matrix form when C and D are the respective vectors of SH coefficients of f and
f ′. If we normalize such that < f, f >=< f ′, f ′ >= 1, this angularity measures is 1 when the
functions are the same and its range is [−1, 1].

As seen in Fig. 3, the estimation is very precise and we observe the same behavior using both
angularity measure for comparison. For optimal b-value, the angularity measure using the inner
product is > 0.99 and using the Euclidean averaged normalized error is < 0.01. As expected,
we note that for low b-values, the Bessel function averaging effect mentioned earlier reduces the
accuracy of the estimation. The high accuracy and low error are observed in a plateau of relatively
high b-values between 2000 and 6000. Finally, observe that the best results are not necessarily for
very high b-values because in this case, the signal is sharper and there is a large decrease in SNR.
If the constant noise level were shifted, the location of the plateaus might shift as well. These
results show that our ODF estimation is accurate and behaves as expected from reported results in
the literature [35, 37] when assuming a multi-tensor model.
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2 fibers

b = 500 b = 1000 b = 2000 b = 3000 b = 4000
3 fibers

b = 500 b = 1000 b = 2000 b = 3000 b = 4000

Figure 4: Synthetic ODFs for different b-values with detected fiber orientation.

5 Direct Fiber Extraction

It is generally assumed that the fiber directions are simply given by the local maxima of the ODF,
where the function surpasses a certain threshold. This can be useful to extract local fiber orientation
estimates for comparison with an estimated ground truth ([29]) and is also used for visualization
purposes, overlaying the maxima over the PDF or ODF (e.g. [18, 35]). Most existing HARDI-
based tractography algorithms (e.g [5, 7, 26]) use the full diffusion ODF or PDF to drive a front
propagation or to generate most probable paths with Monte-Carlo simulations. However, in this
paper, before tracking fiber bundles, we want to carefully evaluate the shape of the estimated ODF
and how it changes under different parameter variations. We investigate how the b-value, the signal
to noise ratio (SNR) and the truncation order-` of the spherical harmonic (SH) series affect the ODF
detection of the underlying fiber orientations. On top of the intrinsic zeroth-order Bessel function
smoothing, it was also shown in [11] that the separability of the diffusion compartments depends
on the magnitude of the b-value since the diffusion signal depends on the variance of each fiber
distribution. Hence, at low b-values, there is overlap in the fiber compartments and the maxima are
missed in the extraction procedure. This is seen in Fig. 4 where we have a 2- and a 3-fiber example
with the detected fiber orientations. In the 2-fiber case, both fibers are identified only at high b-value
of 4000 whereas in the 3-fiber case, the third fiber is never detected.

While it is common to use min-max normalization ([38]) and minimum inscribed sphere (MIS)
subtraction ([25]) to enhance visual angular contrast when visualizing ODFs, these methods do not
enhance the different underlying fiber compartments and do not improve maxima extraction. One
way to deal with this problem is to introduce ODF sharpening methods to enhance each underlying
fiber distribution. In many examples, the ODF approximation is too smooth without sharpening and
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the maxima are difficult and sometimes impossible to differentiate. In fact, assuming the multi-tensor
synthetic model and a white-matter human brain Gaussian fiber with eigenvalues [1700, 200, 200] x
10−6 mm2/s, one can show that if the signal is formed using the linear combination of two such fibers
of equal magnitude and certain b-value, a simple maxima finding algorithm will fail to distinguish the
two fibers if the angle between their respective directions is less than a certain angle θ (e.g. θ = 29◦

when b = 1000). Appendix C shows the relation between this angle and the b-factor. With noise
and random magnitude, the ability to distinguish fibers is even more compromised. Therefore, the
need of a transformation that takes an ODF and produces a sharpened version is needed. This could
potentially improve ODF-based tractography and segmentation results. We propose two methods for
ODF sharpening. The first is based on the standard Laplacian sharpening used in image processing
and the second is a transformation method using spherical harmonics and the Funk-Hecke formula
as before. Both methods have very similar success for fiber detection.

5.1 Laplacian Sharpening

A simple idea is sharpening with the image Laplacian, a common tool in image processing. Given an
image I , subtracting the Laplacian of the image times a weight factor gives a sharpened image, i.e.
Isharp = I − α4I . The weight determines the extent of the sharpening operation. We can express
the same formula for a function f defined on the sphere fsharp = f − α4bf , where the Laplacian
has been replaced by the Laplace-Beltrami operator for functions defined on the unit sphere. Recall
that ∆Yj = −`(` + 1)Yj and hence, if the estimated ODF is expressed in a SH series, f =

∑

j cjYj

which is F = BC in matrix form, we can express the sharpening as a linear transformation directly
applied on the vector of SH coefficients C as

Csharp =







...
1 + α`(` + 1)

...







C.

Thus, the Laplacian sharpening is a simple matrix multiplication producing Fsharp = BCsharp.

5.2 Delta Function Transform (DFT) Sharpening

We also implement a sharpening method using the Funk-Hecke machinery developed earlier. The
idea is inspired by Tournier et al. [35] spherical deconvolution where a particular fiber response func-
tion R(θ) must be assumed in order to deconvolve the measured signal to obtain the fiber orientation
distribution. In our case, we also need to assume a-priori fiber response function R(θ) but define a
different transform, the delta function transform (DFT). The latter relates the ODF and the function
describing the fiber directions with delta functions, which is the sharper possible fiber distribution
function.

Letting the k-th fiber direction be εk and the evaluation point on the sphere defined by the unit
vector u, we define Sδ, the function describing each fiber direction as a Dirac delta function, i.e.

Sδ(u) = p1δ(u − ε1) + p2δ(u− ε2) + ...
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Now, since the ODF Ψ(u) for a single fiber is just a function of the angle between the point of
evaluation and the fiber’s primary axis, using linearity, we also have

Ψ(u) = p1R(u · ε1) + p2R(u · ε2) + ...

where the pk are the relative weights of each fiber and R(t) is the under-determined 1D Gaussian
profile derived in Appendix D describing the response of a single fiber in terms of the cosine of
the angle between the point of evaluation and fiber’s primary axis. From the definition of the delta
function, it is immediate that the previous two equations can be merged into the delta function
transform (DFT)

Ψ(u) =

∫

Ω

R(u · ε)Sδ(ε)dε.

If we parametrize Sδ with a truncated spherical harmonic series such that Sδ(u) =
∑∞

j kjYj(u)
and observe that R(t) is continuous on [−1, 1], we can use the Funk-Hecke formula to obtain the
relation

Ψ(u) =

∞∑

j

kjλ(`j)Yj(u) with λ(`j) =
2π

P`j
(1)

∫ 1

−1

P`j
(t)R(t)dt.

In this case, we can evaluate the integral numerically or precompute the exact definite integrals with
Maple and tabulate them for order ` = 4, 6, 8, .... Hence, in matrix form, letting F represent the
ODF, we have the DFT given by

F = ΛR · Sδ

In theory, this transformation is invertible and thus, we could easily take a measured ODF to the
desired delta function coefficients on the sphere, if infinite series were used. However, in practice, we
deal with truncated spherical series of order 4, 6 or 8 which are not enough to properly model delta
functions. This is seen in Fig. 6, where the intermediate truncated spherical function, Sδ = Λ−1

R ·F ,
does not correspond to the expected sharp delta fiber response function but resembles a sharp version
of the input signal S on the sphere (column 1 versus column 3 in Fig. 6).

To understand why this is so, we reproduced Tournier et al. [35, Fig.1] in Fig. 5 to illustrate what
happens if we view the signal as the convolution of the response function R and the fiber distribution

S = R
⊗

Sδ

Figure 5: Tournier et al. [35] deconvolution assumption. The measured signal S is the convolution
of the fiber response function R and the fiber orientation distribution function Sδ.
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Figure 6: Delta function transform (DFT) sharpening illustration for 1, 2 and 3 fiber distributions.
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R−1
⊗

S = Ssharp

Figure 7: Rough sketch of the convolution of the inverse fiber response function R−1 and the mea-
sured signal S results in an enhanced signal Ssharp.

function Sδ . As described in [35], this convolution is a matrix multiplication when parameterizing
the spherical functions with spherical harmonics expressed as

S = R · Sδ. (23)

Hence, the product of the inverse fiber response function and the measured signal, i.e. R−1 · S,
mathematically gives Sδ but can also be viewed as a convolution in q-space. This intermediate
convolution is illustrated in Fig. 7. We see that R−1

⊗
S enhances the input signal. It can be

interpreted as the signal that would have been generated assuming Gaussian fibers for the particular
fiber distribution Sδ . This explains why the inverse DFT applied on the ODF gives a sharp version
of the input signal.

Therefore, in our sharpening procedure, the inverse DFT is first applied to obtain an intermediate
sharper version of the input signal and then the DFT is used to transform that enhanced signal into
the desired sharp ODF using response functions R(t) and Rsharp(t) respectively. Note that the
sharpening can be done differently by first applying the DFT with a sharp response, Rsharp, on
the measured ODF and then compute the ODF with our standard matrix multiplication P of Eq. 19.
Both methods require two linear transformations and we found differences between the two methods
to be negligible. Hence, we decide not to mix transformations and we deal only with the DFT.

In summary, we use a series of two consecutive DFT-based linear transforms. Assuming the
ODF is parametrized by the SH coefficients vector C, we first apply the inverse DFT with R(t) to
obtain the enhanced delta function signal coefficients and then apply the DFT with Rsharp to obtain
the sharpened ODF coefficients, Csharp, i.e.

Csharp = ΛRsharp · Λ−1
R · C

The procedure is clearly illustrated in Fig. 6 for 1, 2 and 3 fibers.

6 Results

In this section, we tested the effects of the b-value, the signal to noise ratio (SNR) in the signal
generation, the approximation order ` of the SH series and the sharpening on the shape of the ODF
estimated from synthetic and real data. We are both interested in the shape of the ODF as well as
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the ability to extract local orientations from it with a very simple local maxima extraction procedure.
First, every point on the normalized ODF surface mesh with a value above a threshold of 0.5 is a
possible maxima candidate. Then, for each candidate, we look at its neighbors on the discrete sphere
and look if their values are lower than its value. If so, the direction corresponding to the candidate
gives a fiber orientation. This method is obviously very local and sensitive to noise but enough to
illustrate the important and different characteristics of the estimated ODF. One can imagine more
intelligent methods based on zero-crossings of the gradient or other computer vision based methods.

In all coming figures, the ODFs are stretched with respect to the surface values and should be
viewed in color for a much clearer description. The color map is red for high values and blue for
low values. When directions are overlaid, the thin green lines correspond to the ground truth fibers
and the thicker yellow lines are the detected fibers.

6.1 Synthetic Data Experiment

As before, we randomly generate voxels with 1, 2 and 3 fibers using the multi-tensor Eq. 20. Using
an order 3 tessellation, the angle between discrete mesh samplings is 16◦. Considering noise and
the known angular resolution limitation of the Gaussian fiber, we impose a minimum angle between
fibers of 45◦. We also require the fiber magnitudes (the pk’s in Eq. 20) to be random but between
0.3 and 0.7 for 2-fiber distributions and between 0.2 and 0.4 for 3-fiber distributions. Otherwise,
the fiber compartments are too weak to detect any fibers. We vary the SNR between very noisy and
typical noise levels, ζ = 5, 10, 20, 35. Finally, we use b-values between 500, 1000, 2000, 3000, and
4000.

As mentioned earlier, min-max normalization [38] and minimum inscribed sphere (MIS) sub-
traction (Fig. 8) [21] are normally used to increase visual contrast in most papers in the literature.
We are not only interested in visual appearance of the ODF but want to investigate the effects of en-
hancing individual underlying fiber compartments in a voxel. In Fig. 9, we show a 1-fiber example
of the possible normalization and sharpening methods. Fig 9 is an example where the angle error
between true direction and the detected maximum of the ODF is 6.18◦ in all cases. Note that some
sharpening techniques are more aggressive than others. We must determine when sharpening should
be performed and which sharpening method is best when optimal parameters, α and k, are used.

Figure 8: Minimum Inscribed Sphere (MIS) subtraction [21].
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b = 3000

b = 500

min-max MIS Laplacian DFT
norm α = 0.3 k = 10

Figure 9: Normalization and sharpening methods for 1-fiber ODF examples.

6.1.1 Sharpening and Parameter Tests

We want to test which parameters give best orientation detection results from the estimated ODF. We
must consider three things that directly influence the sharpening and ODF estimation: the b-value,
the signal to noise ratio (SNR) and the SH series of order-` used. The lower the b-value, the smaller
the variance between fiber compartments and the harder it is to discriminate them. On the other hand,
the lower the SNR, the more jagged and peaked the ODF and the higher the risk that sharpening will
amplify and detect peaks due to noise. Hence, at low b-values and reasonable noise level, we expect
that a more aggressive sharpening will perform better whereas a more conservative sharpening or
none at all will perform best in the presence of noisy data. Finally, as described in [10], we have
to take in to consideration that high order SH series approximations pick up the higher frequency
modes of the signal and can thus be more sensitive to noise.

We perform tests for high b-values of 3000 and 4000 s/mm2, for mid-range b-values of 1500 and
2000 and for low b-values of 500 and 1000. We also try high SNR of ζ = 35, a mid-range SNR of
ζ = 15 and a low SNR of ζ = 5. We adaptively modify the sharpening factors and truncation order
of the spherical harmonics series to obtain the best maxima detection results. We have set λ = 0.006
based on the L-curves and simulations presented in [10]. From these tests, we observe consistent
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no Laplacian DFT
sharpening α = 0.3 α = 1 k = 10 k = 25

Figure 10: High quality diffusion signal of 3 fibers. SNR of ζ = 35, fiber weights of p1 = 0.3,
p2 = 0.35, p3 = 0.35, smallest angle between fibers is θ = 57◦ and ` = 8 in SH series.

maxima detection behaviors independently of the b-values. That is, as expected, we have decreasing
fiber detection results when the b-value is decreased but the other parameters have similar overall
effects for all b-values. This is why we include quantitative results for only two b-values in Table 1.
Information in that table can be summarized into three categories: 1) high, 2) average and 3) poor
quality data. Figs. 10, 11, 12 are examples in each data category with a b-value of b = 3000s/mm2.
True fibers are the thin green lines and the detected ODF maxima are the thick yellow lines.

1. For high quality data, i.e low SNR ζ = 35, the best results occur with a high truncation order
` = 8 and conservative sharpening weight, α = 1 and k = 10. This is because the signal
is clean and unperturbed and thus we can catch the higher frequency modes of the spherical
function and enhance the maxima without amplifying noise. A 3-fiber distribution example
is shown in Fig. 10. We see that without sharpening, we underestimate the number of fibers
by one and that if sharpening is too aggressive, we over estimate the number of fibers by one
when k = 30.

2. For average quality data, i.e. SNR ζ = 15, the best results occur when truncating the SH series
at order ` = 6 and with a moderate sharpening. It is not surprising that this is the case as an
order-8 SH series models small variations due to noise and thus, overestimates the number of
directions. This is illustrated in a 2-fiber distribution example in Fig. 11. The first row is for
` = 6 and the second row is for ` = 8 where we clearly see the over-modeling errors.

3. For poor quality data, i.e with high SNR of ζ = 5, the best results are obtained for a smoother
approximation with a low order ` = 4. This gives a smoother ODF estimation and reduces
the number overestimated fibers. Because the ODF is very smooth, one can then use an
aggressive sharpening. We must keep in mind that current real data acquisition are rarely this
noisy. We have included this test because it agrees with the expected hypothesis and illustrates
the angular resolution limitations in the presence of noise with two fibers close to one another.
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no Laplacian DFT
sharpening α = 0.3 α = 1 k = 10 k = 30

Figure 11: Average quality diffusion signal of 2 fibers. SNR of ζ = 15, fiber weights of p1 = 0.42,
p2 = 0.58, and θ = 55◦. First row is for a SH series of order ` = 6 and second for ` = 8.

no Laplacian DFT
sharpening α = 0.3 α = 1 k = 10 k = 30

Figure 12: Poor quality image of two fibers close to one another. SNR of ζ = 5, fiber weights of
p1 = 0.43, p2 = 0.57 and θ = 51◦. The first row is for ` = 4 and second for ` = 6.
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b = 3000 no sharp Laplacian DFT

` = 8 86.7% 99.1%, α = 1 98.6%, k = 10
ζ = 35 ` = 6 84.7% 98.2%, α = 5 98.2%, k = 30

` = 4 77.2% 88.0%, α = 10 86.7%, k = 200
` = 8 87.0% 84.3%, α = 0.1 90.8%, k = 5

ζ = 15 ` = 6 84.2% 96.2%, α = 0.5 96.3%, k = 30
` = 4 75.9% 86.8%, α = 5 84.8%, k = 200
` = 8 64.9% —- —-

ζ = 5 ` = 6 78.5% 60.0%, α = 0.1 71.7%, k = 5
` = 4 75.5% 81.1%, α = 0.1 80.9%, k = 200

b = 1000
` = 8 65.1% 86.9%, α = 1 82.3%, k = 10

ζ = 35 ` = 6 64.1% 82.1%, α = 5 79.6%, k = 30
` = 4 62.4% 81.6%, α = 10 75.8%, k = 200
` = 8 64.8% 56.5%, α = 0.1 59.9%, k = 5

ζ = 15 ` = 6 64.9% 85.0%, α = 0.5 82.9%, k = 30
` = 4 61.7% 80.5%, α = 10 74.9%, k = 200
` = 8 65.0% —- —-

ζ = 5 ` = 6 63.7% 58.4%, α = 0.1 76.2%, k = 5
` = 4 60.5% 81.6%, α = 0.1 79.4%, k = 200

Table 1: Fiber detection results for b = 3000, 1000 s/mm2 when varying SNR ζ, SH series order `
and sharpening weights α and k. For clarity, we only show results for best sharpening weight. —-
is when sharpening was not computed because ODF surface was too noisy.

These three categories are interpreted from results shown in Table 1. For clarity, we only show
percentage success of the fiber detection for best sharpening weight and we choose not to show the
exact number of underestimated and overestimated fibers, otherwise tables are too dense and unread-
able. Without sharpening, we usually underestimate the true number of fibers (some ODF maxima
are missed) unless we have high quality data and fibers are separated by a high angle. On the other
hand, results also show that for a given truncation order, increasing the sharpening factor generally
overestimates the data by creating maxima that amplify noise or small perturbations. Moreover,
for low order truncation order, the estimation is usually relatively smooth so that sharpening can-
not overestimate the estimation and thus, aggressive sharpening can greatly reduce the number of
underestimated fibers. The right balance between truncation order and sharpening factor is highly
dependent on the data and is well summarized in points 1), 2) and 3) above. This suggests that it is
worth knowing the quality of the data and select accordingly the parameter before blindly estimating
and sharpening the ODF.

It is also important to observe that for best SH order and sharpening weight selected, sharpening
improves the fiber detection. In particular, for b = 3000 s/mm2 and ζ = 15−35, which are in ranges
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of typical real data acquisition parameters, we have above 95% characterization rate with sharpening
compared to around 87% without sharpening. The majority of the errors occur for fiber distributions
where fibers are separated by 55◦ or less and have different relative weights. Considering noise and
b-values, these cases are very hard to separate because of partial volume averaging. As we will see
in the next section, voxels with fibers well separated at angles > 60◦, are much easier to distinguish.
Overall, although not shown in the table, we recorded an average angle error of 11◦ between the
ground truth and detected orientations. This is less than an angular step in our tessellation. Finally,
from figures and tables, we note that the Laplacian enhancement produces sharper ODF shapes and
slightly better fiber detection percentages than the DFT approach. This is not necessarily expected
as the Gaussian fiber response function used in the DFT method actually agrees with the Gaussian
fibers generated by the multi-tensor model. It shows that the Laplacian sharpening from the image
processing is slightly more robust in the presence of noise. It also has the advantage of being model-
free and faster to compute.

6.1.2 Considering Voxels With Isotropic Diffusion

Before attempting to process fields of real data, we must first explore the case when we have voxels
with isotropic diffusion signal. In this case, we certainly do not want to sharpen or try to extract the
ODF maxima. In [10], we showed that it was possible to use the generalized anisotropy (GA) [24]
or the CRE [28] high order measures to differentiate isotropic, 1-fiber and multi-fiber distributions
based on the estimation of the diffusion profile. However, these measures are ADC-based and in
this work, we would like to use an ODF-based high order anisotropy measure to filter out isotropic
diffusion voxels.

Tuch [38] defined the Generalized Fractional Anisotropy (GFA) as

GFA =
std(ODF )

rms(ODF )
=

√

ns

∑ns

i=1 (Ψ(ui) − 〈Ψ〉)
(n − 1)

∑ns

i=1 Ψ(ui)2
,

which is the ratio of the standard deviation (std) and the root mean square (rms) of the ODF, where
Ψ is the measured ODF, 〈Ψ〉 is the mean value on the ODF surface and ui are all discrete directions
on the sphere. This is a high order generalization of the classical FA measure which can similarly
be defined as FA = std(σ) / rms(λ) [38, Appendix B], where σ are the eigenvalues of the diffusion
tensor. As seen in Table 2, the measure is able to distinguish, 0, 1 and 2-fiber distributions reliably
but in the case of noisy 3-fiber distributions, there is overlap in GFA values. For b = 3000 and a low
SNR of ζ = 5, we are no longer able to clearly discriminate isotropic and 3-fiber diffusion processes.
This is less the case for low b-values, where noise is weighted down by the low frequency modes of
the signal. This confirms that the signal is more vulnerable to noise for high b-values.

6.1.3 Field of Synthetic Data

We can now use GFA to set thresholds and filter out isotropic diffusion voxels, as done in DTI with
the FA measure, before sharpening and extracting maxima of the ODF. Repeating the ODF fiber
detection tests of the last section with isotropic, 1, 2 and 3 fiber distributions gives very similar
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signal parameters 1 fiber 2 fibers 3 fibers isotropic

ζ = 35 0.34 ± 0.004 0.23 ± 0.02 0.16 ± 0.03 0.03 ± 0.005
b = 3000 ζ = 15 0.29 ± 0.008 0.21 ± 0.02 0.15 ± 0.03 0.05 ± 0.01

ζ = 5 0.12 ± 0.01 0.11 ± 0.02 0.08 ± 0.02 0.06 ± 0.01
ζ = 35 0.18 ± 0.002 0.12 ± 0.02 0.07 ± 0.02 0.007 ± 0.001

b = 1500 ζ = 15 0.18 ± 0.005 0.11 ± 0.02 0.07 ± 0.02 0.02 ± 0.003
ζ = 5 0.15 ± 0.01 0.11 ± 0.02 0.08 ± 0.02 0.04 ± 0.01
ζ = 35 0.10 ± 0.002 0.06 ± 0.008 0.04 ± 0.009 0.005 ± 0.001

b = 500 ζ = 15 0.10 ± 0.004 0.06 ± 0.009 0.04 ± 0.010 0.01 ± 0.002
ζ = 5 0.09 ± 0.01 0.07 ± 0.01 0.05 ± 0.01 0.03 ± 0.006

Table 2: Mean and standard deviation GFA over 10000 ODF estimations from 0-, 1-, 2- and 3-fiber
diffusion signals. For noisy, average and high quality data we use a SH series estimation of ` = 4,
6, 8 respectively. There is overlap in GFA values between 3-fiber and isotropic columns for ζ = 5.

b = 3000, ζ = 5, ` = 4 b = 1500, ζ = 15, ` = 6 b = 500, ζ = 35, ` = 8

Figure 13: 90◦ crossing distributions. Sharpening is not necessary for perpendicular fibers.

results and leads to the same conclusion as above. We do not include a new set of tables here but
instead show representative examples in Figs. 13 and 14.
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No sharp Laplacian, α = 1 DFT, k = 30

Figure 14: SNR ζ = 15, b = 1500, ` = 6. θ = 55◦ between fiber bundles. Sharpening improves
fiber detection in voxels high-lighted with boxes.

First, we illustrate what happens when 2 synthetic fibers cross at 90◦ angles for three different
examples with different SNR and b-values. Column 1 and 3 of Fig. 13 represent difficult datasets
because the input signal is either very noisy or very smooth and spherical (low b-value), which
makes the fiber extraction more sensitive than for in-between parameters used in column 2. Based
on Table 1, we have used an order 4, 6 and 8 SH series respectively. Note that in both cases, we
are able to characterize the fiber crossing regions and filter out isotropic voxels in the background.
Due to the simpler nature of perpendicular fibers, the ODF maxima agree relatively well with the
underlying fiber orientations. Hence, we do not need sharpening in this case. As seen in Fig. 14,
fiber detection is improved with sharpening when there are more complicated configurations of fibers
with smaller angles between crossings. The two fiber bundles are intersecting at angles of 55◦. We
have generated an average quality dataset with SNR of ζ = 15 and b-value of 1500 s/mm2. In this
example, we can see the usefulness of sharpening in voxels of the crossing. Some fibers are missed
from the un-sharp ODF whereas the maxima are much clearer when we add sharpening.

6.2 Biological Phantom Experiment

We test our algorithm on a biological phantom produced by Campbell et al. at the McConnel
Brain Imaging Center and Montreal Neurological Institute [6, 7] and was created from two ex-
cised Sprague-Dawley rat spinal cords embedded in 2% agar. A high angular resolution dataset was
acquired using 90 gradient directions with b = 3000 s/mm2. The baseline T1-weighted image il-
lustrating the ground truth configurations of the fibers is seen in the top left of Fig. 15. The crossing
regions is high-lighted and we have chosen to visualize the slice where there is partial volume aver-
aging due to the fiber bundles passing through the crossing voxels. In the first row of Fig. 15, we also
include the FA and GFA anisotropy measures as well as the DTI ellipsoid surfaces obtained from
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T1-weighted FA GFA DTI ellipsoids

(A)

(B)

(C)

Figure 15: Results for the rat biological phantom from Campbell et al. [7]. (A) is without sharpening,
(B) is with Laplacian α = 0.5 and (C) is with DFT k = 10 sharpening.
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the standard DTI least-squares fit using all 90 directions. As expected, the DTI ellipsoid surfaces are
planar and tend to be spherical in the crossing area which results in ambiguous principal directions.

Since the rat data set has a b-value of 3000 s/mm2 and is quite noisy, as seen in the FA and
GFA maps, we have decided to use an order-6 SH series estimation with conservative sharpening
factors. We visualize the field of ODFs by adjusting the opacity of each surface with respect to the
GFA measure and sharp and extract ODF maxima only for voxels above a certain GFA measure.
We see that ODFs in the crossing region have two strong peaks that we reliably recover. Since
fibers are perpendicular, sharpening enhances the overall ODF shapes but does not greatly improve
the maxima detection procedure. Although it is recovering an extra 2-fiber orientation voxel at the
bottom of the crossing section, it is also creating local maxima at boundaries between rat chords
and background substance where the noise is more important. Nonetheless, sharpening seems to
improve the general shape of the ODFs which could potentially better direct tractography methods
based on the full ODF. Overall, the shape of the ODFs are very satisfying and qualitatively seem to
better describe the underlying fibers than the ODFs reported in [7, 29]. It would now be interesting
to compare our estimated directions with the estimated ground truth and regularized directions of
Savadjiev et al. presented in [29].

6.3 Human Brain Data Experiment

We finally test our method on a real human brain dataset. Diffusion weighted images were acquired
at the Center for Magnetic Resonance Research, University of Minnesota, on a 3 Tesla Siemens
Magneton Trio whole-body scanner. We used 81 gradient directions on the hemisphere with 3 repe-
titions per direction, each with a b-value of b = 1000 s/mm2, TR = 5100s and TE = 109ms. The
voxel size was a 3mm3 cube and there were 24, 64x64 slices. We illustrate our ODF estimation and
sharpening on three regions of interests (ROI) in the brain, Figs. 16, 17 and 18. For all, we use a SH
series of order 6 and conservative sharpening factors. As before, we high-light the region of interest
and compute the least-squares DTI ellipsoids.

The first ROI is in an axial slice showing the intersection between the splenium of the corpus
callosum and the optic radiation. This slice is taken towards the back of the head and corresponds
to the ROI of Tuch [38, Fig.7]. Note that we pick up all three main fiber bundles as well as multiple
fiber voxels where we detect directions going up towards the top of the brain (splenium branch-
ing upwards). Since the b = 1000 s/mm2 is a low b-value, we see the improvement brought by
sharpening.

The second ROI is a coronal slice of the intersection between transcallosal projections of the
body of the corpus callosum, the corona radiata and the superior longitudinal fasciculus. This is a
very similar region as the ROIs in the centrum semiovale of [40] and [35]. We see two important
crossings. First, the corona radiata crossing the transcallosal fibers projecting to the precentral gyrus
and secondly, we have high-lighted the crossings between transcallosal projections and superior
longitudinal fasciculus. The superior longitudinal fibers are harder to see as they come out of the
page. This is also the case for the corpus callosum body coming out of the page as well in the lower
left corner. Note the positive effects of sharpening the ODFs in the crossing areas.
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No sharp Laplacian , α = 0.5

DFT, k = 10 DTI ellipsoids

Figure 16: Axial slice showing intersection between the splenium of the corpus callosum, the
tapetum and optic radiation such as the one in [38].
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No sharp Laplacian , α = 0.5

DFT, k = 10 DTI ellipsoids

Figure 17: Coronal slice in the centrum semiovale. We see intersection between the corpus callosum
commisural fibers and the corona radiata and superior longitudinal fasciculus.
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No sharp Laplacian , α = 0.5

DFT, k = 10 DTI ellipsoids

Figure 18: Sagittal slice showing the corona radiata diverging fibers and crossings with the longitu-
dinal fasciculus.
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Finally, we show a sagittal slice taken in the corona radiata showing diverging and crossing fibers.
We detect multiple fibers towards the top right of the brain. Some crossings are due to diverging and
splitting fibers in the corona radiata. There are also crossings between the corona radiata and the
superior longitudinal fasciculus (left-right) fibers that appear and are much clearer with sharpening.

7 Discussion

It is important to discuss the recent paper by Ozarslan et al. [22] because it is in similar spirit as our
approach. While we have extensively shown the power of SH series to simplify integrals over the
sphere using the Funk-Hecke formula, Ozarslan et al. also uses a SH series approximation to obtain
an analytic solution of the original Fourier integral of Eq. 1 under mono-exponential assumption.
In particular, [22] and their more detailed technical report [23] describes how to find the diffusion
orientation transform (DOT) that takes the apparent diffusion profile (D in Eq. 2) to the diffusion
probability profile (PDF) (P in Eq. 1). The key idea is to note that the Fourier transform can be done
using the Rayleigh expansion of a plane wave in spherical coordinates. They had previously used
this in [25] but now find an analytic solution using a spherical harmonics approximation to obtain
the closed form expression based on the confluent hypergeometic function [22]. The DOT has the
advantage of being based on the exact PDF of Eq. 1 in which a general `-order Bessel function ap-
pears whereas ODF-based reconstruction methods using the Funk-Radon transform approximation
have an intrinsic zeroth-order Bessel function smoothing. However, for simplification, they use a
{mono,bi,tri}-exponential decay of the input signal to obtain the diffusion profile [23] whereas in
our case, we have a model-free approach. Hence, there is a trade-off between a simple analytic
expression for an approximation of the ODF and a more complicated analytic solution for the exact
PDF based on the an exponential decay assumption. This monoexponential assumption can be seen
as a low-pass filtering of the diffusion PDF. Which method is more efficient and more precise needs
to be explored in future work in order to determine which is more useful in practice.

8 Conclusion

There are several important contributions in this paper. First, we have derived an analytic solution
of the Funk-Radon transform commonly solved numerically in Q-ball reconstruction to estimate the
orientation distribution function (ODF). This was possible using a physically meaningful spherical
harmonics approximation of the measured signal. The final ODF estimation is an elegant product
of the modified spherical harmonic basis function with the simple ratio of the corresponding order-`
Legendre polynomials evaluated at 0 and at 1. This simplification was possible by using a delta
sequence of Gaussians with decreasing variance so that the Funk-Hecke formula could be used to
solve the Funk-Radon integral. Without this derivation, the FRT can only be computed with a more
complicated numerical scheme.

We have also thoroughly tested the ODF estimation and have shown its robustness and flexibility.
It is clear that multiple fiber distributions can be detected from noisy sparse data with different
imaging parameters. In particular, we have illustrated that the b-value, the signal to noise ratio
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(SNR) and the approximation order-` of the SH series affect the orientation procedure. A priori, the
lower the b-value, the harder the fiber compartments are to separate. Hence, the ODFs are much
sharper and easier to characterize into different fiber compartments for high b-value than low b-value
where the signal tends to be more isotropic. Furthermore, the higher the SNR, the less risk there
is to overestimate the fiber distribution with a SH series of high order-8. In the case of an average
quality data, truncation at order-6 performs best. It is worth mentioning that it is also possible to
obtain very similar results by always using the highest possible truncation order (` = 8) but using a
higher λ regularization parameter. However, since order 8, 6 and 4 respectively have 45, 21 and 15
SH coefficients, the ODF estimation is computationally more expensive for large volumes. It will be
part of future work to investigate the precise relation between truncation order ` and the smoothing
parameter λ. It could also be important to explore dynamic truncation schemes as suggested by
Alexander et al. [2].

Finally, in this paper, we have chosen to focus on the individual ODF shapes before attempting
any tractography and segmentation. We observed that in most cases, once the isotropic diffusion
voxels have been filtered out, ODF sharpening seems important and we have shown that it enhances
the overall shape and underlying fiber distribution without dramatically amplifying the noise level.
To our knowledge, this is the first attempt at studying ODF shape enhancement. We have defined
a Laplacian-based image processing approach and a delta function transform (DFT) inspired by
spherical deconvolution. Even though the DFT is elegant and uses some interesting ideas and prop-
erties of spherical harmonics, it needs to assume a fiber response function. It is not as robust as the
model-free Laplace-Beltrami sharpening which is also faster to compute. It is clear that we now
have to thoroughly test if sharpening the overall shape of the ODF leads to better tractography and
segmentation results.
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A Funk-Radon transform approximates the diffusion ODF

The proof in this section is more detailed and slightly different than the one published in [38, Ap-
pendix A]. Let F2D, F3D and G represent the 2D Fourier, 3D Fourier and Funk-Radon (FRT) trans-
forms respectively. We want to prove that the FRT approximates the ODF, G[S(q)](u) ≈ Ψ(u). For
this, it is worth stating important Fourier analysis tools required for the proof.

1. Parseval-Plancherel Theorem relates the integral of two functions over real space to the
integral of their Fourier transforms over q-space as

∫ ∞

−∞
f(x)ḡ(x)dx =

∫ ∞

−∞
F (k)Ḡ(k)dk, (24)

where F (k) ≡ F [f(x)](k) and ḡ is the complex conjugate of g.

2. The Central Slice Theorem states that the 2D Fourier transform of the projection of a function
f(x) onto the plane defined by the vector u is the same as the intersection of that plane with
the 3D Fourier transform of f(x). Letting u be a unit normal vector defining the projection
plane and x a point on that plane, we can define the projection L of a 3D function f(x) as

L[f(x))](u) =

∫ ∞

−∞
f(x + αu)dα. (25)

Define now the intersection of a 3D function f(x) with the plane defined by the normal vector
u to it as I[f(x)](u) = f(x)δ(xT u), where δ is the Dirac delta function. Hence, we can
formally write the central slice theorem as

F2D[L[f(x)](u)] = I[F3D[f(x)]](u) or L[f(x)](u)] = F2D[I[F3D [f(x)]](u)] (26)

if f is antipodelly symmetric.

3. The Hankel transform H is a special case of the 2D Fourier transform of a function f when
this function has no angular dependence, i.e. f(x, y) = f(r) when written in polar coordi-
nates. Letting x = r cos θ, y = r sin θ, u = q cosφ, v = q sin φ, we can derive the Hankel
transform as

F2D[f(x)] =

∫ ∞

−∞

∫ ∞

−∞
f(x, y) exp (−2πi(ux + vy)) dxdy

=

∫ ∞

0

∫ 2π

0

f(r) exp (−2πiqr(cos θ cosφ + sin θ sin φ)) rdrdθ

=

∫ ∞

0

∫ 2π

0

f(r) exp (−2πiqr cos(θ − φ)) rdrdθ

=

∫ ∞

0

f(r)

(∫ 2π

0

exp(−2πiqr cos θ)dθ

)

rdr

= 2π

∫ ∞

0

f(r)J0(2πqr)rdr since J0(z) =
1

π

∫ π

0

exp(iz cos θ)dθ

= H[f(x, y)]
(27)
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We can now derive the relation between the ODF Ψ and Funk-Radon transform G of the mea-
sured signal S(q). To do so, we express both functions in cylindrical coordinates (r, θ, z). Without
loss of generality, the point of the unit sphere u where we want to evaluate the ODF given by Eq. 6
is along the z-axis. Thus, we first note that the ODF can be evaluated by first projecting the PDF
onto the xy-plane and taking the value at the origin.

Ψ(u) =

∫ ∞

0

P (α · u)dα

= L[P (0)](u) (using Eq.25)

=

∫ ∞

−∞
P (0, 0, z)dz

=

∫ ∞

−∞

∫ 2π

0

∫ ∞

0

P (r, θ, z)δ(r, θ)rdrdθdz

(28)

We now expend the FRT of the raw signal, Gq′ [S(q)](u) and show that it approximates the ODF.
First, since u is along the z-axis, the FRT in the direction u is integral over the great circle in the
xy-plane, i.e.

Gq′ [S(q)](u) =

∫ 2π

0

S(q′, qθ, 0)dqθ

=

∫ 2π

0

∫ ∞

0

S(q′, qθ, 0)δ(qr − q′)qrdqrdqθ

=

∫ 2π

0

∫ ∞

0

F2D[S(q′, qθ, 0)]
︸ ︷︷ ︸

I1

· F2D[δ(qr − q′)]
︸ ︷︷ ︸

I2

rdrdθ

(29)

using Parseval-Plancherel theorem (Eq. 24). We solve for I1 using the central slice theorem (Eq. 26)
through the xy-plane defined by u as

I1 = F2D[S(q′, qθ, 0)] = F2D[I[F3D [P (r, θ, z)]](u)] = L[P (r, θ, z)](u) =

∫ ∞

−∞
P (r, θ, z)dz.

Noting that δ(qr − q′) is independent of θ, we can use the Hankel transform (Eq. 27) to evaluate I2,

I2 = H[δ(qr − q′)] = 2π

∫ ∞

0

δ(qr − q′)J0(2πqrr)qrdqr = 2πq′J0(2πq′r).

Therefore, inserting I1 and I2 into Eq. 29, we obtain

Gq′ [S(q)](u) = 2πq′
∫ ∞

−∞

∫ 2π

0

∫ ∞

0

P (r, θ, z)J0(2πq′r)rdrdθdz. (30)

Comparing Eq. 28 and Eq. 30, we note that the approximation depends on how close the zeroth-
order Bessel function resembles the Dirac delta function. The width of J0 is inversely proportional
to q′. Hence, the larger b, the narrower the Bessel function, the closer the FRT approximation is to
the exact ODF. This is clear from the shapes of the graph in Fig. 19. In [37], a QBI acquisition was
achieved with b = 4000s/mm2.
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Figure 19: Zeroth-order Bessel function J0(2πzX) approaches a Dirac delta function as z increases.

B Sequence of Gaussians is a delta sequence

Let δn(x) = n√
π
e−n2x2

. We must show that

lim
n→∞

∫ ∞

−∞
δn(x)f(x)dx = f(0)

for it to be a delta sequence.

Proof: Using the Taylor expansion of f(x) about x = 0, we have

lim
n→∞

∫ ∞

−∞
δn(x)f(x)dx = lim

n→∞

∫ ∞

−∞
δn(x)

(

f(0) + f ′(0)x + f ′′(0)
x2

2!
+ ...

)

dx

= lim
n→∞








f(0)

∫ ∞

−∞
δn(x)dx

︸ ︷︷ ︸

I1

+
∞∑

k=1

f (k)(0)

k!

∫ ∞

−∞
xkδn(x)dx

︸ ︷︷ ︸

Ik








(31)
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First, we show that I1 = 1 for all n.

I1 =
n√
π

∫ ∞

−∞
e−n2x2

dx

=

(
n√
π

∫ ∞

−∞
e−n2x2

dx
n√
π

∫ ∞

−∞
e−n2x2

dx

)1/2

=

(
n2

π

∫ ∞

−∞
e−n2x2

dx

∫ ∞

−∞
e−n2y2

dy

)1/2

=

(
n2

π

∫ ∞

−∞

∫ ∞

−∞
e−n2(x2+y2)dxdy

)1/2

=

(
n2

π

∫ 2π

0

(∫ ∞

0

e−n2r2

rdr

)

dθ

)1/2

=

(
n2

π

∫ 2π

0

(
1

2n2

)

dθ

)1/2

= 1

Now, we must show that the limn→∞ Ik = 0 for all k ≥ 1. We use the known definite integral
formula found in [33], ∫ ∞

0

xke−ax2

dx =
Γ[(k + 1)/2]

2a(k+1)/2
,

where Γ is the Gamma function. In our case, we have an integral from −∞ to ∞. If k is odd then
the integrand is odd and Ik is zero. Hence, we have

Ik = lim
n→−∞

n√
pi

∫ ∞

−∞
xke−n2x2

dx = lim
n→∞

2n√
π

∫ ∞

0

xke−n2x2

dx for k even

= lim
n→∞

Γ[(k + 1)/2]

nk
= 0.

Substituting back I1 and Ik in Eq. 31 we obtain the desired result that

lim
n→∞

∫ ∞

−∞
δn(x)f(x)dx = f(0),

showing that the sequence of Gaussians with decreasing variances, δn(x) = n/
√

π exp(−n2x2),
converges to the Dirac delta function δ(x).

C Exact ODF derivation From the Multi-Tensor Fiber Model

Assuming signal S(u) is generated from the multi-tensor model for n fibers with relative weight pk,

S(u) =

n∑

k=1

pke−buT Dku,
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we want to derive the exact ODF for this fiber distribution. Recalling Eq. 1 which states that
the signal is the Fourier transform F of the underlying probability density function P (r), we first
need to compute the inverse Fourier transform F−1 of S(u) to obtain the corresponding PDF. We
demonstrate the computation for a single Gaussian and then, by linearity, obtain the result for the
general multi-Gaussian case. First, we will need the following inverse Fourier transform:

F−1[exp
(
−bk2

)
](x) =

1

2π

√
π

b
exp

(−x2

4b

)

. (32)

Hence, the PDF obtained for a single Gaussian assuming diffusion tensor D with diagonal entry
[a, a, c] and signal formation given by S(u) = exp(−buT Du)1 is

P (r) = F−1[exp
(
−buT Du

)
]

= F−1[exp
(
−b(au2

x + au2
y + cu2

z)
)
]

= F−1[exp
(
−bau2

x

)
]F−1[exp

(
−bau2

y

)
]F−1[exp

(
−bcu2

z

)
]

=
1

2π

√
π

ba
exp

(−x2

4ba

)
1

2π

√
π

ba
exp

(−y2

4ba

)
1

2π

√
π

bc
exp

(−z2

4bc

)

(Eq. 32)

=
1

8π3

√

π3

b3a2c
exp

(

− 1

4b

(
x2

a
+

y2

a
+

z2

c

))

=
1

√

(4πb)3|D|
exp

(−rT D−1r

4b

)

Now, we can obtain the exact ODF by integrating the radial direction of the PDF (Eq 6). The ratio
in front of the exponential in the final P (r) expression is incorporated in a general normalization
constant Z. We will also need the Gaussian integral formula

∫∞
0

exp(−r2C)dr = 1/2
√

π/C.
Hence, for one fiber we have,

Ψ1(u) =

∫ ∞

0

P (ru)dr

=
1

Z

∫ ∞

0

exp

(−r2uT D−1u

4b

)

dr

=
1

Z

√

πb

uT D−1u
(using the Gaussian integral formula)

Thus, for n fibers, we have

Ψ(u) =

n∑

k=1

pk

Z

√

πb

uT D−1
k u

Now, we need to determine the Z for which the integral over the sphere of the ODF is 1. Rather than
using the continuous closed form expression for

∫

|u|=1
(uT D−1u)−1/2du, we prefer to estimate

numerically this integral using the 81 sampling directions in order to obtain an accurate discrete
normalization Z factor.

1Note that if we use the standard signal formation in q-space, S(q) = exp(−τqT Dq) and b = τ |q|2, we obtain the
same expression with τ instead of b (as in [38, Eq.2]).
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We can now compute the angular resolution limitation of the multi-tensor Gaussian fiber model.
That is, we can find the relation between minimum angle between two synthetic fibers θsep and b-
value assuming a HARDI experiment. We need to find for which separation angle θsep between two
fibers do we start having a single ODF peak instead of two distinct peaks (assuming simple maxima
detection by thresholding above 1/2). Note that the response function for a single fiber oriented in
direction ε = (θ, φ) is simply Ψ(ε). Hence, for equal strength fibers and assuming that one fiber is
along the z-axis, we want θsep for which

1

2
Ψ(0, 0) +

1

2
Ψ(θsep, 0) ≥ 1

2

Note that in polar coordinates

uT D−1u =
1

a

(
sin2 θ cos2 φ + sin2 θ sin2 φ

)
+

1

c
cos2 θ

=
1

a
sin2 θ +

1

c
cos2 θ

Thus,

1

2
Ψ(0, 0) +

1

2
Ψ(θsep, 0) ≥ 1

2
=⇒ θsep ≥ sin−1

(√

(Z −√
c)−2 − 1/c

(1/a − 1/c)

)

For example, in our synthetic experiment, when b = 1000 s/mm2, θsep = 29.7◦. If the angle
between fibers is smaller, the exact ODF will only have a single peak instead of two. The relation
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Figure 20: Angular resolution limitation of the multi-tensor model assuming 81 HARDI sampling
on the hemisphere and two equally weighted fibers with eigenvalues [200, 200, 1700]x10−6 mm2/s.
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between θsep and b-value is in Fig. 20. One can easily imagine that adding noise on the signal will
produce even larger minimum angle.

D Defining the Fiber Response Profile for Sharpening

The main consideration is the creation of a viable response function R(θ) which will be used to trans-
form the estimated ODF. Assuming that a Gaussian can describe the diffusion of water molecules
for a single fiber, the corresponding expected response function is simply the ODF in the direction
of the fiber which was derived the previous Appendix C. Thus, the response function of a fiber in
direction ε is simply Ψ(ε). We are interested in finding a response profile and not necessarily an
exact expression and hence use ∝ to indicate “proportional to”. Referring to the previous Appendix,
if θ represents the angle between point of evaluation u and direction of the fiber ε, we have

R(θ) ∝
√

πb

(
sin2 θ

a
+

1 − sin2 θ

c

)− 1
2

∝
(
sin2 θ (1 − 1/k) + 1/k

)− 1
2

Therefore, we set the response function for an arbitrary Gaussian filter to be

R(t) =
(
t2(1 − 1/k2) + 1/k2

)− 1
2 ,

As seen in Fig. 21, the maximum occurs at k and we can therefore play with the “sharpness” of the
profile. In a sense, k represents the anisotropy of the diffusion tensor D.
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Figure 21: Response function R(t) and Rsharp(t) of a Gaussian fiber.
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