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Abstract: High angular resolution diffusion imaging (HARDI) has recently been of great interest
in characterizing non-Gaussian diffusion processes. In the white matter of the brain, non-Gaussian
diffusion occurs when fiber bundles cross, kiss or diverge within the same voxel. One important goal
in current research is to obtain more accurate fits of the apparent diffusion processes in these multi-
ple fiber regions, thus overcoming the limitations of classical diffusion tensor imaging (DTI). This
paper presents an extensive study of high order models for apparent diffusion coefficient estimation
and illustrates some of their applications. In particular, we first develop the appropriate mathemat-
ical tools to work on noisy HARDI data. Using a meaningful modified spherical harmonics basis
to capture the physical constraints of the problem, we propose a new regularization algorithm to
estimate a diffusivity profile smoother and closer to the true diffusivities without noise. We define
a smoothing term based on the Laplace-Beltrami operator for functions defined on the unit sphere.
The properties of the spherical harmonics are then exploited to derive a closed form implementation
of this term into the fitting procedure. We next derive the general linear transformation between the
coefficients of a spherical harmonics series of order ` and the independent elements of the rank-`
high order diffusion tensor. An additional contribution of the paper is the careful study of the state of
the art anisotropy measures for high order formulation models computed from spherical harmonics
or tensor coefficients. Their ability to characterize the underlying diffusion process is analyzed. We
are able to reproduce published results and also able to recover voxels with isotropic, single fiber
anisotropic and multiple fiber anisotropic diffusion. We test and validate the different approaches
on apparent diffusion coefficients from synthetic data, from a biological phantom and from a human
brain dataset.

Key-words: restoration and deblurring, high angular resolution diffusion imaging (HARDI), ap-
parent diffusion coefficient (ADC), spherical harmonics (SH), diffusion tensor, anisotropy measure
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Coefficients de Diffusion Apparents à Partir d’IRM de Diffusion
à Haute Résolution Angulaire: Estimation et Applications

Résumé : L’IRM de diffusion à haute résolution angulaire (HARDI) est maintenant un outil es-
sentiel pour décrire les phénomènes de diffusion non-Gaussiens des faisceaux de fibres de la ma-
tière blanche. Ceux-ci se produient lorsque plusieurs fibres se croisent. Dans ce cas, le tenseur
de diffusion classique (DTI) est limité et insuffisant. Ce rapport fait le point sur les techniques
d’approximations des coefficients de diffusion apparents à partir de modèles à ordres supérieurs et
présente aussi leur application dans la définition de mesures d’anisotropies. En particulier, nous
développons les outils mathématiques adéquats pour traiter et estimer les coefficients de diffusion
bruités provenant des données HARDI. À partir d’une base modifiée d’harmoniques sphériques et
de ses propriétés, nous proposons une nouvelle méthode de régularization obtenant des coefficients
de diffusion plus lisses. Nous validons l’approche sur des données synthétiques, sur un fantôme bio-
logique et sur un cerveau humain. De plus, nous étudions l’état de l’art des mesures d’anisotropies
calculées à partir de modèles à ordres supérieurs et nous évaluons leur habilité à décrire le processus
de diffusion.

Mots-clés : restoration et débruitage, IRM de diffusion à haute résolution angulaire (HARDI),
coefficient de diffusion apparent (ADC), harmoniques sphériques, tenseur de diffusion, mesure
d’anisotropie
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2 fibers true ADC profile ADC profile from DTI

Figure 1: ADC profile estimate from DTI fails to recover multiple fiber orientation. The maxima of
the ADC profile do not agree with thin green lines corresponding to the true synthetic fiber directions.

1 Introduction

For the past decade, there has been a growing interest in diffusion magnetic resonance imaging
(MRI) to understand functional coupling between cortical regions of the brain, for characterization of
neuro-degenerativediseases, for surgical planning and for other medical applications. Diffusion MRI
is the only non-invasive tool to obtain information about the neural architecture in vivo. It is based
on the Brownian motion of water molecules in normal tissues and the observation that molecules
tend to diffuse along fibers when contained in fiber bundles [19, 4]. Using classical diffusion tensor
imaging (DTI), several methods have been developed to segment and track white matter fibers in the
human brain [39, 45, 47, 8, 23, 24]. The common way to analyze the data is to fit it to a second
order tensor, which corresponds to the probability distribution of a given water molecule moving by
a certain amount during some fixed elapsed time. By diagonalization, the surface corresponding to
the diffusion tensor is an ellipsoid with its long axis aligned with the fiber orientation. However, the
theoretical basis for this model assumes that the underlying diffusion process is Gaussian. While
this approximation is adequate for voxels in which there is only a single fiber orientation (or none),
it breaks down for voxels in which there is more complicated internal structure, as seen in Fig. 1, an
example of two fibers crossing. This is an important limitation, since resolution of DTI acquisition
is between 1mm3 and 3mm3 while the physical diameter of fibers can be less than 1µm and up to
30 µm [30]. From anisotropy measure maps, we know that many voxels in diffusion MRI volumes
potentially have multiple fibers with crossing, kissing or diverging configurations.

To date, this is a reason why clinicians and neurosurgeons have been skeptical of tracking and
segmentation methods developed on DTI data. They have doubts on the principal directions ex-
tracted and followed from the diffusion tensor to track fiber bundles. In the presence of multiple
fibers, the diffusion profile is oblate or planar and there is no unique principal direction (Fig. 1). Ad-
ditionally, note that maxima of the apparent diffusion coefficient (ADC) profile do not correspond
to true fiber orientation (thin green lines). In current clinical applications, people instead choose
to use simple anisotropy maps computed from the ADC profile [13] to infer white matter connec-
tivity information. These measures are fast and easy to interpret with regions of anisotropy that
clearly stand out. Many anisotropy measures exist and the most commonly used are FA (fractional

INRIA
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anisotropy) and RA (relative anisotropy) [5] but again, these measures are limited in non-Gaussian
diffusion areas when computed from DTI data. This is well illustrated in Ozarslan et al [29] where
the anisotropy measure in a fiber crossing region is in the same range as voxels with no structure. As
such, recent research has been done to generalize the existing diffusion model with new higher reso-
lution acquisition techniques such as high angular resolution diffusion imaging (HARDI) [40]. One
natural generalization is to model the apparent diffusion coefficient (ADC) with higher order diffu-
sion tensors (HODT) [28]. This model does not assume any a priori knowledge about the diffusivity
profile and has the potential to describe non-Gaussian diffusion.

In this article, we study the estimate of the ADC profile from HARDI data and its ability to de-
scribe complex tissue architecture. Contrary to most recent papers on HARDI data processing, we
do not focus on finding the orientation of underlying fibers but want to design the appropriate tools
to describe noisy HARDI data and explore scalar anisotropy measures computed from high order
formulation. In particular, the paper addresses the problem of fitting HARDI data with a higher
order tensor. One proposed possibility by Ozarslan et al [28] is to use a direct linear regression
by least-squares fitting. This can be effective but its robustness to noise is questionable as there
does not appear to be any straightforward way to impose a viable smoothness maximizing criteria.
We approach the problem with a spherical harmonics series approximation [15, 2, 10]. An impor-
tant contribution of our work is to propose a generalization of the standard least-squares evaluation
method to include a regularization criterion. From this result, we compute the linear transformation
taking the coefficients of the spherical harmonic series to the independent elements of the HODT
using the relation presented in [28]. Therefore, our approach as well as any technique developed for
spherical harmonic formulation can be quickly and easily applied to the high order diffusion tensor
formulation and vice versa. This bridge is very useful for comparison purposes between state of
the art anisotropy measures for high order models computed from spherical harmonics and tensor
coefficients. Published results are reproduced accurately and it is also possible to recover voxels
with isotropic, single fiber anisotropic and multiple fiber anisotropic diffusion.

The paper is outlined as follows. In Section 2, we review the basic principle of diffusion MRI
and the differences between DTI and HARDI data. In Section 3, we review the existing state of
the art techniques to estimate the ADC profile from noisy HARDI data. In Section 4, we propose
a new regularization method which recovers a smoother ADC that is closer to the ADC without
noise. In Sections 5 and 6, we evaluate our algorithm against state of the art methods and review the
different anisotropy measures and algorithms proposed using spherical harmonic coefficients and
independent elements of the HODT. We show the potential and usefulness of the generalized GA
measure for HARDI proposed by Ozarslan et al [29]. We conclude with a discussion of the results
and our contributions in Section 7.

2 High Angular Resolution Diffusion Imaging (HARDI)

Diffusion magnetic resonance imaging, introduced in the mid 1980s by Le Bihan et al [19], has
become intensely used for the past ten years due to important image acquisition improvement. It
is the unique non-invasive technique capable of quantifying the anisotropic diffusion of water in
biological tissues such as muscle and brain white matter. Shortly after the first acquisition of images

RR n° 5681
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162 points 642 points

Figure 2: Discrete samplings of the sphere for different numbers of gradient directions corresponding
to order 3 and order 4 tessellation of the sphere respectively.

characterizing the anisotropic diffusion of water molecules in 1990 [26, 27], Basser et al. proposed
the diffusion tensor model [4, 3]. DTI computes the apparent diffusion coefficients (ADC) based
on the assumption that the diffusion or Brownian motion of water molecules can be described by a
zero-mean Gaussian distribution

P (r) =

(

1

(4πτ)3|D|

)
1
2

exp

(

rT D−1r

4τ

)

. (1)

P (r) is the probability that a water molecule starting at a given position in a voxel will have been
displaced by some radial vector r in time τ . The diffusion process is then fully described by a rank-
2 diffusion tensor D which is a positive-definite 3x3 symmetric matrix. Using a minimum of six
different encoded gradient directions g, the diffusion tensor can be constructed at each voxel in the
volume. The resulting signal attenuation is given by the Stejskal-Tanner equation [37],

S(g) = S0 exp
(

−bgTDg
)

(2)

where b is the diffusion weighting factor depending on scanner parameters such as the length and
strength of the diffusion gradient and time between diffusion gradient pulses and S0 is the T2-
weighted signal acquired without any diffusion gradients. Numerous methods for estimating and
regularizing the diffusion tensor have been proposed [39, 45, 47, 7]. Segmentation and tractography
on known fiber bundles with clear anisotropic regions of single fiber bundles work well [20, 21, 22,
23, 24] but the approaches are intrinsically limited and unstable in regions of multiple fibers due to
the restrictive assumption of the diffusion tensor model.

In order to better describe the complexity of water motion, a clinically feasible approach, high
angular resolution diffusion imaging (HARDI), has been proposed by Tuch et al [43, 40]. At the
cost of longer acquisition times, the idea is to sample the sphere in N discrete gradient directions
(Fig. 2) and compute the apparent diffusion coefficient (ADC) profile D(g) along each direction [42].
Hence, at each voxel, we have a discrete spherical function with no a priori assumption about the
nature of the diffusion process within the voxel. There have been interesting works done recently on
alternative ways to obtain complex sub-voxel tissue architecture, such as DSI [46, 40], Q-ball [41],
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PASMRI [25]. However, in this paper, we focus on HARDI data and in particular, the development
of new and efficient techniques to process noisy spherical data obtained in multiple directions. Sev-
eral recent approaches have attempted to estimate and investigate properties of noisy spherical data
obtained from HARDI [43, 15, 2, 10, 28] to characterize tissues with non-Gaussian diffusion. The
problem is to recover a smooth ADC, D(g), close to the true ADC from the measured diffusion MRI
noisy signal S(g),

S(g) = S0 exp (−bD(g)) =⇒ D(g) = −
1

b
ln

(

S(g)

S0

)

. (3)

We study the existing methods, discuss their limitations and propose a fast and robust algorithm for
ADC profile estimation in the following sections.

3 Apparent Diffusion Coefficient (ADC) Profile Estimation

At each voxel of HARDI data, we have a noisy sampling of the underlying ADC profile describing
the diffusion of water molecules within the voxel. In this section, we review tools for analyzing
function defined on the sphere and describe state of the art methods for obtaining the underlying
ADC profile from discrete noisy samplings. There are two classes of algorithms for ADC profile
estimation. The first uses a truncated spherical harmonic series to approximate the function on the
sphere [15, 2, 10] whereas the other fits a high order diffusion tensor to the data [28].

3.1 Estimating the ADC Profile with the Spherical Harmonics (SH)

Before discussing the fitting of data to a spherical harmonic series, we first define the spherical
harmonics and discuss briefly some of their properties.

3.1.1 Spherical Harmonics (SH)

The spherical harmonics, normally indicated by Y m
` (` denotes the order and m the phase factor),

are a basis for complex functions on the unit sphere satisfying the SH differential equation

1

sin θ

∂

∂θ
(sin θ

∂F

∂θ
) +

1

sin2 θ

∂2F

∂φ2
+ `(` + 1)F = 0, ` ∈ Z+ (4)

The first two terms of this equation correspond to the Laplacian in spherical coordinates, also called
the three dimensional Laplace-Beltrami operator 4b, which is defined by

4bF =
1

sin θ

∂

∂θ
(sin θ

∂F

∂θ
) +

1

sin2 θ

∂2F

∂φ2
. (5)

The Laplace-Beltrami operator is a natural measure of smoothness for functions defined on the unit
sphere and has been used in many image processing applications [16, 35, 34]. Furthermore, it is
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particularly easy to work with for applications involving the spherical harmonics because, referring
to Eq. 4, we know that the spherical harmonics satisfy the relation 4bY

m
` = −`(` + 1)Y m

` .
For each nonnegative integer ` there are exactly 2` + 1 spherical harmonics given by

Y −`
` , . . . , Y 0

` , . . . , Y `
` , i.e. m = −`, . . . , 0, . . . , `. Explicitly, they are given as follows

Y m
` (θ, φ) =

√

2` + 1

4π

(` − m)!

(` + m)!
P m

` (cos θ)eimφ (6)

where (θ, φ) obey physics convention (θ ∈ [0, π], φ ∈ [0, 2π)) and P m
` is an associated Legendre

polynomial, which can be obtained analytically from the following set of equations,

P`(x) =
1

2``!

(

d

dx

)`

(x2 − 1)` (7)

P m
` (x) = (−1)m(1 − x2)

m
2

(

d

dx

)m

P`(x), m ≥ 0 (8)

P−m
` (x) = (−1)m (` − m)!

(` + m)!
P m

` (x) (9)

The normalization factor in Eq. 6 is chosen so that the spherical harmonics form an orthonormal set
of functions with respect to the inner product

< f, g >=

∫

Ω

f∗g (10)

where integration over Ω denotes integration over the unit sphere, and f ∗ denotes the complex
conjugate of f . Finally, observe that with respect to the transformation

T : (θ, φ) → (π − θ, φ + π),

the spherical harmonics have the following very simple behavior,

Y m
` (T (θ, φ)) =

{

Y m
` (θ, φ), if ` even

−Y m
` (θ, φ), if ` odd

(11)

In other words, the even order spherical harmonics are antipodally symmetric, while the odd order
spherical harmonics are antipodally antisymmetric. We will be using these important properties in
the development of our regularization algorithm.

3.1.2 Methods for Fitting Spherical Data with SH Series

The set of spherical harmonics forms an orthonormal basis for all functions on the unit sphere.
High order spherical harmonics correspond to high frequency modes of the unit sphere, and thus a
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truncated spherical harmonic series can be effectively used to fit relatively smooth functions. Since
they form a basis, any spherical function x : S2 → C can be written as

x(θ, φ) =

∞
∑

`=0

∑̀

m=−`

cm
` Y m

` (θ, φ). (12)

Moreover, due to orthonormality of the SH basis, the coefficients of the SH series cm
` can be calcu-

lated by forming the inner product of x with the spherical harmonics,

cm
` = 〈x(θ, φ), Y m

` (θ, φ)〉 =

∫ 2π

0

∫ π

0

x(θ, φ)Y m
` (θ, φ) sin θdθdφ (13)

This idea was first used to fit the ADC profile obtained from HARDI data by Frank in [15] where the
function x is replaced by the discrete sampling of the diffusivities, D(g) (Eq. 3) . Frank performs the
direct discretization of the integrals. This is a computationally poor method to obtain the coefficients
and recent salient work by Alexander et al [2] use a least-squares method to solve for the unknowns.
The least-squares method was first proposed in the vision community for the parametrization of
closed surfaces for 3D shape description by Brechbuhler et al [6]. Letting ns be the number of
discrete point on the sphere, nb the number of SH used in the approximation (ns � nb), X =
(x1, ..., xns

)T , C = (c0
0, c

−1
1 , c0

1, . . .)
T and

B =











Y 0
0 (θ1, φ1) Y −1

1 (θ1, φ1) · · · Y nb
nb

(θ1, φ1)
Y 0

0 (θ2, φ2) Y −1
1 (θ2, φ2) · · · Y nb

nb
(θ2, φ2)

...
...

. . .
...

Y 0
0 (θns

, φns
) Y −1

1 (θns
, φns

) · · · Y nb
nb

(θns
, φns

)











, (14)

we want the spherical harmonic series that passes nearest to the discrete samplings on the sphere.
Hence, X = BC + E, where the error vector E should be small. This system of overdetermined
equations is solved with least-squares sum over the columns of E by minimizing ||X − BC||2

yielding

C = (BT B)−1BT X . (15)

The vector C of spherical harmonic coefficients gives the best-fitting truncated series to the ADC
profile. The estimated ADC profile is thus recovered by evaluating the following equation,

D(θ, φ) =

nb
∑

`=0

∑̀

m=−`

cm
` Y m

` (θ, φ) (16)

for any (θ, φ) outside the discrete measurements X or in the discrete case, by simple matrix mul-
tiplication D(g) = BC. Though this works fairly well so long as noise is kept small, we propose,
in Section 4, a more general fitting procedure that take advantage of the properties of spherical har-
monics and the Laplace-Beltrami operator to quantify the smoothness of spherical functions. Before
doing so, we review the relationship between the spherical harmonic series of order-` and the higher
order diffusion tensor of rank-`.

RR n° 5681
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3.2 Fitting the ADC Profile with a High Order Diffusion Tensor (HODT)

In [28], instead of fitting the ADC profile with a rank-2 tensor, the diffusivities are expressed in
terms of a high order Cartesian tensor D

D(g) =
3
∑

i1=1

3
∑

i2=1

...
3
∑

i`=1

Di1i2...i`
gi1gi2 ...gi`

(17)

where the Di1i2...i`
’s are the elements of D and the gi’s are the components of the unit vector

specifying the direction of the applied diffusion gradient

g =





g1

g2

g3



 =





sin θ cosφ
sin θ sin φ

cos θ



 (18)

Replacing gT Dg in the standard Stejskal-Tanner equation (Eq. 2) with D(g) as found in Eq. 17
leads to a generalized Stejskal-Tanner equation. This model assumes no a priori knowledge of the
diffusion profile. However, in order to use Eq. 17, we must assume that a rank-` tensor is sufficient
to determine the apparent diffusion coefficient profile, D(g). Given this assumption, it is possible to
simplify the problem further by exploiting the properties of the diffusion tensor.

The diffusion tensor must be totally symmetric, which means that the diffusion tensor remains
the same under any permutation of indices. Because of this symmetry, we can then define a subset
of diffusion tensor elements, that we call the set of independent elements, which represents a choice
of the smallest subset sufficient to fully characterize the diffusion tensor. Each independent element
is representative of the equivalence class generated by unique permutations of the indices of that
independent element. As the diffusion tensor is totally symmetric, each element in an equivalence
class has to take the same value. The number of elements in an equivalence class is called the
multiplicity. Each distinct equivalence class is thus characterized by the number of x’s, y’s and
z’s in its indices, and the sum of these has to be the rank of the tensor. Thus, the problem of
determining the total number of independent elements is then equivalent to finding the number of
possible combinations of two integers such that their sum is less than or equal to the rank of the
tensor. This is a straightforward calculation from which the number of independent elements of a
rank-` tensor is

nb =

`+1
∑

n=1

n =
1

2
(` + 1)(` + 2) (19)

This greatly simplifies the problem since, for large ` the total number of elements is much larger
than the number of independent elements (3` � nb). Using the arguments above, the authors of
[28] rewrite the expression for D(g) in a more compact form. In order to do this, they need to know
the multiplicity of each independent element of the HODT. Consider the group of all permutations
of ` elements, S`. The subgroup of unique permutations is equal to S` modulo the subgroup of all
permutations that do not change the indices. Note that permuting only the x’s (or y’s or z’s) does
not create a distinct set of indices. With a little more algebra, the subgroup of permutations fixing
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the indices turns out to be the product of permutations of x’s, permutations of y’s and permutations
of z’s. Thus, the multiplicity µ of a component of a rank-` tensor is

µ =
|S`|

|Sx| · |Sy| · |Sz|
=

`!

nx!ny!nz!
(20)

where Sx, Sy, and Sz are respectively the permutation groups of the x, y, and z indices, and nx, ny,
and nz are just the number of x, y, and z indices contained in the subscript of the given independent
element. With this information, much of Eq. 17 becomes redundant, and we can reduce it to

D(g) =

nb
∑

k=1

µkDk

∏̀

p=1

gk(p), (21)

where Dk is the kth independent element of the tensor, µk is its corresponding multiplicity, and gk(p)

gives the component of the gradient direction g corresponding to the pth index of the kth independent
element of the tensor. To illustrate this simplification, consider the vector of independent elements
of a rank-2 diffusion tensor D = ( Dxx Dxy Dxz Dyy Dyz Dzz )T which has multiplicity vector
µ = (1 2 2 1 2 1)T . We then have

D(g) =
∑

i1∈{x,y,z}

∑

i2∈{x,y,z}
Di1i2gi1gi2

= g2
xDxx + g2

yDyy + g2
zDzz + gxgyDxy + gygxDyx

+gxgzDxz + gzgxDzx + gygzDyz + gzgyDzy

= g2
xDxx + 2gxgyDxy + +2gxgzDxz + g2

yDyy + 2gygzDyz + g2
zDzz

=
6
∑

k=1

µkDk

2
∏

p=1

gk(p)

which illustrates the simplification. Combining Eq. 3 and Eq. 21, we have

D(g) =

nb
∑

k=1

µkDk

∏̀

p=1

gk(p) = −
1

b
log

(

S(g)

S0

)

. (22)

Ozarslan et al [28, 29] fit the ADC profile with a HODT using linear regression with processing
routines written in IDL (Research Systems, Inc., Boulder, CO). We are not sure of the exact routines
used in this procedure but we have implemented a standard linear regression with least-squares fitting
as described in the previous section. We want D, the vector of HODT independent elements, such
that

D(θi, φi) =

nb
∑

k=1

µkDk

∏̀

p=1

gk(p)(θi, φi). (23)
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Letting X be the diffusivities D(θi, φi), and

R =





















µ1

∏̀

p=1

g1(p)(θ1, φ1) · · · µnb

∏̀

p=1

gnb(p)(θ1, φ1)

...
. . .

...

µ1

∏̀

p=1

g1(p)(θns
, φns

) · · · µnb

∏̀

p=1

gnb(p)(θns
, φns

)





















, (24)

we define an error term E ′ so that X + E′ = RD. We seek to minimize the quantity E ′T E′ using
the same techniques described previously. We then obtain the expansion for the HODT

D = (RT R)−1RT X . (25)

The estimated ADC profile is thus recovered by evaluating

D(θ, φ) =

nb
∑

k=1

µkDk

∏̀

p=1

gk(p)(θ, φ) (26)

for any (θ, φ) outside the discrete measurements X or in the discrete case, by simple matrix multi-
plication D(g) = RD.

It is important to mention that it is physically impossible to have negative diffusivities because the
ADC profile describes the diffusion of water molecules, which is a positive process. The proposed
linear regression does not guarantee the positive definiteness of D. Moreover, the method does not
have a smoothing or regularization parameter and will therefore be sensitive to noise.

4 Fitting HODTs to HARDI Data Using Spherical Harmonics

4.1 A Regularization Algorithm for ADC Profile Estimation

The first step in our method is to take raw HARDI ADC profile data and fit it to a truncated spher-
ical harmonic series. There are five primary constraints on the diffusivity profile that need to be
considered in the optimization of this fit. It must be 1) real, 2) antipodally symmetric, 3) positive,
4) relatively smooth, and 5) in close agreement with the measured data. Constraints 1), 2) and 3)
are physical constraints due to the nature of diffusion MRI acquisition. The first two are relatively
straightforward to deal with, in that they can be ensured by a simple choice of modified spherical
harmonic basis. In order to impose the antipodal symmetry constraint on the expansion, we consider
only spherical harmonics of even degree. As mentioned before, spherical harmonics of odd order
are antipodally anti-symmetric, while spherical harmonics of even order are antipodally symmetric.
In order to impose the real-valued constraint, we consider a basis of real linear combinations of the
spherical harmonics as the basis. In this modified basis, the real-valued constraint on the ADC pro-
file can be taken into consideration simply by optimizing the fit over the set of real coefficients. The
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Y1 = Y 0
0

Y2 =
√

2
2

(

Y 2
2 + Y −2

2

)

, Y3 =
√

2
2

(

−Y 1
2 + Y −1

2

)

Y4 = Y 0
2

Y5 = i
√

2
2

(

Y 1
2 + Y −1

2

)

, Y6 = i
√

2
2

(

−Y 2
2 + Y −2

2

)

Y7 =
√

2
2

(

Y 4
4 + Y −4

4

)

, Y8 =
√

2
2

(

−Y 3
4 + Y −3

4

)

Y9 =
√

2
2

(

Y 2
4 + Y −2

4

)

, Y10 =
√

2
2

(

−Y 1
4 + Y −1

4

)

Y11 = Y 0
4

Y12 = i
√

2
2

(

Y 1
4 + Y −1

4

)

, Y13 = i
√

2
2

(

−Y 2
4 + Y −2

4

)

Y14 = i
√

2
2

(

Y 3
4 + Y −3

4

)

, Y15 = i
√

2
2

(

−Y 4
4 + Y −4

4

)

Table 1: Modified spherical harmonics basis of order 4

idea of modeling the ADC profile with physical constraints was proposed in Chen et al [10] where
they also use only even order SHs and construct a constrained minimization problem forcing the
ADC profile estimate to be real and positive. Our approach is slightly different in that we make sure
that we add a smoothing term as discussed later, and also enforce the real-valued constraint simply
by our choice of a modified spherical harmonic basis, rather than by implementing a complicated
constrained minimization routine.

For ` = 0, 2, 4, ... , `max and m = −`, ... , 0, ... , `, our modified basis is

Yj =











√
2

2 ((−1)mY m
` + Y −m

` ), if j(`, m) = `2+`+2
2 + m and − ` ≤ m < 0

Y 0
l , if j(`, m) = `2+`+2

2 + m and m = 0√
2i
2 ((−1)m+1Y m

` + Y −m
` ), if j(`, m) = `2+`+2

2 + m and 0 < m ≤ `

(27)

Table 1 shows the rank-4 basis as an example. Note that there are exactly nb = 1
2 (` + 1)(` +

2) (nb = 15 when ` = 4) terms in the SH series of order ` and the constants in front of the
composed terms ensure orthonormality with respect to the inner product of Eq. 10. For the rest of
the paper, Y1, . . . , Ynb

will refer to the modified spherical harmonic basis. Now, we can reformulate
the approximation of the ADC profile as the problem of determining the coefficients cj in

D(θi, φi) =

nb
∑

j=1

cjYj(θi, φi). (28)
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As in Section 3.1.2, we use noisy HARDI data sampled at a set of ns points (θi, φi) on the sphere,
the ith element of which will be denoted by x(θi, φi). Therefore, we have a similar set of equations
for the coefficients cj ,

x(θi, φi) =

nb
∑

j=1

cjYj(θi, φi) for 1 ≤ i ≤ ns (29)

From HARDI data, we usually have more discrete samplings on the sphere than terms in the modified
SH basis (ns � nb) and thus, we can write the equations given above as an overdetermined linear
system X + E = BC, as before and now with the B matrix constructed with the modified spherical
harmonics basis. At this point, instead of performing a simple least-squared minimization from
which we obtain the result given in Eq. 15, we want to add regularization to our fitting procedure.
We propose to find the solution that minimizes the sum of the previously discussed squared error
term and the new smoothness term. We define a measure of the deviation from smoothness E of a
function f defined on the unit sphere as

E(f) =

∫

Ω

(4bf)2, (30)

where integration over Ω denotes integration over the unit sphere and 4b is the Laplace-Beltrami
operator. The Laplace-Beltrami operator is a natural measure of smoothness for functions defined
on the unit sphere and as stated before, we know that the spherical harmonics satisfy the relation
4bY

m
` = −`(`+1)Y m

` . Note that this relation also holds for our modified SH basis. As a result, the
above functional can be rewritten straightforwardly in terms of the coefficient vector C as follows:

E(f) =

∫

Ω

4b

(

∑

p

cpYp

)

4b

(

∑

q

cqYq

)

=

nb
∑

j=1

c2
j`

2
j (`j + 1)2 (orthonormality of the modified basis)

= CT LC,

(31)

where L is simply the nb x nb matrix with entries `2
j (`j + 1)2 along the diagonal. Therefore, the

quantity we wish to minimize can be expressed in matrix form as

M(C) = (BC − X)T (BC − X) + λCT LC, (32)

where λ is a variable weighting factor on the regularization term. The coefficient vector minimizing
this expression can then be determined just as in the standard least-squares fit (λ = 0), by setting
each of the ∂M

∂cj
= 0, from which we obtain the generalized expression for the desired spherical

harmonic series coefficient vector

C = (BT B + λL)−1BT X . (33)
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The estimated ADC profile is thus recovered by evaluating

D(θ, φ) =

nb
∑

j=1

cjYj(θ, φ) (34)

for any (θ, φ) outside the discrete measurements X or in the discrete case, by simple matrix multi-
plication D(g) = BC.

Intuitively, this approach penalizes an approximation function for having higher order terms
in its modified SH series. Therefore, higher order terms will only be included in the fit if they
significantly improve the overall accuracy of the approximation. This eliminates most of the high
order terms due to noise while leaving those that are necessary to describe the underlying function.
However, obtaining this balance depends on choosing a good value for the parameter λ. We use
the L-curve numerical method [17] and experimental simulations to determine the best smoothing
parameter. This will be described in Section 5. Note that a variation on the above derivation will
hold in other geometries if a proper basis of functions is chosen.

4.2 From SH Coefficients to HODT Coefficients

We now explicitly derive the correspondence between coefficients of the modified spherical har-
monic series and the independent elements of the high order diffusion tensor. Ozarslan et al [28]
showed the analytical relationship between the SH coefficients and the independent elements of the
HODT. Conceptually, they showed that evaluating the ADC in terms of a HODT is equivalent to
fitting the ADC with a spherical harmonics series. Thus, it is possible to define a general linear
transformation to go from one to the other.

By Appendix A, we know that both the even order spherical harmonics up to order `, and the
rank-` HODT polynomials restricted to the sphere, are bases for the same function space. Therefore,
given a vector of HODT coefficients D, we know that there exists a vector C of spherical harmonic
coefficients such that

nb
∑

i=1

cjYj(g) =

nb
∑

k=1

Dkµk

∏̀

p=1

gk(p)(g). (35)

Now, multiplying both sides of this equation by Ym and integrating over the unit sphere, we obtain
by the orthonormality of the spherical harmonics

cm =

nb
∑

k=1

Dk

∫

Ω

µk

∏̀

p=1

gk(p)(g)Ym(g)dg (36)

This straightforwardly translates into matrix form as

C = MD (37)
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where

M =





















µ1

∫

Ω

∏̀

p=1

g1(p)Y1(g)dg . . . µnb

∫

Ω

∏̀

p=1

gnb(p)Y1(g)dg

...
. . .

...

µ1

∫

Ω

∏̀

p=1

g1(p)Ynb
(g)dg . . . µnb

∫

Ω

∏̀

p=1

gnb(p)Ynb
(g)dg





















. (38)

Since both sets of functions form bases for the same space, the linear transformation M between
them is a change of basis matrix, and is thus invertible (proof in Appendix A). Therefore, given a
vector C of SH coefficients, we can use M−1 to compute the corresponding vector of HODT coef-
ficients. This argument, exploiting the orthonormality of the spherical harmonics, provides a more
computationally generalizable way of determining the matrix M than the algorithm suggested by
the inductive proof of Appendix A. We thus have obtained a linear mapping between the spherical
harmonic coefficients and HODT independent elements. Fig. 3 and Fig. 4 illustrate the transforma-
tion procedure analytically for the example of the rank-2 diffusion tensor. When using the standard
spherical harmonic basis (Fig. 3), we obtain the exact same relationship presented by Ozarslan et
al [28]. In Fig. 4, we derive the same relations using our modified spherical harmonic basis. Note
that all matrix entries are real, which captures the real-valued constraint on the problem.

Putting everything together, i.e. combining Eqs. 33 and 37, the linear transformation taking the
raw HARDI data sampling X to the vector D of HODT independent coefficients using our spherical
harmonic regularization step is

D = M−1(BT B + λL)−1BT X . (39)

The technique is fast because it only involves linear transformations and more importantly, matrices
B(Eq. 14) and M (Eq. 38) are the same for all voxels in the data set and need only be computed once.
Therefore, we have obtained a real and symmetric high order diffusion tensor and the estimated ADC
profile can be recovered, as in Section 4.2 by evaluating Eq. 26 for any (θ, φ) outside the discrete
measurements X or in the discrete case, by simple matrix multiplication D(g) = RD.

Note that the physical positivity constraint of the ADC profile is not ensured in this derivation.
One must make sure that D(g) = gT Dg ≥ 0. In implementing our algorithm, we found that this was
rarely relevant at reasonable noise levels, as our algorithm gave everywhere positive results without
being explicitly constrained to do so. However, in the standard rank-2 DTI problem, methods have
been proposed to deal with data where some of the estimated tensors step out of the positive-definite
matrix space [38, 9, 23]. In [38], a simple numerical extension of the PDE-based approach for tensor
estimation is proposed to preserve the positive-definite property of each tensor. At each numerical
iteration involved with solving the PDE, tensors are diagonalized and reprojected into the space of
symmetric semi-positive space by setting the negative eigenvalues to zero. Hence, the approach
requires a spectral decomposition of the tensors at each step which is slow. In [9], the problem
is better posed mathematically and PDE’s are derived to preserve discontinuities of constrained
matrix-valued images. A similar gradient descent approach on the manifold of multivariate normal
distributions, which shows promising results, is used in [23] with a Riemannian metric. The question
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` = 2, using standard spherical harmonics basis:
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Figure 3: Illustration of transformation M from independent elements of the HODT, D, to our
modified SH series coefficients, C, for a rank-2 tensor. Using the standard spherical harmonics
basis, we obtain the exact same expression as presented in [28].
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` = 2, using modified spherical harmonics basis (Eq. 27):

SH basis = Y =
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Figure 4: Illustration of transformation M from independent elements of the HODT, D, to our
modified SH coefficients, C, for a rank-2 tensor. Using our modified SH basis, the coefficients of M
are always real.
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Figure 5: Sketch of our regularization algorithm. It illustrates the main parts and equations of the
method and in particular, it shows the bridge between spherical harmonic coefficients and indepen-
dent coefficients of the high order diffusion tensor.

of how to extend this approach in the space of high order tensors is open and goes beyond the scope
of this report. We cannot simply use the idea of [38] because, in general, high order tensors cannot
always be decomposed. However, it is part of current work to look for numerical schemes that
impose D(g) to always be positive.

The ultimate goal when estimating and denoising the diffusivity profile is to use it to infer the
underlying diffusion process. This is commonly done using anisotropy measures defined on what-
ever set of coefficients is used to describe the ADC profile. With our algorithm, we can either work
directly with the spherical harmonic coefficients or choose to use the coefficients of the high order
diffusion tensor. The method and the main equations are clearly sketched in Fig. 5 where it is shown
how spherical harmonic coefficients and high order tensor elements are linked.

5 Synthetic Data Experiments

In the following sections, we first evaluate the performance of our ADC profile fitting procedure
compared with other techniques in the literature and secondly test the different HARDI anisotropy
measures on both synthetic and real data. For the synthetic tests of our algorithm, we used the multi-
tensor model for multiple fibers, as described in [2]. This model assumes that single fiber responses
can be described by a Gaussian (rank-2 tensor) and that the tissue in a voxel with more than one
fiber is simply composed of multiple Gaussian fibers that do not exchange molecules. With these
assumptions, the signal obtained is

S(g) = S0

n
∑

i=1

pie
−bgT

Dig (40)

where n is the number of fibers, pi is the proportion of tissue in the voxel that corresponds to the

ith fiber (
n
∑

i=1

pi = 1), Di is the second order diffusion tensor corresponding to the ith fiber, g is

the direction of the applied diffusion gradient and b is a constant determined by the diffusion MRI
scanner. A fairly standard b-value for medical imaging is b = 3000s/mm2. In [2], Alexander et al
perform experiments with many fiber variations between the standard white-matter diffusion tensor
with eigenvalues [1700, 200, 200] · 10−6mm2/s and the isotropic tensor with equal eigenvalues
[700, 700, 700] · 10−6mm2/s. In our experiment, we choose to only consider the white-matter fiber
of the brain. Given this assumption, any Di can be constructed with the use of rotation matrices
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from the diagonalized matrix

D = 10−6 ·





1700 0 0
0 200 0
0 0 200



 (41)

This makes computation using this model relatively straightforward. We are trying to obtain the
diffusivity profile, however, rather than the signal itself, so we cannot directly use this approach.
Instead, we wish to find D(g) such that

S(g) = S0e
−bD(g) (42)

We find this by simply setting Eq. 40 equal to Eq. 42 to obtain the result that D(g) is

D(g) = −
1

b
ln

(

S(g)

S0

)

= −
1

b
ln

(

n
∑

i=1

pie
−bgT Dig

)

(43)

To test our model on various fiber distributions we generate discrete samplings on the sphere. We
used the standard 81 point HARDI sampling of the hemisphere with almost equally sparse gradients
g to obtain a spherical function with 162 points as illustrated in Fig. 2. We generate voxels with 1,
2, or 3 randomly distributed fibers or with an isotropic distribution. With 162 points on the sphere,
the resolution between gradient directions is about 16 degrees and thus, we impose a minimum
angle of 45 degrees between fibers for better discrimination. Finally, we add Rician noise (complex
Gaussian noise) [33, 32] with a standard deviation of σ = 1/35 to the raw signal (Eq. 42) such that
the unweighted signal S0 has a signal to noise ratio (SNR) of 35, a typical value for current medical
scanners [2, 40].

The multi-tensor model has also been used for synthetic data experiments by other authors (e.g.
Tuch [41]) and it is worth mentioning that there exists another popular synthetic data generation
model used in other works [44, 14, 29]. In this formulation, Soderman and Jonsson [36] suppose
that fibers are perfect cylinders and that water molecules are confined to diffuse within the walls
of these cylinders. In the presence of multiple fibers, the signal attenuation from the cylinders is
additive. This gives a more physically-based mixture model but is less realistic than the multi-tensor
model that corresponds more closely to empirical fiber data. In any case, the approaches have the
same model-selection and fitting problems [1].

5.1 Quantitative Comparison

In order to test the effectiveness of recovering the original (without noise) synthetic diffusivity profile
from noisy sparse data measurements, we compare our algorithm (sketched in Fig. 5) qualitatively
and quantitatively to methods presented in Section 3. To do so, we estimate the HODT from the
noisy sampled ADC profile and then compute the estimated true ADC profile with Eq. 26. For our
algorithm, D is obtained from Eq. 39. For the Ozarslan et al [28] linear regression (LR) method,
we get D from Eq. 25. Finally, we also use the un-smoothed SH technique (λ = 0) of Eq. 15 that
resembles estimation approaches proposed by Frank [15] and is essentially the same as the method
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1 fiber test with λ (x10−3)
LR 0 6 12 100 300 500

mean 0.083 0.083 0.071 0.068 0.052 0.051 0.054
std 0.064 0.063 0.051 0.046 0.036 0.035 0.037

2 fiber test with λ (x10−3)
LR 0 3 6 9 12 15

mean 0.076 0.075 0.070 0.069 0.070 0.070 0.072
std 0.052 0.052 0.043 0.041 0.040 0.041 0.042

3 fiber test with λ (x10−3)
LR 0 6 9 12 15 100

mean 0.092 0.092 0.049 0.040 0.034 0.031 0.057
std 0.037 0.037 0.028 0.026 0.025 0.025 0.026

random fiber test with λ (x10−3)
LR 0 6 12 100 200 300

mean 0.078 0.078 0.068 0.065 0.064 0.067 0.070
std 0.054 0.055 0.045 0.043 0.042 0.044 0.045

Table 2: Numerical simulation to find the best regularization weight λ for ADC profile fitting and
comparison with Ozarslan et al linear regression (LR) method. We show the mean and standard
deviation (std) of the squared difference between the true ADC profile and the estimated profile.
The best values for each test are in bold fonts.

used in Alexander et al [2], except that they use a different spherical harmonics basis. In the latter
case, we need to apply our transformation matrix M−1(Eq. 38) to obtain D. In the following tables,
the error measures recorded are the mean and standard deviation (std) of the error vector E ′′ specified
by the point-wise squared difference between points on the estimated ADC points and points on the
true (without noise) ADC profiles

E′′
i = (Dtrue(θi, φi) − D(θi, φi))

2. (44)

5.1.1 Effect of the λ-Regularization Weight

We want to find the optimal λ for our regularization algorithm. This is not a trivial task because
there are different optimal λ’s depending on the underlying fiber distribution. In fact, in the cases
of 1 or no fibers, a high order tensor formulation is unnecessary and thus, it is expected to obtain a
higher optimal λ for these cases than for multiple fiber diffusion. To find the optimal regularization
parameter, we use the L-curve method of [17]. In our least-squares minimization problem, we need
to plot the data errors ||BC − X ||2 against the regularization term CT LC while varying λ. Hence,
we simulate random 1, 2, and 3 fiber distribution, we incrementally vary λ ∈ [0, 0.5] and record the
pair (||BC − X ||2, CT LC). As seen in Fig. 6, this gives a set of noisy points(green dots) to which
we can fit a best curve that will be our L-curve. We choose a 4th order polynomial least-squares fit,
which models the data well. The optimal λ is then the point on the curve with maximum curvature,

RR n° 5681



22 M. Descoteaux, E. Angelino, S. Fitzgibbons, R. Deriche

0 1 2 3 4 5 6 7 8

x 10
−6

0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−4

← *** λ = 0.308 ***

0 1 2 3 4 5 6

x 10
−6

0

0.2

0.4

0.6

0.8

1

1.2
x 10

−4

← *** λ = 0.006 ***

1 fiber, λ = 0.308 2 fibers,λ = 0.006

0 0.5 1 1.5 2 2.5

x 10
−6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−4

← *** λ = 0.0155 ***

3 fibers,λ = 0.0155

Figure 6: L-curves for 1, 2 and 3 fibers with optimal λ circled. The green points are the discrete
points in the experiment and the red curve is the least-squares best fit with a 4th order polynomial.
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1 fiber test
LR λ = 0 λ = 0.006

mean 0.083 0.083 0.071
std 0.064 0.063 0.051

2 fiber test
LR λ = 0 λ = 0.006

mean 0.076 0.075 0.069
std 0.052 0.052 0.041

3 fiber test
LR λ = 0 λ = 0.006

mean 0.092 0.092 0.049
std 0.037 0.037 0.028

random fiber test
LR λ = 0 λ = 0.006

mean 0.078 0.078 0.068
std 0.054 0.055 0.045

Table 3: Comparison between LR method, spherical harmonics series with no regularization and our
approach with smoothing parameter set to λ = 0.006. For all tests, λ = 0.006 performs better than
LR of [28] and SH series with λ = 0 of [15, 2].

which is the location that separates the flatter and more vertical parts of the graph. These are where
the solution is dominated by regularization errors and perturbation errors respectively. We plot the
L-curves for 1, 2 and 3 randomly distributed fibers in Fig. 6. We show the set of measured points,
the fitted L-curve and indicate the optimal λ with a circle.

In order to verify the L-curve optimal values, we simulate in the same way as above, 10000 syn-
thetic diffusivity profiles of 1, 2 and 3 fibers and compute the Ozarslan et al linear regression (LR)
and our algorithm’s estimations for different values of λ. For each test, we compute the mean and
standard deviation (std) of the squared error between the true and estimated ADC profile (Eq. 44).
From Table 2, there are several expected observations that one can make. Firstly, from the first two
columns, we note that the linear regression fit of a HODT and the SH series fit with no regularization
(λ = 0) are the same up to a very small numerical error. As previously discussed, this is to be ex-
pected because the two models are equivalent and there exists a direct change of basis transformation
between the two. Secondly, as observed with the L-curve, single fiber voxels are optimally fit with
a larger λ than in the multiple fiber voxels. This occurs because in the case of a single fiber, higher
order estimation is unnecessary. Intuitively, a large λ cancels the effect of high order tensor terms so
that the model is closer to a rank-2 tensor formulation. However, as soon as we have more structure,
as in the cases of 2 or 3 fibers, λ of 0.006 and 0.015 are best, respectively. This is expected as we
need to maintain significant contribution from higher order terms in order to accurately fit multi-
fiber ADC profiles. In the random case, a λ of 0.1 gives the best results. These best numerical λ
values closely agree with the L-curve points of maximum curvature. Finally, from Table 3, we note
that in all cases, λ = 0.006 performs better than both linear regression and the SH fit with λ = 0.
Moreover, λ = 0.006 is also the optimal value for the L-curve in the case of 2 fibers. Therefore, for
the rest of the experiments, we set λ = 0.006 based on the assumption that it is critical to robustly
distinguish multiple fiber diffusion from single fiber diffusion, especially between single and two
fiber distributions.

Qualitatively, Fig. 7 illustrates how we obtain a smoother ADC profile estimation that visually
agrees with results from Table 3. Our regularized tensor estimation gives a diffusivity profile closer
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1 fiber

true adc noisy adc LR SH, λ = 0 SH, λ = 0.006

2 fibers

true adc noisy adc LR SH, λ = 0 SH, λ = 0.006

3 fibers

true adc noisy adc LR SH, λ = 0 SH, λ = 0.006

Figure 7: Visualizing the ADC profile fitting procedure. We have in row 1 the ADC profile for a
single fiber, in row 2 the ADC profile for two orthogonal fibers and row 3 is for three orthogonal
fibers. Qualitatively, the last column gives the best approximation of the true ADC profile.

to the true ADC profile without noise than other methods considered. Here, instead of visualizing
the data on the unit sphere, we have stretched the surface mesh with respect to each ADC profile
value D(θi, φi). The color map is red for high values and blue for low ADC profile values.
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5.2 Anisotropy Measures

We now explore the different measures found in the literature that attempt to characterize anisotropy
from high order approximations of the ADC profile. There are two classes of anisotropy measures
for HARDI data. One is defined on the coefficients a SH series (Frank [15], Alexander et al [2],
Chen et al [10]) and the other on the independent elements of a HODT (Ozarslan et al [28]). We
implement these important measures from the literature and compare their behavior. We also study
their ability to identify the underlying diffusion process. On synthetic data, we demonstrate that our
algorithm can differentiate between isotropic diffusion, 1-fiber diffusion and multi-fiber diffusion.

5.2.1 Frank and Chen et al Measures

The two measures found in the Frank and Chen et al papers are similar and based on SH coefficients.
Frank [15] proposes a simple Fractional Multifiber Index (FMI) that is the ratio of the sum of squared
high order coefficients coefficients over order-2 coefficients. It is given by

FMI =

∑

{j:`≥4}
|cj |

2

∑

{j:`=2}
|cj |

2
=

nb
∑

j=7

|cj |
2

6
∑

j=2

|cj |
2

(45)

where nb = 1
2 (` + 1)(` + 2) is the number of elements in the truncated SH series.

Chen et al [10] claim that the FMI ratio is insufficient to separate isotropic, 1-fiber and multi-
fiber behavior within a voxel. They decide to introduce the variance of the ADC profile D(g) about
its mean value into the characterization of the underlying diffusive behavior with the following ratios

R0 =
|c0|

∑

∀j

|cj |
, R2 =

∑

{j:`=2}
|cj |

∑

∀j

|cj |
, Rmulti =

∑

{j:`≥4}
|cj |

∑

∀j

|cj |
.

In their paper, they restrict the maximum number of fibers in a voxel to 2 and they use a rank-4
approximation. Hence, they only use R0 and R2 ratios. We generalize their approach for more than
two directions and use a rank-8 estimation. Rmulti is a natural multi-fiber ratio extension. These
anisotropy ratios can be used to formulate an algorithm to distinguish between isotropic, 1-fiber and
multi-fiber diffusion. It is roughly sketched in Fig. 8. We carefully pick the thresholds in these
algorithms by performing tests on synthetic data to obtain the best results.

5.2.2 Alexander et al Measure

Alexander et al. use ANOVA [2] to determine if truncating the series at a higher order as opposed to
a lower order significantly changes the fit to the model data. The F-test is

F (M2, M`) =
(N − p` − 1)(V ar(M`) − V ar(M2))

(p` − p2)E(M`)
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if R0 is large OR Variance(ADC) is small
ISOTROPY

else if R2 is large OR Variance(ADC) is large
if Rmulti is large

MULTI FIBER
else

SINGLE FIBER

else if Rmutli is large
MULTI FIBER

Figure 8: Rough sketch of the anisotropy algorithm from Chen et al [10] generalized for more than
two directions and higher order approximations.

where E is the mean squared error between the true ADC profile and the estimated ADC profile at the
N sampled points and pi is the number of free parameters in model Mi. In our case, the lower order
model is M2 (order-2 diffusion tensor) and we test it against higher order approximation models M`

for ` = 4, 6, 8. We then have, N = 162, p2 = 6 and p` = 1
2 (` + 1)(` + 2). In [2], ANOVA is used

to dynamically choose the order of the SH series approximation.

5.2.3 Results of Anisotropy Measures from SH Series

Our goal is to correctly classify synthetic noisy data, generated as described in Section 5, into three
classes: 0 for isotropic diffusion, 1 for 1-fiber anisotropic diffusion and 2 for multi-fiber diffusion,
i.e. diffusion corresponding to either 2 or more fibers. To do so, we attempt to find the best thresh-
olds that separate the different measures into these three classes. We test the robustness of the
classifications under rank change. We analyze the behavior of the measures and note the different
characteristics.

From Table 4, we see that Chen et al and ANOVA measures behave similarly and are more
stable than Frank’s measure. The advantage of Chen’s algorithm is that it involves well-chosen SH
coefficient ratios and the variance of the ADC profile which makes it more robust to noise and less
sensitive to the threshold selection. In fact, we do not have adapt thresholds between tests when
changing λ and the rank of the HODT. This is not the case with ANOVA. It is also important to note
the better performance of our regularization procedure with a non-zero λ used in conjunction with
the Chen et al and the ANOVA measures. This clearly illustrates the added value brought by our
method described in Section 4. This is because the estimated ADC profile is smoother, and hence,
the SH coefficient ratios incorporate less noise. On the other hand, for Frank’s measure, we note
that it performs better when λ = 0. This is not surprising because of the nature of the ratio and in
particular, because the numerator depends only on high order terms of the SH series. With a non-

INRIA



Apparent diffusion coefficients from HARDI: estimation and applications 27

FMI Chen ANOVA
λ = 0 λ = 0.006 λ = 0 λ = 0.006 λ = 0 λ = 0.006

` = 8 93.1% 85.1% 83.2% 96.0% 91.7% 94.8%
` = 6 93.1% 84.2% 89.1% 97.0% 90.9% 94.5%
` = 4 83.2% 82.2% 93.1% 97.0% 88.7% 91.1%
` = 2 54.4% 54.5%

Table 4: Classification success percentages using anisotropy measures. We test the effects of varying
λ and rank. Note the errors with a rank-2 approximation in Chen’s column. FMI and ANOVA
measures make no sense in the ` = 2 case.

true ` = 2 ` = 4 ` = 8

Figure 9: Rank-2 approximation fails to describe non-Gaussian diffusion.

zero λ, the coefficients of higher order are penalized, and therefore have lower values than without
a smoothing term. The ratio is thus not designed to be used with our method.

In all cases, the classification errors occur for two specific types of synthetic data. First, when
there are two fibers very close to one another (≈ 45 degrees), we can obtain the misclassification
where the true number of fibers is underdetermined by one. This is a limitation due to the angular
resolution between discrete samplings on the sphere and also the noise present in the data. Sec-
ondly, we observe that a noisy distribution of three fibers close to orthogonal behaves like isotropic
diffusion.

Finally, from both column 2 of Table 4 and Fig. 9, we clearly see that a rank-2 diffusion tensor
model is not sufficient to describe the ADC profile and detect multi-fiber diffusion. In this particular
case, all anisotropy classifications detect multi-fiber diffusion with ` = 4, 6 and 8 but detect single
fiber diffusion with the ` = 2 approximation. For the ` = 2 approximation, the peaks of the true
ADC profile are lost and it looks like a flat ellipsoid.

5.2.4 Generalized Anisotropy Measure

Ozarslan et al. in their recent article [29] generalize the well-known DTI FA (fractional anisotropy)
measure for HARDI data fitted with high order tensors. Their generalized anisotropy (GA) measure
is based on the generalization of the trace, mean diffusivity and the variance of the normalized
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diffusivity of high order tensors. The trace of a rank-2 tensor D is given by the sum of its eigenvalues,
and if it is antipodally symmetric, it can be expressed as the integral over the unit hemisphere Ω of
its quadratic form

trace(D) =
3

2π

∫

Ω

gT Dgdg.

Thus, it is possible to generalize this trace expression for any antipodally symmetric spherical func-
tion f and obtain the generalized trace “gentr”,

gentr(f(g)) =
3

2π

∫

Ω

f(g)dg.

Inspired by the rank-2 tensor case where FA is expressed in the new form

FA =

√

1

2

(

3 −
1

trace(D2
N )

)

related to the variance of the eigenvalues of the normalized tensor (DN = D/trace(D)) in the
case that D is diagonalized, Ozarslan et al propose a generalized version using the variance of the
generalized trace of the normalized diffusivities DN (g). This generalized variance is defined as

V =
1

3

(

gentr(DN (g)2) −
1

3

)

, where DN (g) =
D(g)

gentr(D(g))
(46)

The last step of the GA measure is to make sure it is restricted to the interval [0, 1) by choosing a
monotonic function that maps the interval [0,∞) to [0, 1). This choice seems to be relatively “ad-
hoc” and dependent on the dataset to be processed. The final generalized anisotropy (GA) measure
is defined as

GA = 1 −
1

1 + (250V )e(V )
, where e(V ) = 1 +

1

1 + 5000V
. (47)

We have skipped many important details in the GA derivation and we strongly refer the reader to
the article [29] for the complete description. Contrary to ratios/measures/algorithms proposed from
spherical harmonic coefficients reviewed in the previous section, GA has the property of being scaled
between 0 and 1 and does not assume any specific approximation order. It can be quickly and easily
visualized to obtain cues on the anisotropy regions, just as FA in the DTI case.

Even though the exact values are different because we use a different synthetic data generation,
we are able, in Table 5, to reproduce the same behaviors of the GA measure published by Ozarslan et
al. In particular, for a single fiber, the measures are almost independent of the rank being used for the
estimation (first row in table). However, GA measures are significantly higher for rank-{4,6,8} than
for the rank-2 model when there are multiple fibers. There is also an overlap in GA values between
diffusion in 3-fiber distribution and isotropic diffusion. It is in these cases that the rank-2 model is
unsatisfying. We also note similar GA values and behaviors between our regularization algorithm
and our implementation of Ozarslan’s linear regression.
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Our method (λ = 0.006) , LR
` = 2 ` = 4 ` = 6 ` = 8

1 fiber 0.92,0.92 0.92,0.92 0.92,0.92 0.92,0.92
2 fibers 0.64,0.65 0.71,0.73 0.72,0.73 0.70,0.71
3 fibers 0.09,0.09 0.19,0.23 0.20,0.13 0.10, 0.09

isotropic 0.09,0.09 0.09,0.10 0.09,0.09 8x10−4,0.01

Table 5: Mean GA measure over 10000 simulated ADC profiles. We show the mean GA calcu-
lated from our algorithm and Ozarslan’s linear regression (LR) method. We observe similar overall
behaviors as the ones reported in [29].

DTI ellipsoid surfaces HARDI field of ADC

FA GA

Figure 10: Two orthogonal fiber bundles crossing. In the top left, red ellipsoids are oriented along
the fiber bundles, green ellipsoids are flat in the crossing area and blue ellipsoids are close to spheres
in the background. We show the field of ADC profiles in the top right where we see multiple peaks
in the crossing. The last row shows the FA and GA anisotropy maps. The anisotropy is much lower
in the crossing area in both cases.
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DTI ellipsoid surfaces HARDI field of ADC

FA GA GA color bar

t2 = 0.06 t2 = 0.08 t2 = 0.1

Figure 11: Three orthogonal fiber bundles crossing. In the top left is the field of surface ellipsoids
corresponding to rank-2 diffusion tensor estimation and in the top right is the field of approximated
ADC profiles. Red ellipsoids are elongated in the directions of fiber orientation and blue ellipsoids
represent isotropic tensors in the crossing area and background. In the HARDI field there is a
difference between the background ADC profiles and those in the crossing area. The second row
clearly shows the ability of GA to pick up the crossing area whereas the FA map is in the same range
as the background in that region. We can thus attempt to threshold the GA to classify the diffusion.
The last row illustrates the effect of varying the t2 threshold value in the classification process.
green := isotropic, blue := 1 fiber, red := multi-fiber. Some voxels are incorrectly classified.
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Spherical Harmonics Linear Regression
λ = 0.006 λ = 0

` = 8 99.8% 99.9% 99.3%
` = 6 99.8% 99.6% 99.2%
` = 4 100% 99.9% 99.6%
` = 2 78.6% 77.6% 78.1%

Table 6: Classification with GA. 10000 random fiber test with our algorithm and Ozarslan’s linear
regression method.

Furthermore, due to the consistent behavior of GA values, (i.e. small variation in GA measure
among fiber distributions of the same number of fibers), we can push the experiment further and
attempt to classify the different underlying synthetic fiber distributions. The thresholds are consid-
erably easier to choose than with the measures using spherical harmonics presented earlier. Using
the mean and standard deviation of the GA from Table 5, we choose thresholds t1 = 0.90 and
t2 = 0.08. Our classification procedure is then simple. If GA > t1 we classify the voxel as 1-fiber
anisotropic diffusion, else if GA < t2 we have isotropic diffusion and otherwise, we mark the voxel
as a multi-fiber distribution.

We again generate tests with 10000 randomly distributed 1-fiber, 2-fiber, 3-fiber and isotropic
diffusion single voxels. In order to validate the approach on a field of noisy spherical functions,
we also extend our single voxel synthetic generation to construct a noisy high angular resolution
30x30 slice with a 5x5 crossing configuration in the center. We perform one experiment with two
and another with three orthogonal fibers crossing. Table 6 and Fig. 11 show the success of the clas-
sification results on synthetic data. Detection of fiber distributions is more stable and better with GA
than with measures from spherical harmonics. GA values clearly discriminate the different diffu-
sion processes except for rank-2 approximation where the overlap between three-fiber and isotropic
diffusion causes many misclassifications. For rank-{4, 6, 8}, the only errors made are when there
are 3-fiber distributions with signals very close to that of isotropic diffusion. In Figs. 10 and 11 we
also include the DTI ellipsoid surfaces which clearly illustrate the planar and isotropic tensors in
the crossing of the respective tests. These were computed using standard least-squares fit from all
discrete high angular measures. The color map is blue for isotropic, green for planar and red for
anisotropic ellipsoids. We also see the FA map limitations in the crossing areas. In particular, note
that for the three crossing patterns in Fig. 11, the FA measure is in the same range as the background
whereas the GA map is able to distinguish the multi-fiber diffusion process.

5.2.5 Cumulative Residual Entropy (CRE)

We now review the CRE index [31], a measure that is very different from the measures presented so
far. CRE is based on a probability measure computed from the full ADC profile sampling whereas
previous measures are defined from the coefficients of either the SH or HODT vector describing the
ADC profile. CRE is an information theory measure with interesting properties and similar behavior
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Our method with λ = 0.006
` = 2 ` = 4 ` = 6 ` = 8

1 fiber 0.13 0.17 0.16 0.16
2 fibers 0.096 0.096 0.097 0.097
3 fibers 0.0044 0.049 0.047 0.047

isotropic 0.0042 0.0067 0.0078 0.0096

Table 7: CRE experiment. In left table, we show the behavior of the entropy index on 10000 synthetic
ADC profiles. The right table shows the classification results when changing the rank.

in practice as GA. Chen et al [11] proposed this measure to overcome the limitations of their previous
anisotropy algorithm (Fig. 8). It reduces the number of parameters required to characterize the
diffusion process to two [11]. The CRE of a continuous random variable A ∈ R is defined as

CRE(A) = −

∫

R+

P (A > σ) log P (A > σ)dσ. (48)

The weak theorem of CRE [31] states that in the discrete case, where we have discrete samples of
A, CRE converges to the true CRE (as the number of samplings goes to infinity). This is the main
advantage of CRE over the popular Shannon entropy (H(A) =

∑N
i=1 p(Ai) log P (Ai)) for which

this property does not hold. Thus, in [11], CRE is computed from the discrete estimated sampling
of the ADC profile D(g) as:

CRE(e−bD(g)) = −
M
∑

i=1

P (e−bD(g) > σi) log P (e−bD(g) > σi)4σi, (49)

where {σ1 < σ2 < ... < σM} is defined over the range of e−bD(g) at each voxel and 4i = σi+1−σi

is the absolute difference between two adjacent e−bD(g). One again, we compute the average values
of CRE for 0, 1, 2 and 3 fiber distributions from 10000 synthetic D(g) profiles with M = 1000,
as in [11]. From Table 7, we observe the same overall anisotropy index behavior as obtained from
the GA measure. In fact, if we attempt a classification like in the previous section, it is true that
two thresholds are enough to classify the synthetic diffusion process. The success rate is very high
and in the same range as Table 6. CRE has the advantage of being better theoretically founded and
simpler to compute than GA. However, as it will be discussed in the real data experiment, CRE has
the same limitations as the GA measure for characterizing diffusion on real data experiments. On
the biological phantom, thresholding the measure is not enough to robustly seperate the crossing
region from the 1-fiber parts. Despite this, among all tested anisotropy measures for HARDI data,
CRE and GA are the most consistent and perform the best. In the context of this report, if we only
consider anisotropy measures computed from coefficients of ADC profiles, GA is the one with the
most potential. Therefore, for the real data validation, we choose to use GA.
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6 Real Data Experiment

6.1 A Biological Phantom

First, we test our algorithm on a biological phantom, Fig 12. It was produced by Campbell et al
at the McConnel Brain Imaging Center and Montreal Neurological Institute [7, 8] and was created
from two excised Sprague-Dawley rat spinal cords embedded in 2% agar. A high angular resolution
dataset was acquired using 90 gradient directions and the q-ball protocol ([41]) with b = 3000. The
baseline T1-weighted image illustrating the ground truth configurations of the fibers is seen in the
top left of Fig.12. We also compare the ellipsoid surfaces obtained from the standard DTI least-
squares fit using all 90 directions against the ADC profile computed with our regularized spherical
harmonic algorithm. The ellipsoids and ADC profiles are overlaid on the computed GA map. A
rank-8 estimation with λ = 0.006 is used. As expected, the DTI ellipsoid surfaces are planar or tend
to be spherical in the crossing area whereas the more complex high order estimation of the ADC
profile recover multiple peaks for voxels in that region. Moreover, even though the GA map has
slightly noisy background, it recovers both fiber bundles and the measure is different in the crossing
than in certain straight single fiber parts. However, contrary to the synthetic data characterization,
the GA difference between 1- and 2-fiber regions is not clear enough to fully distinguish the two
with simple thresholding. This is also case for the CRE measure (not shown here).

6.2 Human Brain HARDI Data

Secondly, we test our method on a real human brain. Diffusion weighted images were acquired at the
Center for Magnetic Resonance Research, University of Minnesota, on a 3 Tesla Siemens Magneton
Trio whole-body scanner. We used 81 gradient directions on the hemisphere with 3 repetitions per
direction, each with a b-factor of b = 1000 s/mm2, TR = 5100s and TE = 109ms. The voxel
size was a 3mm3 cube and there were 24, 64x64 slices.

As described in Tuch’s thesis [40], normalizing the ADC profile is of great importance for in-
creasing the visual angular contrast of real data. In particular, [[40], Fig. 8.4] illustrates the enhance-
ment of the maxima and minima when the diffusion coefficients are normalized to the interval [0, 1].
In this paper, we also have normalized the real data ADC profile in order to emphasize the peaks, i.e.
obtain a sharper ADC profile. Otherwise, the diffusivity profiles are visually too close to a sphere
and the GA measurements are very close to isotropic.

We have selected 1-fiber and multi-fiber ADC profiles from voxels in the corpus callosum and
the corticospinal tract to illustrate the performance of our regularization algorithm on real data.
Fig. 13 shows some of the results. We include the FA and GA scalar measures. From the GA
maps of the rat biological phantom and human brain dataset, we see that classification on real data
is a much more difficult task than the synthetic data experiments where the noisy generated signal
is more homogeneous and GA statistics are easily computed. On real data, one has to manually
select regions with known crossings and regions with strong single fiber anisotropy to analyze the
corresponding GA measure behavior. Due to noise and partial volume effects there is too much
overlap between diffusion process classes. However, we observe that the real data normalized ADC
profiles have very similar shapes and properties as compared to our synthetic data. Even though we
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T1-weighted baseline image DTI ellipsoid surfaces field of ADC profiles

DTI ellipsoids in crossing ADC profiles in crossing DTI ellipsoids + ADC profiles

Figure 12: Biological phantom produced at the McConnel Brain Imaging Center [7, 8]. We show the
baseline T1-weighted image as well as the fields of DTI ellipsoids and estimated ADC profiles on
the whole phantom overlaid on the GA map. Focusing on the crossing area, the DTI ellipsoids tend
to be flat (greenish) and spherical (blueish) whereas the ADC profiles clearly have multiple peaks
compared to the single fiber bundle area. Recall that maxima of ADC profiles do not correspond
to fiber orientation. The ADC profiles are scaled by the GA measure to enhance visual contrast
between foreground and background.
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single fiber distribution

FA = 0.35, GA = 0.93

multi-fiber distribution

FA = 0.08, GA = 0.87

FA map

(a) Voxels chosen from the corpus callosum.

single fiber distribution

FA = 0.67, GA = 0.94

multi-fiber distribution

FA = 0.04, GA = 0.88

FA map

(b) Voxels chosen from the corticospinal tract

Figure 13: ADC profiles selected from real data voxels in the corpus callosum and the corticospinal
tract. The left column of each sub-figure represents the real profile and the right column is the
estimated ADC profile from our regularization algorithm. We report the corresponding FA and GA
measures for each and include the FA map with the region of interest marked with a pink overlaid
cross.
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ADC profile ` = 4

Figure 14: Read data ADC profile of a voxel in gray matter.

` = 2 ` = 4 ` = 6 ` = 8

Figure 15: ADC profile at different ranks for the fiber crossing in the corpus callosum of Fig. 13(a).

do not believe one can simply threshold the real data GA map to classify the diffusion process, one
can make better use of the GA than FA scalar measure to look for multiple fibers crossing. Visual
inspection of the peaks of the ADC profile in the small regions of interest show agreement with
neuroanatomy knowledge (Fig. 13) of single and multiple fiber bundles.

In Fig. 14 we have chosen a voxel in the gray matter to illustrate an example of a noisy isotropic
ADC profile, and Fig. 15 well-illustrates the limitations of the rank-2 diffusion tensor model. In this
case, the estimated ADC profile surface averages the multiple peaks of the true ADC profile and
produces a planar ADC profile.

Finally, we reproduce a similar figure as Tuch’s in [41, Fig. 12-f] from the genu of the corpus
callosum. This region is known to have multiple fibers crossing. We thus observe a lower FA than
that found in strong anisotropic areas and a stronger GA value in the range corresponding to 2 or 3
fibers in Table 5. If one locally thresholds this region of interest, the obtained classification provides
some valuable information. The multi-fiber regions in red clearly stand out and we can thus identify
areas of transition between single (blue) and multiple fiber diffusion. Although not shown here, a
very similar classification can be obtained from the CRE measure1.

1 In [11, Fig.5], Chen et al obtain a two-fiber classification that strangely occurs mostly on the boundary of white-matter
and gray-matter. This figure is unexpected and looks incorrect as it does not pick up known regions of multiple crossings
such as areas presented in [41] and Fig. 16.
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Transverse, coronal and sagittal FA slice of the region of interest

FA crop GA crop class crop

Figure 16: Transverse slice of a region of interest (ROI) from the genu of the corpus callosum. It is
a similar ROI as in Tuch [41, fig. 12-f]. We show the fractional anisotropy map and the GA map
computed from the HODT model. We attempt to threshold the GA measure to obtain the class map
in the selected region. The green, blue and red color code represents isotropic, 1-fiber and multi-
fiber diffusion respectively. As expected, we detect a multi-fiber area corresponding to the region of
crossing in red.
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7 Conclusion and Discussion

Overall, there are several contributions in this paper. Firstly, we proposed a new regularization
algorithm to estimate a smoother ADC profile closer to the true ADC profile without noise. We
chose a meaningful modified spherical harmonic basis to capture the physical constraints of the
problem, defined a regularization term based on the smoothing properties of the Laplace-Beltrami
operator for functions defined on the unit sphere and derived the linear transformation taking SH
coefficients to HODT coefficients. We thus obtained a high order diffusion tensor. The method was
tested against state of the art techniques from the literature on synthetic data, on a biological phantom
and on real human brain data. Our experiments verify the equivalence of the diffusion tensor and
the spherical harmonic formulations of the diffusivity profile up to a good numerical approximation.
This is useful because it implies that any technique developed for the spherical harmonic formulation
can be quickly and easily applied to the diffusion tensor formulation and vice versa.

Moreover, the continuous smoothing parameter λ generalizing the traditional least squares fit-
ting algorithm for spherical harmonic series is appropriate whenever there is a sparsely sampled set
of noisy data on a sphere and the expected approximation function is relatively smooth. However,
minimizing the squared error is not the only important characteristic of a good approximation func-
tion. In particular, if we wish to be able to extract a fiber probability distribution for the voxel from
our diffusivity profile model, we need the approximation to be sufficient to capture details up to the
desired level of resolution. For example, over a data set that contained a large proportion of voxels
with only a single fiber direction, an order-2 fit would certainly minimize the squared error from the
actual data averaged over the entire data set. However, the higher order voxels would be modeled
very poorly, making various tasks, such as tractography, considerably more difficult. For this reason,
simple truncation, which is the equivalent to fitting the data with a lower order tensor, is not com-
parable to a procedure that retains higher-order detail, such as the proposed fit with a well-chosen
regularization weight λ. Up to the resolution that we were considering, order-4 truncation was a
valid choice of fitting procedure but has neither the general applicability nor the ability to retain
detail at the 6th and 8th orders shown by the smoothness maximizing criterion we propose.

In addition to these contributions, another important part of the report is the careful study of the
existing anisotropy measures for SH and HODT parametrization of the HARDI ADC profiles. We
extended the study by attempting to classify the diffusion process from these anisotropy measures.
This showed to be easier on synthetic data than on real data where selecting sensible thresholds is
much harder. We have successfully reproduced the properties of the generalized anisotropy (GA)
measure and clearly showed its advantages over the other scalar indices computed from spherical
harmonics coefficients. In addition to being the high order generalization of the popular FA measure
for DTI, it is stable and has the advantage of being scaled between 0 and 1. With a fast visual
inspection, this allows the detection of non-Gaussian diffusion processes in cerebral regions from
real data. This can potentially be of great help to clinicians and neurosurgeons.
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A Relation of Spherical Harmonics to the HODT

Here, we aim to prove that the M matrix (Eq. 38) is simply a change of basis, i.e. that for all integers
n ≥ 0, the diffusion tensor polynomials of rank 2n and the modified set of spherical harmonics
up through rank 2n both form a basis for the same space of functions. We note that this implies
that M is invertible. Before proving this, we will make some preliminary comments. Firstly, the
spherical harmonics of order ` are defined to be the restrictions of homogeneous harmonic poly-
nomials of order ` to the unit sphere [16]. Both the standard set of spherical harmonics and the
modified set we introduce in this paper are just particular choices of basis for this space. Secondly,
the diffusion tensor polynomials of rank ` are simply the set of unique monomials of degree `, i.e.
{xaybzc|a, b, c ≥ 0, a + b + c = `} which we also restrict to the unit sphere. Finally, both of the
above sets (modified spherical harmonics of order ≤ 2n and diffusion tensor polynomials of rank
2n) are linearly independent and have the same number of elements. Therefore, it suffices to show
that all the elements in one set can be expressed as linear combinations of elements in the other set
to prove that both sets form a basis for the same space.

Theorem: For all integers n ≥ 0, the diffusion tensor polynomials of rank 2n, i.e. {xaybzc|a, b, c ≥
0, a+ b+ c = `}, restricted to the sphere, and the set of modified spherical harmonics of order ≤ 2n
form a basis for the same space of functions.

Proof: Our approach will be to show that every even order homogeneous harmonic polynomial
restricted to the unit sphere of order ≤ 2n can be expressed as a linear combination of the diffusion
tensor polynomials of rank 2n. As discussed above, this result is equivalent to the statement of the
theorem. We proceed by induction. Note that we will use ∼ to denote “is proportional to”.

Base case: For n = 0, the set of homogeneous harmonic polynomials of order 0 restricted to the
unit sphere is simply the set of constant functions, and we have that

{xaybzc|a, b, c >= 0, a + b + c = 0} = x0y0z0 ∼ 1.

Therefore, any homogeneous harmonic polynomial of order 0 restricted to the unit sphere is simply
a linear scaling of the unique diffusion tensor polynomial of order 0.

Inductive step: Assume that all homogeneous harmonic polynomials of order ≤ 2n − 2 can
be expressed as linear combinations of diffusion tensor polynomials of rank 2n − 2. Since we are
restricted to the sphere, we can multiply each of these formulas by x2+y2+z2 = 1 to express each of
the homogeneous harmonic polynomials of order ≤ 2n−2 as linear combinations of diffusion tensor
polynomials of rank 2n. For example, the homogeneous harmonic polynomial of order 2, xz, is itself
a diffusion tensor polynomial of rank 2. However, it can also be written as a linear combination of
rank 4 diffusion tensor polynomials in the following way: xz(x2 + y2 + z2) = x3z + xy2z + xz3.
Furthermore, every homogeneous harmonic polynomial of order 2n can be expressed as a linear
combination of diffusion tensor polynomials of rank 2n simply because the set of unique monomials
of degree 2n spans the set of polynomials of degree 2n. This completes the proof.
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We now proceed to give a brief example. Below we express each of the elements of our modified
SH basis of order ≤ 2 (Fig. 4) in terms of linear combinations of diffusion tensor polynomials of
rank 2. (Restricting to the unit sphere gives, as in standard spherical coordinates, the relations:
x = cosφ sin θ, y = sin φ sin θ, z = cos θ and 1 = x2 + y2 + z2).

Y1 ∼ 1 ∼ x2 + y2 + z2

Y2 ∼ sin2 θ cos(2φ)
∼ sin2 θ(cos2 φ − sin2 φ) ∼ x2 − y2

Y3 ∼ sin θ cos θ cosφ ∼ xz
Y4 ∼ 3 cos2 θ − 1

∼ 3z2 − (x2 + y2 + z2) ∼ 2z2 − x2 − y2

Y5 ∼ sin θ cos θ sin φ ∼ yz
Y6 ∼ sin2 θ sin(2φ)

∼ sin2 θ(2 sin φ cosφ) ∼ xy

With linear combination of the Y1, Y2 and Y4 terms, one can obtain the monomials x2, y2 and z2.
Hence, the modified basis of order 2 spans the set of degree two monomials.

This result explains why fitting with the diffusion tensor formulation and fitting with the spherical
harmonic formulation are equivalent as seen in, for example, the similarity of the λ = 0 fit and the
linear regression HODT fit in Table 2 and Table 3.
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