-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by HAL-Ecole des Ponts ParisTech

archives-ouvertes

New Light on Arc Consistency over Continuous Domains
Gilles Chabert, Gilles Trombettoni, Bertrand Neveu

» To cite this version:

Gilles Chabert, Gilles Trombettoni, Bertrand Neveu. New Light on Arc Consistency over
Continuous Domains. RR-5365, INRIA. 2004, pp.26. <inria-00070638>

HAL 1d: inria-00070638
https://hal.inria.fr /inria-00070638
Submitted on 19 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/48357597?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00070638

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

New Light on Arc Consistency over Continuous
Domains

Gilles Chabert — Gilles Trombettoni — Bertrand Neveu

N° 5365

Novembre 2004

Théme SYM

apport
derecherche

% I N R I A

SOPHIA ANTIPOLIS

New Light on Arc Consistency over Continuous Domains

Gilles Chabert* , Gilles Trombettoni' , Bertrand Neveu?

Théme SYM — Systémes symboliques
Projet COPRIN

Rapport de recherche n’° 5365 — Novembre 2004 — 28 pages

Abstract: Hyvonen [9] and Faltings 7] observed that propagation algorithms with con-
tinuous variables are computationally extremely inefficient when unions of intervals are used
to precisely store refinements of domains.

These algorithms were designed in the hope of obtaining the interesting property of arc
consistency, that guarantees every value in domains to be consistent w.r.t. every constraint.

In the first part of this report, we show that a pure backtrack-free filtering algorithm
enforcing arc consistency will never exist. But surprisingly, we show that it is easy to obtain
a property stronger than arc consistency with a few steps of bisection.

We define the so-called boz-set consistency, and devise a generic method to enforce it.
This method combines hull consistency filtering, interval union projection, and intelligent
domain splitting.

In the second part, a concrete algorithm, derived from a lazy version of the generic
method is proposed. It can be applied to any numerical CSP, and achieves box-set consis-
tency providing that constraints are redundancy-free in terms of variables. This holds even
if the problem is not interval-convex. The main contribution of our approach lies in the way
we bypass the non-convexity issue, which so far was a synonym for either a loss of accu-
racy or an unbounded growth of label size. We prove the correctness of our algorithm and
through experimental results, we show that, as compared to a strategy based on a standard
bisection, it may lead to gains while never producing an overhead.

Key-words: constraint programming, interval arithmetics, arc consistency.

This report subsumes two papers, New light on Arc Consistency over Continuous Domains in the First
International Workshop on Constraint Propagation and Implementation (2004) and Boz-Set Consistency
for interval-based constraint problems, in the Symposium on Applied Computing (2005).

* gilles.chabert@sophia.inria.fr
 trombe@sophia.inria.fr
1 bertrand.neveu@sophia.inria.fr

Unité de recherche INRIA Sophia Antipolis

2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)
Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Nouvel éclairage sur 1’arc-cohérence en domaine continu

Résumé : Les travaux de Hyvonen [9] et Faltings [7] ont montré que le recours aux uni-
ons d’intervalles dans les algorihmes de filtrage par propagation conduisait & des pertes
d’efficacité inacceptables.

Une telle représentation des domaines était introduite dans le but d’appliquer la propriété
d’arc-cohérence sur des problémes continus. Cette propriété, bien connue en domaine fini,
garantit que chaque valeur du domaine d’une variable posséde un support dans le domaine
des autres variables.

Dans la premiére partie de ce rapport, nous montrons qu’il ne peut pas exister de filtrage
par arc-cohérence en domaine continu, si on se limite & la propriété telle quelle. Mais,
paradoxalement, il est possible d’obtenir pour de nombreux problémes une consistance plus
forte, moyennant 'introduction de quelques points de choix. Nous définissons la propriété
dite de boz-set cohérence et donnons une méthode générique permettant de l'obtenir. Cette
méthode s’appuye sur un filtrage par 2B-consistance, la projection d’unions d’intervalles et
une technique particuliére de bissection.

A partir d’une version paresseuse de cette méthode, nous élaborons dans la seconde
partie un algorithme concret dont nous détaillons certains rouages techniques. Ses propriétés
théoriques sont ensuite étudiées, notamment les conditions sous lesquelles ’arc-cohérence
est effectivement garantie. Nous montrons en particulier qu’elle 'est pour des problémes
non-convexes, au sens “intervalles”, pour autant que les contraintes soient sans occurrence
multiple de la méme variable.

Le principal intérét de notre approche réside dans la fagcon dont nous contournons le
probléme des fonctions non convexes qui, jusqu’ici, impliquait soit de faire des approxima-
tions, soit de gérer des unions d’intervalles de taille non bornée.

Nous avons effectué une premiére évaluation expérimentale de notre approche. Nous
observons d’une part que le fait d’intégrer un filtrage par box-set cohérence dans un al-
gorithme de recherche de solution ne détériore jamais les performances, et d’autre part,
qu’il peut y avoir dans certains cas des gains allant jusqu’a 20%.

Mots-clés : programmation par contraintes, arithmétique d’intervalles, arc-cohérence.

AC over continuous domains 3

1 Introduction

Constraint programming (CP) is a complementary approach of interval-based numerical
methods to solve systems of equations over the reals. Instead of approximating solutions
with mathematical reasoning on the entire system, equations are treated as independent
compatibility relations (called constraints) between variables. In this perspective, domains
are filtered by removing values for which a relation cannot be satisfied individually. On the
one hand, these methods make hardly use of semantics, but on the other hand, they are
general-purpose. A mix of CP and interval analysis has given rise to the best solvers for
satisfying or optimizing constraint systems.

When the domains of the variables are stable for all the constraints, i.e., when all the
values can be used to satisfy any constraint, we see that we cannot go further with “local”
reasoning, and we talk about arc consistency. A lot of algorithms have been designed to
enforce arc consistency in discrete constraint systems (where domains have a finite number of
values). In contrast, arc consistency has never been applied successfully with real variables.
We explain with an example that this failure is not due to bad algorithmic choices, but to
a property inherent to continuous CSPs.

Yet, we show that it is possible in a solving strategy that includes a specific splitting
technique, called natural splitting, to obtain the so-called boz-set consistency, a stronger
property which yields a set of arc consistent boxes (i.e., products of intervals).

A generic method with two variants is proposed for box-set consistency, followed by a
concrete implementation of the lazy one.

The report is organized as follows. In Section 2, we sum up the concepts of constraint
programming over the reals. In Section 3, we explain why arc consistency cannot be achieved.
We define the box-set consistency and show related properties. A generic method that
enforces this consistency is given in Section 4.

In Section 5, we show in practice how to enforce box-set consistency for a class of
projection-friendly problems. Then, we expound in Section 6 the theoretical properties
of this algorithm, and eventually deal with performances, in Section 7.

2 Background

2.1 Constraint Reasoning over the Reals

A numerical constraint satisfaction problem (NCSP) is a 3-uple (C,V,B). C is a set
of constraints ¢y, ..., ¢, (equations or inequations) relating a set V' of variables x1, ..., T,,.
Each variable is given an initial domain of real values D,,,.., D, , and the problem is to
find all the n-tuples of values (v1,...,v5), vi € D, (1 < i < n), such that constraints are
all satisfied when simultaneously each variable z; is assigned v;. Such a n-tuple is called
a solution. Usually, domains are represented by intervals and a boz designates a cartesian
product of domains. B = D, X ... x D, is the initial box of the problem. In this report,
we will resort also to a more complex representation of domains, where a variable domain is

RR n° 5365

4 Chabert, Trombettoni € Neveu

assigned a union of intervals. In this case, the cartesian product B of domains will be called
a h-boz (a box with “gaps”).
We will use intensively a relation of problem inclusion. Let us define it once and for all.

Definition 2.1 (Sub-NCSP) Let P = (C,V,B) and P' = (C',V',B') be two NCSP. P is
included in P' iff C =C', V=V" and BC B’

In practice, NCSP are large nonlinear problems that are intractable by symbolic solving
techniques. Traditional numerical methods do not suit either because we are looking for all
the solutions. Solving can be achieved by combining local filtering, domain splitting, and
interval analysis.

Local filtering techniques refine domains of variables thanks to partial properties of the
problem, that is, properties which hold on subproblems. These techniques converge in
polynomial time, and the resulting box (or h-box) is said to be locally consistent.

The general scheme for finding solutions consists in a search tree, where local filtering
is enforced at each node. Once local consistency is reached, the domain of one variable is
chosen and split in two sub-domains, which leads to two sub-nodes in the tree.

A major approach for local filtering is the well-known hull consistency, obtained by a
Waltz-like propagation algorithm [16]. The algorithm is detailed further. Here are the un-
derlying concepts :

- Projection: Refine the domain of a variable z with respect to a specific constraint c,
using interval arithmetics [14].

- Propagation: Propagate reductions over the other variables linked to z by another con-
straint ¢'.

2.2 Projections

Local filtering techniques are based on an interval narrowing operator, called projection,
that computes compatible values for different variables linked by a constraint.

Let ¢ be a binary constraint relating variables z and y. We denote II¢ the projection! of
c over z, a function that takes an h-box B = D;, X ... X Dy X ... x Dy x ... x D, as input
and computes all possible values for z in D, as y varies within D,. Formally, if D! is the
result of II¢ applied on B, we have:
D! ={veD,|3we Dy, c(v,w) is satistied}. This definition can be easily generalized to
k-ary constraints:

Definition 2.2 (Projection) Let ¢ be a constraint relating variables x,y1,...,yr. We call
projection of ¢ over x the following function:
II¢ : B— {ve D, |Ivq,...,0x) € Dy, X ... x Dy,, c(v,v1,...,v) is satisfied}

Example 2.1 c:z+y =2
¢ : D, xDyxD, — (D,6D,)ND,

1 Also called Solution function in [9].

INRIA

AC over continuous domains 5

where © is the natural extension of the arithmetic operator minus. Note that computing this
projection requires also an intersection with D,.

Basically, the projection of a constraint f(y,1,...,2n) = 0 over y requires to find an
implicit function ¢ such that f(y,1,....,2n) =0 y = ¢(z1, ..., Tn)-

Sometimes, there is not a unique implicit function but several continuous functions
(¢1, ¢2,...), then we talk about disjunction and in this case IIj gives a union of intervals:

Example 2.2 ¢c: 22 =y
IT¢ applied on Dy x D, with Dy = [-2,2] and D, = [1,4] gives the union D}, = [-2,—1]U
[1, 2]

In this case, the hull consistency algorithm [1] presented below (also known as 2B consis-
tency [12]) computes the enclosing interval of the union immediately (i.e., [—-2,2]) therefore
losing track of the “gap” between intervals.

The set of values returned by a projection may be either an interval (example 2.1) or
a union of intervals (example 2.2). To place our discussion in the most general case, we
consider hereinafter that a projection returns a set U of disjoint intervals, that we will call
abusively a union, and write |U| the number of intervals contained in U?2.

2.3 Propagation

Modifying (or revising) the domain of a variable may have repercussions on the other vari-
ables. Propagate means to memorize in a queue (or an agenda) all the pairs < ¢,z > of
constraint /variable such that the projection of ¢ over x can be effective. When the queue is
empty, we are sure that no more reduction is possible and that we have reached a fix point.

In this report, we will refer to a procedure Propagate(NCSP (C,V,B), in-out Queue
@, Constraint ¢, Variable z), that updates the propagation queue @ after a projection
of ¢ over z.

If revising a domain consists in applying the projection operator II defined above, the
resulting NCSP is arc consistent:

Definition 2.3 (Arc Consistency) Let P = (C,V,B=D,, x...x D,) be a NCSP.
P is arc consistent iff V < ¢,z >€ C x V with z related by ¢, D, = II5(B)

Remark 2.1 In this report, we will talk about the arc consistency of a box (or an h-box) B
to designate the arc consistency of the problem (C,V, B) with the set C and V given by the
context.

We will see in Section 3.1 that arc consistency is not feasible with continuous variables, so
usually the revising operation is not the projection itself, but an outer approximation. Com-
putations are all interval-based and this operator avoids to manage unions. The resulting
problem is hull-consistent:

2Unions of disjoint intervals could be defined algebraically with their operators and their arithmetic. But
their use is rather intuitive, so we will not give such a formalism here. Sometimes we just substitute unions
for intervals, to avoid to overwhelm this report with definitions.

RR n° 5365

6 Chabert, Trombettoni & Neveu

Definition 2.4 (Hull-Consistency) Let P = (C,V,B=D,, x...x D,) be a NCSP.
P is hull consistent iff V < ¢,z >€ C x V with x related by ¢, D, = OII(B)

The symbol O stands for the hull operation. Example: 0{[0, 1], [2, 3]} = [0, 3].

Propagation, arc consistency, and hull consistency are extensively covered in literature,
see [2] for example. To summarize, here is a generic algorithm HC_Filtering of hull consis-
tency filtering.

Procedure 1 HC_Filtering(NCSP (C,V, B))
var Q : Queue
for all pairs < ¢,z > in C x V do
if z is related by ¢ then
add < ¢,z > in Q
while @ is not empty do
pop a pair < ¢,z > from @
D! — OTI:(B)
if D!, C D, then
Propagate((C,V, B), Q, ¢, x)
D, — D! // Dy is the domain of x in B

The idea of this algorithm originates from Waltz [16] and was applied first over finite
domain constraints under the acronym AC3 [13] to obtain arc consistency. With intervals,
HC3 [3] introduces a decomposition of the system into primitive constraints (this term is
defined further) for which projections are known, and HC4 [2] is an upgraded version of HC3
that produces the same result sparing decomposition. Both enforce hull-consistency.

3 A property stronger than arc consistency

In this section, we introduce a new kind of consistency, from a theoretical point of view. The
rest of the report will be devoted to the way it can be enforced. Contrary to arc consistency,
it can be obtained with a reasonable space complexity and even more, in some cases, provide
improvements compared to the classical approach just given above.

3.1 Arc consistency

First of all, let us rule out an ambiguity. Talking about the arc consistency of a problem
may have two different meanings, depending on the context. We may refer to the property,
which can be either true or false. But we may talk also about the largest arc consistent
subproblem. In the latter case, we will use the following definition:

Definition 3.1 (AC Part) The AC part of a NCSP is the mazimal arc consistent sub-
NCSP, for the order relation of inclusion (see definition 2.1).

INRIA

AC over continuous domains 7

Example 3.1 Let P = ({z = y},{z,y},D. x D,) be a NCSP with D, = [-1,1] and
D, =[0,2]

In the AC part of P, domains become [0,1] x [0,1]. Indeed, any arc consistent sub-NCSP
of P has an h-boz with intervals [, 8], 0 < a < B < 1, and the (unique) mazimal element
of these h-bozes is [0,1] x [0, 1].

We show below that even with very simple constraints, the AC part of a problem may
have a non-representable domain, like an infinity of intervals. Hence, arc consistency filtering
is not applicable over continuous domains, whatever the underlying algorithm is.

We are going to illustrate our claim on the following system of 2 equations:

Example 3.2 Let P = ({c1,¢2},{z,y}, B) be the following NCSP:
B=D, xD,=[1,9x[1,9]

(@): (F@-5)7=y

(2): y==

Lemma 3.1 In the AC part of P, domains of x and y are an infinity of disjoint non-empty
intervals.

Necessary condition

Let fi and f; be the following (real-valued) functions: fy :y — ./y +5
friy—5—-%¥

Let F) (resp. Fy) be the “optimal” extensions to intervals® of f; (resp. f2), ®; (resp. ®;) the
extension to unions of intervals associated to Fy (resp. F3). Finally, let ® be the function
such that ®(U) = &, (U) U &(U).

Consider an algorithm that, in turn, computes the following operations: D, «— ®(D,)
and D, <« D,. We omit intersections with domains on purpose, and this is why, a priori,
we do not call these operations projections . Let us denote X,, (resp. ¥,) the domain of x
(resp. y) after the n'" execution of D, «— &(D,) (resp. D, « D,). X, and Y; are initial
domains.

The figures below depict the first steps of propagation. The h-boxes shown are succes-
sively XO X YE), Xl X YE), Xl X Y1 and XQ X Y—Z

As we see, the size of unions grows exponentially. Let us show some properties of this
algorithm.

Property 3.1 Vn > 1, X, C X,_1 and Y,, C Y,_1. In other words, the result of each
operation is included in the current domain of the variable.

Proof: By induction.

We can check by hand that X; C Xg and Y7 C Yy. Assume X,, C X,,_1:

X, CXn1 = Y1 CY, = ®(Y,41) C ®(Y..) because interval arithmetic is inclusion
monotonic, and then X, 11 C X,,. A

3F is optimal iff for any interval T, F(I) = Of(1)

RR n° 5365

Chabert, Trombettoni & Neveu

Figure 1: First steps of AC filtering

INRIA

AC over continuous domains 9

Property 3.2 The number of intervals doubles at each step (Vn |X,| =2 x |X,—_1|), and
more precisely, each interval is split into two disjoint intervals.

Proof: Assume that X, and Y,, contain p disjoint intervals whose bounds fall between 1
and 9. As functions fi and f» are monotonous on [1,9], ®1(Y,,) and ®2(Y,) will contain
both p disjoint intervals*. Still with inclusion monotonicity of interval arithmetic, since
Fi([1,9)) N F»([1,9]) = 0, the 2 x p intervals obtained will be all disjoint and then Y, 41| =
[Xoia| = [B(Y2)] = 2 % p.

Moreover, ®(Xy) = ®([1,9]) C [1,9] and thanks to the property 3.1, we can check that
intervals of X, 1 and Y, 41 are included in [1,9]. A

Property 3.3 Bounds of intervals are always maintained in domains. That is to say, if
[a,b] is an interval of X,,°, then ¥m > n, a and b are interval bounds of X, .

Proof: First of all, since f; and f» are monotonous, for any interval I, bounds of Fi(I) and
F5(I) take support on bounds of I. Now, the property is shown by induction: First, bounds
1 and 9 for and y are always maintained because:

- (x=9, y=9) is a solution of the problem

- x=1 cannot be removed by computing X < ®(Y") since y=9 is a support.

- y=1 cannot be removed by computing Y « X since x=1 is a support.

If we assume now that the bounds of all the intervals in the representation of X, are
maintained for all m > n, then bounds of X, ;; will also be maintained for all m > n +1
since they take support on bounds of Y, i.e., X,,, and they are included in X,, (property
3.1). A

Now, property 3.1 allows us to say that adding an intersection with domains at each step
has no effect. Therefore, this algorithm computes successively projections over z and over
E

(D, « 2 (B)) — (D, « I%(B)) — (D, « I*(B)) — ...

Property 3.2 leads immediately to the following fact : The number of intervals in X,
tends to infinity, and even if the size of intervals may tend to zero, each interval contains
necessarily one non-removable point (property 3.3), so we are dealing with an infinity of
non-empty disjoint intervals. The AC part of the problem is contained in the result of this
algorithm after an arbitrary number of iterations. In a nutshell :

In the AC part of P, domains are included in an infinity of non-empty disjoint intervals.

Sufficient condition

Consider the following numerical sequence :
UuUg = 9
Up = f2(un—1)

4F) and F» are optimal

5 We cannot carry on regardless of a bit of rigor here. By saying that [a, b] is an interval of X,, we mean
that [a,b] is an element of an union seen as a set of disjoint intervals. So we consider [a,b] € X, and not
only [a,b] C X,

RR n° 5365

10 Chabert, Trombettoni & Neveu

We prove easily that u,, — % when n — +00. This convergent sequence is represented
on the following picture :

Let A be the set {u,,n € N} U{22}. Clearly, the h-boz X x Y = A x A is arc consistent
since each point u, has a support for both constraints. This h-boz being included in the
initial box [1,9] x [1,9] of P, then by definition, the AC part of P contains necessarily this
h-boz.

Now, it suffices to observe that for all n, u,, is exactly a bound of an interval of X,, (a
bound “discovered” at the n‘" step of the algorithm above). Proof is similar to property 3.2:
It comes from the monotonicity of f; and f2, and from the fact that F ([1,9])NnF2([1,9]) = 0.

Conclusion

We have shown that in the AC part of P, the domain (either for x or for y) includes a set
of points u,, (sufficient condition), these points being separated by “gaps”’ because they are
bounds of disjoint intervals (necessary condition). These gaps are inconsistent values that
do not belong to the AC part of P. So we have proven the lemma 3.1.

Remark: In the AC part of P, intervals can be punctual.

3.2 Box-set consistency

We have seen that arc consistency cannot be achieved over continuous domains. We formally
present in this section a stronger consistency that can be achieved.

Let us go back to the example of the previous section, at any step. Let I be an interval
of D, which contains none of the 2 solutions. If we build a box with I and any interval
of the current domain D,, it is not arc consistent and does not contain any arc consistent
sub-box (see definition 2.3 and remark 2.1).

Actually, there are exactly 2 arc consistent sub-boxes in this example, which are zero-
sized boxes around the solutions.

Let us generalize. The following figure depicts a system of 3 variables pair-wisely linked
by binary constraints. Domains have several intervals, and an arrow between two intervals
I and J means that every value of I has a compatible value in J.

INRIA

AC over continuous domains 11

X X1 / X2
£

N 1Y

/
YooYy Kﬁf

|
z &L \ \ZZI \ \\«\‘23\

We see that the h-box (X1 U X5) x (Y1 UY3) x (Z1 U Zy U Z3) is arc consistent. But there
are only two arc consistent sub-boxes composed with these intervals, which are Xo x Y5 X Z5
and Xg X Yé X Z3.

The box X3 X Y; X Z; is not arc consistent because X; and Z; are not linked. Actually,
X1, Y: and Z; do not belong to any arc consistent sub-box, and they can be removed from
the domains.

In this report, we present algorithms that find the maximal arc consistent sub-boxes of
a problem.

Definition 3.2 (Box-set Consistency) Let P = (C,V,B) be a NCSP. The boz-set con-
sistency of P is the set {B'} of mazimal bozes such that (C,V,B') is an arc consistent
sub-NCSP of P.

We can either use each of these boxes as a choice point in the original system P (and
therefore carry on with splitting), or collect these boxes to get one h-box, which would be
Xo x Yy X (Z5 U Z3) in this example.

The following (real) example reinforces the fact that box-set consistency is stronger than
arc consistency:

Example 3.3 D, =D, =D, =[-2,2] D, =[1,4]

Constraints are 2> =w, x =y, y =z and £ = —2.

arc consistency is achieved with the following domains :

D,=D,=D,=[-2,-1]U[1,2], D, =[1,4]

And box-set consistency discards the whole boz (in the domain of x, neither [—-2,—1] or [1,2]
belong to an arc consistent sub-bozx).

But it is weaker than global consistency. It suffices to consider this NCSP:

Example 3.4 D, =[0,2] D, =[0,2] D,=[0,2]
Constraints are x =y, x +2 =2 and y = 2.
As the initial box is already arc consistent, it is box-set consistent. But the real solution is

{(1,1,1)}.

We will check in Section 6.3 that the size of the box-set consistency (i.e., the number of
boxes) is bounded, contrary to arc consistency.

RR n° 5365

12 Chabert, Trombettoni & Neveu

4 Natural splitting

In this section, we show a method for enforcing box-set consistency. This method is based
on a strategy of bisection called natural splitting. Two versions are presented. Both resort
to a projection operator that computes unions, but the second version uses this operator
only once per natural split whereas in the first version it is embedded in a propagation loop.

4.1 The key idea

Let us go back to the algorithm of hull-consistency filtering HC_Filtering (see 2.3), and
assume that this procedure has been applied on a box B. If for every variable the latest
projection has produced only one interval, we will show that B is arc consistent. If one
of the last projections produced at least 2 intervals, the idea is to split the domain of this
variable into these 2 intervals. This bisection is called natural splitting, to contrast with the
semantic-less midpoint splitting.

We hope in this way that such a disjunction will not occur anymore on both sub-boxes.
We apply the same process on each of the sub-boxes : hull filtering and natural splitting,
until we obtain a fix point.

To distinguish constraints whose projections produce 1 interval from those that produce
several intervals, we use the term interval-converity. We begin by introducing this notion
and give the method afterwards.

4.2 Interval-Convexity

Interval-convexity is the key property of our approach. It has already been defined in [4]. A
constraint ¢ is interval-conver on a given box when projections of ¢ do not create gaps, i.e.,
when the result set of a projection of ¢ over any variable contains a single interval. Formally:

Definition 4.1 (Interval-Convexity) Let ¢ be a constraint relating variables 1, ..., Tk.
Let B be a boz.
c is interval-convex on B <= Vi (1 <i < k) |II;, (B)| = 1.

Interval-convexity is not related to the continuity of the functions involved in the con-
straint : for instance, the function f; : (z,9) — 22 — y is continuous on B = D, X
D, = [-2,2] x [1,4] whereas ¢1 : fi(z,y) = 0 is not interval-convex since II.(¢1)(B) =

Conversely, fa : (z,y) — I(z —y), where I(z) is the integer part of z, is not continuous
on D = D, x Dy = [-2,2] x [-2,2] whereas ¢z : f2(z,y) = 0 is interval-convex since
IL,(c,)(B) = II, (c2)(B) = {[~2,2]}

4.3 First version

To perform natural splitting, we need to know where are the gaps produced by the last
projections of HC_Filtering. One way to retrieve this information immediately is to modify

INRIA

AC over continuous domains 13

HC_Filtering to allow union labeling. When the domain of a variable is revised, instead of
computing the hull of the projection immediately, we can keep a union and computes the
hull only when this domain is used as a parameter of another projection. Without changing
anything to the algorithm, this trick provides a way to detect interval-convexity very easily.
Indeed, once hull-consistency is achieved, if the domain of every variable is a single interval,
it means that the latest projection performed over any variable resulted in a unique interval,
i.e., that all the constraints are interval-convex on the current box.

The following procedure is the first version of our generic algorithm. It applies the
“union” variant of HC_Filtering, and split the box as long as a domain in the box contains

a gap:

Procedure 2 Naive_BoxSet(NCSP (C,V, B), in-out solutions)

2: for all pairs < ¢c,x > in C x V do

if z is related by ¢ then
4: add < ¢,z > in Q

while @ is not empty do

6: pop a pair < ¢,z > from

D, — 1¢(0D,, X ...x 0OD,,)
8: if (OD, Cc OD,) then

Propagate((C,V, B), Q, ¢, x)

10: D, — D!

12: if (exists a variable z; with |D,,| > 1) then
for j =1 to |D,,| do
14: B — 0D, X ...xOD,,_, x DI x OD,,,, x ..0OD,,
Naive_BoxSet((C,V, B), solutions)
16: else
if (B is not empty) then
18: add B to solutions

Lines 2-10 are the union variant of HC_Filtering. Lines 12-15 perform natural splitting.

4.4 Completeness

Proposition 4.1 Let P be o NCSP.
Naive_BoxSet gives the box-set consistency of P.

Consider, in the execution of Naive_BoxSet, the point where the box B is added to
solutions, i.e., at line 18. If we have reached this point, it means that no gap could be
found in B, or in other words, that every constraint is interval-convex on B. But B is also
hull-consistent so the following lemma applies to B:

RR n° 5365

14 Chabert, Trombettoni & Neveu

Lemma 4.1 If every constraint is interval-conver on a box B then:
B is hull-consistent <= B is arc consistent

Proof: Once the fix point of a hull consistency filtering is reached, we have for every pair
< ¢,x > of constraint/variable: D, = OII¢(B). As c is interval-convex, OIS (B) = II(B)
and then D, = II¢(B), which means that the domain of x is arc consistent regarding c. The
converse relation is obvious. A

Hence, the leaves in the search tree of Naive_BoxSet are arc consistent. Now, we need
to prove that they are also maximal:
Let B be the initial box. Let B’ be the box obtained by Naive_BoxSet just before the first
natural split, and Bi,...,B,, the child boxes obtained just after. It is clear that the box-set
consistency of B is also the box-set consistency of B’. We need to prove that the box-set
consistency of B’ is the union of the box-set consistencies of Bj,...,B,. Assume that it is
not. We can find a box X in the box-set consistency of a child box, for instance By, that
is not maximal. Therefore X can be enlarged, i.e., an “adherent” value can be added in
the domain of a variable (a value stuck to X). As B’ and B; differ only in the domain of
the split variable (say x), by a simple reasoning on propagation, the added value requires
an extra value in the domain of z. But D, cannot be enlarged, because an adherent value
of D, would be inside the gap, and necessarily inconsistent. Hence, by a straightforward
induction, the box-set consistency of the initial box is the union of the box-set consistencies
of the leaves. We have seen that leaves are arc consistent, so they are maximal.

4.5 Lazy version

In practice, managing unions in HC_Filtering is highly inefficient. Moreover, results of
projections are computed all along the propagation loop although we are interested only
by the last ones. Imagine now that we got a way to check quickly whether a constraint
is interval-convex or not (we will see in Section 5.4 an easy way to do that). We could
apply HC_Filtering as it is (without unions), and once the fix point is reached check the
constraints one after the other until we find a constraint ¢ that is not interval-convex. If one
is found, there is at least one variable z involved in ¢ for which we can exhibit a gap inside
the domain. So we compute an exact projection this time to disclose the gap, and finally
use it as a candidate for natural splitting.

So, our solving strategy now is simply a combination of three steps: hull-consistency
filtering, gap search, and natural splitting:

INRIA

AC over continuous domains 15

Procedure 3 Lazy_BoxSet(NCSP (C,V, B), in-out solutions)
2: HC_Filtering((C,V, B))

4: if B is empty then

return
6: C' — C

gap « false

8: while (not gap) and (C' # 0) do

pop ¢ from C’
10: if ¢ is not interval-convex then

V' « the set of variables in V related by ¢

12: while (not gap) and (V' # () do
pop z from V'

14: U «— II¢(B)
if |U| > 1 then

16: gap «+ true

18: if gap then
for all intervals I in U do
20: D, —1
Lazy BoxSet((C,V, B), solutions)
22: else
add B to solutions

Line 2 in Lazy_BoxSet enforces a hull consistency filtering. In lines 6 to 16, we try to
find a gap in the box. In case of success, lines 19 to 21 execute a natural split, otherwise,
the box is stored in solutions (lines 23).

4.6 Difference with Hyvonen’s method

In [9], natural splitting is also used in a similar solving strategy. But an important difference
makes our version much more powerful. In [9], no hull filtering is used before splitting and
only interval-convex constraints are projected before instantiating variables. In a majority of
non-linear problems, this extremely decreases the performances by generating an exponential
number of “overlapping situations” [9], as this example illustrates:

Example 4.1 Let P = (C,{x1,....,%50,y}, Dz, X ... X Dy x D) be a NCSP.

D, =..=Dg, =[-2,2] and Dy = [1,4].

C includes the following constraints:

B=y .. ad=y

Finally, C contains a trivially unsatisfiable constraint: z3 = —1

RR n° 5365

16 Chabert, Trombettoni & Neveu

We assume that constraints are treated in their declaration order. For all 4 (1 <14 < 50),
projection of z? = y over z; gives {[—2,—1],[1,2]} so that HC_Filtering will not per-
form any reduction (bounds of [—2, 2] are preserved). After these 50 unfruitful projections,
HC_Filtering will fall on the last constraint, that makes the whole box inconsistent. So
Lazy_BoxSet terminates almost immediately.

In contrast, as no constraint is interval-convex, the method in [9] will introduce a choice
point for every variable x; and deploy a search tree of 2°° leaves before detecting inconsis-
tency. A combinatorial explosion occurs. We observed this difference with simple problems
of distance equations. In the general case, the proposed algorithm is more costly than our
naive version.

Another drawback is that the domain of a variable must be divided statically into sub-
intervals (the actual application space) where constraints are all interval-convex. This com-
putation is only possible with primitive constraints (see next section).

5 Practical issues

Lazy_BoxSet is a theoretical method because it is based on a projection operator, and
nothing is said about the way to implement it. This operator is called at two different steps:
during the hull consistency filtering, and during the gap search.

We are going to present in this section a way to work out this operator, what de facto will
give us a ready-to-use version of a box-set filtering algorithm. We will say that a projection
operator is exact when it respects the definition 2.2.

5.1 Preliminary notions

The implementation proposed achieves box-set consistency only if constraints are redundancy-
free in terms of variables (but this holds even if the problem is not interval-convex). There-
fore, we need to consider various levels of complexity for the problems to state the correctness
of our algorithm.

e NCSPs with primitive constraints only. A primitive constraint is a basic binary
or ternary relation such as z = x + y. As the projections are mathematically known,
they can be hard coded. The set of primitive constraints is given in Figure 2 below.

e Simple NCSPs. A constraint ¢ is simple if the syntax of ¢ does not include multiple
occurrences of the same variable. For instance, z = (x + y)? is simple but z = 22 +
y? 4+ 22y is not. A simple constraint is a combination of several primitive constraints.
A NCSP is simple if all the constraints are simple.

e General case. Any constraint that is not simple falls into the general case. Intuitively,
it is a hard problem to infer projections from the syntax of a constraint when variables
occur more than once.

INRIA

AC over continuous domains

17

pa(z,y) : y = exp(x) | po(w,y):
ps(2,9) : y=In(z) | po(z,y):

plz,y): z=y pe(z,y,2) :
pQ(xvyvz): 2=x+y P7(l'7yaz):
p;,»(:c,y,z): ==Y pS(xvyaa):
((
(0

2=T*y
z=uzly
y =z

y = cos(x)
y = sin(x)

Figure 2: Primitive constraints

5.2 Overview

For performance reasons, we chose HC4 [2] for our implementation of hull consistency.
But the projection operator embedded in HC4, called HC4ARevise, is exact only for primitive
constraints. Despite this restriction, we will see that it is possible to obtain the box-set
consistency of simple NCSPs, providing that projections for the gap search are exact. That
is why we use a different operator for the gap search, called TAC.

Procedure 4 HC4+TAC(NCSP (C,V, B), in-out results)

2. HC4((C,V, B))

4: if B is empty then
return
6: C' —C
gap « false
8: while (not gap) and (C' # 0) do
pop ¢ from C’
10: if not (interval-convex(c)) then
V'« Variables(c, V)

12: while (not gap) and (V' # () do
pop z from V'

14: U «—— TAC(c¢,z,B)
if U & D, then

16: gap + true

18: if gap then
for all intervals I in U do
20: D, —1T // D, is the domain of x in B
HC4+TAC((C,V, B), results)
22: else
add B to results

RR n° 5365

18 Chabert, Trombettoni & Neveu

Hence, we do not use the same operator in both places we have mentioned (hull consis-
tency filtering and gap search), and this is why our algorithm is sumed up in the acronym
HC4+TAC.

Note that line 15 hides a subtlety: gap may be true either when U is a union (as in the
original algorithm), or when bounds of D, can be narrowed. The latter case arises due to
the limitation of HC4Revise evoked before. We will get back to this issue in 6.2. The rest
of this section describes the projection operators, HC4Revise and TAC. Both are described
into [2].

5.3 HCA4Revise

First, let us summarize how HC4Revise works through an example. See [10] and [2] for a
complete description.

Let ¢ : (x — y)?> = z be a constraint relating z € [0,10],y € [0,4] and z € [9,16].
Constraints are represented by their abstract syntax tree, where each node stands for a
sub-expression.

Figure 3(a) depicts the first step of the retro-propagation algorithm, an upward traversal
of the tree that computes an evaluation of every sub-expression in the tree, using interval
arithmetics.

/ RN
¥
fo100)

o

SN LN N

/
RN

N «
[0.4] [-4,14]
X

Y
[0,101[-4,8]

(a) upward propagation (b) downward propagation

Figure 3: HC4Revise

Figure 3(b) shows the second step, the downward traversal of the tree that computes
the projection over every sub-expression. Actually, a node is linked to its child nodes by
a primitive constraint, and this step simply consists in applying cascading projections of
primitive constraints.

Finally, we notice that HC4Revise has reduced the domain of z from [0, 10] to [0, 8].

INRIA

AC over continuous domains 19

Except with primitive constraints, HC4Revise does not compute an exact projection, as
defined in Section 2, but a conservative approximation. Indeed, when a disjunction (i.e., a
union of intervals) occurs during the second step, the hull is computed so that inconsistent
values are introduced in place of gaps. In our example, the exact projection of [9,16] over
the node labeled with “” is {[—4, —3], B, 4]}, and only the hull [—4, 4] is kept.

5.4 Detection of Interval-Convexity

By using HC4 for the implementation of HC_Filtering, it is easy to detect interval-convexity
of a constraint.

HC4Revise must be slightly modified to update this property while exploring the syntax
tree of a constraint. The rule is simple: before handling a constraint ¢, HC4Revise sets the
interval-convexity boolean of ¢ to true. If a disjunction appears somewhere in the tree, this
boolean is set to false.

Thus, in practice, detecting interval-convexity is computationally insignificant and per-
mits to dramatically reduce the number of calls to the (costly) operator TAC. This remark
is relevant for all the problems, because at some point in the search, a majority of boxes are
small enough for functions to be all monotonous. It is straightforward that with monotonous
functions, detection of interval-convexity always succeeds so that the projection operation
is not costly.

5.5 TAC

The algorithm TAC (Tree Arc Consistency) computes an exact® projection with simple
NCSPs. It is the union-variant of HC4Revise. The exactly same backward propagation idea
is used, except that interval unions are stored in place of intervals. This variant has already
been evoked in [2].

We preclude from our discussion the particular case of trigonometric functions with an
infinite number of acceptable periods, such as sin(1/z) with 0 € D,. We will see later a
way to tackle such constraints.

TAC is exactly HC4Revise except that unions of intervals are authorized. In our example,
the node labeled with “” is assigned a union of intervals : {[—4, —3],[3, 4]}. Projecting this
union over x leads to a union for z, as shown in Figure 4. Note that a gap cannot appear
with primitive constraints in the left column of Figure 2 (functions are monotonous), as
opposed to the constraints in the right column. Note also that, except with p7, only the
downward propagation requires union labeling.

By limiting the scope of propagation to a single constraint, an infinite loop as described
in 3.1 cannot occur. Indeed, a necessary condition for such a loop is the presence of cycles
in the constraint network. Even more, the label size (i.e., the number of intervals used
to represent domains) is bounded, this bound being inherent to the problem and easily
computable (see [9]).

6This term is employed regardless of the rounding due to the machine representation of reals (not con-
sidered here).

RR n° 5365

20 Chabert, Trombettoni & Neveu

/l/ ~ -
¥
[0,100]

v

[-410] | [-4-3][3, 4]
// !

10,11 [3.8]

Figure 4: Downward step of TAC

Remark: We also use TAC in presence of multiple variable occurrences in a same constraint.
Each occurrence is treated as a different and independent variable. Of course, exactness of
the output is no more guaranteed. In Section 6, we explain what we can expect from TAC
in this case.

5.6 Dealing with infinity of disjunctions

In this case, we need to introduce a bound for the label size, say MAX. If at some point
the label size of a projection result exceeds MAX, we simply merge some of the intervals.
The projection is not exact any longer, but as long as two intervals are isolated, the other
ones can be merged and their split is just postponed. If the system has a finite number of
solutions, the process will end. This implementation trick prevents the solver from failing
in case of overflow. In all our benchmarks, we never observed an overflow with a bound set
to 10.

6 Theoretical properties

In this section, we clarify the properties of our algorithm because projections are not exact
in all the situations. We start from primitive constraints, go on with simple NCSPs and
finally deal with the general case.

Proposition 6.1 Let P be a NCSP.
If constraints in P are all primitive, then HC4+TAC enforces the box-set consistency of P.

Proof: It is shown in 4.4 that Naive_BoxSet, hence Lazy_BoxSet, solves the box-set con-
sistency of a NCSP. Then, since both TAC and HC4Revise compute an exact projection of a
primitive constraint, the box-set consistency is ensured by HC4+TAC. A

INRIA

AC over continuous domains 21

6.1 Simple NCSPs

The previous result can be extended to systems with arbitrary complex expressions, assum-
ing that variables appear at most once inside a same constraint.

Proposition 6.2 Let P be a simple NCSP.
HC4+TAC enforces the box-set consistency of P.

The proof is not as straightforward as for the proposition 6.1 because HC4Revise does
not always compute exact projections (see 6.1.3), and consequently hull consistency is not
guaranteed by HC4 anymore. But fortunately, the situations where HC4 fails to achieve hull
consistency are intermediate steps of the general algorithm, so that this limitation does not
prevent HC4+TAC from giving the box-set consistency.

First, we are going to show that, in this case, TAC still computes exact projections.

6.1.1 Exactness of TAC

Let ¢ be an arbitrary constraint. We call decomposition of ¢ the sub-system of primitive
constraints equivalent to c.

Example 6.1 (Decomposition) c : (z — y)? = 2 is equivalent to a sub-system S of 3
primitive constraints relating 5 variables (z,y, z,w,t):

p3(z,y,w)
c:(z—y)? =2+ (9){ ps(w,t,2) (1)
pi(t, 2)

Proposition 6.3 Let ¢ be a simple constraint.
TAC computes exact projections of c.

Proof:
Let S be the decomposition of c.

1- The constraint network of S is a tree (the same as the syntax tree of ¢).

2- Each time a union is computed for a node in TAC, there is an equivalent projection
in S over the implicit variable (like w and ¢ in example 6.1) representing this node.
Initial domains of implicit variables are |— o0, +00[.

3- The projection of a constraint in .S over a given variable is exact (proposition 6.1), i.e.,
every value in the resulting domain of this variable has a support in the domains of
the other variables. Such projection is equivalent to a step of directed arc consistency
in finite domain [5].

RR n° 5365

22 Chabert, Trombettoni & Neveu

4- Faltings showed in [7] that a two-step directed arc consistency filtering applied on a
tree-structured graph leads to an arc consistent labeling. Each step of TAC is equivalent
to a step of directed arc consistency, from the leaves of the tree (the variables of ¢) up
to the root and in the other way around.

5- Arc consistency of a tree-structured graph is equivalent to global consistency [8]. So
TAC gives the global consistency of S. In other words, every value in the domain
of a variable in ¢ belongs to a solution of S, i.e., satisfies the constraint ¢, since ¢
and S are semantically equivalent. Therefore, global consistency of S is equivalent to
arc consistency of ¢. This justifies the name (Tree Arc-Consistency) of this method.
Hence, this two-step process computes exact projections over all the involved variables.

A

6.1.2 Proof of proposition 6.2

Consider the leaves in the search tree of HC4+TAC.

Leaves are arc consistent: If no disjunction occurs during a call to HC4Revise, no
intermediate hull is computed and HC4Revise behaves rigorously like TAC. Assume a disjunc-
tion occurs during a call to HC4Revise. The constraint is marked as “non interval-convex”,
and it will be projected by TAC. But TAC cannot perform any reduction with this constraint,
since we are dealing with a leaf (any reduction entails a subsequent call to HC4+TAC). There-
fore, any call to HC4Revise is necessarily equivalent to a projection by TAC. Since we have
proven in 6.1.1 that TAC is exact, once the fixpoint is reached, arc consistency is achieved.

Leaves are maximal: The proof is the exact copy of the one given in 4.4.

6.1.3 Remark: The difficulty with HC4

HC4Revise does not always compute an exact projection, because of intermediate approx-
imations while projecting over implicit variables. The consequence is that HC4 does not
enforce the hull consistency of the system anymore, but only the hull consistency of the
decomposition of the system [2].

Example 6.2 Let P be the following CSP:
D, =10,1], D, = [-1,1]
(zxy)?=1

Let P’ be the decomposition of P, i.e. :
D, = [07 1]7 Dy = [_171]; D., :]—OO, +OO[
TXYy=w
w?=1

P is not hull consistent because the bound 0 for x has no support in ¥, and it is easy to
check that HC4 cannot reduce this bound. Indeed, the projection over w (the subexpression
x X y) results in the interval [—1, 1] that includes the bad support w=0 for £ =0. On the

INRIA

AC over continuous domains 23

other hand, hull consistency of P’ is achieved with an eztension of B, i.e., a box B'=BxD.,.
This extension is [0,1]x[-1,1]x[-1,1].

So we could have expected HC4+TAC to enforce the box-set consistency of the decompo-
sition of a problem. This cannot be true because arc consistency of a system is a weaker
property than arc consistency of its decomposition.

Example 6.3 Let P be the following CSP:
D, =10,4], D, = [0,4]
(z-y)P=4

Let P’ be the decomposition of P, i.e. :
D, =[0,4], Dy = [0,4], D =] — 00, +00]
rT—y=w
w? =4

P is arc consistent. But arc consistency of P’ cannot be achieved with an extension of
B, i.e., with D, =[0,4] and Dy = [0,4]. Indeed, the box-set consistency of P’ includes two
arc consistent boxes : {[0,2] x [2,4] x [-2,—-2] and [2,4] x [0,2] x [2,2]}. This is not a big
surprise since, by decomposing a system, it becomes possible to split the domains of the
implicit variables (w) and therefore, to obtain smaller boxes.

This hybrid situation can be summarized with this pseudo-formula:
(1) hull consistency = hull consistency of the decomposition
(2) arc consistency <= arc consistency of the decomposition

See [6] for (1). The flip in the implications would mean a priori that a box returned by
HC4+TAC has not been filtered enough to be hull consistent (regarding P), and not been split
enough to be arc consistent (regarding P’). However, we have seen how to fix the problem
with a recursive call condition (see line 15 of HC4+TAC) that ensures that the fixpoint of TAC
is met for the leaves. Therefore the box-set consistency of P is obtained.

6.2 General Case

To describe the property of HC4+TAC in this case, follows the definition of another kind of
transformation called renaming [6], where each occurrence of the same variable is substituted
by a new variable”.

Example 6.4 (Renaming)

(z—y)*-2=0
2=z

c:(x—y)Q—:c:0<:>(S){ (2)

z and z in (S) are the aliases of x in c.

Note that renaming produces an intermediate system between the original one and the
decomposition, in terms of size.

"It seems that no dedicated terms exist in literature to distinguish renaming from decomposition. De-
pending on the paper, decomposition may either refer to the first or the latter.

RR n° 5365

24 Chabert, Trombettoni & Neveu

Proposition 6.4 Let P be a NCSP. Let P' be the renaming of P
HCA+TAC applied on P enforces the boz-set consistency of P'.

Thus, the box-set consistency cannot be enforced by HC4+TAC in the general case.
Proof: With multiple occurrences of variables, HC4+TAC behaves as if it was applied on the
renaming of the system. For instance, the first operation made by HC4Revise and TAC with
a constraint is to assign to the aliases of a same variable z the domain of . So, if aliases
of x are noted z1, ..., 2n, the first step of these operators is equivalent to a projection of the
non-root constraints z; = x over the aliases z; in the renaming. One precaution however
with multiple occurrences : we must push back the current constraint in the propagation
queue after a call to HC4Revise.

So, HC4+TAC provides the same result as if it was applied on the renaming of the problem,
which is a simple NCSP. But we know that HC4+TAC applied on a simple problem enforces
box-set consistency (proposition 6.2), so HC4+TAC enforces the box-set consistency of the
renaming. A

6.3 Number of boxes of a box-set consistent problem

For a given variable v, the number of intervals where projections are all monotonous is
bounded by ((p — 1) x a) + 1) = O(p x a), where p is the maximum number of intervals
obtained by one projection, and a is the arity of the variable, that is the number of constraints
in which v appears. This leads to a total number of boxes of a box-set consistent problem
that is bounded by (pxa)™, since monotonicity is a stronger property than interval convexity.
In Hyvoénen’s terminology [9], this number bounds the size of the global application space.

p is known for any primitive constraint. For instance, with y = 22, we have p = 2 and
this value corresponds to the number of implicit functions (—,/y and +,/%).

We have seen before that the box-set consistency of the decomposition does not imply
the box-set consistency of the original problem. But the following rule applies anyway: The
projection of a simple constraint cannot produce more intervals than its decomposition. This
is just a consequence of TAC’s exactness.

Therefore, a bound for p can also be computed for a simple constraint by observing
primitives functions embedded in the syntax of the constraint, and by combining their
associated p-values:

Example 6.5 sin(57/8 x (z —y)?) =0.75
With D, = D, = [—1,1], the value of p obtained (for both x and y) is 2 x 3 = 6, because :

e Estimation of (x — y) is [—2,2] and the square function has 2 monotonous branches
on this domain.

e Estimation of 57/8 x (x —y)? gives [0, 57 /2] and the sine function has 3 monotonous
branches on this domain.

INRIA

AC over continuous domains 25

The bound can be adjusted with symbolic handling. For instance, if (c) is (((z2)?)?)? = y,
then p <1 x2x2x2x2=_8. But by rewriting this constraint into the equivalent form
2% = y it follows that, in fact, p < 2.

On the contrary, no result seems easy to establish in the general case since the rule above
is clearly false when variables have multiple occurrences (consider for instance y = 2% — x
where p = 3. The renaming is made of two monotonous constraints, z = 23 and y = z — z).

We have not found straightforward bounds.

Remark 6.1 The bound O(p X a)™ is exponential, but it can be strongly reduced by the
dependencies between variables. For instance, in erxample 6.5, by adding the constraint
x +y = 0, the box-set consistency of the problem includes 6 boxes, whereas the computed
bound is 62 = 36.

7 Practical Time Complexity

In practice, box-set consistency can be used to find solutions of a NCSP. Instead of collecting
the resulting boxes (see line 23 in HC4+TAC), we use them in a depth-first process as new choice
points. In this way, the advantage of box-set consistency is twofold: First, the property itself
may be exploited, and this approach is still under research. Second, as natural splitting is
driven by the semantics of the problem, it is sharper and often more efficient than other
bisection heuristics (e.g., round-robin or largest-domain first).

On 20 problems found in [15] and ALIAS solver homepage®, We have compared HC4 and
bisection, with HC4+TAC and bisection. In 15 of them, computation times are equivalent;
in 3 others HC4+TAC provides a gain up to 10%. A 20% gain was obtained on the Broyden
banded function problem [15], and on the Sierpinski’s distance equations problem, which
include both 30 nonlinear equations. This ratio is maintained even by introducing higher
order consistencies [11] in the solving process.

8 Conclusion

We have tried to clear up the question of arc consistency with continuous domains, by
showing precisely on a simple example that it is not applicable.

However, we have given a way to obtain the boz-set consistency, i.e., all the arc consistent
sub-boxes of a problem, using a new splitting strategy called natural splitting.

We have shown in practice how to enforce box-set consistency (hence arc consistency),
without spoiling performances. The keystone of this implementation is an operator that
manages gaps, and the number of calls to this costly operator is minimized by using a
standard hull consistency algorithm as a pre-filtering process.

The main contribution was to design in detail this lazy algorithm and establish precisely
the properties. We have proven that box-set consistency is obtained with simple NCSPs,

Shttp ://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches

RR n° 5365

26 Chabert, Trombettoni & Neveu

including non interval-convex constraints. We obtain a relaxation of the box-set consistency
in the general case.

Beyond this implementation, we believe that the box-set consistency is a strong hence
interesting property. We are currently investigating possible combinations of box-set filtering
and interval analysis.

INRIA

AC over continuous domains 27

References

[1] F. Benhamou. Interval constraint logic programming. In A. Podelski, editor, Constraint
Programming: Basics and Trends, LNCS no 910, pages 1-21. Springer Verlag, 1995.

[2] F. Benhamou, F. Goualard, L. Granvilliers, and J-F. Puget. Revising hull and box
consistency. In International Conference on Logic Programming, pages 230-244, 1999.

[3] F. Benhamou, D. McAllester, and P. Van Hentenryck. Clp(intervals) revisited. In
International Symposium on Logic programming, pages 124-138. MIT Press, 1994.

[4] F. Benhamou and W.J. Older. Applying interval arithmetic to real, integer and boolean
constraints. Journal of Logic Programming, 32:1-24, 1997.

[5] R. Dechter and J. Pearl. Network-based heuristics for constraint satisfaction problems.
Artificial Intelligence, 34:1-38, 1987.

[6] F. Delobel, H. Collavizza, and M. Rueher. Comparing partial consistencies. In Reliable
Computing, pages 213-228. Kluwer, 1999.

[7] B. Faltings. Arc-consistency for continuous variables. Artificial Intelligence, 65, 1994.

[8] E. Freuder. A sufficient condition for backtrack-free search. Journal of the ACM,
29(1):24-32, 1982.

[9] E. Hyvonen. Constraint reasoning based on interval arithmetic—The tolerance propa-
gation approach. Artificial Intelligence, 58:71-112, 1992.

[10] Y. Lebbah. Contribution d la résolution de contraintes par consistance forte. Phd thesis,
University of Nantes, 1999.

[11] O. Lhomme. Consistency techniques for numeric csps. In Proc. of the 18th IJCAI,
pages 232-238, 1993.

[12] O. Lhomme. Contribution & la résolution de contraintes sur les réels par propagation
d’intervalles. Phd thesis, University of Nice-Sophia Antipolis, 1994.

[13] A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99-118,
1977.

[14] R. Moore. Interval analysis. Prentice-Hall, 1977.

[15] J. Moré, B. Garbow, and K. Hillstrom. Testing unconstrained optimization software.
ACM Trans. Math. Softw., 7(1):17-41, 1981.

[16] D.L. Waltz. Understanding line drawings of scenes with shadows. The Psychology of
Computer Vision, pages 19-91, 1975.

RR n° 5365

28 Chabert, Trombettoni & Neveu

Contents
1 Introduction 3
2 Background 3
2.1 Constraint Reasoning over the Reals 3
2.2 Projections e 4
2.3 Propagation 5
3 A property stronger than arc consistency 6
3.1 Arccomsistency oL e e e e e e 6
3.2 Box-set consistency Lo 10
4 Natural splitting 12
41 Thekeyidea e 12
4.2 Interval-Convexity i i it 12
4.3 First version. L. L e e e e e e 12
4.4 Completeness oL e e 13
4.5 Lazy verSion o .o e e e e e e e e e 14
4.6 Difference with Hyvonen’s method 15
5 Practical issues 16
5.1 Preliminary notions Lo 16
5.2 Overview e 17
5.3 HC4ARevise o o i e e e e e 18
5.4 Detection of Interval-Convexity 19
5.5 TAC . . o e 19
5.6 Dealing with infinity of disjunctions 20
6 Theoretical properties 20
6.1 Simple NCSPs e 21
6.1.1 Exactness of TAC 21
6.1.2 Proof of proposition 6.2 Lo 22
6.1.3 Remark: The difficulty with HC4 22
6.2 General Case e e 23
6.3 Number of boxes of a box-set consistent problem 24
7 Practical Time Complexity 25
8 Conclusion 25

INRIA

/<

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38334 Montbhonnot Saint-Ismier (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

