-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by HAL-Ecole des Ponts ParisTech

HAL

archives-ouvertes

Could early visual processes be sufficient to label
motions?

Ivan Dimov, Pierre Kornprobst, Thierry Viéville

» To cite this version:

Ivan Dimov, Pierre Kornprobst, Thierry Viéville. Could early visual processes be sufficient to
label motions?. RR-5240, INRIA. 2004, pp.35. <inria-00070758>

HAL Id: inria-00070758
https://hal.inria.fr /inria-00070758
Submitted on 19 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/48357575?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00070758

ISRN INRIA/RR--5240--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Could early visual processes be sufficient to label
motions?

Ivan Dimov, Pierre Kornprobst, Thierry Viéville

N° 5240
Juin 2004

Theéme BIO

apport
derecherche







%I INRIA

SOPHIA ANTIPOLIS

Could early visual processes be sufficient to
label motions?

Ivan Dimov, Pierre Kornprobst, Thierry Viéville

Théme BIO — Systémes biologiques
Projet Odyssee

Rapport de recherche n° 5240 — Juin 2004 — 35 pages

Abstract: Biological motion recognition refers to our ability to recognize a
scene (motion or movement) based on the evolution of a limited number of
points acquired for instance with a motion capture tool. Much work has been
done in this direction showing how it is possible to recognize actions based on
these points. Following the reference work of Giese and Poggio [27], we pro-
pose an approach to extract such points from a video based on spiking neural
networks with rank order coding. Using this estimated set of points, we verify
that correct biological motion classification can be perfomed. We use some re-
cent results of Thorpe et al. [51, 58, 16| who claim that the neural information
is coded by the relative order in which these neurons fire. This allows to select
a limited set of relevant points to be used in the motion classification. Several
experiments and comparisons with previous neurological work and models are
proposed. The result of these simulations show that information from early
visual processes appears to be sufficient to classify biological motion.
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Des mécanismes de vision précoce suffiraient-ils
pour classifier des mouvements?

Résumé : La reconnaissance de mouvements biologiques fait référence a notre
capacité a reconnaitre une scéne (un geste ou un mouvement) a partir de
I’évolution d’un nombre limité de points acquis par exemple avec un systéme
de capture basé sur des amers collés sur le corps. Beaucoup de travail a été
fait dans cette direction, montrant qu’il est tout a fait possible de reconnaitre
une action a partir de telles données. A partir du travail de référence de Giese
et Poggio [27], nous expérimentons ce paradigme, a partir d’une séquence
d’images en entrées, en extrayant ces amers, considérant un réseau de neurone
a spike, avec un mécanisme de codage par rang. Nous utilisons les résultats
récents de I’équipe de Thorpe [51, 58, 16] dont I’hypothése est que 'information
neuronale, a ce niveau, est codée par l'ordre relatif dans lequel les neurones
émettent leur premier spike. Cela permet de sélectionner un nombre limité de
point & soumettre au classificateur. A partir de ces données, on vérifie qu’il
est possible de faire une classification correcte de mouvements biologiques.
Plusieurs simulations et comparaisons avec des travaux en neurophysiologie
sont proposés ici. Le résultat de ces simulations montre que l'information
issue des mécanismes visuels précoces semble suffisante pour la classification
de mouvements biologiques.

Mots-clés : Classification du mouvement, mouvements biologiques, neurones
a spike, codage neuronal par rang, machine & vecteurs support
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4 Ivan Dimov, Pierre Kornprobst, Thierry Viéville

1 Introduction

1.1 Biological visual classification

Biological visual classification is a well-known and very common, but still in-
triguing fact. In the present work, data classification simply means being able
to put a unique label on a given data input (e.g. “oh, there is a dog”). This
differs from categorization (e.g. [3]) where not only a label but a more complex
“semantic structure” is extracted from a given data input.

Recent series of experiments have enlightened this biological mechanism:
data classification can be realized in the human visual cortex with latencies of
about 150 ms [57] and even faster, [55] which, considering the visual pathway
latencies [42], may only be compatible with a very specific processing architec-
ture and mechanism [58]. Even "high level" visual data classification such as
face recognition [17] can be realized at such a very fast rate.

It has been hypothesized that the underlying neural mechanism is based
on a rank order coding scheme [21]: the neural information is coded by the
relative order in which these neurons fire. The connexionist "Delorme and
Thorpe" classification model presented in [56] is a biologically plausible model
of this mechanism. It is based on spiking networks of neurons (quite different
from usual neural networks, see e.g. [24] for a discussion).

Surprisingly enough, this experimental evidence is in coherence with al-
gorithms derived from the statistical learning theory, following the work of
Vapnik [61, 60]. More precisely, there is a double link: on the one hand the
statistical learning theory offers tools to evaluate and analyze such biological
models, and on the other hand the Delorme and Thorpe model is an interesting
front-end for algorithms derived from the statistical learning theory.

This piece of theory has however never been experimented, regarding mo-
tion classification.

1.2 Biological motion classification

Biological motion recognition refers to our ability to recognize a scene (motion
or movement) based on the evolution of a limited number of points acquired

INRIA



Could early visual processes be sufficient to label motions? 5

for instance with a motion capture tool. M. Giese and T. Poggio [27] pro-
pose a biologically plausible neural model (not based on spiking neurons) for
the recognition of biological motion and action, based on the availability of
neurophysiological and imaging studies and experimental results. This section
reminds the main ideas of their work.

The model is based on the key assumption that action recognition is based
on learned prototypical patterns and exploits information from the ventral and
the dorsal pathway. According to the model, the two pathways process form
(ventral) and optic flow (dorsal) information (see Figure 1). Each pathway
consists of a hierarchy of neural feature detectors with receptive field sizes
that increase with the hierarchy level. The hierarchy levels of the form path-
way are formed by simple cells, modeled by Gabor filters, more complex cells
that respond maximally for oriented bars independent of their exact spatial
position, view-tuned neurons selective for body poses, and motion pattern-
selective neurons that are selective for the whole movement sequence. The
hierarchy levels of the motion pathway are motion (energy) detectors, detec-
tors for local optic flow field patterns (translation, expansion, and contracting
flow), neurons selective for complex instantaneous optic flow patterns, and mo-
tion pattern-selective neurons. Each level in the hierarchy can be associated
with areas in the macaque and human brain that contain neurons with similar
properties.

The model was programmed and tested with stick figures performing dif-
ferent types of motions such as walking, limping, running and intermediate
morphs. The motion was captured by manually tracking the joints of actors
performing the three main motions and artificially generating the intermediate
ones.

The model shows that several principles that are central for the recognition
of stationary objects might be important also for the recognition of complex
motion patterns. The first principle is a representation in terms of learned pro-
totypical patterns. The second principle is a neural architecture that consists
of hierarchies of neural detectors with gradually increasing feature specificity
and invariance.

The model’s architecture seems to be adequate to account for the invari-
ance properties with respect to stimulus position, scaling, and speed that are

RR n° 5240
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Figure 1: Block diagram of the model proposed by M. Giese and T. Poggio
[27] that shows the two pathways for the processing of form and motion (optic
flow). The approximate size of the receptive fields compared to typical stim-
uli is indicated in the middle row. Abbreviations: IT, inferotemporal cortex;
KO, kinetic occipital cortex; OF, optic flow; RF, receptive field; STS, supe-
rior temporal sulcus; V1, primary visual cortex. Other abbreviations indicate
corresponding areas in monkey and human visual cortex.

characteristic for recognition of biological motion. An important additional as-
sumption in the model is the existence of recurrent neural network structures
that associate sequential information over time. This assumption leads to pre-
dictions that can be physiologically tested, such as the existence of asymmetric
lateral connections between motion pattern selective neurons. The prediction
of the model that the recognition of biological movements is possible with the
information from each pathway alone is consistent with clinical results showing
that patients with lesions that include either only the human equivalent of IT,
or the MT/V5 complex are still able to recognize complex biological move-

INRIA



Could early visual processes be sufficient to label motions? 7

ments when the STS is spared. Only bilateral lesions of the STS have been
reported to lead to severe deficits in the perception of biological movements.

Despite these results, the way biological motion is recognized is still an
open problem. On the one hand [4] suggest that biological motion can be
derived from dynamic form information without local image motion, on the
other hand [10, 9] propose a new type of point-light stimulus which suggests
that the detection of specific spatial arrangements of opponent-motion features
can explain our ability to recognize actions.

1.3 Computer science related work

This section briefly reviews some related work from the computer science field.

In Computer Graphics

Using motion capture systems is commonly used in the movie making industry
for special effects. They allow to have some real time acquisition of the joints
positions. Based on the latters it is possible to animate some avatars. This data
can also be used to analyze, recognize and generate motions. Many research
has been carried out in this direction to synthetize new smooth motions from
motion capture database (see for example [36, 28, 26]).

In Computer Vision

Instead of considering marked points positions across time, research in com-
puter vision tries to handle directly the image sequence. There exists a wide
litterature on event-based analysis of videos and our aim here is simply to
remind some ideas. As far as human action recognition is concerned, many
approaches have been proposed (see |2] for a review). Many approaches have
been proposed, based on generic human model recovery [29, 31, 49|, motion
body parts tracking [53, 22|, on motion periodicity analysis [14, 15, 48, 52|,
or based on new representations. This is a difficult task to find a right rep-
resentation which allows to classify correctly novel data with a stored one.
Many representations have been proposed such as Temporal Templates in [5],
marginal histograms of spatio-temporal gradients at several temporal scales

RR n° 5240



8 Ivan Dimov, Pierre Kornprobst, Thierry Viéville

[63], or motion motion descriptors [54, 39, 20].

This brief overview shows that the two communities have developped methods
and applications based on different kinds of input, either stick representations
(i.e. points) or image sequences. To bridge the gap, one possible question is
how to extract from image sequences some points which could help for example
for motion recognition. Such idea has been recently proposed in [37] where the
authors show how to automatically extract the corners of the 2D+t volume
(formed by the sequence) and use them for video interpretation. In this paper
another proposition is discussed.

1.4 The present contribution

The Giese and Pioggio work is indeed a reference in this domain. As mentioned
by the authors, in their experimental set they only consider stick figures (avoid-
ing figure/background segmentation and eliminating some uncertainty in the
figure detection), yielding these very promising results. In this work, the aim
os to demonstrate that their framework is robust enough to deal with "true"
images instead of stick figures. To show it, we will use the same data set as in
[26], kindly given by the authors.

A step further, Giese and Pioggio consider general biological models where
the brain activity is represented by a continuous scalar variable (e.g. related
to the neural spike frequency) which is a valid assumption at this level of
modelisation (see e.g. [13] for a discussion) but does not strictly corresponds
to the true neural encoding (which is to be related to the spike train itself).
Instead, we will consider networks of integrate-and-fire neurons using rank
order coding schemes [16], which seem to be much more related to what is really
encoded in the brain, at this small latency scale. Following this track, we would
like to revisit the Giese and Poggio model (in fact a subset of it considering
processing in V1 and MT) but using integrate-and-fire neural models. This is
the second reason of this work.

A final reason of redoing Giese and Pioggo experimentation was to compare
their results with “low level cues” in the following sense: in order to discriminate
motions, do we need to consider long term features (i.e. trajectories of every
joints which corresponds to global motion) or is it sufficient to work with

INRIA



Could early visual processes be sufficient to label motions? 9

short term trajectories (i.e. local motion operators). In the original study,
global displacements are integrated along the simulated dorsal/ventral visual
pathways. In this comparative study we consider local motion cues only. The
seminal idea of this choice is related to the Rubin work [50, 11| on segmentation
where it is shown that early visual processes could be sufficient to perform the
task: could also early visual processes be sufficient to label motions 7 We
simulate this situation here to help understanding this fact.

2 Classifying Motion with Points of Interest

2.1 System Overview

The computational problem that is addressed by this work is the recognition
of biological motion in image sequences. Here we would like to focus on a
biologically plausible mechanism considering the architecture of the brain [8].

The general problem is sub-divided into two main stages (see Figure 4). the
first is the feature extraction and the second stage is the classification problem.

The feature vector extraction block

It takes as input a raw sequence of images as the ones shown in Figure 3 and
extracts features from the sequence. Features could be edges, local motion
computation, etc... In the brain, this typically corresponds to the V1 output.
It is a huge map of values. In a computer system it is delivered in the form
of a feature vector to the classifier block. The objective is to select the best
features that will lead to the more robust classification. In particular we will
investigate if rank order coding can be useful.

The classification block

It takes as input the feature vector and classifies it. It tells which class each
feature vector belongs to. In our case it will be the type of action that the
character is doing. Two classifiers are considered: the nearest neighbor (called

RAW) [19] and the SVM [59, 30, 12| classifiers. The RAW classifier is a
simple classification method based on minimum distances. High dimensional

RR n° 5240



10 Ivan Dimov, Pierre Kornprobst, Thierry Viéville

training data (feature vector) together with the class it belongs to, is fed
into the classifier. At least one training sample from each class is shown to
the classifier. Later the distances [19], usually in a high dimensional space,
between the sample to be classified and all the training samples previously fed
to the classifier during the training stage, are calculated. The classification of
the new sample is done by assigning it the same class as the training sample
found with the smallest distance to it.

Experimental setup

The motion recognition simulation will be tested on a set of 40 biological mo-
tion image sequences (video samples) from two classes, walking and marching
(see Figure 3).

The performance analysis consisted in starting the learning phase with one
randomly choosen feature vector from each class and repeatedly incrementing
the data sample (feature vector) in the walking and marching classes. When
the training is completed the resting data samples are used as the testing set
to quantify the classifier’s error rate. The number of errors that the classi-
fier commits are recorded and the error percentage is calculated over the total
testing set.

The simulation process involved training the classifier with one sample from
each category (class) and then using the rest of the data samples to test the
error rate of the classifier. After completing the test a new sample of the test
data from each category is added to the training set and the resting data is
used to test the classifier. These steps are repeated successively until almost
all the data is used as training data. Therefore as the training set grows the
testing set is reduced and a smaller error rate is expected. This is illustrated
in Figure 2 where after twelve training samples the classes are well defined.

This training and testing process is repeated until the testing set size is
minimal (when the set size is equal to the number of classes). In this man-
ner a more complete idea of the classification performace (the rate of correct
classifications) is obtained for different training/testing set size ratios.

INRIA
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Figure 2: RAW classifier error rate obtained on the 40 Giese trajectories dis-
criminating between walk and march motions. On the vertical axis is plotted
the percentage error rate versus the amount of samples used to train the clas-
sifier.

2.2 Classifying Motion with Trajectories
2.2.1 Feature Vector Description

As dealt in [27, 25| the first technique is to extract manually the joints posi-
tions from the video samples of a subject repeatedly performing the two types
of motions. Each feature vector consists of 12 spatio-temporal trajectories
of the joints of a subject performing a motion, in Figure 5 the 12 joints are
shown. There were roughly 20 different samples of the same subject walking
and another 20 of marching.

The trajectories of each motion sample (video) are stored in a 12x2x20
matrix, where each element in the matrix corresponds to an = or y coordinate
of a joint in a specific time instant as shown in Figure 5. Figure 6 shows the
smooth evolution of the joints position with time.

The coordinates are all relative to the hip joint, in other words the hip
joint is considered as the origin. To generate the classifier feature vectors
for the training and testing (classification) the three dimensional trajectory
matrices are reshaped in a consistent manner to form a one column vector.

RR n° 5240



12 Ivan Dimov, Pierre Kornprobst, Thierry Viéville

March ] Walk

Figure 3: An example of each class of the Giese [25| image sequences database
that were used to test the motion recognition. These classes of motions were
chosen since walk and march are quite similar and thus more challenging to
classify.
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Figure 4: Block diagram of the Motion Recognition problem.

INRIA



Could early visual processes be sufficient to label motions? 13

w 13 g o
Hip Joint S ST . -
used as 0 : i
eC Joints 10 =
origin 3 13 . , .=~ Frames (Time)
10 8 i bz
A 15 L
15 1 HRE
X Y

Figure 5: Giese approach input. Left: The joints positions are manually la-
belled. Right: Every position is then stored in a 3D matrix which can then be
coded as a 1D feature vector.
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Figure 6: Evolution of the joints positions which will be stored at the same
positions in the feature vector description. The left and right hand side graph
are x and y coordinates respectively.
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14 Ivan Dimov, Pierre Kornprobst, Thierry Viéville

The reshaping order is not so important, the critical thing being to perform
the exact same reshaping on every three dimensional trajectory matrices so
that the elements in the training vector are consistant between eachother: the
same row of two feature vectors should correspond to the same joint and time.

2.2.2 Classifiers Performance

Figure 7 shows the results obtained the RAW (black dots) and SVM classi-
fiers according to he procedure described in section 2.1. In the case of SVM
there were also a number of parameters that could to be adjusted. The main
parameters are the Kernel Type (Linear, Polynomial, Radial Basis, Sigmoid),
the Kernel Degree (for the polynomial classifier) and the error tolerance pa-
rameter. The manner in which these paremeters infered on the classification
performance has been explored.

In this particular case, the RAW classifier seems to have a better perfor-
mance than SVM. Such a fact is dicussed in [61]. Obviously, for the largest
polynomial degree, with a large number of degrees of freedom, the estimation
is unstable. Other estimations have very similar performances. As a con-
sequence we are going to consider only one SVM estimator: the polynomial
kernel degree 2 estimator.

25

20 U

/ \\ —— Polynornial K.D.=1

5 —5— Polynomial K.D.=2

—<— Polynomial K.D.=3

\ —=— Polynomial K.D.= 4
-~ Radial

0 !
-5 Sigmoid
. —— RAW

0 5 10 15 20 25 30 a5 40
Number Trained out of 40 samples

% Error

Figure 7: Motion classification performances using different classifiers
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2.3 Classifying Motion with Spike Responses
2.3.1 Feature Vector Description (overview)

It is known that biological systems use spike coding [16, 51] to transmit first the
most relevant information in an image. Based on this idea it has been shown
previously that using such coding it is possible to extract the most important
information from a static image in order to generate ultra fast classification
[58]. The open question is weather such coding is also good for classifying
biological motion. In other words weather spike coding is also able to extract
rich information from every frame in a sequence of images and be able to
classify with a good precision the types of motion?

The main difference in these experiments is the way the classification fea-
ture vectors are defined from the raw video samples of the two motions types.
The different steps are summarized in the Figure 8) and are detailed in the
next section. Figure 10 shows qualitatively the temporal relation between
vector features elements. Contrary to joint position tracking which provides
a smooth global information on body segment displacements (see Figure 6),
spiking neurons output is a noisy version of this signal with only local tem-
poral relations (small piece of joint position trajectory) separated by random
jumps of the signal. As such, we claim that information in the spiking neurons
output is mainly related to local motion information.

1 2 3 . 4
Mexican Selection Put together Sorted
—_—— Target =—— . —_— of the most ——=> " —_— > —_——
; Hat Filter ; every spike Orderin
tracking active neurons g

v

Y

AR gmgbuwagmm‘e

v

Figure 8: Overview of the feature vector extraction block.

RR n° 5240



16 Ivan Dimov, Pierre Kornprobst, Thierry Viéville

Feature Vector
with Sorted Ordering

Sorted Ordering Block

Frame 1

o0 e <xX=<X

Frame 2

s ee <X<X
...mama“
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Figure 9: This figure shows the action that is performed by the sorted odering
block which finally generates the feature vector. In frame 1 the scanning
pattern that generates the sorted element ordering in the output feature vector,
is shown.

120

100

Figure 10: Examples of feature vectors given to the classifier using relevant
spikes detection, automatically calculated from the spiking neural net . The
left and right hand side graphs are  and y coordinates respectively.
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2.3.2 Feature Vector Description (detailed steps)
Step 1: Target tracking

The goal is to obtain a body-centered sequence of the action. This was done in
order to resemble the sequences that are analyzed by the human visual system
while its tracking an object. As the eye moves, tracking a target while the
target is displacing itself, the target is approximately centered onto the retina,
this same effect was generated by cropping the videos to center the target in
the frame. This also creates a sort of relative positioning, to the target coordi-
nate system as the center of the target is approximately always in the center of
the image. This was also used in [25] since every point coordinates are relative
to the hip positions. From an implementation point of view, a simple mov-
ing object detector can be obtained using a thresholding technique over the
inter-frame difference between a so-called reference image and the image being
observed. Decisions can be taken independently point by point [62]. More
complex approaches can also be used [46, 45, 47, 1, 32, 38, 6, 33, 34, 23, 18, 41].
In our case we have used the variational approach developed in [35] which al-
lows to obtain a robust segmentation for noisy image sequences. The motion
segmentation (separation foreground versus background) and the construc-
tion of a restored background are done in a coupled way, allowing the motion
segmentation part to positively influence the restoration part and vice-versa.
This approach is fully automatic and can be implemented for video-streams
(i.e. with causality). From the binary masks obtained (every pixel is labelled
as foreground or background), the most important foreground connected com-
ponent is centered in a fixed size bounding box which is used to crop the
video.

Step 2: Mexican hat filters

Each frame in the cropped videos was transformed using the Mexican hat
transfer function in six different scales using the matlabPyrTools toolbox from
Simoncelli' and the resulting coefficients from all the scales were normalized

!This Matlab source code for multi-scale image processing is available at
http://www.cns.nyu.edu/"eero/software.html. It includes tools for building and manipu-
lating Laplacian pyramids, QMF/Wavelets, and steerable pyramids.

RR n° 5240



18 Ivan Dimov, Pierre Kornprobst, Thierry Viéville

(as explained [16]). The highest resulting normalized coefficients (which are
proportional to the neural spike frequencies) and their coordinates within the
frame were saved.

Step 3: Selection of the most active neurons using local inhibition

For each frame the procedure used to extract the most relevant spikes is the
same as the one used in [51, 58, 16] (see also [40, 43]).

Step 4: Sorted ordering

As mentioned previously in order to generate the classification vector the spikes
were sorted with respect to their position (coordinates x and y) so that the
spikes which were on the top left hand corner of a frame are placed first and
the ones that are in the bottom right hand corner are placed last (see Fig-
ure 9), this form of feature vector element ordering is called sorted ordering,
due to the fact that the spikes are sorted according to their position in the
image/frame. In that way there is a correspondence between the position of
the spike’s coordinate within the feature vector and the area of motion that
generated the spike. Feature vectors were generated for the 20 Giese walking
motion samples the other 20 marching samples, based on these vectors the
classification performance was tested.

In Figure 11, an extraction of the top 40 spike positions over a few frames
of the input motion film are shown, in order to illustrate what is a typical
feature set.

2.3.3 Classifiers Performance

Feature vectors were generated for the 20 Giese walking motion samples and
the other 20 marching samples. For each category feature vectors taking into
account the top 10, 20, 30, 40 and 50 spikes were generated. This was done
in order to test how sensitive the classification error is to the amount of spikes
taken into account. Based on these vectors, classification performance was
tested and the configurations with the lowest average classification error rate
are shown together with the RAW Giese curve in Figure 12.

INRIA
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Figure 11: Top 40 spike positions over a few frames of the input motion film.
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Figure 12: Motion classification performance based on the most important
spike positions.

RR n° 5240
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In Figure 12, the average classification errors of the different methods and
features vector combinations are shown. From the figure, it is clear that the
lowest average classification error of all the methods is the RAW classifier with
the 30 spike feature vectors (RAW 30 spike).

Filtering Spikes from the Background Improve Classification

In order to improve classification performance, it has been tested to remove
spikes coming from the background. This segmentation of the visual flux into
layers (foreground versus background) is something which is performed in the
brain by the MST area |8, 44| which "justifies" this idea. The results obtained
from the segmentation step (see Figure 14) can be used to discard spikes from
the background. The resulting relevant spikes ar shown in Figure 15 and its
impact on classification performance is presented in Figure 13.
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Figure 13: Filtering spikes from the background to improve classification. Note
that choosing 30 or 40 spikes isn’t significative as shown in Figure 12.
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Figure 14: A sample of the binary masks obtained to discriminate between
background and foreground spikes in the background filtering.

Figure 15: Top 40 spike positions over a few frames of the input motion film
with background filtering.
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Some Sequences Bring More Informations To The Training Phase

Although this does not correspond to a standard statistical paradigm, we have
rerun the experiment, by choosing the "best" samples for training. In other
words, this corresponds to a sample selection by an "expert" not a random
sampling. If the richest, in information, samples or vectors are obtained and
fed first as training vectors to the classifier much better results are obtained
as shown in Figure 16, very similar, when not better to what is obtained with
tragectories.
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Figure 16: The figure shows that much better results can be obtained if the

richest in information samples are selected as the first training samples.
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Intervector Element Ordering on Classification isn’t Crucial

A very legitimate question is, "How important is the impact of the previously
mentioned feature vector element ordering system (see Figure 9) on the clas-
sification performance with the Giese data?”" or "Is it crucial that the spike
coordinates generating meaningful trajectories be sorted and grouped in the
classification vector?". To answer this question we performed the following
experiment on the Giese trajectories. Sorted ordering which is done by sort-
ing the elements within the feature vector based on their location within the
frame as described in Experimental Setup in subsection Classifying Motion
with Spike Responses was compared to position-trajectory ordering were ev-
ery position in the vector belongs to a specific trajectory (as was done in
subsection Classifying Motion with Trajectories). The effects of the sorted or-
dering with respect to the position-trajectory ordering are shown in Figure 17.
The Giese trajectories were used to compare the two types of ordering because
it is complicated to do trajectory tracking on noisy data such as the top spike
position data. With the Giese motion trajectories formed by the coordinates
of the junctions over time, it is simple to generate position-trajectory ordering
within the classification vectors.

As can be seen in Figure 17 the feature vector sorted ordering does not
significantly increase the classification error rate with respect to position-
trajectory ordering. This suggests that trajectory tracking is not a very crucial
part of motion classification.

The main difference in these two conditions was the way the classification
vectors (or the feature vectors) are generated from the Giese motion trajecto-
ries. On one hand, vectors were generated with position-trajectory ordering
in other words they are the exact same vectors that were used to measure
the classifier performance in subsection Classifying Motion with Trajectories.
In these classification vectors each position within the vector belong to a cer-
tain trajectory of a certain joint and that is consistent throughout all the 40
samples. To generate the classification vectors with sorted ordering the same
Giese trajectory data was used but within the feature vector the elements from
each frame were sorted according to their position within the frame so that
the coordinates of the different trajectories which were on the top left hand
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corner of a frame are placed first and the ones that were in the bottom right
hand corner are placed last (see Figure 9).
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Figure 17: The impact of the feature vector element ordering on classification
performance.

3 Conclusion

Following the reference work of Giese and Poggio [27]|, we have experimented
considering a video sequence as the input and how to use spiking neural net-
works with rank order coding in order to extract relevant tokens. Using this
data, we have verified that correct biological motion classification can be per-
fomed. This was not obvious since the data was “noisy” and points do not
correspond to fixed joint’s location but are quite noisy temporaly. This how-
ever, is in coherence with some recent studies [4, 10, 9] which are showing that
motion recognition is still possible with perturbations on the marker’s posi-
tions.
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More precisely, we have selected the most relevant spike for every frame in-
dependently of their temporal organisation. This allows to select a limited set
of relevant points to be used in the motion classification. A spatial matching
pursuit like algorithm was implemented for that purpose. This corresponds
to the recent theory of Thorpe et al. [51, 58, 16] who claim that the neural
information is coded by the relative order in which these neurons fire.

A step further, these points are not “tracked” all along the sequence but
simply related to nearby points in the previous frame, in other words only local
motion cues have been taken into account. This is a key issue, because this
result is coherent with the fact that information from early visual processes
appears to be sufficient to classify biological motion. This does not means
that “all is done” at this early stage but it suggests that such "cognitive" task
can be realized in the so called “fast brain”. The key idea behind this is that
the complete perception uses feedbacks from early vision processes in order to
drive the latter perception as discussed in [7].

As far as computer vision is concerned, this means that we can label such
motion automatically and using feed-forward process (local motion cues feeding
a SVM) useful in "real-time" systems. As dicussed in [60] the use of statistical
learning theory is a key issue to obtain such functionnality.

Finally this experimental work of simulation, clearly confirm what Giese
and Poggio [27]| pointed out when proposing a model of cortical motion per-
ception, and this work has been able to verify that the theory directly apply on
raw image sequences, using spiking neurons and local motion detector. This
experimental work also confirm that Thorpe et al. |58, 16] model is not only
valid for static images, but should be valid for image sequences. Therefore,
future work will consider the coding of the sequence using temporal causality,
which means adapting the 2D coding done here to a 2D+t case. It is expected
that the selected points will then be more relevant in terms of spatio-temporal
events and then may be more suitable to classify motions.
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A Completing the [60] dataset

As an extra safeguard of the validity of the results that were obtained, two
extra experiments were realized. Results are reported here, making profit of the
experimental setup, although not directly related to the previous development.

Showing what the method can do: a simple example

The first was using the same method as in subsection "Classifying Motion from
Spike Responses" to classify samples from two categories rotated and non ro-
tated (see Figure 18). The samples in class "true" a logo with a different size,
orientation on added noise. The class "false" is a non-logo, where the logo is
mirrored or warpped. The classification results using the two types of methods
RAW and SVM can be seen in Figure 19, there SVM classification based on
spiking neurons is very powerfull, close to 0% after a traning with 100 samples.

As expected, classification performance is good because it is based on the
location of the top spikes that are usually along edges. Here the logo caracter-
istic is indeed related to the edges. This result is going to be compared with
Thorpe et al. spikenet results in a near future.

Showing what the method does not do: the animal detec-
tion example

The second experiment is just to remind us that although very efficient, we
are far from what the brain can do. Let us see how the same algorithm as the
one used in the previous experiment performs on classifying the presence of
an animal in natural images (see Figure 20). The results can be seen in figure
Figure 21.

Clearly it does NOT work, where as a primate brain performs this task
with a succes better than 90% and in 100-150 msec [58]. Visual clasification is
still an intriguing fact.
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Figure 18: An example of each class of the logo images.
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Figure 19: Classifying static logo images using the same algorithm as in sub-
section "Classifying Motion from Spike Responses" .
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Figure 20: An example of each class of the animal images.
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Figure 21: Classifying static animal images using the same algorithm as in
subsection "Classifying Motion from Spike Responses" .
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