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Une version discréte des asymptotiques de She :
équations multigroupes de transport de neutrons
Résumé : Ce rapport est consacré a 1’obtention des équations de diffusion multigroupe a

partir des équations de Boltzmann. Le systéme limite couple les niveaux d’énergie dés le
niveau zéro et les courants de diffusion.

Mots-clés : Equation de Boltzmann, approximation par diffusion, transport de neutron,
harmoniques sphériques, équations de convection-diffusion



Discrete version of the She asymtpotics 3

1 Introduction

Production of nuclear energy relies on the disintegration of atoms (Uranium or Plutonium),
when subjected to collisions with neutrons. Therefore, reactor design requires an accurate
description of the motion of the population of neutrons. The motion of neutrons is described
through the evolution of the density f(¢,x,v) of neutrons occupying at time ¢ > 0 the position
z € RY and having velocity v € RY. It will be convenient in what follows to see this last
variable as v = y/2e¢/m w, m > 0 being the mass of the neutron, e > 0 its energy and
w € SN~1 the direction of the flight. The unknown f verifies a transport equation

Of +v-Vaf =Q(f) (1)

that relates the free transport (left hand side) to the various interaction processes undergone
by the neutrons and described through the operator Q(f). The latter are essentially colli-
sions. Furthermore, the number of neutrons in any volume, at any time, remains smaller
than the number of atomic nuclei (10! is a typical ratio) so that it is reasonable to as-
sume that the most probable event is an elastic collision with the surrounding medium.
Consequently, the right hand side of (1) is usually given by a Boltzmann linear operator

Qf) = / o(@,0,0) f(t, 2,0 dv' — S(x,v) f(t2,0). (2)

The transfer function o(z,v,v") > 0 is such that o(x, v, v")dv represents the probability that
a neutron impinging with velocity v’ will have velocity in the volume dv around v after
the collision; while ¥(x,v) > 0 is the so-called removal cross section. If the operator is
conservative i.e. [Q(f)dv = 0, which means that £(z,v) = [o(z,v',v)dv’, then absorp-
tion/fission events are neglected or compensated with scattering. One also says that the
reactor is critical in this case. It is worth remarking that, since the ratio of the mass of the
nuclei to the mass of the neutrons is very large, then, during an elastic collision, the energy
of the neutron is practically unchanged; the main effect of such a collision is only to modify
the direction of the flight. Notice also that inelastic scattering, with loss of energy, remains
possible, but it can only occur for highly energetic neutrons.

On the other hand, nuclear engineers are motivated in the derivation of simplified models
that describe the physics accurately enough but remain of moderate computational cost. In
these applications, one encounters a very large range of energies, from 1/40 eV to some
Mev; and a first simplification arises by breaking the energy range into several disjoint
energy groups: [emin, €Maz] = Ule[ei, ei+1[- In most of the situations, the total number of
groups [ is finite. One assumes that the cross sections do not vary too much on the energy
groups and neutrons evolve according to averaged quantities, such as average scattering
cross sections. Consequently, one is led to semi-discrete versions of equation (1-2). This will
be detailed in Section 2 below.

Next, a commonly used strategy consists in neglecting the angular variable w and writing
a diffusion equation for a macroscopic energy distribution function p(t,z,e), e being the
energy variable (discrete or continuous). Actually, one deals in this context with systems of
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4 T. Goudon € A. Mellet

equations, coupled by the energy variable, which have usually the following form
Op(t,z,e) — divy (D(z,e)Vap(t, z,€))
= [F.e.ctplta e ae ~ S(a et z.e), @

where the coefficients D, &, S are non-negative. Of course, one obtains similar systems in the
(energy-)discretized context. These equations can be derived directly from a balance relation
on the population of neutrons, through a phenomenological analysis of the scattering events.
The diffusion coefficients are due to elastic scattering when neutrons do not lose energy
during the collision process. Zeroth order terms are due to absorption, inelastic scattering
(i-e. collisions with loss of energy) or fission. Furthermore, system (3) can be generalized by
postulating that the diffusion operator couples the energy levels as follows

div, (/ k(z,e,e') Vyp(t,z,e') de') )

Indeed, gradients of the density p at a given energy e’ can have some effect on the diffusion
on another energy level e.

However, it is also tempting to obtain systems like (3) from the kinetic modeling, eq.
(1-2), and to identify the coefficients through an asymptotic analysis. Then, starting from
the continuity equation

Orp +divyj = Q(f) dw (4)
SN-1

satisfied by the macroscopic density

p(t,z,e) = /SN—1 ft, 2,4/ 2e/m w) dw,

and the macroscopic current

j(t,xz,e) = V2e/mw f(t,z,\/2e/m w)dw,
SN-1

we search for a diffusion equation by postulating a relation between p and j that takes the
form of a generalized Fick’s law

Jj(t,z,e) = —/k(m,e,e') Vep(t,z,e')de.

Such an approximation is intended to apply in the limit of small mean free paths, which is
related to the probability of collisions by unit length and decreases when the density of the
medium increases. It leads to singular perturbation problems and this work is devoted to
such a question.

We refer for details on the physics of nuclear reactors to the classical books of B. Davison
[17], E. Wigner [41], E. Wachspress [40], J. Bussac-P. Reuss [12], J. Planchard [37], C.

INRIA



Discrete version of the She asymtpotics 5

Cercignani [15]. The mathematical study of the vanishing mean free path limit and of the
diffusion approximation is by now a classical problem with applications in various fields
of physics; we refer among others to E. Larsen-J. Keller [32], A. Bensoussan-J.-L. Lions-
G. Papanicolaou [10], C. Bardos-R. Santos-R. Sentis [8] and, for recent progresses, to R.
Dautray-J.L. Lions [16], F. Malvagi-D. Levermore-G. Pomraning [35], F. Poupaud [38],
F. Golse [26], C. Bardos-F. Golse-B. Perthame [6], C. Bardos-F. Golse-B. Perthame-R.
Sentis [7], F. Golse-F. Poupaud [27], P. L. Lions-G. Toscani [34] P. Degond-T. Goudon-F.
Poupaud [20]... Another difficulty in reactor physics is related to the high heterogeneity
of the surrounding medium. Accordingly, the cross sections depend on the space variable
and present very large oscillations. This leads to homogenization questions. Depending on
the ordering, the homogenization procedure can be performed at the kinetic level, see F.
Golse [24, 25], L. Dumas-F. Golse [22], P. Gérard-F. Golse [23] or directly on the diffusion
approximation as in J. Dorning-R. Uddin-H. Zhang [21] Y. Capdeboscq [13, 14], G. Allaire-
Y. Capdeboscq [2], G. Allaire-F. Malige [3]. We can also combine altogether these effects as
in E. Larsen [30, 31|, E. Larsen-M. Williams [33], C. Bardos-L. Dumas-P. Gérard-F. Golse
[5], G. Allaire-G. Bal [1], G. Bal [4], T. Goudon-F. Poupaud [29], T. Goudon-A. Mellet [28].

However, it is a well-known fact that different (formal) methods of approximation can
give rise to difference on the limit coefficients, see [31] or [37], [1], [13] for some examples.
Furthermore, when starting from multigroup equations and performing the diffusion approx-
imation limit, one usually obtains a single diffusion equation in the space variable only, see
[2], [13]: the limit procedure forgets the multigroup aspect. This is because the system is
considered to relax towards an equilibrium under both elastic and inelastic collisions at the
same scale. However, it could be interesting to derive more complex models, which retain
the energy as a variable and where the diffusion as well as the inelastic collisions couple the
various energy levels. This is the goal of the present paper. To that purpose, our analysis is
inspired by reasonings developed in the modeling of semiconductors devices where, instead
of obtaining a drift-diffusion equation, we are led to an intermediate system, by keeping the
energy as a variable, see Ben Abdallah-P. Degond [9], P. Degond [18, 19]. We also mention
the recent application to the phonons dynamics by J. P. Bourgade [11]. These so-called
SHE-models have been shown to be very accurate, in particular for numerical simulations.
It is worth noticing at the moment that the energy coupling can be obtained either through
the zeroth order terms when the inelastic collisions are treated as perturbations, or through
the diffusion operator when inelastic processes are treated in a more intricate way, as it has
been done by P. Degond [19], in the framework of semiconductors theory, for continuous
energy levels. However, the analysis developed in the present paper, though largely inspired
from [19], requires less restrictive hypotheses (see in particular Section 3 and Proposition
5). Note that this work is only concerned with the diffusion approximation problem; the ho-
mogenization question will be addressed elsewhere. Note also that we have choosen to treat
the evolution problem but, of course, our analysis can be applied to eigenvalue problems as
well.

The paper is organized as follows. In Section 2, we will set up precisely the multigroup
aspect on the Boltzmann equation. Section 3 is devoted to a discussion of some properties

RR n° 4302



6 T. Goudon € A. Mellet

of the collision operator. In particular, we aim at splitting the Boltzmann operator into an
elastic part, that leaves the number of neutrons in a given energy level unchanged, and an
inelastic part. This can be done either locally or not as far as the energy variable is concerned.
In some sense, the latter retains some relevant information on the energy exchange during
the collisions with the medium. In Section 4 we formally discuss the small mean free path
asymptotic limit with the requirement that elastic, or quasi-elastic, processes dominate.
Actually, our method can be viewed as a heuristic procedure to derive macroscopic models,
which are intermediate between a full kinetic description and a simple diffusion equation.
Finally, Section 5 is concerned with a rigorous proof of convergence.

2 Multigroup equations

The evolution of the population of neutrons is described through an equation relating trans-
port to interaction processes as follows

(at +v- Vzl)f = Q(f)a
oD = g [ oo @ = S(w0) ), -

S(z,v) = a(z,v,v)dv .

|SV1

The third relation means that the operator () is conservative, or critical, in the sense that,
neglecting integrability questions for the time being, we have

/RNQ(f)dv ~o.

Compared to the Introduction, we have changed the cross-sections by introducing the nor-
malization by ‘S'N]:—_l‘ for pure convenience; it will allow us to work with normalized measure
and will simplify some forthcoming computations.

We write the velocity of the particles as follows

v =|vjw = /2¢/m w,
w = v/|v| = angular variable € SN~
e = mv? /2 = energy variable € R .

Denoting by dw the normalized Euclidian measure on SN=1 wehave dv = |SV 1 |rV—Lldr dw,
with r = |v| = y/2e/m, and therefore dr = \/T We deduce the following change of variable

formula d
/ p(v)dv = / |SN= 1|/ V2e/m w) (2e/m)N/? % dw
RN 0 2e

which applies to any integrable function ¢.

INRIA



Discrete version of the She asymtpotics 7

Let us discretize the energy levels by introducing the energy step ¢ > 0 (we point out that
e will remain fixed throughout the paper, and will not tend to zero). We set E; = [ig, (i+1)e[
and then, we consider

fi(t,z,w) / f(t,z,\/2e/m )(2e/m)N/2(2j—Z

which will be a new unknown. Equations for the f;’s are obtained by averaging (5). In the
left hand side, we approach v by v; = \/2ie/m w and the transport term is approximately
(0y + vi - V) fi. For the collision term, one has

|Nde

—/ QU (.. fofe) o
B (/ /SN—l o(V/2e/m w,\/2¢'fm o) f(\/2€' [m ') (2¢' [m) /2 ;l_z: &
/ / /3T ol /2 ) (0 )% 55 S(/3efm ) Cefm T G

d !

f(\/2e'Jm ') (2¢' Jm)N/? 2—2, dw'’

_21_6 . f(\/m w)
(; /Ej /SN—l o(V/2€/ [m o',/ 2e[m w)(2€' [m)"1* 621_2: dw,) (2¢/m)N/2 gz

Then, we suppose that o does not vary too much as the energy variables (e, e’) belong to
the set E; x E; and we make the following approximation:

For €' € E;, oij(w,w') ~ / o(v/2e/m w,\/2¢' /m w')(2e/m)N/? ;i_: ,
E;
so that Q(f) is replaced by

= Z /SN—l oij(w,w") f; (W) do' — Z;(w) fi(w), (6)

where
= Z/ crji(w’,w) dw'.
j SN—l

These notations lead to the following multigroup kinetic equation

(Or +vi - Vi) fi = Q(f)i- (M)

RR n° 4302



8 T. Goudon € A. Mellet

REMARK 1 Of course, the subdomains E; can be defined by using another discretization
rule. For instance, one often discretizes the energy range by means of the lethargy \(e) =
In(e,er/e) and E; = {e > 0, A(e) € [Ai, Niy1[}, see [41].

3 Splitting of the collision operator

In this section, we introduce two different splittings of the collision operator into elastic and
inelastic parts. Here and below “elastic” means that the operator leaves invariant the total
number of neutrons on a given energy level. As in [19], we will see that it is relevant to use
a convex combination of these splittings. For convenience, we skip the space dependence,
having in mind that the estimates discussed below are uniform with respect to x. Besides, we
shall only state precisely the assumptions on the cross-sections o;; and the properties of the
collision operators that will be necessary later on; proofs are postponed into the appendix.

3.1 First splitting

Let us split the collision operator (6) as follows
; — O'ijaljl_o'ji /’ ildl
Q) Z/S (o310 N o) = o' ) (') )
+/SN—1 (;Uﬁ(w ,w)) (fi(w ) — fi(w)) dw'.

The first operator modifies energy while angle remains unchanged, thus, we refer to it as the
inelastic part, denoted by Q3"¢; the second operator modifies the velocity direction while
energy is conserved, thus, we called it the elastic part, denoted by Qg'. Let us set

(8)

Ti(ww) = ;oﬁ(w , W), Si(w) = /SN_1 Ti(w'w)dw
then we have
$= [ i) (1) = @) ' = K()i = Zife

Let us now state the first assumptions concerning the kernel o;;(w,w’):

(h1) First symmetry assumption: %;(w) = /

SN-—-1

(W, w)do' = / Ti(w,w') dw'.

SN-—-1

In order to derive the coercivity properties of the operator Qg!, we also require the following
hypothesis:

(h2) There exists a sequence of positive reals (%)i N
and a constant My such that v; < T;(w',w) < Myy;.

INRIA



Discrete version of the She asymtpotics 9

For technical purposes now, we introduce a sequence (B;);cn of positive numbers, satisfying:

(h3) Weight assumption: (B;);en is such that Z Bivi=M; < 0,

(it is easy to check that such a sequence always exists). Note that (h2) and (h3) yield

ZB/ (w) dw < MyM;.

SN-—-1

It is worth having in mind the following simple example of the isotropic Boltzmann
equation, with typically B; = e %,
055 (UJ,UJI) = CiCjBi, ¢;B; € 0. (9)

This leads to [';(w,w’) = ||¢B|p¢; and (h2) is fulfilled with My = ||¢B||%, and v; = ¢;.
We now introduce the following functional spaces

{f N x SN- 1—>Rsuchthat||f||E—Z/ | fi(w)]? Zi(w >dw<oo}

:{f:NxSN—l—MRsuchthatllfHF:Z/ | fi(w)[? dw<oo}.
i SN—l )

1
E,‘((U)B,

We shall identify the space
1
_ . N-1 2 _ o2 L
— [N x SY"" & R such that ||f||L_;/SN_1 @) - dw < oo}
with its dual when equipped with the inner product

=2 [ ) g

Consequently, we note that

() 5 do

< Ifllellglle
SN-1

for any f € E, g € F and we can identify F with the dual E'. We are now ready to establish
the main properties of the elastic operator Qg'.

PROPOSITION 1 Assume that (h1) holds. Then, Q§ € L(E,F) with ||QS(f)llr < 2||fllE&,
and we have

i) Conservation property: / QE (f)idw = 0 (at least formally; see Remark 3),
SN—l

RR n° 4302



10 T. Goudon € A. Mellet

i1) Dissipativity property: for oll f, g in B, we set Bo(f,g9) = — Z QeH(f):i gi Byt dw.

i JSN-1
K3
Then, By is bilinear continuous on E and satisfies

1/2;/@{_1 /SN_II‘i(w’,w)

> 1/201Q5'(Hllk-

ii1) The eigenspace Ker(Qg') is the space & of functions in E which do not depend on the
angular variable.

Bo(f, f) filw) = fi(W) ’ B; ! dw' dw

\%

REMARK 2 Under Hypothesis (h2), one remarks that &g = {f : N = R, 3, f2 v:B; " < oo}
does not reduce to {0}. For instance, with (h2)-(h3) it contains {f; = Big:, g € £} C &o.
Indeed, for such a f, we get

OSZ/SN_1 Ez‘ff/Bidw=Z(gf Bz‘/

N-1
B S

s dw) < My Mo||g||% < oo.
When taking into account time and space variable we will work with sequences of functions
fi(t,x) that satisfy the corresponding integrability condition.

REMARK 3 Assumption (h8) also implies that F is a subset of integrable functions, for the
measure dw ® di, where di is the counting measure on N, since one has

1/2 1/2
>/ |gz-|dws(2 / gf/<Bizi>dw) <Z B@dw) < llglle (MoD)™2.
i SN—I 1 SN—l

- N-1
. 45

A similar conclusion holds for f € E if one assumes

Z/ BZ/Eldw < 0.
—~ Jgn-1

For (9), this means that B/c € (*.

In order to state a coercivity property in a useful setting, we introduce the following

norm '
N =S [ IR Frde

In view of Hypothesis (h2), it is readily seen that N(f) defines an equivalent norm on E.

Actually we have
N(f)? <|Ifllg < MoN(f).

INRIA



Discrete version of the She asymtpotics 11

COROLLARY 1 Under Hypotheses (h1-h3), the following coercivity estimate

Bo(f, f) > N*(f = (f))

holds for any f € E, where one denotes {f); = / fi(w) dw.

gN-1

REMARK 4 The adjoint operator of QS reads

L g) = / Ti(w, 0" )gi(w') d’ — To(w)gi(w)

= /: _ L) (9:(0) = 9:(w) ) do

N—1

3.2 Second splitting

On the other hand, we can also introduce the following splitting into elastic and inelastic
operators

Q)i = QF' ()i + Q1 (f)s
with

10 =3 [ el ) = fie) s
=3/

The boundedness of Q¢! relies on the following assumption

(10)
aij(w,w') dw' f](w)) — fi(w)Z/SN_l Uji(w/,w) dw'

N-1

There exists a constant M, such that
(h4) Z /SN ) aij(w,w’)Bj dw’ S Mg’yiBi
- _

It is worth pointing out that this assumption is a straightforward consequence of (h2-h3), if
we assume the following relation, known as the detailed balance principle

oij(w,w)Bj = 0j;(w',w)B; . (11)
We also need the

(h1") Second symmetry condition: /

SN-1

0i(w,w) dw' = / oij(w,w") dw'.

SN-1

Remark that (h1’) is stronger than (hl), and that (h4) as well as (h2) are fulfilled if we
assume o;; < M, B;v;.

RR n° 4302



12 T. Goudon € A. Mellet

PROPOSITION 2 Assume that (h1’, h2, h3, h4) hold. Then, Q5! € L(E,F) with ||Q5'(f)|r <
1/2
2M,""|| flle, and we have

i) Conservation property: / L(f)idw =0,

SN—l
i) For all f, g we set Bi(f,g) = —Z/ Q5 (f)igi By dw. Then, By is bilinear
i SN—I

continuous on E and it satisfies
1

Bi(f,9) =5 (fi(W)=fi(@) (03 (", w)gi(w") = 0ij(w, ") gi(w)) B dw’ duw.
2 ing /51\1—1 ‘/SN—I J J J J

ii1) £ C Ker(Q$'), and the following estimate holds

IBi(f, f)| < Mo/2Ms> N(f — {f))*.

Of course functions depending only on the energy variable belongs to Ker(Q$'); however,
the kernel of Q' contains much more functions. Note that iii) is slightly sharper than the
estimate obtained by using the norm of Qf!; it can be improved under more restrictive
assumptions on the kernels.

COROLLARY 2 Under the
(h1") Strong symmetry assumption: o;j(w,w’) = 0;j(wW’,w)
and
(h2”) 0ij (w,w') < M’ysz’)’J with ZB{)@ = M; < o0,
i
the operator Q! is self-adjoint and, concerning Q$', we have

Bt =123 [ [ ou@e) () - H)ew) - 0B s de

As a consequence, if {f) =0, then i) becomes
IBi(f, f)| < MM N(f)>.

REMARK 5 Notice that (h1”) implies (h1’) while (h2”) implies both (h2) and (h3) with My =
MMy, and (h4) with Ms = My. The bound from below in (h2) is fulfilled if one assumes a
similar estimate from below on the o;;’s.

REMARK 6 The previous symmetry conditions are included in
oij(w,w’)Bj = crij(w’,w)Bj = aji(w',w)Bi = crji(w,w’)B,- (12)

which also implies that Q5! is self-adjoint. This corresponds to the symmetry assumption
used in [19]; but here we aim at dealing with a larger class of collision kernels.

INRIA



Discrete version of the She asymtpotics 13

Let us go back to the fundamental example (9). Denote C' = ). ¢;B; < 0o. One has in

this simple case
§'(f)i = Cei({fi) = fi),

(F)i=eBiy_ei((f;) -
J
Therefore, we get

Zcz f1><gz) (fiQi)),
9) = Zcicj(<fj><gi> —(fi9:))-

We write g; = (g;) + r; where (r;) = 0. It yields
Bi(f,9) Zczcj (filgs) = (filgad) — (fira)

B _Zczcj fira) = Zczc]/  firidw
o (Ser) (o)

If g lies in the orthogonal set of Ran(Qf'), we deduce that Y, ¢;r;(w) vanishes for almost all
we SN-1,

REMARK 7 The adjoint operator of Q$' is given by:
B,
el, * [
Ql Z/SN 1031 W' w g]( ) gj(w))Edwl'
In particular, we note that, if the relation (11) holds, then Q$' is a self-adjoint operator.

3.3 Combination of the splitting

From now on, we assume that (h1’), (h2), (h3), (h4) hold and we denote by (H) this set of
hypotheses. The idea will be to combine Q§ with Q& so that the coercivity of the latter
compensates the lack of positivity of the former; we are thus able to preserve the crucial
dissipation properties. Let us consider the following elastic operator, obtained as a convex
combination of Q¢! and Qf; for # € [0,1], we set

Qo =0Q5" + (1 - 0)Qg".

One deduces from Corollary 1 and Proposition 2 that
=% [ Qs BT o2 (1= 001+ Mor/33E) V(S — ()

holds for any f € E. We are thus led to the following statement.

RR n° 4302



14 T. Goudon € A. Mellet

PrOPOSITION 3 Let 6 € [0, (1 + Mo/2Mz)7[. Then, there exists a constant kg > 0 such
that, for any f € E, we have

Bo(f, f) > ke N(f — (f))*-

Consequently, the set of equilibria £y = Ker(Qy) coincides with & (the set of functions
depending only on the energy level). If one assumes (h1”) and (h2”), the domain for 6
enlarges to [0, (1 + My) .

One may also establish the following Fredholm alternative.

PROPOSITION 4 For any h € F the problem to find f € E such that Qo(f) = h has a
solution if and only if (hy = 0. The solution is unique in By = {f € Esuch that (f) = 0}

and satisfies
N(f) < (1/v/ke) |Ille.

Proof. Since the operator @y is clearly conservative, the condition of null average on the
data h is necessary. The problem recasts into the following variational formulation

Vo€By,  By(f o) :Z/SN_I hip: B ' dw = (h, ),

and we conclude by applying the Lax-Milgram theorem. O
Of course, one has a similar statement for the adjoint operator: @y is defined by

Q5 = 005" +(1-0)Q5",

and fulfills the same coercivity property as (Qy with the same constant of coercivity, since
Bo(f) == [ @it B do.
i /SN

Therefore we have

COROLLARY 3 For any h € F there exists f € E such that Q}(f) = h if and only if (h) = 0.
Moreover, there exists a unique such function in By = {f € Esuch that (f) = 0}, and this

solution satisfies
N(f) < (1/y/Eq) lIAlle.

4 Formal approach

The starting point of the asymptotic study is the following rescaled equation
1
)

p (Q"(f™)):- (13)

1
atff + 51}1' . szlﬂ =

INRIA



Discrete version of the She asymtpotics 15

Precisely, we consider the situation where the mean free path 7 > 0 is small at time scale of
order 1/n. On the other hand, we assume that the collision operator Q7 splits as follows

Q"(f) = Qo(f) +1° Q5™ (f),

which means that inelastic collisions are of order n? compared to the elastic ones. This
agrees with the fact that dominant scattering events are elastic. Of course, in this splitting
0 is fixed and cannot be too small compared to 5. In particular, it is also required that 6
belongs to the range which guarantees the coercivity of the operator @y, see Proposition
3. Our aim is to describe the asymptotic behaviour of the solutions of (13) as n — 0. We
will obtain a set of diffusion equations, which can be viewed as a semi-discrete (with respect
to the energy) version of the SHE-system of [19], for the limit macroscopic density with a
coupling of the energy levels due to the action of the operator Q' and/or the inelastic terms.

4.1 Formal Hilbert expansion
We can guess the limit behaviour by inserting the formal ansatz
fr=f"+nf' +0*f+ ..

into (13) and then, we identify the terms that arise with the same power of 1. As usual, the
7~ 2 terms lead to

Qo(f) =0
which means, by Proposition 3, that (f°);(w) = p; € & does not depend on the angular
variable. Hence, one expects that the asymptotic limit is entirely determined in terms of
“macroscopic” quantities. Next, the ™! equation reads

Qo(fl> =v- v$p7
while the n° equation is
Qo(f*) + Q5 (p) =v - Vo f' + dip.

Integrating with respect to w, we are led to the following relation

Veaime flwa) = [ o) da (14)

The usual strategy consists in inverting the n~! equation; one expects in this way to deter-
mine the current |, sv—1 1/ 2¢€; /m w f}(w)dw in the previous equation as a linear function of
Vep, i.e. a Fick’s relation. The difficulty of this method here comes from the action of the
operator Q¢! which mixes the energy levels. In particular, if p; depends only on the energy
and f;(w) depends on the two variables, in general one has

Qi(pf)i = Z/SN_l ij(w,w)p; (fi(W') — fi(w)) do'

(9tpi + lez (

SN-1

# piQi(f)i= piZ/SN_l 0ij(w, ") (fi(W') = fi(w)) do’

RR n° 4302



16 T. Goudon € A. Mellet

(while Qo(pf): = piQo(f):). However, we can solve the problem as follows. Let us define
Xt € (IEO)N solution of

Qo(X)io = —Vig bigis
where §,,; = 1 if ¢ = ip, and O if 4 # ¢y. The equation has to be understood componentwise,
and this definition makes sense thanks to Proposition 4 (since |, gn-1wdw = 0). Then one

checks that
1 —i
o= DX Vabi
provides a solution to the n~! equation. Plugging this expression into (14) gives
atpio -V, ( Z Dioivai) = Q(p)iov

q(p)i = /S . [Q5™ (0)],;, dw,

Dioi = —/ Vg & Yzo dw
SN—I

where ® stands for the tensor product in RY: for (ai,...,ay) and (by,....,bx) in RN, a®b

is the N x N matrix with components a,bz. We observe in the limit equation a coupling

between the energy levels, both from the diffusion matrix and from the right hand side.

A possible strategy to justify these computations would be to start from a solution p of the
expected limit equation (which has to be studied independently), and to define successively
1, f? in terms of p as solutions of the n~! and n° equations respectively. It remains to
estimate the remainder 77 = f7 — (p +nf! + 5?f?). The drawback of this method is that it
is known to require some regularity on p, thus on the coefficients. Such an assumption can
be unrealistic for neutron transport since the physical properties of the media interacting
with the neutrons are usually highly heterogeneous. On the other hand, it could be quite
delicate to carry out this strategy in the full generality considered here. Therefore, let us
instead develop a duality approach, which will be close to our actual method of proof.

4.2 Duality interpretation

Let us assume that f7 converges to some f° in a suitable sense. Multiplying by n? and
taking the limit n — 0 in (13), we recover

Qo(f"i =0, VieN,

and thus f2(¢,z,w) = pi(t, ©).
We introduce the following macroscopic quantities

density of ith energy level pi(t,z) = / i, z,w) dw,
Nt (15)
current of ith energy level J(t,x) = p / |vi|w 1t 2, w) dw .
SN—l

INRIA



Discrete version of the She asymtpotics 17

In view of the penalization of the collision term, one expects that 7 tends to belong to the
kernel of @)y, therefore it is mainly given by its macroscopic part p”, up to a formally small
remainder. Hence, let us write a first order expansion of f7 as follows

ff(t,m,w) = p?(t,x) + ngf(tax, w)

so that p” € Ker(Qg) and
T (t,x) = / |vilwg! (¢, 2, w) dw.
SgN-1

Integrate equation (13) with respect to w. Since the operator Q4 has null average on SV—1
we get for all i € N:

ol + V. T = [ Qpade,

SN-1

which is the n—dependent version of the integrated 7° equation in the formal expansion
above. As 7 goes to 0, we are formally led to the continuity equation

Owpi + Vg - J; = QY (p)idw.

SN-1

It remains to find the relation between the limit current J and p.
Multiply (13) by some 7 ¢;(w). We get

1
Z;/SN_l Qo(f")i pidw = Z/SN-I (v-Vaf7), cpidw+772/SN_16tfi” @ dw ,
and therefore

> Qo(9"): pidw ="y (/

. N-1 - N-—-1
1 S 7 S

|vilw dw) -Vep] + R, (16)

where R" is formally of order O(n). .
Suppose that, for iy fixed in N, we are able to find the auxiliary function B;x}°(w) €

(Ko) N that solves

QZ(BX”’)% = 'UioBio(sioi = 2€i0/m Bio wéioi. (17)

Since v;, lies in RV, equation (17) holds for the N scalar equations with right hand sides
we for a € {1,..., N}. Remarking that

/ wdw =0,
SN-1

the existence of x% is given by Corollary 3.
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18 T. Goudon € A. Mellet

Hence, for the test function ¢;(w), we choose the components of x'° (w) and (16) becomes
) [ e stao=Y ([ i owd) Vrrom.  as)
B SN—l
with
Z/ 9] Q3(Bx™)i B 'dw = Z/ 9i V2€iy[m wbiy; dw
; JSN-t — Jsn-1
= /2e;,/m / wginodw
SN—I
= Jn.
10

Here, we used the following fact

Z X dw = (Qa(g7), BX™), Z/ g7 Q3(Bx™)i B! dw.

SNl

Thus, passing to the limit 7 — 0 in (18), we are led to

Jio (t, ) ZDWVzpl(t x) (19)
where the matrix D is defined through the auxiliary function x by

101: |/UZ|/ ::O(X)(,waeMNx]\U (20)

where My« n stands for the space of V x N matrices.
The formal limit of (13) is therefore the following macroscopic equation

9p = Vo - (D(x)Vap) = q(p), (21)

where the unknown is the sequence p(t,z) = {pi(t,x), i € N}, D is given by (17), (20) and
the right hand side by

a(p)i = Q5! (p)i dw = Z Aijp; — Sips, (22)

N-1 -
S J

Ay / / oij(w,w') dw dw',
SN 1 SN 1

0ji(w w) dwdw' —ZAﬂ.
j

with

SN—-1 JSN-

It is also worth splitting the matrix D as follows. The properties discussed on Qg allows us
to define a unique ¢ (w) € RV verifying

(1 —0)Q4(B.¢™8;.)i = i Biybiyis

INRIA



Discrete version of the She asymtpotics 19

with [on_1 ¢*(w)dw = 0. Then, we split X9 = "8, +X.°, where
Qs(BX"*)i = —0Q7(B.¢"biy.)s-
In this way, we can rewrite
Diyi = diy0iyi + Niyi,
di, = —|vi0|/ 00 ® wdw,
oN-1

Njyi = —|vi|/ X2 ® wdw.
SN—I
Hence, one gets [DV,p] w0 = Qi Vapiy + 35 8iyiVapi. Of course, we can verify readily
that this definition of the diffusion matrix coincides with the one obtained in the previous
Section.

This limit equation (21) appears as a semi-discrete (in energy) SHE-model with a cou-
pling of the energy levels. Actually, one obtains a hierarchy of possible limit systems:

- A system of uncoupled diffusion equations with respect to the space variable, energy
being only a parameter. This arises when inelastic terms are negligeable and 6 = 0.

- A system of diffusion equations with a coupling of the energy levels through zeroth order
terms. This arises with § = 0 and treating inelastic processes as a perturbation. Diffusivity
remains locally defined (with respect to energy) and the coupling describes gain/loss at a
given energy level due to inelastic collisions.

- A system of diffusion equations with a strong coupling, from both zeroth order terms
and diffusion currents which are now non local: energy exchanges during the collisions induce
diffusive effects.

4.3 Fundamental properties of the diffusivity

We are naturally led to discuss some properties of the diffusivity D. To this end, one
introduces the following Hilbert space of vector-valued sequences

e
H:{@:N—»RN;Z@AQ = <+oo}.

my; B;

We shall identify £ = {®: N — RV, 3 |®;>B; ! < 0o} with its dual; accordingly, the dual
of H reads

H’: : RN' iQ—m’yi
{J N — ,zi:m 5mil < T

with the duality relation

me; 2¢e1
J,®) =<J1/ Lo, ) -5 J,8,BL.
< E 2¢ei me;/ e z; g
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20 T. Goudon € A. Mellet

LEMMA 1 Assume (H). Let us set
D(¥,®)=> Dy¥;-&B]" Vb ¥ €H
4,7

Then,

(i) D is a bilinear continuous form on H;

(i3) D is positive-definite (symmetric as soon as Qg is a self adjoint operator). Furthermore,
there exists a constant ¢ > 0 such that for oll ® € H,

D(®, ®) > ¢/|®||.
Proof. Assuming (H), one associates to ® in the weighted (2 space H, the function

6: NxSV-1 LR
(i, w) — ¢i(w) =v; - P, = w-/2ei/m P

One remarks that ¢ lies in Fy, and ||¢||r provides a norm equivalent to the natural norm on
H (by using (h2)). Therefore, Proposition 4 allows us to define the mapping

K: H —E
® — KO,

with Q*(K?®);(w) = v; - ®; = ¢i(w) i.e. K® = Q*1(¢). Clearly, K is a bounded linear

operator from H to E.
With these notations, we have the following relation, which will be proved later on,

B'K(w Z X (w) - ®;B;". (23)
From the definition of D;;, and (23), we can rewrite D as follows:

D(T, ®)

I
©
=
o
N

I
|

m\

i

}f
Pe*
m
:e
&

Hence we have
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Discrete version of the She asymtpotics 21

The lemma follows, since the first expression recasts as

-> Q*(K")i(w) K (w) By "dw = By(K®,K"),
7 SN-1

which easily leads to the conclusion by using Corollary 3.

We are thus left with the task of proving (23). However, this is a simple consequence of
the linearity of @*, which implies that summation over ¢ commutes with the action of this
operator. We are thus able to show that Q* acts on the right hand side of (23) as follows

@ (X eB?) = e -en

D iBibij- 8B =v;-®; = ¢; = Q*(K?);.

O
From Lemma 1, we can deduce the following claim which will give a precise meaning to
the current relation (19). It will play a key role in our rigorous analysis.

COROLLARY 4 We can define a linear, continuous and invertible mapping J : H — H
such that, for any ® and ¥ in H one has

D(3,¥) = —(J(3),¥), = - J(®),T.B;".

Proof. For any ® € H, the Riesz theorem defines a unique J(®) € H, such that D(®, ) =
—(J(®),¥), for any ¥ € H. The corresponding mapping J : H — H is of course linear
and continuous. Conversely, let J € H'. The Lax-Milgram theorem applies to solve the
variational problem

find ® € H such that, for all ¥ € H one has D(®,¥) = —(J, T),.
By Proposition 4, this problem admits a unique solution ® € H which satisfies, by its
definition, J(®) = J. O

This statement will allow us to interpret the current equation (19) in a duality sense
by J = J(V.p). Accordingly, one expects that J lies in L?(R} x RY;H) and V,p €
L*(Rf x RY;H). It is worth remarking this gain in "regularity”, both in the space and
energy variables on the density, since this property is not guaranteed in general for p”, for
7 > 0. This is an usual fact when dealing with diffusion approximation, see for instance
[29], [20]; the noticeable point here is that this effect also applies to the energy variable.

5 Rigorous derivation

This section is devoted to the rigorous study of the asymptotic behaviour as 5 goes to 0 of
the solution f” of the kinetic equation

ot + %m Vofil = U_Z(Qo(f"))i in R x RY xN; x §J,
f(t=0)=F/.

(25)
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In order to take into account time and space variables, one needs to define again some
functional spaces, based on the previous ones. We set

52:{f:R;V xN; x §N-1 LR Z/ / ffB;ldwdx<oo}.
i RN SN—l

It is nothing but the L? space on RV x Nx S¥~! endowed with the measure dz®(B; " di)@dw,
where di stands for the counting measure on N. Accordingly, we also set

gz{f;R;V xN; x SN-1 R, Z/RN/SN_lf? %"idwdx<oo}:L2(RN;E)

and

1
_[s. pN , N-1 2 — T2(RN.
f_{f.JRz xN; xS, — R, Ez /RN/SN_lfz %idwdx<oo} L*(R™ ;).

Similarly, for vector-valued macroscopic quantities, independent on the angular variable, we
set

2e1
_ N ) N 2 _ 12(RN.
H_{@.]& le—>1R,Ei /RN|<I>,| " ida:<oo} L*(RY; H)

and

' _ N , g2 MY — 72(RN .
H _{J.Rm xN; — R, Z:/RNUJ QEZ,Bidx<oo} L*(RN ;).
which is the dual of H when one identifies L?(RY ,£) = L*(RN x N,dz ® B; 'di) with its
dual, namely

J, BV 1y = ®,-J; B~ ldx.
<7 >'H,'H Z/}RN i T

We shall not detail the existence theory for the transport equation (25). With some
maybe stronger assumptions on the cross-sections, this can be done by means of semi-groups
theory. We can also use some monotonicity argument, following R. Petterson [36]. Instead,
we shall assume from now on that there exists a function f7 € CO(R*;£?) n L°(R*;€)
satisfying the following weak formulation of (25)

T

—/f"&:c,o B ldu— 1/J”’v -Vaep B Ydu + [/f"(p B! dV]
) n
= n—Q/Q0(f")‘P B 'dp.

Here, dy indicates integration over (0,7) x RV x Nx S¥~! with the measure dt® dr ® di @ dw
while dv has the same meaning on RY x Nx S¥~1 with the measure dz ® di ® dw. Relation
(26) holds for any ¢ in an appropriate space of admissible test functions ©. In particular,
it makes sense for ¢ € L}, (Rt; &) such that 8;p and V, - (vp) belong to L}, (R*; L£?). Tt is
worth remarking that a sequence defined by a finite number of non-zero functions ¢; (¢, z,w)

lying in C§([0,T] x RV ; L>°(SN~1)) is admissible.

0 (26)
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REMARK 8 If one assumes that 0 < ; < C < +00, we obtain the inclusions F C L C E, and
therefore Qg can be viewed as a bounded operator on L2, with values in L2, and ezistence-
uniqueness is easy to be established. Of course, the problem for n > 0 fized and most of our
convergence analysis become easier if one deals with a finite number of energy groups.

Then, we can now state our main result.

THEOREM 1 Suppose (H) and let F] be bounded in £L2. Then, p" = [on_1 f7dw converges
weakly-+ in L*°(0,T; L2(RY x N; B~'di ® dzx)) (and in C°([0,T], L3(R 1\$x N; B~ ldi @ dz) —
weak)) to p and J" = [on_y \/2¢i/mw [ dw converges weakly-x in L*(0,T;H') to J (see
(27) below). These limits satisfy

6tp + lewJ = 0,
Vep € L2(0,T;H), and T (Vep)=J.

The proof naturally falls into four steps.

Step 1: A priori estimates and weak convergences

The main estimates on f7 are obtained by formally multiplying equation (25) by f”/B and
integrating. It yields

1P O12: + = / / Bo(f7, f7) duds = | FJ|[% .

Therefore, the coercivity of By allows us to estimate || f7||z2 and L N(f7 = p") = N(g”) and
thus leads to the following statement.

LEMMA 2 Suppose that (H) holds and let F} be bounded in L%. Then,

i) 7 is bounded in L™ (RS ; £2), with || f7(t)||%. < ||F7||%. < C.

i) g77 = (f" — p™M)/n is bounded in L2(R};E),

i) po(t, :c = [on-1 f(t, 7,w) dw is bounded in L= (R} ; L2(RY x N,dz ® B;'di)),

w) J(t,2) = 1/n [gna vif7(t, 2, w) dw = [gn_i(260)/m wg(t, 2, w) dw is bounded
in L= (RS ;H').

Proof. It remains to establish the bounds on the macroscopic quantities. Clearly, one has

2
12 Bl dp = / / 7 d
S [ ra=3 [ ([ s

Next, the current satisfies
Z /+ / / V. m z
R+ JRYN [JgN-1

g2 g
;/R+/RN| ll 2e1B; v
n2 Vi
9" = dwdx dt
;/1Q+/RN/SN—1| | Bl

/ N(g™)?dx dt
R+ JRN

Bt da < || 2.

i dx dt

i

IA

IA
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24 T. Goudon € A. Mellet

and the boundedness of J" is a consequence of ii). O
Possibly at the cost of extracting subsequences, we can assume that

fm—uf weakly * in L°(R} ; £2),

g" —.g  weakly * in L2(R;¢),

p" —.p  weakly x in L®°(R"; L*(RY x N,dz ® B; 'di)),
JT—,J  weakly * in L2(Rf ; H').

(27)

This means, respectively

4

%ig%/f"chZldu=/f¢ B~ 'dy
1/2
where / (/ @i(t,x,w)?* Byt dw di dx) dt < o0,
R+ RN xNxSN—1
tim [ g7 B du= [ g B du
where /¢i(t,x,w)2 (7:Bs) ™t dp < oo,

lim p"k By ' didx dt = / pr B~ di dx dt

10 JR+xRN xN R+XRN xN
1/2
where / (/ ki(t,2)* Byt di da:) dt < o0,
R+ R+TXRN XN
lim J"-® B~ didxdt = J-® B ' didrdt
10 JR+XRN xN RN XN oei
where |®:(t, 2)|? = didedt < oo.
\ R+XRN xN m~; bs

Choosing, with the above properties, ¢;(t, z,w) = ki(t,z) and ¥;(t, z,w) = (2ci/m)*/? w -
®,(t,x), we realize that

p:/ fdw, J=/ \/@wgdw
SN-1 SN-1 m

holds. In fact, we obviously have f = p by taking the limit in the distributional sense in
fT=p"+ng".
Step 2: Continuity equation
We wish to establish the following claim.
LEMMA 3 For any i the continuity relation
6tpi +div,J; =0
holds in D'((0,T) x RY).

Proof. We use in (26) the test function k;B;((¢,z) with k; € £*° (precisely k; = 6;;), and
¢ € Cg°((0,T) x RY); then we take the limit n — 0. O
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REMARK 9 Under suitable hypotheses, one could also rigorously derive the inelastic term
(22). Actually, if 0;;(w,w") is such that Qi is bounded in L, a-priori estimate can still be
derived by means of an application of Gronwall’s lemma when Qp = Q§' + n%)@”el.

Step 3: Current equation
According to our discussion in the previous section, the expected current equation J =
— > DijVzpj has to be understood in the dual sense J(V.p) = J which means that

D(V.p, ®) = —(J, d) (28)

holds for any ® € L?(Rt,H). Of course, the notation now takes into account the time and
space variables. Precisely, the right hand side reads

/J-@B_ldz’dxdt:/gv-@B_ldu.

Since we can associate to ® € L%(R*,’H) a unique K® € L?(R", ) (with null average) such
that Q*(K?®) = v - ®, we get

(J,®) = /gQ*(K‘I’) B~ ldu.

On the other hand, the left hand side in (28) is

—/vzme‘I’ B ldu= —/ Vep (/ vK® dw) B! didx dt
RXxNxRN SN-1

by using (23). Then, (28) reduces to

/gQ*(K‘I’)B_ldu:/R . Vap (/5 vK‘I’dw) B~ didx dt (29)
xNx N N-—1

In order to justify equality (28), it thus would be tempting to use ¢ = K?® as test
function in (26). However, difficulties arise when we ask for such a function to belong to the
admissible set ®. We note that, for ® € L%(0,T;H), we naturally have K® € L2(0,T;€)
and [gy_, vK®dw € L?(0,T;H'). However we recall that it is required that V, - (vy) €
L?(0,T; £?) for ¢ to be an admissible test function. Space regularity is not a real difficulty,
but it is not clear how it can be guaranteed that vK?® belongs to L?(0,T;£?). Except in
some very particular cases (for instance if 2e7 < Cy; which implies that H' embeds to €
or in some isotropic case as in [19]), since Q;l mixes all the energy levels, it seems that a
truncation of ® on the high levels does not give such a control and it is not clear at all that
the set {® € L%(0,T;H), V. -vK® € L?(0,T;£?)} is not empty in the general case. This
difficulty leads to some technical restrictions on the cross-sections in [19].

On the other hand, if we are able to prove that V,p € L?(0,T;H), then, the relation
(29) makes sense provided ® € L?(0,T; H) and does not require further property on ®. This
motivates our strategy of proof: First, we establish an approximate current equation, from
which we will be able to deduce that V,p € L?*(0,T;H); and then we derive the current
equation (29). We are thus led to the main statement of the step.
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PRroPOSITION 5 We have V,p € L2(0,T;H), and the limit J of J" satisfies (29).

Proof. Let ® be a test function in L?(0,T;’H) compactly supported with respect to time in
(0,T). Moreover, one assumes that 9,® € L?(0,T;€) and V,® € L?(0,T;H). This can be
obtained by regularizing in time and space and eventually truncating in energy a function
in L2(0,T;H). Then, Q3 (v-®) = K® € L*(0,T;&) (recall that K® depends on w, though
® does not). We introduce the function u(™) defined on N by

(n) _ 1 if i <mn,
i T 10 if i > n.

The parameter n will help us in approximating (29). Then, we consider the admissible test
function ¢;(t, z,w) = ™ K2(t,z,w) € L2(0,T;&). We obtain from (26)

7

1
- / 0 V(™ E®) B dp— / F1O.uVK®) B d = / Qo(fMuWK® B dy.
(30)
The right hand side gives

/Qe(g")u(”)K‘I’ B~ dp = /g" Qi (™ K®) B~ dy,
while the left hand side is rewritten
— [ p M(n)v.va<I> B Ydu
-7 (/ 1o ™WK®) B~ du + /g’7 ™My -V, K Bld,u> .

Since all the sums are actually finite, there is no trouble in applying convergences (27), n
being fixed. The left hand side in (30) tends, as n goes to 0, towards

—/sz-(vju(”)qu’) B~'dp = —/

RTXRN XN

(W), - (/SN_1 vK® m) B~ di dz dt.
Moreover, the right hand side in (30) becomes
/g"Qz(u(”)K‘I’) B~ 'dy — /ng(u(”)K‘I’) B~'dp.
Thus, we are led to the equality
- /R+xwa(“(n)sz : (/SN_1 vK® dw) B 'didzdt = /gQ§(u(”)K‘I’) B~ ldu, (31)

which appears as an approximate form of (28). We wish to conclude by letting n go to co.
Let us introduce the linear mapping J(™ defined on the set

{q> € L2(0,T: H), V, - (/

SN-—-1

vK® dw) € L*0,T; H')}
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by
T (3) = — / (1™ p)V, - ( / vE® dw)B*di dz dt,
R+XRNxN SN-1

which corresponds to a weak definition of —D(u(™V,p, ®). Note that this set is obviously
dense in L?(0,T;H) (it is only concerned with space regularization since [qy_, vK® dw
naturally lies in L?(0,7;H’)). Furthermore, (31) says that one actually has

IO@®) = [ Qi K®) B dp.

One deduces that
|7M(@)] < Cligllzzc0,7;6) 1l 20, 15m)

and J™ is a bounded sequence of continuous linear forms defined on the whole space
L?(0,T;H). According to Corollary 4, we can associate a sequence ©(™ satisfying

19| 20,77y < Cllgllz2(0,156) »

and

JM(@) = —D(O™,8) = /

RtxRNxN

@En)(t’x) (/ UiK?(taxaw) dw) B;l di dx dt,
SgN-1

for any ® € L?(0,T;H) (where we used (24)). Then, coming back to (31), ©(™ is a
bounded sequence in L?(0,T;H) which coincides with u(™V,p as a linear form on the
subset { [gn_1 VK® dw, ® € L*(0,T;H)} C L*(0,T;H'). Hence, we will conclude that the
limit of ©(™) defines V,p as element of L?(0,T;H) if we are able to prove the following
claim.

LEMMA 4 The set K = { [gn_, vK®dw, ® € H} is dense in H .

Lemma 4 yields u(™V,p = ©(") in L2(0,T;H), and therefore u(")V,p is bounded in this
space, uniformly with respect to n. Since the sequence converges towards V p as n — oo in
a distributional sense, we deduce that (™ V,p converges weakly towards V,p in L2(0, T, H).

We end the proof by taking the limit n — oo in the equality (31); we finally get

—D(Vzp,@)=/gv~¢> B*ld,,L:/ J-® B 'didzdt.
R+XRNxN

Now, it remains to justify Lemma 4. O
Proof of Lemma 4. It is equivalent to prove that the orthogonal set of K is reduced to 0
in H Let © € H satisfy

(@,/ vK%dw), =0, V®eH.
SN—l
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Then, by (24), this reads D(0,®) = 0 for all & € H, which yields © = 0 thanks to the
coercivity of the bilinear form D. O

Step 4: Compactness in time.

We would like to recover as initial data p; for the limit problem a function depending on
the behaviour of the sequence of data F}' for the kinetic equation. Of course this relies on
a compactness in time property, at least for some weak topology. On the other hand, it can
be shown a uniqueness result for the limit equation in the class of continuous functions with
value in L?(RY x N; B~!'di ® dz) and having the gradient in L2(0,7T; H). In turn, of course,
the whole sequence p” will converge to this p.

LEMMA 5 The sequence (p")n>0 is sequentially compact in C°([0,T]; L2(RY x N, B 'di ®
dx) —weak). In particular, there exists a sequence (p”")neN such that for any ¢ € L?(RY x
N, By 'di ® dx)

/ p"¢ B~ dide — pd B~1 didx
RN RN

as n — oo in C°([0,TY)).

Proof. First, let ¢ € L2(RY x N, (1 +4/v;)B; 'di ® dr) with V,¢ € H. Looking at the
continuity equation, one gets

1

/ (J"I7V$¢)H, ,HdU

0 9
CllTM 20,750y VIt =8| [Vatdlln-
The bound iv) in Proposition 2 combined to the Arzela-Ascoli theorem allows us to deduce
that ([ p"(t)y B~'di dm)n>0 lies in a compact set in C°([0,7]). By considering finite
series and space regularization, one sees that the set of the i’s used above is dense into
L(RN x N, B;'di ® dz). Then, let ¢ € L>(RY x N, B;*di @ dz). We deduce that, for any
e >0,

/ p"(tw B! didx —/ p"(s) B™'didx
RN

RN

IA

(/ p"(t)¢ B~ di dac) C B(0,¢) + Compact Set in C°([0,T)).
RN n>0

Hence, ( [ p"(t)¢p B~'di dx)n>0 also lies in a compact set in C°([0,7]). We conclude by

using the separability of L?(RY x N, B} 'di ® dr) and a Cantor argument. []

Lemma 5 says that we recover as initial data for the limit equation the limit, in the weak
L2(RY x N, B; ' di ® dz) sense, of p] = [¢n_, F] dw. Moreover, classical reasoning gives the
continuity in time for the limit problem, see for instance [16].

LEMMA 6 The limit p is a continuous function on [0,T] with values in L>(RN x N, B; *di ®
dz); and it satisfies

d
Lol = 2 / D(Vap, Vap) da (32)
RN

in D'(]0, TY).
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Proof. The point relies on the following facts:

p € L®(R*; LA(RN x N, B; 'di ® dz)),
p € C°([0,T]; LA(RN x N, B]'di ® dz) — weak),
V.p € L*(RY; H).

In turn, the equation (21) implies that O;p reads as the space derivative of an element of
L?(R*;H'). This legitimates the product with p. Indeed, by regularization (in time) and
truncation (in energy), we can construct a sequence p(™ which lies in C*°([0, T]; HNL*(RY x
N, By 'di ® dz)), with 9;p(™) € C=([0,T); H' N L*(RY x N, By 'di ® dx)) and satisfying

p™ —p  in L*(0,T; L*(RY x N, B; *di ® dx)),
op™) — 8;p  in L2(0,T;V, - (H"))

as n goes to co. When dealing with regular functions, one has clearly

d
2l =200, p™) Lo = 200", )

where the brackets stands for the duality product between {p such that V,p € H} and
{2 |aj=1 927, J € H'}. Passing to the limit n — oo justifies that

d
E”P”m = 2(0sp, p)

holds in D'(]0,T'[), which gives (32). Therefore, one deduces that < ||p||z2 € L'(0,T) and

t
oI5 = lorlie + [ 2(01,0) ds
0
defines a continuous function on [0, T]. Furthermore,

lo(t) = pto)ll7= = llp(ONIZ2 + llo(to) 172 — 2(p(2), p(to)) .2

tends to 0 as t goes to to since p € C°([0,T], L? — weak). O
In turn, one deduces the following uniqueness statement which proves that the whole
sequence p" converges.

COROLLARY 5 There exists a unique solution p of (21) with p € L= (Rt ; L2(RY xN, B; ' di®
dz)) and V,p € L?(RT; H).

Proof. The previous Lemma guarantees that p is continuous with values in L?(RY x
N, B, Ydi ® dx). By linearity, it suffices to consider the solution p corresponding to data
pr = 0. Then, (32) combined to the positivity of D implies that ||p(t)||z2 = 0. O

As a concluding remark, let us notice that we can improve the convergence of p” to p.
Indeed, using wd;; as test function in (26), we obtain that V p; reads as a bounded term
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in L2((0,T) x RY) plus nx (first derivatives of bounded terms in L?((0,7) x R"))), hence
it is compact in H~1((0,T) x B(0, R)) for any 0 < T, R < co. Combining this information
to the continuity equation in Lemma 3, we can apply the Div-Curl argument of L. Tartar
[39], as in [34], [29], [20], [28] and we deduce that for any i € N, p lies in a compact set of
L? ((0,T) x RN). If further the B;’s tend to 0, one easily concludes that p” converges to p

loc

strongly in L2((0,T) x B(0,R) x N), for any 0 < T, R < 0.

A Properties of the collision operators

A.1 Proof of Proposition 1

We write QE'(f); = K(f): — Zifi- Of course, one has |2 f||r = || f|le- Next, using (h1), we
get

(33)
It follows that Q§' € L(E,F), with ||Q¢'(f)|lr < 2||f|le- According to Hypothesis (h1), we
easily get ()

Qe (f): dw = /

S

SN-1
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Now, By is clearly bilinear and continuous on E x E and we compute
= [ T @ A - )] i) B do
B SN—l SN—l
_ —Z/ / Ty(o,w) fi(@)fi(w') B do du
T JsN-1JgN-1
]' / / ! 2 !
+=- Ti(w', w)|fi(w)|?dw" dw
223 o [ T @)
1
+= / / Ti(w, )| fi(w)Pdw' dw
2; R R D O]
= 12X [ [ (@R + A

- Zfi(w)fi(w’)) B dw' dw

23 [ [ e -

This obviously leads to the characterization of the kernel of Qg in (7).
Moreover, we have

BO(fvf)

2
B;'dw' dw.

S [ ey e

l ' 2% '
< ;/SN_l /SN_ll“i(w w)|filw) = fi(w') dw' dw < 2Bo(f, f),

X;B;

which implies the last inequality in assertion (iz). O

A.2 Proof of Corollary 1
Set f = (f) — r. Since r has null average, Assumption (h2) yields

1/22 /:;‘N—1 /51\1—1 Fi(wlw)|fi(wl) - fi(w)lz Bi_l dw' dw

BO(faf)

> 1/22:/SN_1 /SN_1 Ifi(w') = fi(w)|? %.B;l dw' dw

> I/QZ/SN_l /SN—1 |7"z'(w’) —Ti(w)|2 ,.yiBlfl dw' dw

> 2% [ ) + ) = 2nen) 2B ' d
>

Z/ r2(w) v:B; ' dw = N*(r).
i SN-—-1
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A.3 Proof of Proposition 2

First, let us estimate
ij (W, @) (f5 (@) = fi(w)) do’
>/ Z/So— () () - )

XZ/ 04(w, ") f;(W") = fi (@) Bj_ldw') (%:B;)""dw
< M2Z/SN ) /SN_1 ZO’ij w,w'))|fj(w') — fi(w)]? B! do' dw
< 3 [ [ T 15 = S Bt

S
< 2M2Bo(f7f) < 2Ma[|QF (F)lIFll flle < 4M> | I

1R (HIIE (Zi(w)B;) ™' dw

IA

(34)
where we used the Cauchy-Schwarz inequality and the results in Proposition 1. This proves
that Qf € L(E,F).

In view of Remark 2, we can integrate Q$' with respect to w and we get

/SN_1 QF'(f)i dw Z/SN_l £() (/SN ij{w,w )dw) d'

_Z/SN_l fi(w) (/SN_l Uij(w,w’)dw’> dw
Z/SN_l fi(w) (/SN—I (Uz‘j(w',W) —aij(w,w’))dw’> dw
0,

by using the symmetry assumption (h1’).
Then, B; is obviously a bilinear continuous form on E, and a straightforward computation
yields

Bi(f,9) —Z/SN_I /SN_loij(w,w')<fj(w’) _fj(w))gi(w) Bl do' dw
Z/SN . /SN_1 aij(wlaw)<fj(wl) - fj(w))gi(wl) B; ' dw dw'
1/2Z/SN 1 /SN_1 (fj(w') —f]-(w))

(aij(w’,w)gi(w’) - Uz‘j(w,w')gi(w)) B; ! dw' dw.
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Finally, in view of (10), it is easy to check that & C Ker(Q%!), and writing f = (f) +r,
we immediately get

Bi(f, O =1(QF (), £) = (@5 (r).r) | < lIrlle Q5 ()l
< 2¢/My||r||2
< 2Moy/MaN(f — (£))*.

We can improve this bound, by noticing that, since the average of r vanishes, (34) and
(h3) yield

IQF(MIE < MMy 3 ;B / / s () — 15 d do
j SN—l SN—l
< MoMz > %iBt (20) - 2(ry)?)
J
< 2MoMy Y ;B (r3) = 2MoM, N(r)?,

J

and therefore

Bi(f, ) < V2MoM:|rlleN(r) < Mo/2M2N(f = (f))?.
O

A.4 Proof of Corollary 2.

By combining the symmetry condition (h1”) with estimate (h2”), we can dominate |B1(f, f)|,
as given in Proposition 2-ii) by

e [ el = L) )~ ) dw s
<vp Y ([ [ 106 - popaar)”

x (/SN_1 /SN_1 |fi(w") _fi(w)|2dwdw/)l/2‘

Since one assumes {f) = 0, the integral becomes

/ / i) = o) dw dio’ = 2(f2).
SN-1 JgN-1
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Hence, we get

1B1(f, f)

IN

MY s ()2 (F)?

1/2

IA

1/2
M (Z % BT (7 ’Yij_l(ff)> (Z 7iBi ’Yij)
iJ 7

MM,y BN (ff) = MM, N(f)*.

IN
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