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Une étude numérique des comportements en temps longs
du systéme de Lifshitz-Slyozov

Résumé : Nous étudions le comportement en temps long de solutions du systéme de
Lifshitz-Slyozov. En particulier, il apparait que ce comportement dépend de maniére cruciale
de la distribution des aggrégats les plus gros présents dans la solution.

Mots-clés : systéme de Lifschitz-Slyozov, modéles de coagulation-fragmentation, transi-
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Lifschitz-Slyozov Equations 3

1 Introduction

We aim at investigating numerically the asymptotic behaviour of the solutions (c, f) of the
following Lifshitz-Slyozov (LS) equations

(1 2 f(a(w)ett) ~ b)) f] = 0 in B < RE,

| c(t)+/ xf(t,z)dz =p >0, (1)
R+

{ flt=0 = fo in RE, Clt=0 = Co-

This equation has been introduced in [17] as a model for the formation of a new phase in
solid solutions. It is intended to describe the later stages of formation of the new phase:
there exists yet a non negligible number of precipitates having a supercritical size. In the
earlier stages, fluctuations effects lead to the formation of these crystal germs. Here, the
evolution of the precipitates is described through the density f(¢,x) of clusters having, at
time ¢, the size x > 0. The dynamics is governed by a mechanism of removal from or
addition to the clusters of free particles whose size is infinitely small compared to the size
of the aggregates. These free particles are called “monomers”, and their density at time ¢
is denoted by c¢(t). Note however that the model requires in these ordering properties that
the size of the aggregates remains small compared to the average distance between clusters;
consequently, encounters and coalescence effects are neglected in this approximation.

The quantity V(t,z) = a(z)c(t) — b(z) is interpreted as the growth rate, at time ¢,
for a cluster having size . The given coefficients a,b > 0 are thus the rates at which
monomers are added to or removed from the cluster, respectively. The first relation in (1)
is a conservation law in the size space, whereas the second relation is a constraint which
expresses the conservation of the total mass of the material within the solution. The crucial
assumption on the coefficients is the existence, at any time ¢, of a unique critical size z.()
which splits the size domain:

V(t,z) = a(z)c(t) = b(x) <0, for 0<z <2y,
V(t,r) = a(zx)c(t) —b(x) >0, for x> x.y).

Indeed, in deriving the rate growth one considers the energy balance for a macroparticle,
viewed as isolated in a bath of monomers, to maintain its size. Then, there is a competition
between surface effects which tend to reduce the energetic cost due to the formation of an
interface with volume effects associated to the bulk free energy of the cluster. The former
are the dominating effects for small clusters. Accordingly, the evolution of a x—cluster
is determined by the ratio between the monomers concentration ¢(t) and an equilibrium
concentration c.(x) characterized by the size x. It appears that c.(z) is a decreasing function
of the size: there is a energetic advantage for the small grains to dissolve and transfer their
mass to the large clusters. This phenomenom is known as the Ostwald ripening, [19]:
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4 J.A. Carrillo & T. Goudon

large grains are growing at the expenses of the small ones. From a technical viewpoint,
this physical feature also explains why no boundary condition is needed at x = 0: the
rate of growth V' (¢,x) for small grains is negative. If one considers, at least formally, the
characteristic curves

d
7 Xsa) =V, X(ts,2),  X(ssa) =2
then, they are pointing outside the domain (0,+00) when they reach the origin. Precise
form of the coeflicients depends on the mechanism of mass transfer; assuming it is driven
by diffusion, [17] gives the following coefficients

a(z) = 273, b(z) = 1.

The critical size is therefore x.(;) = c=3(t) in this case. For details on the model, we refer of
course to the original paper of Lifschitz-Slyozov [17], but one may also consult the classical
reference [16] and the recent review of Sagalovich-Slyozov [23].

Mathematical results establishing existence-uniqueness of solutions for (1) have been
obtained recently, by using various approaches: we refer to Niethammer-Pego [20], Collet-
Goudon [7], Laurengot [13]... On the other hand, derivation of (1) from the discrete model
of Becker-Doring, an infinite system of ode’s describing earlier stages of the new phase for-
mation (see [2]), is discussed by Penrose [22], Collet-Goudon-Poupaud-Vasseur [9]. However,
the asymptotic behaviour of the solution of (1) is not yet well understood, in contrast with
the situation concerning discrete models for which we refer to Ball-Carr-Penrose [1]. In their
seminal paper [17], Lifshitz-Slyozov argue on physical grounds the following conjectures:

CLS1 The monomers concentration ¢(t) decreases as time goes to infinity; precisely, ¢ goes to
0 and behaves as Kt~ /3, where K is a universal constant, independent on the initial
state of the system.

CLS2 The total number of the agglomerates, that is
mo(t) = f(t,z)dx
R+

behaves as Ct~!, C depending on K and p, the total mass of the system.

CLS3 The mean radius 1
R, (1) = / z'/3 t,x)dz

goes to infinity like t'/3 /K.

CLS4 The solution f(t,z) tends to a universal asymptotic profile, independently on the shape
of the initial data: from the initial state, it only depends on p as a scale parameter.
Therefore, the solution forgets its initial shape.

INRIA



Lifschitz-Slyozov Equations 5

A very few things are known on the question of the asymptotic behaviour of (1). In [10],
it is proved, by using an entropy method, that ¢(¢) goes to 0 when a part of the support of
the initial data fy is situated on the right of the initial critical point. But monotonicity is not
obtained. On the other hand, while people generally believe the t~1/3 law for ¢(t) (first part
of conjecture CLS1), which has been verified experimentally, the questions of uniqueness
of the value of K, and uniqueness and stability of the final attractor have originated a
controversial debate.

In particular, it is argued that the tail of the initial data and the largest particles might
play a crucial role and modify the asymptotic profile, see for instance Brown [3], Meerson-
Sasorov [18]. According to these arguments, the mathematical analysis performed by Carr-
Penrose [4] and Niethammer-Pego [21] indicates that the asymptotic behaviour highly de-
pends on the tip of the support of the initial data. Actually, they are concerned with a
slightly modified model, the Lifshitz-Slyozov-Wagner equation, see [25]. However, this vari-
ant of (1) is interesting enough since, roughly speaking, it should be close to (1) when ¢
has become small, see [14]. In particular, from [18], [21] one might conjecture that, starting
from a compactly supported initial data with

fO(-’IJ) ~ (l‘s _x)a ; a> -1,

x5 being the endpoint of the support, the system cannot converge to the profile predicted by
Lifshitz-Slyozov. Instead, one expects the convergence towards another profile, for a different
value of K, defined by the value of the exponent a (a part of these statements have been
rigorously obtained for the modified model in [21]). This fact complements conjecture CLS4
since it seems that in [17] they are dealing with initial data having unbounded support.

The general conclusion of our numerical study is that the behaviour predicted by Lifshitz-
Slyozov cannot be expected for any initial data. Some assumptions on the initial repartition
of the aggregates in size seems necessary for ¢ going to 0; and, then, the asymptotic state
highly depends on the largest particles in the solutions. Actually, these results are in good
agreement with the conjectures introduced in [18], [21].

The paper is organized as follows. In Section 2, we briefly recall some basic facts about
equation (1). In Section 3, we introduce a scaled version of (1), which is appropriate to
investigate the large time behaviour of the system. From the rescaled equation, we discuss
the possible asymptotic states. Then, in Section 4, we describe in detail the results of our
numerical investigation of (1). The final Section is devoted to comments and conclusions on
the study.

2 Basic properties of LS
Let us start with some basic remarks. In the sequel, we use the characteristics associated to

the growth rate, neglecting the technical difficulties caused by the blow up of the derivative
at x = 0. As in [7], it allows us to write the solution as

f@t,x) = fo(X(0;8,2)) J(0;t,z) 2)

RR n° 4287



J.A. Carrillo & T. Goudon

where J(s;t,z) = D, X(s;t,z). Based on the characteristic form, we conclude:

1. The zeroth order moment, interpreted as the total number of clusters in the solution,

reads, by using characteristics,

o0

ft,z)dx = / fo(z) dx.

R+ X(05t,0)

As a consequence of V (¢,0) < 0, we realize that D; X (0;¢,0) > 0. Therefore

mo : t — f(t,z)dxis a non increasing function of time.
R+
The main effect of the equation is to ”stretch” the initial data: it is expected that
“mass goes to infinity”, clusters in the solution having larger and larger size. From
[17], it is expected that mg behaves as t~1.

. The time derivative of the monomer concentration, is given by

% - /R+ Vt, ) f(t,2) dz = — /OW V(t,2)f(t,2) dz — /O(o) V(t 2)f(t, ) da.

The first term is non negative, the second is non positive. Hence, there is a struggle
between these terms, depending on the repartition of the clusters in size to determine
the variation of ¢(t).

. It can be shown that ¢(t) > 0 for any time ¢. Next, if the initial data fo has its support
in [0,z]; then, by using the formula (2), we realize that the support of the solution
is contained in [0, X (¢;0,z,)]. In particular, for z; < oo, the support of the solution
remains bounded by X (¢,0,z;) < oco. If initially the endpoint z, of the support of the
initial data satisfy x, > x.,; then the critical size cannot reach the end of the support:
X(t;0,25) — () > 0 (see [10]).

. According to [10], we expect that the total number of clusters mq(t) goes to 0 while
the monomers concentration either tends to 0 or p. In particular, if there exists § > 0
such that supp(fo) N [zc, + 6, 00[# O, then ¢(t) — 0. It is conjectured, for an initial
data having its support in [0,z,], that the two behaviours: ¢(t) goes to 0 or to p,
are possible, depending crucially on the initial repartition of mass in the interval. We
will see numerically that the two behaviours are indeed possible (see figures 7 and 8
below).

Tt is also worth saying some words on a variant of equation (1) which is commonly used.

The Lifshitz-Slyozov-Wagner equation deals with a situation where ¢ has reached indeed
an equilibrium: it is small enough to be neglected in the mass conservation relation, which
becomes

/ zf(t,x)dr =p
R+

INRIA



Lifschitz-Slyozov Equations 7

i.e. a constraint on the first moment. However, we keep the ¢ in the definition of the growth
rate and the evolution equation still reads

of o _
i (a(z)e(t) —b(z))f] =0

Integrating the equation after multiplication by z, and taking into account the constraint,
one sees that ¢ should satisfy

-1
)= [ b@)f(t,2)da ( / a(@) f(t,2) dx) .
R+ R+
For the coefficients of [17], we recover
-1
_ / -1
c(t) = " f(t,z)dz (/R+ 23 f(t, x) da:) =0

i.e. the inverse of the mean radius of the agglomerates. Summarizing, the Lifshitz-Slyozov-
Wagner (LSW) problem is to solve

cof 0 o
U+ Zlatw)elt) ~ o)1= 0 n B xR,
~1
< c = x x)axr a\xr xr)daxr (3)
0= [ Maf)de ([ atwsta) i)
\ fli=o=fo n R, cji=o = co.

It can be proved that the LSW equation (3) can be obtained from the LS one (1) by an
asymptotic argument; see [14]. This is the model dealt with in [21] and [4] (the last one
with the simplification a(z) = z, b(z) = 1).

3 Rescaled equation, and asymptotic profiles

In order to investigate the large time behaviour, Lifshitz-Slyozov make use of a scaling
involving the critical size in the definition of the new time and space variables. However,
monotonicity of ¢ — ¢(t) is not guaranteed at all (on the contrary, numerical simulations
show that, especially at earlier stages, this function is not monotone, see [6] and Section
4), so that the change of variables in [17] does not make clearly sense. On the other hand,
one expects that ¢(t) behaves for large time as Kt~'/3, thus the critical size z.(t) behaves
as t/K3. This behaviour is revealed by the numerical simulations, as we shall see in next
section. This motivates the introduction of the following scaling:

1 x
f(t,x) = mfl (111(1 + 1), 1—+t) ,
7=1In(1+1¢), Y= 19

RR n° 4287



8 J.A. Carrillo & T. Goudon

Roughly speaking, we replace z. in the scaling of [17] by the monotone function (1 +¢). We
set
dn(1+1) = 1+ ) 3c(t),  w(r,y)=y"3d(r)-1—y.

A short computation leads to the following rescaled form of (1)

dg O

5 a—y[w(ﬂy)g] =g,

d(r)e™"/® + / yg(1,y)dy = p.
R+

Based on the analysis of [17], confirmed on this aspect by the numerical tests in section 4,
one expect that ¢(t)t'/® tends to some constant K > 0, i.e.

lim d(7) = K.

Accordingly, d(r)e~7/3® ~ Ke~7/3 is negligible for large 7. Similarly, w(r,y) looks like
wi(y) = y'/*K —1 — 5. Thus, one is led to the following limit equation

dg O

~— + 5 [wk ()9l =9,

yg(T,y)dy = p
R+

Notice that, from previous equation and the constraint on the first moment of g, K is equal
to the inverse of the mean radius

-1
Kz/ gdy(/ y1/3gdy) :
R+ R+

To go further, one needs to discuss some basic properties of the asymptotic growth rate
wi (y) = Wik (y*/3), where W is the simple polynomial Wy (z) = Kz — 1 — 2°. We shall
obtain a familly of possible asymptotic profiles, parameterized by K. We remark that Wy
is concave on (0,400) and reaches its maximum at z = /K /3. We have, for z > 0,

Wi (2) < W™ = K(K/3)'/? =1 — (K/3)°/ = 2(K/3)** - 1.

Next, remark that W;?** is an increasing function of K, from (0, 4+00) to (—1,400), which
vanishes at the critical value
Kerig = 3/22/3-

Therefore, we distinguish three cases:
a) K < Kijt: Wik has no positive roots, Wk (z) < W2 < 0 for z > 0.

b) K > K.t Wk has two distinct positive roots, zg, 24+ (and a negative root z_), and
we have Wi (z) < 0for 0 < 2z < zpor z > 2z, and Wg(z) > 0 for 29 < 2z < 2.
We will denote by y_, ¥4 and yo the correponding values for wg (y), i.e. y; = 23 for
i€ {—,0,+}.

INRIA



Lifschitz-Slyozov Equations 9

¢) K = Kit: VEeit/3 =2"/? is a double root and Wx(z) < 0 for z > 0.

Let us now look at the stationary solution Mg of (4)
Oy(wk(y)Mk) =Mk  fory>0.

At least formally (up to the first positive zero yo = 23 of wk) we can write

=y oo [ 85) == o ([ )

Furthermore, for such a solution to be admissible, it should satisfy the integrability condition
yMk(y) € LH(RY).

We shall see that the subcritical case is unphysical; while for K > K., the value of K
can be related, roughly speaking, to the behaviour of the stationary solution at the end of
its support.

Proposition 3.1 For K < K¢, there is no admissible stationary solution. For K =
K .it, one obtains the Lifshitz-Slyozov profile

1/3
exp ( __ (2 1/3)
Mesie(y) = L) Q
T W=y I L+ e )
for 0 <y <yo=1/2, and 0 otherwise. For K > Ky, one has
1— (y/yo)' /)"
Mx(y) = (yoy-y+)'/* L y/v0) ) — (6)

(1= (/y=)13) 77 (1= (y/ys)1/3)

for0 <y <y, and 0 otherwise, where the exponents p > 0, q,r depends on K. In particular,
p and K are related by

3(p+1)
K= (2p + 3)2/3 p/3~ (7)

Proof. The integrability requirement excludes the subcritical case K < Kj;: we shall
show that the first moment blows up. Indeed, for K < Kpit, 0 — wg(o)™" is defined on
the whole interval (0, +00), and we remark that, for any y > 0,

oen([[85) - ([ 150

o /y K o3 do
= X .
P 0o 1+0)(Kol/3-1-0)

RR n° 4287



10 J.A. Carrillo & T. Goudon

The integrand is nonpositive and behaves for large ¢’s as —Ko~%/3 which is integrable at
infinity. It follows that

y
lim(l—i—y)exp(/ d—a>=€>0.
y—o00 0 Wk(0o)

In particular, for y > Y large enough, we have (1 + y)exp(fy —2%~) > /2 > 0. Since

wk (o)

—y/wk(y) — 1 as y — oo, we deduce that

Yy Y do 1 ¢ 1
e R S— - > -
M) = —g gy (L H9)exp </ wK<o—>) T+ 2214y

holds for y > Y large enough. Consequently yMg(y) ¢ L'(R") for K < K. Lifshitz-
Slyozov also exclude in their analysis the case K > K ,j;; however, this is far from clear, in
particular when dealing with compactly supported initial data, see [4], [21], [18].

Let us now look at the critical case K = K = 3/2%/3. We can rewrite W (2) =
(z — 271/3)2(z 4+ 22/3). Accordingly, we get for 0 <y < 1/2

1/3

/y do _ v 322 dz
0 chrit (U) 0 WKcrit (z>
53 21/3 4/3

- [ S )
= L N (29)7%) *°
= 1+ (/B -1 +1 ((1+(y/4)1/3)4/3> ;

which yields the announced formula (5) for 0 < y <y =1/2.
We turn to the supercritical case K > K .jt. The polynomial Wg has three distinct

roots denoted by
2- <0< 2 <+VK/3< 24

Let us write z4+ in terms of the first positive root zo as follows

Wk(z) = (2 — 20)(22 + 202 — (K — 22)) = —(2 — 20)(2 — 24 ) (2 — 2_)
24 = %(zo +1/4K — 322).

We aim at computing

/oy wi}fc) B

1/3

—322 dz

(- 20)(z —21)(z — =)

Y p q r
(Z 2 Z Z. VA Z )
— 20 — —_

|
o—

INRIA



Lifschitz-Slyozov Equations 11

where we check that

322 _ —322 _ —-323
Go—2)(z —20) 17 Go—2)(zr —22) | (a4 — 204 — o)

p:

For convenience, let us set

K 1
H:@>1, a=>(-1+V3/4r - 1),
0
so that
Zy = azg, #-=—20— 24 = —2(l+a),
and
3 1 —3a? —3(a +1)2
p= = 2l 4= e T TS a1
2+a)(a—1) k-1 2a+1)(a—1) 2+ a)(2a+1)

Hence, we get

[ ot =m{ 0= ) (=l )7 (= ) )

’U)K(O')

which yields the announced formula (6).
The behaviour at the endpoint g, is determined by the exponent p — 1. Recall this
quantity is related to the value of

K = lim ¢(t)t'/® = lim d(7)

t— oo T—00
by the relation
1 K
= K= ——
P==r 322

where zp is the first positive root of Wy i.e. Wi (29) =0 = Kz — 1 — 2. This allows us to
express K as a function of the exponent p as in the relation (7).

For K > K_.it, we have computed the stationary solution My up to the first positive
root yo of wg, where it vanishes. It remains to check that the integrability condition implies
that Mg should be extended by 0 for y > yo.

Note that M is C* at the tip of its support yo, while the stationary solutions Mg
are less regular as K increases, i.e. p tends to 0 (see fig. 1 for a comparizon of the graphs).
S

REMARK 3.1 For p > 2, Mg and My vanish at the end of their support. For p =2, My
vanishes but M- is a positive constant as y — yo (it behaves like a triangle function). For
1 < p <2, Mg vanishes and My blows up as y — yo. For p =1, Mg behaves like a step
function. For 0 < p < 1, Mg and M}, blow up as y — yo with an integrable singularity.
For p — 0, Mg looks like a Dirac function at yq-

RR n° 4287



12 J.A. Carrillo & T. Goudon

Let us go back to the rescaled equation (4) when d has reached its equilibrium value.
Set g(7,y) = h(1,y) MKk (y). It follows that

O-h + wi (y)dyh = 0.

Hence, integrating along the associated characteristics, we can write

bro) = x(r= k). )= [

Furthermore, the mass conservation yields

/R+ yh(r,y) Mk (y)dy = p = /R+y X(7 = ®x(y)) Mk (y)dy.

With the change of variables z = 7 — ®x(y) > 0, this can be rewritten as
p= [ -2 x() s

where %' : (—00,0] — [0,yp) is the inverse of the decreasing function ®f : [0,0) —
(—00,0]. An obvious solution of this equation is given by x(y) = A constant, determined by

the relation .
A=p (/ yMk(y) dy) .
R+

1 x A x
12 = s (ln(1+t)’ 1+t> ~ @ MK (1+t)

for large time. The zeroth order moment of f, i.e. the total number of clusters, behaves as

A T dx A
= ~ e () &2
mo(t) R+f(tafv)d$ 151 Jo, M (1+t> T4~ 7 o K (y)dy

It yields

In view of the discussion above and the results for the LSW and similar problems in [18],
[4], [21], one might expect the following conjecture for the LS system. If the initial data is
compactly supported in [0,x], with fo(z) ~ C(zs — )P~! when z — z,, then the solution
satisfies

A z
~n —— M _—
where K is associated to p by (7). If fo has unbounded support, the conjecture is
A z
f(t,z) ~ aA+o? Merig (1—+t) , )

i.e., f is described by the LS profile. This conjecture implies that CLS2-CLS3 hold with
the corresponding value for K.

INRIA
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0.5

X

Figure 1: Comparisons of the stationary solutions My profiles for the discontinuous case
p =1, the corner case p = 2 and the smooth case p = co (LS profile).

4 Numerical simulation of LS

We wish to investigate numerically the question of the asymptotic behaviour of solutions
of (1). We have seen the possibility of having different asymptotic states depending on the
behaviour near the tip of the support in previous section. This is the main point we would
like to validate numerically.

Is the smooth stationary state M. the universal long-time profile for the LS system?
Are there any other initial data that leads to the non-smooth selfsimilar profiles My for
K > Kgit? The LS conjecture CLS4 asserts that the answer to the first question is
affirmative. However, we will show by a carefully constructed numerical scheme that in fact,
the second answer is affirmative and the LS conjecture CLS4 in its full generality is not
true. Nevertheless, non compactly supported initial data and smooth compactly supported
initial data lead asymptotically to the LS profile, based on the numerics. The rigorous proof
of these results was achieved in part for the modified LS equation in [21] but for the real LS
system (1) this proof is still lacking.

This section is divided into two subsections: in the first one we describe the numerical
scheme used to discretize (1), the second one is devoted to the numerical simulation results
in which the previous assertions are based and their discussion.

RR n° 4287



14 J.A. Carrillo & T. Goudon

4.1 Numerical method

We treat the evolution equation

Lt S WA =0 (10)
as a linear one-dimensional advection equation with time and position dependent advection
function V(¢,x) = a(x)c(t)—b(x), for a given known monomer concentration ¢(t). In order to
solve numerically such linear advection equation we can use any standard numerical scheme
[15, 24] considered for nonlinear one-dimensional and multi-dimensional conservation laws.
In order to choose a suitable scheme for solving (10), we have to take into consideration
several facts:

1. One of the effects over the solution we observe is the stretching of the support of the
solution. Thus, one needs to deal with a large domain of computation.

2. The expected asymptotic profile depends crucially on the behaviour of the data at
the end of the support; therefore, smoothing effects induced by the numerical scheme
can modify the final profile. As a consequence, one should choose the least dissipative
choice among all the possible numerical schemes. Intuitively, the LS evolution acts
in this way: zoom the tip of the support, cut the rest, strecht it and multiply by an
amplification factor. Thus, smoothing effects done by the numerical approximations
are doomed to be amplified during the evolution. That is the main reason we need
the least possible dissipative numerical scheme.

3. High order accuracy for the solution in space is desirable since we expect the solution
to be very smooth outside possibly the tip of the support. If we have initial solutions
with jumps or corner discontinuities at the tip of the support, we expect them to
propagate in time, so we also would need a numerical scheme that preserves shocks or
corner discontinuities with a good accuracy, if they appear (see figures 1, 2).

4. High order in time, TVD discretizations and stability in time are of paramount im-
portance to obtain meaningful numerical results after so many time iterations.

Based on these facts, we decide to choose a standard finite volume solver of the linear
advection equation (10) with Godunov flux as monotone flux. The choice of Godunov flux is
due to the fact that is the least dissipative (less smearing of jumps or corners) with respect
to other standard fluxes: Lax-Friedrichs, Engquist-Osher,...

In the reconstruction part we want to achieve high order in smooth parts of the solution
(that for (1) is always the case except possibly at the tip of the support) and also good
accuracy at shocks (jumps) or corners, if they appear initially. Therefore, we choose WENO
reconstruction with 5 points wich gives you fifth-order spatial accuracy for smooth solutions.
We refer to [12, 24] for the details of the numerical method. This method has been tested
throughly and it has been shown to be very robust and to produce meaningful results for
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complicated non linear systems of conservation laws in fluid dynamics, semiconductors,
Hamilton-Jacobi equations,... (see [24, 5]).

We solve in time by means of an explicit 3rd-order TVD Runge-Kutta method intro-
ducedby C. W. Shu [24] that enjoys the needed features of stability, high order and TVD
character. CFL condition is verified at each time step to ensure numerical stability. The
algebraic condition

c(t)+‘4+xf(t,x)dx:p>0,

is used to determine the monomer concentration ¢(t) at the begining of each time-step to
compute the fluxes correctly.

0.008

0.007 | i
0.006 |- i
0.005 | ‘ |
«— 0004 | d “:\‘ i
0.003 | e
0.002 - |

0.001 g

0 I I N 4
0 50 100 150 200

X

Figure 2:  Comparisons of the numerical solutions for a step-like function initial data
(f = 0.1 for 10 € z < 30 and 0 outside) using finite volume Godunov-WENO, finite
volume Lax-Friedrichs-WENO and upwinding finite difference method. The results given
by Godunov-WENO are the least smeared, the upwinding results are the smoother ones.

In figure 2 we show the solution of this system for a step-like initial data after 200
units of time by using the finite volume Godunov-WENO, finite volume Lax-Friedrichs-
WENO and the simple upwinding finite differences method (finite volume Godunov-first
order reconstruction). Experts in numerical schemes for conservation laws can recognize
easily that the simple upwinding method gives very smeared non realistic solutions for the
linear advection equation with a step function as an initial data [15].

In fact the results of simulations for this system using the upwinding method were re-
ported in [6]. They asserted that the LS conjecture was true by using different shapes of
initial data, all of them with empty zero level set (non compact support). The smearing
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16 J.A. Carrillo & T. Goudon

caused by the use of the simple upwinding method disables the possibility of finding any
other possible behaviour. In fact, as figure 2 shows, the use of this method for a step-like
initial data can lead you to a completely wrong conclusion asserting the convergence towards
the smooth self similar solution and therefore that the LS profile is the universal asymptotic
behaviour for any initial data. This method is not at all suitable for controlling the be-
haviour at the tip of the support. Moreover, they obtain limiting critical values K. with
a error of 5 — 20%.
Finally, let just mention that the numerical simulation of the rescaled equation

079 + 0y(w(T,v)9) = g,

d(T)e /3 + /

yg(7,y) dy = p.
R+

is done following the same lines as above. The main advantage of this rescaled form is that
we can work in a much smaller z-interval. Despite of this fact, the CFL condition for the
rescaled equation is much more restrictive (stiffer problem) than for the original LS system.
Therefore, computational times are almost identical for both problems, but the rescaled
system allows us to explore easier the later stages of the evolution. Also, the modified LSW
system is solved in an analogous way to the LS system.

4.2 Simulation results

4.2.1 Validation of the code

First, we validate our code by comparing simulation results to explicit solutions. Explicit
solutions were obtained in [7] for very simple coeflicients without critical size. In particular,
the simplest case is a(z) = ax, b(z) = bz, with a,b > 0 constants, where the solution is
exactly known

ft,x) = () fo(B(t)z),

with ) ; .
(aco — b exp((b - az)t) Talp - c0)7 for ap—b # 0,
B(t) = 9 “w-
[ B(t) =1+a(p—cot, for ap — b =0,
whereas ( placo = b) exp((b = ap)t) +b(p = co)
placo — 0)exp((0—ap)t) + 0(p — ¢o
, forap—b#0,
(aco — b)exp((b— ap)t) + a(p — co) p=b#
c(t) = <
co + p(p — co)at
0T AP C0)% £ _p=
| T (p—co)at orap—b =0,
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Figure 3: Test1: top left: final computed solution (solid line) versus exact explicit stationary
(triangles); top right: ¢(t) for the computed solution (solid line) versus the exact explicit
evolution of concentration of monomers (triangles); bottom left: ¢(t); bottom right: initial
data.
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18 J.A. Carrillo & T. Goudon

Then, the asymptotic behaviour is obtained easily, depending on the over or undersatured
nature of the initial data. Precisely, one has:
If p < b/a, then ¢(t) — p and

b/a —Co (b/a—p)at b/a —Co (b/a—p)at
f(t,-??) b/a—pe fO b/a—pe x|,
If p > b/a, then ¢(t) — b/a and

fon 1= 250 10250 ).

We use this simple case to validate the performance of the scheme. The first test (Test 1)
corresponds to a = b =1, p = 41 > b/a, ¢o = 31. The initial data, represented in fig. 3
bottom right, is a Maxwellian

fole) = 2 exp (—@)

Figure 3 shows an exact agreement of the computed solution with the exact behaviour given

Figure 4: Test2: ¢(t) for the computed solution.

by
40 x 30 x e 0" + 10
c(t) =
30 x e—40t + 10
and f(t,z) ~ $fo(%) ast — oo . The second test (Test 2) isa =b =1, p =.5 < b/a,
¢p << 1 for which we recover the expected behaviour ¢(t) ~ .5 and

—1=0b/a,

(z — 106’75/2)2
2¢e—t

2m

f(t,z) ~ 22 fo (et %) ~ exp (— ) ~ 2m é5=,

2mre~t

as t — oo. The monomer concentration evolution is given in Figure 4.
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4.2.2 Simulations on the LS equation

Once we have validated our code we take the true LS system with the coefficients of
[17], a(z) = x'/3, b(x) = 1. We first, choose as initial data fo a Maxwellian centered on
x, comparable to, or larger than, the critical size. This is the situation in Theorem 1 [10]
where ¢(t) goes to 0 as t — 0o. Precisely, we set for this run: p =41, ¢g =1 (thus 2., = 1)

and the Maxwellian )
m z—10
fo(z) = — exp (—%) .

as initial data (see figure 3 bottom right).
After 2000 units of time, one observes (see Figures 5 and 6):

1. A metastability region for the concentration of monomers before c¢(t) decreases.

2. A good agreement with the t='/3 law, as shown in the graph of K (t) = t}/3¢(t). We can
observe that it converges very quickly towards values very close to K, = 1.88988, and
after K (t) changes very slowly decreasing their value until reaching K (2000) = 1.8657.
We may run the code further to observe that there after K (¢) starts to increase slowly
aproaching the critical value K. = 1.88988, but we will see this fact later in the
rescaled equation.

3. my decreases after the metastability region, in good agreement with the ¢t~! law.

4. The evolution of this solution is summarized in Figure 6 which shows the solution
f(t,z) each 250 units of time. We can see clearly the stretching of the support and
the convergence towards the shape of the LS profile. In figure 5 bottom right we have
plotted the final solution after 2000 units of time versus the LS profile in the selfsimilar
variables corresponding to this time and to this value of p according to formula (9).

Next, we choose a very small ¢q, thus a very large critical size. The initial data fy is
a Maxwellian centered on xy much smaller than the critical size, with a small variance, so
that it is almost a compactly supported data, with support to the left of the critical size.
Then, one verifies that ¢ goes to p. This is illustrated with the data: ¢y = 7.1072, p = .2
and fy is a Maxwellian centered at 0, with mass .1 and variance 10, given in figure 7 top
left. After 45 units of time, one sees that ¢ goes very close to p (see figure 7 top right) and
the final profile f(¢, ) is almost zero (see figure 7 bottom).

However, this behaviour is very sensitive to the initial data, it changes drastically if the
initial critical size is reduced or if one increases the “support” of fy (for instance, changing
the variance of the Maxwellian). We consider the same test as before changing ¢ = .5,
p = 2, variance of fy equals .01 (see figure 8 top left). Then, ¢ starts increasing, reaching
values very close to p, but the evolution changes and finally it decreases to 0, as illustrated
by figure 7 top right. We then recover a good agreement again with the /3 law, see figure
8 bottom left. Figure 8 bottom right gives the final solution f, after 100 units of time.
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Figure 5: Maxwellian initial data for the LS system (c(¢t) — 0): top left: ¢(t); top right:
t1/3¢(t); middle left: zoom of t'/3¢(t); middle right: mq(t); bottom left: tmg(t) ; bottom
right: final result (solid line) versus the corresponding LS profile (thicker solid line).
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Figure 6: Evolution of the Maxwellian initial data (see Figure 3 bottom right) for the LS
system every 250 time units.
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Figure 7: Maxwellian initial data for the LS system (c(t) — p): top left: initial data; top
right: ¢(t); bottom: final result.
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Figure 8: Maxwellian initial data for the LS system (c(t) — 0): top left: initial data; top
right: ¢(t); bottom left: #'/3¢(t); bottom right: final result.
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Now, we want to check the LS conjecture about the universal asymptotic profile. In order
to do this, we take three different initial data (see Figure 9): another smooth non compactly
supported initial data: the sum of 2 Maxwellians (we have also tested initial data with
unbounded support and algebraic decay); a discontinuous compactly supported initial data:
a step function; a continuous non differentiable compactly supported initial data: a triangle
function. For which of these initial data we have computed their evolution, the evolution
of the concentration of monomers, the evolution of the total number of agglomerates and
we have compared the final solution after 2000 units of time with stationary profiles. The
results are given in figures 10-11 for the double Maxwellian, 12-13 for the step function and
14-15 for the triangle function.

Figure 9: Initial data for the LS system: top left: double Maxwellian; top right: step
function; bottom: triangle function.

We conclude from these figures the following observations:

1. A metastability region also appears for the concentration of monomers before c¢(t)
decreases. Note also that in the earlier stages of the evolution, the behaviour of ¢(t)
is much more complicated for the double Maxwellian than for the single one.

2. A good agreement with the t~!/3 law, as shown in the graph of K(t) = t'/3¢(t). We
can observe that the value to which K (t) is converging depends on the initial data. In
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fact, for the double Maxwellian we observe values very close to Kt = 1.88988, while
for the step function K (t) is larger than this value, it continues to increase and is closer
to the value K = 2.05197 for p = 1 given by (7). Also, for the triangle function K(t)
is larger than the critical value K. = 1.88988, continues to increase and is closer to
the value K = 1.95209 for p = 2 given by (7).

3. mg decreases after the metastability region, in good agreement with the ¢t law.

4. The evolution of the solutions shows the solution f(t,z) each 250 units of time. We
can see clearly the stretching of the support and the convergence towards the shape
of the corresponding stationary state given by formula (8).

We have also made tests with functions having unbounded support and algebraic decay
at infinity. The conclusions on the behaviour of the solution are the same than those for
the Maxwellians and we do not deem necessary to include figures on that case. However,
the remarkable point is the great sensitivity of the computation to the necessary truncation
of the initial data. We should take under consideration a very large array of initial data,
even with very small values in the last components, otherwise the solution could converge to
the non smooth prolile associated to the step function. This illustrates once again the high
instability of the asymptotic profiles and the high influence of the tail of the initial data.

As a conclusion, we can assert that the conjecture CLS4 is not verified since the asymp-
totic profile depends on the initial data while the other conjectures CLS1-CLS3 are nu-
merically satisfied considering non universal constants.

4.2.3 Simulations on the scaled equation

Next, we consider the same set of initial data, but we perform the computations on the
rescaled system. As mentioned before, the main advantage is to reduce the size of the
domain of computation, since one avoid the stretching of the support of the solution in the
new variables.

The price to be paid comes from a considerable increase of the stiffness of the problem,
in particular when dealing with the non regular data. This requires to reduce carefuly
the CFL condition; otherwise undesirable oscillations can be observed on the computed
solutions. These oscillations arise mainly from the end of the support, while d is also
oscillating, illustrating again the crucial role played by the largest aggregates. Note that
the computational time are comparable to those for the original system, but the rescaled
variables are well adapted to go further in time. Let us remind that the variable 7 is a
logarithmic scale of the variable .

Results for the Maxwellian and the double Maxwellian can be found in fig. 16-18 and
fig. 17-19, respectively. We recover the same conclusions as with the original variables, and
the convergence to the expected smooth profile. Let us remark that in this computation we
have arrived at 7 = 25 and 7 = 20, respectively, rescaled time units which correspond to
the order of 10'! and 10° original time units. Therefore, we have gone much further with
respect to the simulations in the original system.
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Figure 10: Double Maxwellian initial data for the LS system: top left: ¢(t); top right:
t*/3¢(t); middle left: zoom of #'/3¢(t); middle right: mo(t); bottom left: tmq(t) ; bottom
right: final result (solid line) versus the corresponding LS profile (thicker solid line).
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Figure 12: Step function initial data for the LS system: top left: c(t); top right: t'/3¢(t);
top middle left: zoom of t'/3¢(t); top middle right: mo(t); bottom middle left: tmq(t);
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(crosses) for two different time delays.
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Figure 13: Evolution of the step function initial data for the LS system every 250 time units.
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Figure 14: Triangle function initial data for the LS system: top left: c(t); top right: t'/3¢(t);
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Figure 15: Evolution of the triangle function initial data for the LS system every 250 time
units.
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Then, fig. 20-21 and fig. 22-23 show the results of the computations for the step function
and the triangle as initial data, respectively. Here, we have arrive at 7 = 10 rescaled time
units which correspond to the order of 10° original time units.

Again, one verifies the convergence to the asymptotic profile My with the value of K
corresponding to the behaviour of the data at the end of its support. However, the problem
becomes very stiff as the regularity at the end of the support gets smeared. It should be
noted that smearing effects induced by the numerical approximation become noticeable at
these very large time for the largest aggregates.

Consequently, while the solution is very close to the profile M, it can finally converge to
the smooth profile, as illustrated by fig. 20 top, and fig. 23 bottom right. This fact illustrates
the enormous numerical difficulty in preserving the precise behaviour of the solution at the
tip of the support as time becomes very large, and thus, capturing the right asymptotic
profile.
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Figure 16: Maxwellian initial data for the rescaled LS system: top left: Comparison between
the computed solution after 25 time units (solid line) and the smooth LS profile M .; top
right: d(t) is converging towards K..i; = 1.88988; bottom left and bottom right: zooms of
the graph of d(t).
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Figure 17: Double Maxwellian initial data for the rescaled LS system: top left: Comparison
between the computed solution after 20 time units (solid line) and the smooth LS profile
Mpit; top right: d(¢) is converging towards K1 = 1.88988; bottom left and bottom right:
zooms of the graph of d(t).
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Figure 18: Evolution of the Maxwellian initial data (see Figure 3 bottom right) for the
rescaled LS system every 2.5 time units.
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Figure 19: Evolution of the double Maxwellian initial data for the rescaled LS system every

2.5 time units.
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Figure 20: Step function initial data for the rescaled LS system: top left: Comparison
between the computed solution after 10 time units (solid line) and the asymptotic profile
Mg with K = 2.05197; top right: Comparison between the computed solution after 9 time
units (solid line) and the asymptotic profile M with K = 2.05197; bottom left and bottom
right: d(t) is converging towards K = 2.05197;
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Figure 21: Evolution of the step function initial data for the rescaled LS system every 2.5
time units.
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1.945

1.935

Figure 22: Triangle function initial data for the rescaled LS system: top left: Comparison
between the computed solution after 10 time units (solid line) and the asymptotic profile
Mg with K = 1.95209; top right: d(t) is converging towards K = 1.95209; bottom left and
bottom right: zooms of the graph of d(t).
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Figure 23: Evolution of the triangle
2.5 time units.
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4.2.4 Simulations on the LSW equation

Our final tests are devoted to the LSW system. The results showed in fig. 24 and 25 confirm
that this system can be seen as a good approximation of the original one for large time, as
¢(t) has become small, in agreement with the theoretical results in [14]; it also agrees with the
prediction proposed in [21] since we recover again the asymptotic profile which corresponds
to the behaviour of the initial data at the end of its support.

L L L L L L L L
0 500 1000 1500 2000 0 10 20 30 40 50 60

019 T T T T 0.00025

0.0002

0.00015 -

0.0001

5e-05 [

0.145 L L L L
1000 1200 1400 1600 1800 2000

t x

1000

Figure 24: Maxwellian initial data for the LSW system: top right, left and bottom left:
Comparison between monomer concentration ¢(t) for the LS and the LSW; bottom right:
Comparison between the computed solutions for the LS and LSW after 2000 time units;

5 Conclusion

The main conclusion of our numerical study is that the asymptotic behaviour of the solutions
of the Lifshitz-Slyozov system depends on the initial data. Of course, the challenging ques-
tion remains to exhibit some condition that guarantee the convergence towards the smooth
profile as conjectured in [17]. We expect that our investigation will highlight some elements
for finding a solution. First, the convergence to 0 of the monomer concentration certainly
does not hold for any initial repartition of mass. Roughly speaking, a certain amount of
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Figure 25: Step initial data for the LSW system: left figure: Comparison between monomer
concentration c(t) for the LS and the LSW; right figure: Comparison between the computed
solutions for the LS and LSW after 2000 time units;

mass should be given by aggregates larger than the initial critical size. Next, even in situ-
ations where ¢(t) goes to 0, monotonicity is far from clear; in any case it does not concern
the earlier stages of evolution where ¢ can have a complicated behaviour.

In our tests, when ¢(t) — 0, we also verify that ¢(t)t'/? goes to a constant K. However,

the constant depends on the distribution of the largest aggregates present initially in the
solution. Accordingly, conjectures CLS1-CLS3 hold, but with a constant K which depends
on the shape of the initial data fy and the final profile preserves some memory of the initial
shape of the density.
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