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Abstract: In this report, we propose a global methodology for the numerical simulation
of wind effects on elementary bridge profiles, particularly possible aeroelastic instabilities.
This methodology is based on an efficient coupling algorithm, a finite-element solver for
three-dimensional incompressible Navier-Stokes equations in a moving domain and a struc-
tural solver. The fluid solver is detailed, the emphasis being put on the ALE formulation.
Numerical and experimental results are compared for cases with a structural rigid motion.
On a rectangle, numerical simulations for forced oscillation (heaving or rotation) are qual-
itatively correct, rather inaccurate, but in good agreements with free oscillation numerical
simulations though. On a H-shaped section close to the Tacoma Narrows bridge profile,
numerical results are both qualitatively and quantitatively very satisfactory and promising.
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Simulation numérique d’instabilités aéroélastiques de
profils de pont élémentaires

Résumé : Dans ce rapport, nous proposons une méthodologie globale pour la simulation
numérique de Deffet du vent autour de profils de pont élémentaires, notamment ’apparition
d’instabilités aéroélastiques. Cette méthodologie repose sur trois éléments essentiels: un
algorithme de couplage, déja utilisé en aérodynamique compressible, un solveur en éléments
finis des équations de Navier-Stokes tridimensionnelles "incompressible" en domaine défor-
mable et un solveur structure. Le solveur fluide est présenté en détail, notamment son
implémentation en formulation ALE. On compare les résultats numériques & des résultats
expérimentaux sur des cas-tests oil la structure est en mouvement rigide. Sur un rectangle,
les simulations numériques en mouvement forcé en translation ou rotation donnent des ré-
sultats encourageants, assez imprécis, néanmoins cohérents avec des simulations numériques
en mouvement, libre. Sur une section proche de celle du pont de Tacoma, les résultats sont
qualitativement et quantitativement trés prometteurs.

Mots-clés : interaction fluide-structure, effets du vent, élément fini, formulation ALE,
algorithme de couplage, flottement en torsion, détachement tourbillonnaire.
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4 Serge Piperno

1 Introduction

Aeroelastic instabilities of civil engineering constructions such as suspension bridges and
high-rise buildings have been the subjects of many experimental studies (see [15] for a
collection of references). With the increase in computational power, the numerical simulation
of such phenomena is now possible and some preliminary works have already been reported
[6].

In this paper, we propose a set of numerical methods and algorithms to obtain efficient
and accurate unsteady numerical simulations of aeroelastic instabilities of bluff bodies in a
steady wind. The objective of this paper is to present and validate on preliminary simulations
a global methodology. This global methodology is based on three main elements, which
are the global coupling algorithm, the fluid flow solver and the structural solver. The
global resolution is unsteady, no harmonic or modal assumptions are made. The coupling
algorithm proposed in this paper was successfully developed for aerodynamic instabilities
in compressible flows [10]. This staggered algorithm, i.e. the fluid and the structure are
advanced in time successively and separately, was shown to be very accurate with time steps
much larger than those used in this paper. The fluid solver deals with the incompressible
Navier-Stokes equations in three dimensions and in a deforming domain. This necessary
feature is implemented using an ALE reformulation of an existing code [8]. The structural
solver is very simple, since this paper only deals with rigid sections of cylinders. The
structural model itself is elementary (three degrees of freedom for rigid transverse motion
of a section).

Our goal here is to numerically reproduce forced oscillation and free oscillation experi-
ments of two benchmark sections : a rectangular cylinder of chord to thickness ratio equal to
4 and a cylinder with a H-section close to the profile of the Tacoma Narrows Bridge. These
sections have been chosen because many experimental reports are available [12, 13, 15, 16].
For each cylinder and for each type of experience, numerical results are compared with ex-
perimental results. The quality of these numerical results as well as their computational
cost are discussed.

In Section 2, we present the fluid and structural models, as well as the physical coupling
of both systems. In Section 3, we describe the numerical methods used for the simulation.
The flow is solved using a finite-element ALE solver, whereas the simple structural model
is integrated using the trapezoidal rule. The coupling staggered algorithm is also given. In
Section 4, we report numerical results for all benchmarks, including forced and free oscillation
experiments on the rectangle and H-shaped cylinders. Finally, we conclude this paper in
Section 5.

INRIA



Numerical simulation of bridge decks instabilities 5

2 Governing equations

2.1 Structural models

In this paper, we only consider two-dimensional flexible structures in rigid motion. Such a
structure plays the role of a section of a bridge deck. However, our global strategy can actu-
ally deal with linear, three dimensional structures in small displacements and deformations.
The input data for such computations would be structural eigenmodes and eigenvalues, or
complete mass and stiffness matrices. Extensions towards non-linear structures and large
displacements and deformations should be added in an upgraded structural solver.

We collect here preliminary results on the numerical simulation of aeroelastic coupling
of bridge decks in a constant wind, and the limitation to rigid motions of deck sections
allows quick computations on a typical workstation. The structure is a simple bridge deck
section (circular, rectangular or H-shaped cylinders) and is assumed rigid. The depth D of
the section is fixed once and for all. Only two degrees of freedom are given: the vertical
displacement y and the rotation 8 around the center of rotation (which is also the center of
symmetry). Equations for the evolutions of y and 6 are written in a dimensional form:

Soij + Io0 + co8 + kob My

where m, Iy and Sy denote respectively the mass of the section, and the inertial and static
moments of the section around the elastic center; ¢, and ¢y are damping coefficients for each
degree of freedom, and k, and kg are the corresponding stiffness coefficients. The profile is
described on Figure 1.

Finally, F, and My are the lift and the moment (around the elastic center) exerted on
the section by the fluid. The fluid force Ff is exerted along the deck profile I'(£). It will be
detailed later. The lift and moment are given by :

F, = D /F_';r.e'?; ds (2)
T

My = D /F(FxF}).e; ds (3)

where 7 is the location vector taken from the center of elasticity, as shown on Figure 1.

2.2 Fluid equations

We consider an external, viscous, incompressible flow around the deck section. Therefore, the
three-dimensional fluid domain Q(#), depicted in Figure 2, depends on time. The boundary
090(t) is made of two distinct parts: a far field boundary and the deck profile T'(¢). Dirichlet
type boundary conditions are assumed on both parts of 9Q(t). We set the following boundary
conditions:

(t, %
(t, %

|=TRg =11

:(Et, 7 (4)

I
=Ty =T}

far field boundary I', :
structural boundary T'(¢) :
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Sectionatt WAT(t) . elasticity center |y ()
Section at t=0 ” “
I I
V4

Figure 1: The two degree-of-freedom deck section.

Farfield Boundary: T,

Fluid domain Q(t
— Qy)

Structural Boundary I(t)

Figure 2: The time-varying fluid domain Q(#).
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Numerical simulation of bridge decks instabilities 7

where i, is a user set wind velocity and d,(¢,Z) is the structural speed at point # and
at time ¢t. The second boundary condition is a no slip condition on the fluid-structure
interface. The fluid is governed by the unsteady incompressible Navier-Stokes equations in
three dimensions

od N
{ gt (;V)u—z/Au+Vp—0 (5)
i =

where @ and p denotes respectively the fluid velocity and the reduced pressure (pressure
divided by pr). v is the kinematic viscosity.

The dimensionalized fluid forces F_‘f; exerted on the structural surface (77 denotes the
local, external normal to the surface) depend on the pressure and the viscous stress terms.

Fe = pp [-pit +v (Vi +ViTl) #]. (6)

3 Numerical methods

3.1 Structural time-integration

Whether the structural motion is rigid or it is decomposed along eigenmodes, the equations
of motion can be rewritten into a second order differential equation of the form :

M. X +D.X +K,X =F, (7)

where X is the vector of generalized coordinates (degrees of freedom, or modal coordinates),
X and X denote respectively the first and second time-derivatives of X, and M,, D, and
K are mass, damping and stiffness generalized matrices. F' is the vector of generalized fluid
forces. For example, equations (1) yield

[y m S ey O _(ky O _ [ F,
X‘<9>’M (sg 19> D. _(0 ca)’KS_<o n)f=\m) ©®
X" V™ A™ and F™ are respectively numerical approximates for X, X, X and F at time
t™ = nAt. The time-integration of the structure is performed using the trapezoidal rule :

X = X 4 APV
Vil =y ApATEAT 9
An+1 +D Vn+1 +I{ Xn+1 Fn+1

The trapezoidal rule is implicit, second-order accurate, and produces no artificial damping.

RR n° 3549



8 Serge Piperno

3.2 Fluid time and space discretizations

The fluid equations have to be solved in a moving domain. Thus we have to use an Arbitrary
Lagrangian-Eulerian (ALE) approach. We have modified a hybrid P1-bubble/P1 finite-
element solver, based on a purely Eulerian approach. We first give a description of this
initial approach, and thereafter a quick derivation of the ALE solver.

3.2.1 Time discretization of the original solver

The momentum conservation equation can be rewritten using the material time derivative
of the fluid velocity itself :

D60 1055, 20)] — vAT(E x(055,20)) + Tt x(0:5,20)) =0, (10)

where x is the Eulerian location of a characteristic curve for the fluid velocity field @, which
is located at xg at time g, i.e.

d -
a (x(t; to, z0)) = (¢, x(t; to, o)),
(11)
X(to; to, Zo) = Zo
Thus the following time discretization is used : we assume we are able to backtrack the

characteristic curve starting from any point . We use a first-order backward Euler implicit
scheme, which yields for the momentum and mass conservation equations

=in+1 _ tn tn,tn—l—l
ll(t ax) ll( 7X( ’ ,.Z')) _ I/Aﬁ(t”+1,:c) + Vp(t”"’l,:c) =0

At (12)
V.iat"ttz) =0

where At is the time step and t"*1 = t® + At. The computation of upwind characteristics
is based on an first-order time approximation. Each upwind characteristic is replaced by a
polygonal chain of points located on faces of the unstructured mesh. Further details can
be found in [8]. If the only term depending on #(¢",.) is put on the right hand side, the
preceding equation takes the form of a generalized Stokes problem for the fields d(t"*!,.)
and p(t"+1,.).

3.2.2 Space discretization of the original solver

The space discretization of the original solver is based on a classical P1-bubble/P1 hybrid
finite element formulation. This element was chosen because of its good stability for a
rather small number of degrees of freedom [1]. The computational domain is partitioned
into tetrahedra, which form an unstructured tetrahedrization 7, of the domain, verifying
classical regularity conditions for finite elements. Each component of the vector field i is

INRIA



Numerical simulation of bridge decks instabilities 9

a Pl-bubble function. The pressure field p is a P1 function. The computational unknown
at time t" are the approximate functions d,(t™,.) and pp(¢™,.), which are now denoted by
i" and p", respectively. A variational formulation is derived from the generalized Stokes
problem (12) and yields a linear system of the form

Ahﬁz-l_l —|— Bhpz-l_l = FgH_l
) (13)
B}z’ﬁ;wl — X’TLL+1
where Ay, is the symmetric definite positive matrix associated to the elliptic operator kT—vA,
By, is the matrix associated to pressure gradients, F/'™! and X;*' are source terms deriving
from the explicit term d(t",x(t";¢"*1,z)) in (12) and boundary conditions. The linear
system (13) is solved with a Uzawa method [11], where the new linear system on pj*! is
iteratively solved with a preconditioned conjugate gradient algorithm [3]. All details on this

algorithm can be found in [§].

3.2.3 Derivation of the ALE solver

The derivation of an ALE solver of Navier-Stokes equations for an incompressible viscous
fluid is very simple. The fluid domain Q(t) is deforming. Thus the tetrahedrization of the
fluid domain must be modified at each time step. We have chosen a robust method proposed
by Batina [2] and generalized by Lesoinne and Farhat [5]. Each vertex of the tetrahedrization
is given the possibility to move, but the topology of the tetrahedrization remains fixed. The
displacement of the structure on I'(¢) (see Figure 2) is smoothly transmitted to internal grid
points using an elastic analogy: edges of the tetrahedra are given a stiffness, and the static
equilibrium of all vertices is seeked for. All details can be found in [10].

Equations (12) are purely Eulerian, since the field @ and p are Eulerian, and depend on
the coordinate z in the laboratory. The time scheme must be rewritten in moving coordinates
£, For any &, ie. for any grid point, we denote by x(t", ) its Eulerian position at time
t". We also replace z(t,z(t,€)) by z(t,£) for any quantity 2. Equations (12) can now be
rewritten for any £ as

@ () —d (1, x (st (it €)
At

—vAG (t",€)) + Vp (t"1,€)) =0

V.a@tmtt, ) =0

If we omit the term @ (", x(t";¢" 1, z(¢t"*1,¢))) in the preceding equation, we find again a
generalized Stokes problem in the configuration of the moving grid at time t**!. Therefore,
the derivation of an ALE solver is straightforward. One time integration from time ¢™ to
time t"*! is done the following way:

Step 1 - Compute the vector field ¥ of velocities of all vertices for the current time step,

Step 2 - Update the mesh by moving the grid points,

RR n° 3549



10 Serge Piperno

Step 3 - Update all finite element matrices involved in (13) depending on the geometry,
Step 4 - Compute the characteristic term deriving from i (", x(t"; t"*, z(t"+1, £))),

Step 5 - solve the generalized Stokes problem in the new configuration.

The derivation of an ALE solver will be completed when we have described the compu-
tation of the right hand term deriving from @ (", x(t"; t"*1, z(¢t"*1,¢))). This value is not
directly accessible in the solver, since x(t"; "1, z(¢t"*1, £)) is an Eulerian coordinate. We
propose to find a moving coordinate &, such that

X (5 ot ) ~ a(t™,6). (14)
That way, we have
a (£, x(t™ "t 2t ) ~ T (¢, 2(t™, ) = 4 (7, €)
the last term being a directly accessible computational value before the field d is updated in
the last step (even after the mesh has been updated, i.e. the Eulerian coordinates of vertices

have been changed). We propose to choose £ such that z(¢t"*1,¢) = y (t™;t" 1, z(t"+1,€)))
with

& (R(t:5,0)) = it X(1:,70)) — 94, %03 5,70),
(15)

X(8;5,20) = o

The approximation (14) holds at the first order in At since we have

x (t" v 2 (" €) = 2t €) — At G (87, 2(tVT, €)) + O(AE?) (16a)
(™, 8) = a(t"t, &) — At (@ — V) (t",z(t"T,€)) + O(AL?) (16b)
z(t",€) = a(t"M, ) — At ¥ (¢, 2(t"1,€)) + O(A) (16c)

Equation (16a) derives from the definition (11) of the characteristic x(.;t" 1, z(t"*1,¢))
for the field d@. Similarly, equation (16b) derives from the definition (15) of the modified
characteristic y(.; "1, z(¢"+1,€)) for the field @ — ¥. Finally, equation (16c) derives from
the definition of the mesh motion and from equation (16b) which yields £ = £ + O(At).

To make things short, the Step 4. of the proposed algorithm is done the following way. For
each mixed coordinate &,

Step 4a - backtrack over At the modified characteristic curve y starting from £. This can
be done in the mesh configuration at time "1,

Step 4b - compute the mixed coordinate £ in the mesh configuration at time t"*! of the
point obtained,

Step 4c - get the not yet updated value @(t", ).

INRIA



Numerical simulation of bridge decks instabilities 11

3.3 Coupling algorithm

In this work, we have used a very simple coupling algorithm. Our main goal was the physical
validation of the coupled code. Thus, we have used rather small time steps for both the
fluid and the structure, and the coupling scheme should not be a crucial point.

We use a staggered coupling algorithm, where the fluid and the structure are advanced in
time separately and successively. Although the time step is always small, we have a staggered
algorithm which can be used up to thirty time steps per period of coupled oscillation [9].
The coupled algorithm, for a time integration from time t" to time t"*! = t™ + At, is the
following;:

I. Compute the following prediction for the structure at time t"+!

XM= X"+ % (BVr—vrh).

II. From X"*! deduce a prediction for the location of the fluid-structure interface T'(t"*1).
ITI. Propagate the displacement to internal fluid vertices. Store the grid velocities V.

IV. Advance the fluid from t" to ¢"*! using the fluid ALE solver.

- n+1
V. Compute the fluid forces Fg T of (6) on the structure at time t"*! and the corre-
sponding generalized forces Fpt' given by (8), (2) and (3).

VI. Advance the structure with the trapezoidal rule (9) and with the forces F"*! given by

Frtl = 2pptt — .

Note that with this algorithm, the matching condition on the fluid and structural bound-
aries is relaxed : at the end of the current time step, the fluid boundary T'(¢"*!) matches the
second-order accurate prediction X", which is different from the result of the structural
integration X"t1.

4 Simulation results
In this section, we review numerical results obtained for several test cases. We first consider

fixed cylinders, which are very good benchmarks for the fixed grid fluid solver, and for the
computation of fluid forces on the structure.

RR n° 3549



12 Serge Piperno

We then study the oscillation responses of a rectangle cylinder. We compare aeroelastic
analyses based on numerical simulations and physical experiences, for both forced and free
oscillations.

Finally, we investigate the aeroelastic response of a simplified Tacoma Narrows Bridge
deck for different constant wind speeds.

4.1 Fixed cylinders

We validate the fluid solver on a fixed grid, as well as the computation of lift and moment
coefficients for simple structural models.

4.1.1 Circular cylinder

We first consider the unsteady laminar flow of a viscous incompressible fluid past a circular
cylinder of radius R = 1m. We have used uo, = 1m/s and v = 0.01m?/s, which sets the
Reynolds numbers (based on the diameter D = 2R of the cylinder) to Re = 200. Both
numerical and experimental results for this test case are reviewed in [4]. We have chosen to
take the Stokes flow as initial value at time ¢ = Os.

Figure 3: Horizontal velocity (fixed circular cylinder)

After a transient phase, a periodic vortex shedding appears. The horizontal velocity
of the fluid is shown on Figure 3. The corresponding Strouhal number is defined by S =

INRIA
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fD/us, where f is the dimensional frequency of the vortex shedding. The unsteady lift and
drag coefficients (per unit span) are plotted on Figure 4. These adimensional coefficients
are respectively given by

F.&, Fe 2,

— T =Y 17
0.5p0u2. D ¥ 0.5pou2 D (17)

x
where the density po, is the constant density of the incompressible flow. Classically, f is
the frequency f, of oscillations for the lift coefficient Cy. It is commonly observed that the

frequency f, of oscillations of the drag coefficient C, is approximatively f, = 2f,. This is
also the case for the numerical results (see Figure 4).

Figure 4: Lift and drag coefficients (fixed circular cylinder)

The numerical results for the fixed circular cylinder are in very good agreement with the
results reviewed in [4]. For several values of the time step At, the numerical results for S,
as well as the average values and amplitudes for the lift and drag coefficients are reported
on Table 1. They are compared with the averages of values reported in [4]. The values
obtained by the fluid solver are in the range of other numerical and experimental values. It
can be noticed that the time step At has some (limited) influence on numerical results. This
is probably due to the method of characteristics chosen for the treatment of the non-linear
advection term. As the time step increases, the second-order error in characteristic curves
becomes preponderant.

RR n° 3549
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Table 1: Numerical and experimental values for S, C, and C, (fixed circular cylinder)

Cy Cy Strouhal S
At =0.05s 1.242 +0.029 +0.546 0.188
At = 0.10s 1.253 £ 0.029 +0.535 0.181
At = 0.15s 1.265 £ 0.028 +0.518 0.175
Numerical results [4] [1.17 — 1.58] £ [0.035 — 0.04] | £[0.4—0.7] | [0.15 — 0.194]
Experimental results [4] 1.30 [0.16 — 0.19]

4.1.2 Rectangular cylinder

We reproduce the same type of numerical simulations for a fixed rectangular cylinder. We
consider a rectangle of chord to thickness ratio ¢/d equal to 4 (c denotes the chord, the length
of the rectangular deck in the direction of the uniform flow, and d is the thickness of the deck
in the perpendicular direction). The fluctuation of the flow in the wake behind the stationary
rectangle has also a periodic behaviour after a transient phase. The periodic vortex shedding
is again characterized by the Strouhal number S = fd/u.. We consider experiments with
a Reynolds number based on the thickness d Re = dus /v = 20000 (d = 1m, us = 1m/s,
v = 0.00005). No turbulence model are used in the computations.

The unsteady lift and drag coefficients (per unit span) are plotted on Figure 5. These
adimensional coefficients are now given by

P&, Fy.E,
Y

Ca (18)

- 0.5p00u2,C - 0.5p0u2,C

where the density po, is the constant density of the incompressible flow. Again, the shedding
frequency f is equal to the frequency of lift oscillations, and equal to the half of the frequency
of drag oscillations (see Figure 5).

Numerical simulations with the Eulerian code give S = 0.128, which is in very good
agreement with the value given by experiments [7], which is S ~ 0.13.

4.2 Forced oscillation response of a rectangle cylinder
4.2.1 Heaving mode

In this section, we aim at reproducing experimental results reported by Washizu et al. [15].
With numerical simulations of forced oscillations in a heaving mode, we want to study the
aeroelastic instability of a rectangle cylinder of chord to thickness ratio ¢/d equal to 4. The
cylinder (see Figure 1) is given a forced sinusoidal oscillation

Y(t) = ym cos(wmt) (19)

INRIA
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Figure 5: Lift and drag coefficients (fixed rectangular cylinder with ¢/d = 4)

and the resulting aerodynamic lift force L(t) is computed over a certain number of periods
T = 27 /wm,. The frequency response part L,,(t) of the signal L(t) is well described in [7].
We recall here the main points. L,,(t) is defined by

L (t) = Limg cos(wmt) — L1 sin(wmt), (20)
with [Lmg, Li] = % / " L(0)[cos(wnt), sin(wmd)] di. (21)
-T

The integration is extended over a great number of periods (typically T = 307,,). It is
frequently found convenient to deal with non-dimensional lift coefficients (per unit span)
CLmR and CLmI defined by

{ LmR =0.5 pmuioc CLmR, (22)

Lm]' =0.5 pmugoc CLmI-

The non-dimensional numbers Cp.,,g and Cp.,; give informations on the effect of aerody-
namic forces on the profile, when it is moving in a heaving mode with pulsation w,,. More
precisely, if the coefficient C., g is positive (respectively negative), the fluid plays the role
of an added mass (respectively an added stiffness). The damping effect of the fluid on the
structure is directly related to the coefficient Cr.,,7. If Crmr < 0, the fluid receives energy
from the structure. It plays an actual damping role and the frequency analysis will conclude
the structure is stable. On the contrary, if Cr,,; > 0, the fluid transmits energy to the
structure. It is a source of negative damping and the frequency analysis will conclude the
structure is unstable.

RR n° 3549
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The frequency response part analysis can be performed for different values of y,, and
Wm in (19). The reduced velocity v,, = wwTm/d is usually preferred to the dimensional
pulsation w,,. We first report here numerical results for y,, = 2¢m and v, in the range
[5 : 40]. The numerical results reported here were obtained after one simulation (with
12 successive periodic regimes and T' = 207}, in each regime) of 60k on a Sun Ultra 170
workstation. The computations were made on a 2830-vertex, 7428-tetrahedron unstructured
mesh. The three dimensional domain represents a one meter slice around a one meter span
section of the rectangular cylinder.

The coefficients C,.,, g obtained with our ALE fluid solver and obtained by experiments
[15] are shown on Figure 6. The numerical results for C,,r are qualitatively correct. The

")
W
O\

||

T
Clmr - Washizu et al, <—
CImr - numefical ==

©

o

a
——

5 10 15 20 25 30 35 40
VTm/d

Figure 6: Coefficients Cp g for y.,, = 2cm (numerical simulations and [15]).

oscillations in the range v,,, € [5 : 10] are present, and the behaviour for v,, > 25 is well
reproduced. However, the numerical results are far from perfect, since some additional
oscillations are present.

The coefficients Cp.,,; obtained by both numerical simulations and experiments are shown
on Figure 7. The numerical results are not accurate. The numerical curve seems to be shifted
in the direction of larger v,,. However, both curves give comparable stability results for this
rectangular deck in a heaving mode. Experiments predict the deck is stable for all regimes,
the ranges v,, < 4 and v,, € [6 : 7.5] excepted, while the present numerical simulation
predicts instability in the ranges v,, < 6 and v,, € [7.5 : 12]. For these simulations, the
time step used by the ALE fluid solver was At = 0.1s, which corresponds to fifty time steps
per period for the smallest period T;, = 5. Thus, the time step does not seem to be at the
origin of the v,,, shift between the two curves.
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Figure 7: Coefficients Crp1 for y., = 2cm (numerical simulations and [15]).

We now report the same sets of results for y,, = 10cm (the numerical results were also
obtained after one 60h run on a Sun Ultra 170 workstation).

The coefficients Cp,, g obtained by experiments [15] and numerics are shown on Figure 8.
The numerical results are qualitatively acceptable. The oscillations in the range v,,, € [5 : 10]
are again present, and the behaviour for v,,, > 15 is well reproduced. However, the numerical
results are far from perfect, since the sign of the numerical Cp,,g is wrong in the range
Vm € [6:11]

The coeflicients Cr,.,,1 obtained by both numerical simulations and experiments are shown
on Figure 9. The numerical results are quite accurate. The dip in the range v,,, € [5 : 9]
is well reproduced, as well as the low frequency behaviour in the range v,,, < 15 (however,
the computational value for v,, = 40 is suspect). Furthermore, the overall stability of the
rectangular cylinder in the whole range v,, € [5 : 40] is numerically predicted.

4.2.2 Torsional mode

In this section, we aim at reproducing experimental results reported by Washizu et al.
[16]. We perform numerical simulations of forced oscillations in a torsional mode of the
same rectangle cylinder (¢/d = 4). The cylinder (see Figure 1) is given a forced sinusoidal
oscillation

0(t) = 6., cos(wmt) (23)

and the resulting aerodynamic moment M (¢) is computed over a certain number of periods
T = 27 /wp,. The frequency response part M,,(t) of the signal M (t) is defined as previously
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Figure 8: Coefficients Crmg for y., = 10cm (numerical simulations and [15]).
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Figure 9: Coefficients Cr,1 for y,, = 10em (numerical simulations and [15]).
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for L,,(t), yielding the two dimensional quantities M,,r and M,,;. The integration is
extended over a great number of periods (typically T' = 307,). We now deal with non-
dimensional moment coefficients (per unit span) Cprmgr and Cusmr defined by
Mpur =05 poou’ c® Crmr,
5 2 (24)
Mm[ =0.5 PooUs,C CMm[.

Again, the non-dimensional numbers Cp;mpr and Cpypy give informations on the effect of
aerodynamic forces on the profile, when it is moving in a torsional mode with pulsation w,y,.
The coefficient Cj., g represents a fluid added mass (respectively a fluid added stiffness)
whenever it is positive (respectively negative). The damping effect of the fluid on the
structure is directly related to the coefficient Cys,,r. As previously, if Cpspr > 0, the fluid
transmits energy to the structure. It is a source of negative damping and the frequency
analysis will conclude the structure is unstable.

The frequency response part analysis is performed with 6,,, = 1.91 deg for different values
of wn, in the range [5 : 40] (numerical results obtained after one 60k run on a Sun Ultra 170
workstation).

The coefficients Cps,, g obtained with our ALE fluid solver and obtained by experiments
[16] are shown on Figure 10. The numerical results for Cp,g are in very good agreement

0.2
Cmmi - Washizuiet al. <—
Cmmr - numerical =—
0.15
0.1
0.05 7 — e
W R
0 ~
0.05
-0.1
5 10 15 20 25 30 35 40

VTm/d

Figure 10: Coefficients Cyrm g for 6, = 1.91 deg (numerical simulations and [16]).

with the experimental results. The dip in the range v,, € [5 : 10] is present, and the
behaviour for v,, > 10 is very well reproduced.
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The coefficients Cas,,; obtained by both numerical simulations and experiments are
shown on Figure 11. The numerical results are quite accurate. The numerical curve seems

0.2
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0.05
/
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0 /\ M//
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-0.1
5 10 15 20 25 30 35 40
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Figure 11: Coefficients Cprp s for 6, = 1.91 deg (numerical simulations and [16]).

slightly shifted in the direction of larger v,,,. However, both curves give comparable stability
results for this rectangular deck in a torsional mode. Experiments predict the deck is unstable
for v,,, > 20, while the present numerical simulation predicts instability for v,, > 25. The
numerical result for v,, < 6 (high frequencies) might be related to a time step At = 0.1s
too large and the result for v,,, = 40 is again rather strange.

4.2.3 Conclusion

The numerical results presented here for forced oscillations yield satisfactory predictions on
the possible instability of the rectangular cylinder. For the heaving mode, an instability
at y, = 2cm in the range v,, € [5 : 10] was correctly predicted, as well as the overall
stability at y,, = 10cm. For the torsional mode, numerical simulation have given even
more accurate predictions on the instability of the rectangular profile beyond a stability
limit. This limit was experimentally observed round v,, = 20, while numerical simulations
predicted v, = 25. The reader should keep in mind these discrepancies can have multiple
origins, lack of turbulence models, computational constraints on the space discretization and
the time step At to name a few.
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4.3 Free oscillation response of a rectangle cylinder

In this section, we would like to test the fluid-structure solver on free oscillation experiments.
We consider test cases for which simulation results can be compared with results of forced
oscillation experiments.

4.3.1 Heaving mode

We consider the following test case. The rectangle cylinder is given the ability to move
freely in the vertical direction (rigid motion). We have noticed that, for forced oscillations
at v,, = 10, the fluid has a stabilizing effect for y,, = 10cm and a destabilizing effect for
Ym = 2cm. This means that a free oscillation experiment should lead to oscillations of
amplitude between 2cm and 10cm.

We propose a simulation with the following parameters : ¢ = 4m, d = 1m, us = 1m/s,
Re = 20000 (v = 0.00005) and, in (1), 8(t) = 0, m = 100kg, ¢, = 0, k, = mw?. The
structural pulsation w; is taken such that Ts = 27/ws = 10s, which yields ux,7s/d = 10.
The vertical displacement y(t) is forced to y(t) = yg sin(wst) during ten structural periods
T,. Then the structure is released.

We first test yo = 20cm. The vertical displacement y(¢t) and the structural energy
e(t) = (my?(t) + kyy?(t))/2 are respectively plotted on Figure 12 and Figure 13 in function
of the time ¢. During ten periods (until ¢ = 100s), the amplitude of the displacement and
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I
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-0.15

-0.2

0 100 200 300 400 500 600 700 800 900 1000
time t (s)
Figure 12: Vertical displacement for free oscillations (yo = 20cm, Ts = 10s).

the energy are held constant. When the structure is released, the amplitude of oscillation
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Figure 13: Structural energy for free oscillations (yo = 20cm, T = 10s).

decreases and a certain part of the structural energy is transmitted to the fluid. The stabiliz-
ing effect of the fluid (in at least the range yo € [10c¢m; 20cm]) has been demonstrated. After
a transient phase, the system evolves in an aperiodic limit cycle, where the displacement
amplitude is less than 10cm.

We now try yo = 5¢cm. The vertical displacement y(t) and the structural energy are
respectively plotted on Figure 14 and Figure 15 in function of the time ¢. In that case,
after the structure is released, the amplitude of oscillation increases and a certain part of the
structural energy is transmitted by the fluid. The destabilizing effect of the fluid (in at least
the range yo € [2cm;5em]) has again been recovered. After a transient phase, the system
evolves in an aperiodic limit cycle, where the displacement amplitude is also less than 10cm.

Since the rectangular cylinder is stable for any reduced velocity (see Figure 9) at y,, =
10cm, we can reproduce the preceding experience with yo = 10c¢m and different values of
T, in the range [5 : 40]. For each T, we have plotted on Figure 16 the average structural
energy after a pseudo-limit cycle is obtained. The average energy is of course bounded for
all values of T;. One can notice the strong resonance at T, = 10s. This kind of lock in could
be a source of fatigue for flexible structures like a suspended span bridge in a transverse
wind.

4.3.2 Torsional mode

The rectangle cylinder is now given the ability to rotate freely (rigid motion, with y = 0). We
use the same parameters as previously, except for the structure : y(t) = 0, I, = 100kg.m?,
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Figure 14: Vertical displacement for free oscillations (yo = 5¢m, Ts = 10s).
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Figure 15: Structural energy for free oscillations (yo = 5¢cm, Ts = 10s).
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Figure 16: Long-run average structural energy for free heaving.

co = 0, kg = Iyw? in (1). For different values of T, = 27 /w, in the range [5 : 40], we reproduce
the following numerical simulation : the rotation 6(t) is forced to y(t) = 8y sin(w;t) during
ten structural periods T (with 8y = 1.91 deg). Then the structure is released.

For each T, < 15s, the amplitude of oscillations is bounded. However, as T increases,
the motion of the rectangle gets less periodic. We have plotted on Figure 17 the average
and maximal structural energy (e(t) = (Ip0%(t) + ko8%(t))/2 after a pseudo-limit cycle is
obtained. The average energy seems constant for 8 < 75 < 15, but the maximal energy
(reached randomly) increases. This is confirmed by the fact that, for Ts = 15s, the rotation
0 and the energy get unbounded, as shown respectively on Figure 18 and Figure 19. This
kind of lock in could be a source of collapse for flexible structures like a suspended span
bridge in a transverse wind. We have plotted on Figure 20 pressure contours at a time with
maximal rotation as the instability develops. One can notice the darker zone of low pressure
under the rectangle, which clearly has a destabilizing effect (the resulting moment M (t) has
the same sign as 6(t)).

4.3.3 Conclusion

The results presented in this section show a very good coherence between the forced and
free oscillation analyses based on numerical results. We now want to test our coupled solver
on more complex geometries. We have chosen to investigate the aerodynamic stability of
the Tacoma Narrows Bridge.

INRIA



Numerical simulation of bridge decks instabilities

0.09
TR ey -
0.08

0.07

0.06

0.05 |-

0.04

0.03

0.02

0.01 s S =

0 6 7 8 9 10 11 12 13 14

Structural period Ts (s)

Figure 17: Long-run average and maximal structural energy for free rotation.
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Figure 18: Rotation for free oscillations (§y = 1.91 deg, Ts = 15s).
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Figure 19: Structural energy for free rotation (6 = 1.91 deg, T = 15s).

Figure 20: Pressure contours at maximal rotation for 75 = 15.

4.4 The Tacoma Narrows Bridge benchmark

The first Tacoma Narrows Bridge had an H-shaped cross section that is known to give rise
to a phenomenon usually understood as vortex shedding, but more precisely called torsional
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flutter [12]. For this kind of H-shaped decks, it has been observed that there is a slight
tendency, as the height of the girder is reduced, for more airfoil-like effects to enter. However,
for a girder depth as small as 0.1 the deck width, the tendency to instability remains strong.
Scanlan and Tomko concluded that H-sections have very unfavorable aerodynamic stability
characteristics [13].

The bridge collapsed at a critical wind speed of 18.8 m/s, after a support cable at mid-
span was snapped by sufficiently large torsional undulations. The modeling of the deck as
an H-shaped profile is supported by studies reviewed in [13]. The approximate geometry of
this girder-stiffened type of deck is suggested on Figure 21.

H :|IIII:(‘: e

Figure 21: Approximate geometry of the Tacoma Narrows Bridge deck section.

For the geometry, we have chosen the following values:

e1=ey=1 ft=0.305m
H =8 ft=2438m (25)
L=39 ft=11.887Tm

Values for the structural model (1) and a reference where these values were recommended
were found in [14]. We have taken:

m = 8500 kg/m,

Iy = 167344K g.m?/m,

ky, = mw?, with f, = w,/2m = 0.84 Hz, (26)
ko = Tywy, with fp = wg/2m =1.11 Hz,

Sa =Cy=Cy = 0,

For the fluid flow, we have tested different values for the wind speed u.,. We have taken for
all computations

{ Poo = 1.293 Kg/m?

v =1.496 107° m?/s 27)

The fluid domain around the deck section is discretized by an unstructured mesh of 7922
vertices and 22866 tetrahedra. The three dimensional domain again represents a one meter
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slice around a one meter span section of the bridge. It was built by simple elevation starting
from a 3961 vertex, 7622 triangle two-dimensional unstructured mesh, which is represented
on Figure 22. This mesh is quite coarse (two elements for the discretization of the length
ey of Figure 21). The final three dimensional mesh is made of 7922 vertices and 22866

NN

Figure 22: Discretization of the computational fluid domain.

tetrahedra. On this mesh, each of the following 30000 iteration computations required a
computational time of four days on a DEC alpha 21164 /500.

Numerical results are to be compared with experimental results presented for forced
oscillations of the profile [13]. In this paper, no heaving instability and a torsional instability
starting at V = 28 ms™! are predicted. However, for free oscillation experiments with two
degrees of freedom, as the wind speed increases, a heaving instability (induced by vortex
shedding) should appear first, then disappear, and finally torsional flutter should take place.

We present here numerical results for free oscillation simulations with several wind speeds
V in the range [20.5;40]. For each test, the curves giving the vertical displacement y, the
angle of rotation # and the structural energy e = (mg? + k,y* + I0? + ke6?)/2 are shown
on Figures 23 to 26.

Many conclusions can be drawn from these plots. An instability in the heaving mode is
clearly present in the range V' € [23.18;25]. Out of this interval, the vertical displacement
remains small. Similarly, no torsional flutter appears for V' < 32.5. This conclusions are
confirmed by energy plots. For V' = 23.18 (Figure 23) and V = 25 (Figure 24), energy
is transferred from the fluid to the structure, which is in a heaving mode. For V > 32.5
(Figure 25 and 26), energy is also stored by the structure, which is in torsional flutter. Out
of these ranges, the structural energy is bounded (or increases much slower).

These conclusions are in very good agreement with experimental results reported in
[13]. Numerical simulations have reproduced the two possible instabilities for this kind of
profile: as the wind speed increases, a heaving instability first appears and disappears, and
a torsional instability then takes place. This torsional flutter is a rather single-degree-of-
freedom instability, as shown by the plots for the vertical displacement y in this range (see
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Figure 23: Displacement, rotation and energy for V' = 20.5 and V = 23.18
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Numerical simulation of bridge decks instabilities 31

0.6 0.6

V=30 - y=y(l) — V=32.5 - y=y(t) —
0.4 0.4
0.2 0.2

Y Av/\/\ A f\/\v/\ AA(\ MM M(\ AM (\M 0 LafAA ARAAAR AMM\AVA hall /\N\ /\M MMMM
VVYVETRYVY VI VVU Uw UUVU\/\/UU UUU yu

-0.2 -0.2
-0.4 -0.4
-0.6 -0.6
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
0.15 0.15
=30 - theta=theta(t) — V=32.5 - theta=theta(t) —
0.1 0.1
0.05 0.05

o AR envnat) AR o Lttt I MM MM MM” MM MM MM MM

SVUVEVEUV VRS v vy

-0.05 -0.05
-0.1 -0.1
_0'150 5 10 15 20 25 30 35 40 45 50 _0'150 5 10 15 20 25 30 35 40 45 50
40000 40000
V=30 - e=e(t) — V=32.5-e=e(t) —
35000 35000
30000 30000
25000 25000
20000 20000
15000 15000
10000 10000
5000 5000
0 P i 0 e
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

Figure 25: Displacement, rotation and energy for V=30 and V = 32.5
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Figure 26). However, on can wonder if some coupling between y and 6 is present, at least in
the range V' € [32.5;35], where torsional flutter appears. We have plotted on Figure 27 the
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Figure 27: Energy for V = 32.5 and V = 35 with vertical displacement free or fixed.

structural energy for pairs of simulations with V' = 32.5 and V = 35. The simulations labeled
"y=0" are obtained with a simplified structural model reduced to the second equation of
(1), i.e. the vertical displacement is fixed at y = 0. For each wind speed V, one can observe
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that the structural energy is stored at the same rate for both simulations (y free or y = 0),
but a little earlier when both degrees of freedom y and 6 are present.

5 Conclusion

In this paper, we have reported numerical results for the simulation of the interaction of a
viscous incompressible flow and rigidly moving sample bridge profiles.

We have presented simulations for both forced and free oscillations of the structure.
On a rectangular cylinder, numerical results for forced oscillations have yielded satisfactory
predictions for the possible instabilities. These predictions include the regime of instabil-
ity as well as the amplitude in each unstable mode (heaving or torsional). However, the
quantitative prediction for the stability limit in terms of the reduced speed v,, is not very
accurate.

Free oscillation simulations gave results in very good coherence with forced oscillation
simulations for the rectangle cylinder. For a H-section close to the profile of the Tacoma Nar-
rows Bridge, numerical simulations have reproduced the heaving and torsional instabilities
of the section, in satisfactory wind speed ranges.

These preliminary results were obtained with no turbulence model, and with an implicit
first-order time-scheme which could produce artificial diffusion. Furthermore, the space
and time discretizations were rather coarse. All these considerations lead us to be both
satisfied with the results obtained and careful. More physical validations - especially three-
dimensional and with flexible structures - are needed to obtain a reliable simulator for this
type of fluid-structure interactions.
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