HAL

archives-ouvertes

Dynamic Attribute Grammars

Didier Parigot, Gilles Roussel, Martin Jourdan, Etienne Duris

» To cite this version:

Didier Parigot, Gilles Roussel, Martin Jourdan, Etienne Duris. Dynamic Attribute Grammars.
[Research Report] RR-2881, INRIA. 1996. <inria-00073810>

HAL Id: inria-00073810
https://hal.inria.fr /inria-00073810
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00073810

N 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Dynamic Attribute Grammars

Didier PARIGOT, Gilles ROUSSEL, Martin JOURDAN, Etienne DURIS

N° 2881
Mai 1996

THEME 2

apport

derecherche

ZIINRIA

ROCQUENCOURT

Dynamic Attribute Grammars

Didier PARIGOT, Gilles ROUSSEL, Martin JOURDAN, Etienne DURIS

Theme 2 — Génie logiciel
et calcul symbolique
Projet Oscar

Rapport de recherche n°2881 — Mai 1996 — 29 pages

Abstract: Although Attribute Grammars were introduced long ago, their lack of expressive-
ness has resulted in limited use outside the domain of static language processing. With the
new notion of Dynamic Attribute Grammars defined on top of Grammar Couples, informally
presented in a previous paper, we show that it is possible to extend this expressiveness and to
describe computations on structures that are not just trees, but also on abstractions allowing
for infinite structures. The result is a language that is comparable in power to most first-order
functional languages, with a distinctive declarative character.

In this paper, we give a formal definition of Dynamic Attribute Grammars and show how to
construct efficient visit-sequence-based evaluators for them, using traditional, well-established

¥
AG techniques (in our case, using the FNC-2 system).
The major contribution of this approach is to restore the intrinsic power of Attribute Gram-
mars and re-emphasize the effectiveness of analysis and implementation techniques developed
for them.

Key-words: Attribute grammars, static analysis, implementation, dynamic semantics, ap-
plicative programming

(Résumé : tsuvp)

§ee http://www-rocq.inria.fr/oscar/FNC-2/ for more information.

1 Initéd de recherche INNRIA Rocarieancnirt

Les grammaires attribuées dynamiques

Résumé : Bien que les grammaires attribuées aient été introduites il y a longtemps, leur
manque de pouvoir d’expression les a confinées dans le domaine du traitement statique des
langages de programmation. Avec les nouvelles notions de grammaires attribuées dynamiques
définies sur des couples de grammaires, présentées informellement dans une précédente publi-
cation, nous montrons qu’il est possible d’étendre cette expressivité et de décrire des calculs
sur des structures qui ne sont pas uniquement des arbres, mais des abstractions qui rendent
compte de structures infinies. Nous obtenons ainsi un langage dont le pouvoir d’expression
est comparable a celui de la plupart des langages fonctionnels du premier ordre, avec un coté
déclaratif beaucoup plus marqué.

Dans ce rapport, nous donnons la définition formelle des grammaires attribuées dynamiques
et montrons comment construire pour elles des évaluateurs efficaces & base de séquences de
visites, en utilisant des techniques traditionnelles et éprouvées (dans notre cas, en utilisant
notre systeme FNC—QT.*

La principale contribution de cette approche est de redonner toute leur puissance d’expression
aux grammaires attribuées et de mettre en lumiere l'efficacité des techniques d’analyse et
d’implantation qui ont été développées pour elles.

Mots-clé : Grammaires attribuées, analyse statique, implantation, sémantique dynamique,
programmation applicative

*
{70ir http://www-rocq.inria.fr/oscar/FNC-2/ pour plus d’informations.

Dynamic Attribute Grammars 3

1 Introduction

Attribute Grammars were introduced thirty years ago by Knuth [Knu68| and, since then, they
have been widely studied [DJL88, DJ90, AM91, Paa95]. An Attribute Grammar is a declarative
specification that describes how attributes (variables) are computed for rules in a particular
syntax (i.e., it is syntax-directed). They were originally introduced as a formalism for describing
compilation applications; they were intended to describe how to decorate a tree, and could not
be easily thought about in the absence of the structure (tree) representing the program to
compile. In this application area, Attribute Grammars were recognized as having these two
important qualities:

e they have a natural structural decomposition that corresponds to the syntactic structure
of the language, and

e they are declarative in that the writer only specifies the rules used to compute attribute
values, but not the order in which they will be applied.

The main question about the formalism was: “Is it possible to produce usable code from an
Attribute Grammar specification?” Most research in the area has focused on the automatic
production of efficient code, and very good results have been obtained, in particular, efficient
implementation techniques for various subclasses of Attribute Grammars and static, global
analysis methods that are generally quite precise (see [Jou92, Alb91, Paa95| for a survey and
bibliography).

In spite of that, Attribute Grammar specifications are still not as widely used as they could
be. Because of their historical roots in compiler construction, the notion of (physical) tree was
considered as the only way to direct computations. This is the main cause for their lack of use
and lack of expressiveness. Some works have attempted to respond to this problem by proposing
extensions to the classical Attribute Grammar formalism, for instance Higher-Order Attribute
Grammars |[SV91], Circular Attribute Grammars [Far86|, Multi-Attributed Grammars [Att89]
or Conditional Attribute Grammars [Boy96]. The main difference between these works and
ours is the methodology used to attack the problem. All of them, in a first step, propose
a linguistic extension designed to make the expression of a particular application easier (for
instance, data-flow analysis for Circular Attribute Grammars) and, in a second step, wondered
how this extension could be implemented. In contrast, our approach [PDRJ95, PDRJ96| was,
first, to precisely characterize the intrinsic power of the classical formalism and, thereafter, to
derive the language extensions that allow to fully exploit this power. The basic observation is
that the notion of grammar does not necessarily imply the existence of a (physical) tree.

In fact, our view of the grammar underlying an Attribute Grammar is similar to the grammar
describing all the call trees for a given functional program or all the proof trees for a given logic
program: the grammar precisely describes the various possible flows of control. In this context,
a production describes an elementary recursion scheme (control flow) [CFZ82|, whereas the
semantic rules describe the computations associated with this scheme (data flow).

It is very important at this point to observe that all the theoretical and practical results
on Attribute Grammars (in particular, the algorithms for constructing efficient evaluators) are
based only on the abstraction of the control flow by means of a grammar and not at all on how
its instances are obtained at run-time.

In consequence we present two notions which comply with this view:

RR n°2881

4 Didier PARIGOT, Gilles ROUSSEL, Martin JOURDAN, Etienne DURIS

o Grammar Couples allow to describe recursion schemes independently from any physical
structure and/or to exhibit a different combination of the elements of a physical structure.
A grammar couple defines an association between a dynamic grammar and a physical or
concrete grammar.

e Dynamic Attribute Grammars (DAGs) allow attribute values to influence the flow of
control by selecting alternative dynamic productions. We define the new notion of se-
mantic rules blocks made of nested sets of conditional semantic rules.

These extensions eliminate the major criticism against Attribute Grammars, namely, their
lack of expressiveness. They provide a programming language similar to a first-order language
with a functional flavor (because of the single-assignment property) that retains the distinctive
declarative character of Attribute Grammars. They have been easily implemented in Olga, the
input language to our FNC-2 system [JPJT90, JP93]. An informal, example-based comparison
of Dynamic Attribute Grammars with other programming paradigms appears in [PDRJ95|,
together with a discussion of how this leads to fruitful applications regarding analysis and
implementation techniques.

In this paper, we concentrate instead on the definition and implementation of DAGs. At
this point, the semantics of DAGs is given by their functional implementation, as described
here; we are working on a more elegant formulation of the semantics, which will be the subject
of a forthcoming paper.

The remainder of this article is divided in two sections. The first one presents successi-
vely the classical definition of Attribute Grammars, the two new notions of Grammar Couple
and Dynamic Attribute Grammar and finally the construction of a classical Attribute Gram-
mar which has the same “behaviour” as a given DAG (the Abstract Attribute Grammar, or
AAG, associated whith the DAG). The second section demonstrates how to use classical AG-
implementation techniques (evaluator generation) to produce an efficient, visit-sequence-based
evaluator for a DAG.

2 Dynamic Attribute Grammars

The goal of this section is to present and define the new notion of Dynamic Attribute Grammar
and their properties. After some recalls about classical Attribute Grammars, we will deal suc-
cessively with Grammar Couples, Dynamic Attribute Grammars and finally Abstract Attribute
Grammars.

2.1 Classical Attribute Grammars

In this subsection we recall the classical Attribute Grammars definitions, and give some nota-
tions useful for the sequel.

Definition 2.1 (Context-Free Grammar) A context-free grammar is a tuple G = (N, T, Z, P)
wn which:

e N is a set of non-terminals;
o T is a set of terminals, NNT = (;

e 7 is the root non-terminal (start symbol), Z € N;
INRIA

Dynamic Attribute Grammars)

e P is a set of productions,
p:Xo— Xi...X, with Xo € N and X; € (TUN).

In this paper, we will forget about terminals and parsing problems and consider a grammar as
an algebraic definition of a family of trees (or terms or structures).

Definition 2.2 (Attribute Grammar) An Attribute Grammar is a tuple AG = (G, A, F)
where:

e G=(N,T,Z P) is a context-free grammar as in definition 2.1;

e A=UA(X) is a set of attributes attached to X € N, A(X) = H(X)W S(X) with H(X)
the inherited attributes of X and S(X) the synthesized ones;!

o "= F(p) is a set of semantic rules, where f,, x, designates the semantic rule defining
the attribute occurrence a(X;) in production p: Xo — X1... X, and a € A(X;).

In the previous definitions, there is some ambiguity in the use of symbol X;. In the CFG
definition they represent non-terminals meanwhile in the AG definition they represent both the
non-terminal occurrence (labeled by its position in the production) and the non-terminal (type)
itself. However, the position of a name in a production is only relevant for X, or to distinguish
two non-terminal occurrences and their types. Therefore, we consider a production as a set of
distinct names (with a specific one for the left-hand side), each with a type. So we now give a
more precise definition of a production.

Definition 2.3 (Production) Let V be a universal finite set of names. A production p :
Xo — X1... X, in a CFG is a tuple ((Xo, V,), type,) in which:

i. Vo ={X1,Xs,..., X0} CV, withn = Card(V,), and Xo € V — V,;

. typep : V;’ — NUT, where V; ={Xo} UV, is a function which associates to each name
a unique type in the set of non-terminals and terminals.

The first condition means that all the names appearing in the right hand side of the pro-
duction are distinct and that their order is not relevant.

In the sequel of this paper, we will use the clearest of our two notations for a production—
p:Xo— Xi...X, or ((Xo,V,), type,)—according to the context.

We now give some notations relative to such a production:

e LHS(p) = Xo and RHS(p) = V).

o W,(p) = {a(Xo) | a € H(typey,(Xo))} U {a(X) | X € V,,a € S(type,(X))} is the set of
input or used attribute occurrences in p.

o Wy(p) = {a(Xo) | a € S(type,(Xo))} U{a(X) | X € V,,a € H(type,(X))} is the set of
output or defined attribute occurrences in p.

o W(p) =W,(p)UWy(p) is the set of all attribute occurrences in p.

! ¢ denotes the disjoint union (partition).

RR n°2881

6 Didier PARIGOT, Gilles ROUSSEL, Martin JOURDAN, Etienne DURIS

e D(p) = (W(p), E(p)) is the dependence graph for production p, with E(p) = {a(X) <
b(Y) | b(Y) is an argument of rule f,, x}.

We will deal only with well-formed AGs, so F(p) shall contain exactly one semantic rule
defining each output occurrence. Furthermore, all our AGs will be in normal form, which means
that all attribute occurrences in the right-hand side of a semantic rule or in a condition (see
below) must be input occurrences.

2.2 Dynamic Attribute Grammars

As said in the introduction, the basis for a Dynamic Attribute Grammar is a grammar which
describes the control flow (recursion scheme) of the intended application. This control flow
can depend purely on attribute values but also on the shape of some physical tree, which will
then be a distinguished parameter to the evaluator. Hence we have to make a difference, but
also establish a correspondence, between the grammar which describes the concrete structure
and the one which describes the computation scheme (which will “contain” the former, in some
sense). This is the motivation for the notion of Grammar Couple defined below. Grammar

couples are similar to, although more general than, grammar interpretations as defined by Filé
[Fil83].

Definition 2.4 (Grammar Couple) A Grammar Couple G = (Gg4, G.,Concrete) is a pair
of context-free grammars Gq = (Ng, Ty, Z4, Py) and G. = (N, T, Z., P.), as in definition 2.1,
and a function Concrete : Py xV — (P. x V)U L, where:

1. NNCNy Ty=T,; if N.# 0 then Zy = Z,.
2. Ypq € Py, we have:

i. VX €V, type,,(X) € (Na — N.) = Concrete(pa, X) = L;
ii. type,,(LHS(pa)) € (Ng — N.) = VX € RHS(pa), type,,(X) € (Ng— N.);
. type,,(LHS(pa)) € N. = 3! p. € P. such that:

— Concrete(pa, LHS(pg)) = (pe, LHS(p.)) and
typep,(LHS(pa)) = typep (LHS(pc));

— VX € RHS(pa), typep,(X) € Ne = 3Y € VF such that
Concrete(pa, X) = (pe,Y) and type,, (X) = type, (V).

3. Vp,q € Py such that type,(LHS(p)) = type,(LHS(q)) and
Concrete(p, LHS(p)) = Concrete(q, LHS(q)), we have:
i. LHS(p) = LHS(q);
. VX €V, NV, type,(X) = type,(X);
ii. VX € V, NV, Concrete(p, X) = Concrete(q, X).

Given the above constraints, we can unambiguously extend the function Concrete to productions
pq of Py as follows:

pe if Concrete(pqs, LHS(pa)) = (pey LHS(pe))

Concrete(pa) = { 1 if Concrete(ps, LHS(pa)) = L

INRIA

Dynamic Attribute Grammars 7

Concrete production p € P,:
p: while:STAT -> cond:COND body:STAT

Dynamic productions p, and p; € P;:
pr: w=while:STAT -> cond=cond:COND body=body:STAT w-rec=while:STAT
ps: w=while:STAT -> cond=cond:COND

Figure 1: Part of a grammar couple for the while statement

In the previous definition, G4 and G, respectively represent the dynamic and concrete
grammars, and Concrete gives the concrete production (or name) corresponding to a dynamic
one, i.e. a physical tree (or node). When the value of this function is L (undefined), it means
that the argument is a purely dynamic, or “abstract” object (it corresponds to some pure
recursion scheme). More precisely:

e Condition 2.7i. means that a pure dynamic object (non-terminal) may not yield any
concrete one.

e Condition 2.77¢. means that, in a dynamic production p,, if the LHS type is concrete, then
there exists a unique corresponding concrete production p., which has the same type as
LHS. Furthermore, for all non-terminals with a concrete type in the RHS of p,, there exists
in p. a corresponding non-terminal with the same type. In other words, each physical
structure yielded by p, exists in p. (possibly among others purely dynamic objects).

Note that a given physical structure may be referenced more than once in the dynamic
production and that the concrete LHS, which by definition is associated with the dynamic
LHS, may also be referenced again in the dynamic RHS. These “special effects” are the
essence of DAGs and allow to express computations that were deemed impossible with
classical AGs. The latter effect is illustrated in our while example (see below), whereas
the former is used in the double example of [PDRJ95|.

e Condition 3 stems from the constraint that, for two productions with the same LHS type
and the same associated Concrete?, the LHS must have the same name and all names
common to both productions must have the same type. This implies in particular that,
if the corresponding Concrete counterpart of a such common name is not undefined, it is
actually the same concrete object.

As an example, let’s see how to describe the structure and dynamic semantics of the while
statement as a grammar couple G = (G4, G.,Concrete). If STAT,COND € N, U N, respectively
represent statements and boolean conditions, figure 1 shows the productions for the while
statement. In this example, name : TYPE means that TYPE is the type of name and name_d=name_c
means that Concrete(py,name_d) = (p.,name_c).®> p € P, is the concrete production which
describes that a while statement is made of a condition and a body statement. p, and p; € P,
are two dynamic productions which respectively represent the recursive behaviour of a while
structure (p,) as long as the condition is true and the termination case (p;) when the condition
becomes false.

We now introduce the notion of semantic rules block, as a conditional structure (decision
tree) for semantic rules and productions.

2with possibly Concrete = L.
3Where p; and p, are unambiguously defined by the context.

RR n°2881

8 Didier PARIGOT, Gilles ROUSSEL, Martin JOURDAN, Etienne DURIS

(h.env(cond) := h.env(w), — common semantic rule R
((s.c(cond)), — boolean expression

(w=while:STAT -> cond=cond:COND body=body:STAT w-rec=while:STAT,
h.env(body) := h.env(w) — true case :
h.env(w-rec) := s.env(body) — {(p., R')
s.env(w) := s.env(w-rec)),

(w=while:STAT -> cond=cond:COND, — false case :
s.env(w) := h.env(w)))) — (pt, R")

Figure 2: The semantic rules block for the while statement

Definition 2.5 (Semantic Rules Block) A semantic rules block b is inductively defined as
follows:

b= (R, (e,b,0)) | {p, R)

where R is a possibly empty set of (unconditional) semantic rules, e is a condition (boolean
expression over attribute occurrences) and p is a production.

Figure 2 presents the semantic rules block describing the denotational-like semantics of our
running example of the while statement. Attributes names are prefixed by h. for inherited,
and s. for synthesized. The attribute env represents the execution environnement (store, etc.)
of a statement and s.c carries the value of the boolean condition.

In a block, semantic rules are associated with any node of the decision tree whereas the
productions appear only at the leaves. The following definition shows how a block is “flattened”
into a collection of traditional productions-with-semantic-rules.

Definition 2.6 (R° set) For each block b, R® is the set of all semantic rules in b, qualified by
the conjunction (path) of conditions that constrain (enable) them and the production to which
they are attached:

o R<p’R> = {((‘Sap)aR)}

PY R(R,<e,bt'rueybfalse>) —
let Rbtrue = Ui((ciapi>7 R’L)?
RPsatse = Uj((cj,p5), Ry)
in Ui(((e, true).c;, p;), RU R;) UU,(((e, false).c;,p;), RU R;).

Figure 3 illustrates the previous definition on our example.

For a given semantic rules block b, we define PR as the set of all productions in b: PR’ =
{p | ((c,p), R) € R*}. We say that the pair ((c,p), R) is well-formed if the semantic rules set R
is well-formed for the production p and each condition e in path ¢ refers only to input attribute
occurrences of p.

We are now ready to define complete Dynamic Attribute Grammars.

Definition 2.7 (Dynamic Attribute Grammar) A Dynamic Attribute Grammar is a tuple
AG = (G, A, F) where:

e G = (G4, G.,Concrete) is a grammar couple as in definition 2.4;

o A=Uxen, A(X) is a set of attributes;
INRIA

Dynamic Attribute Grammars 9

{(((s.c(cond), true),
w=while:STAT -> cond=cond:COND body=body:STAT w-rec=while:STAT),

h.env(cond) := h.env(w)
h.env(body) := h.env(w)
h.env(w-rec) := s.env(body)
s.env(w) := s.env(w-rec)),
(((s.c(cond), false), w=while:STAT -> cond=cond:COND),
h.env(cond) := h.env(w)
s.env(w) := h.env(w))}

Figure 3: The R set for the while semantic rules block

o [is a set of semantic rules blocks such that:

1. Vb€ F, every ((c,p), R) € R® is well-formed;
2. Vp€ Py, b e F such that p € PR®;
3. ¥p,q € Py, withp € PR and ¢ € PRY, such that type,(LHS(p)) = type,(LHS(q)) =
X, we have:
- X € (Ng—N,) = b; =by;
— X € N, = (b =b; & Concrete(p) = Concrete(q)).

Given these definitions, we can make the following remarks:

e Condition 2 above means that a given production p can appear more than once in a given
semantic rules block, but it can not appear in more than one semantic rules block.

¢ Condition 3 means that for a production p:

— if the (type of the) LHS of p is not a concrete non-terminal, then the block in
which this production appears contains all the productions defining this (abstract)
non-terminal;

— if it is a concrete one, then its block contains all and only the productions that are
associated with the same concrete production as p.

Hence it is obvious to extend the function Concrete to blocks.

e There exists no condition relating names from different blocks, so the scope of a name is
effectively a block.

e Condition 3 of definition 2.4 means that, for any two productions in a same block (same
type and Concrete associated with LHS), their LHS must have the same name, and all
names common to both productions must have the same type too. So it makes sense to
define the function type, for a block b: Vp € PR?, VX € Vi types(X) = typey(X).

Another remark is that it is not forbidden for the start symbol of the dynamic grammar to
have inherited attributes. In fact, what a Dynamic Attribute Grammar describes is a function
taking as arguments:

RR n°2881

10 Didier PARIGOT, Gilles ROUSSEL, Martin JOURDAN, Etienne DURIS

e values for all the inherited attributes of the start symbol, and

o if the concrete grammar in the grammar couple is not empty, a concrete tree described
by this grammar,

and which returns the values of the synthesized attributes of the start symbol. The computation
of the attributes is defined in an “obvious” way and is guided at each “dynamic node” by
the values of the various conditions and, when relevant, by the production applied at the
corresponding concrete node. The formal definition of the semantics of a DAG is the topic of
our present work and will be given in a forthcoming paper; in the meantime, it will be defined
by its implementation, as described below, and we hope that the sequel of this paper and the
examples in [PDRJ95] will help the reader intuitively grasp the semantics and operation of a
DAG.

2.3 Abstract Attribute Grammars

We claimed in [PDRJ95| that Dynamic Attribute Grammars could be implemented using the
same techniques as classical AGs. The basic idea, called plane shift in [Jou92] and indeed used
in FNC-2 to implement DAGs, is simple:

1. build from the given DAG a classical AG which has the same “behaviour” (syntax—i.e.,
recursion scheme—and dependencies—i.e., data flow);

2. generate the evaluator for this classical AG;
3. “patch” this evaluator so that it becomes a correct implementation of the original DAG.

In this section, we show how to construct this equivalent classical AG, which we call the Abstract
Attribute Grammar associated with the DAG.

Let b = (R, {e, {pr, Rr), (pr, Rr))) be the simplest form of a (conditional) block. Basically,
the productions and semantic rules in the AAG which will reproduce the behaviour of this block
are, on one hand, pr associated with the rules in RU Ry and, on the other hand, (pr, RU RF).
This is indeed correct from the point of view of the recursion schemes and data flows, and the
well-formedness conditions on the DAG will ensure that the resulting AAG will also be well-
formed. The definition below formalizes this intuition and adds the very important constraint
that no attribute defined by a rule in the groups subject to the condition (Rr and Rp) can be
evaluated before the condition.

Definition 2.8 (Abstract Attribute Grammar) The Abstract Attribute Grammar for a
given Dynamic Attribute Grammar DAG = (G = (G4, G, Concrete), A, F) is a tuple AAG =
(Ga, Ag, F) where:

o Ga = (NaaTaa Zaa Pa); Na = Nd; Za = Zd;' Ta - Tdy' Aa = A;'

o P, ={cpg: Xo— Xy X, | 3b € F,((c,pa), R) € R® with pg : Xy — Xi... Xy, €
Pd};

o F, = Upep, Fu(p) is a set of semantic rules, with F,(p) = R such that p = c.ps and
b € F,((c,pa), R) € F°, with F° defined below.

INRIA

Dynamic Attribute Grammars 11

(s.c(cond), true).p, : w=while:STAT ->
cond=cond:COND body=body:EXP w-rec=while:STAT
(s.c(cond), false).p; : w=while:STAT -> cond=cond:COND

Figure 4: Productions of the Abstract AG for the while statement

{(((s.c(cond), true),
w=while:STAT -> cond=cond:COND body=body:STAT w-rec=while:STAT),
h.env(cond) := h.env(w)
h.env(body) dp(h.env(w),s.c(cond))
h.env(w-rec) := dp(s.env(body),s.c(cond))

s.env(w) := dp(s.env(w-rec),s.c(cond))),
(((s.c(cond), false), w=while:STAT -> cond=cond:COND),
h.env(cond) := h.env(w)

s.env(w) := dp(h.env(w),c(cond)))}

Figure 5: Modified semantic rules in the AAG for the while statement

In the previous definition, c.p4 is just a name for a production in AAG which encodes its origins
in DAG: the production (scheme) p,, which is subject to the sequence of guards c. For example,
the two productions in the AAG in figure 4, which corresponds to our example of the while
statement, are the same as in figure 1 except that the production names are prefixed by the
condition which constrain them, as in figure 3.

Let DP be the transformation which, to a given semantic rule of the form f,, x : a(X) :=
exp and a condition e seen as an expression over some attribute occurrences, associates the
modified semantic rule DP(f, . x,¢€) : a(X) := dp(exp, e), where dp is the polymorphic function
defined as dp(z,y) = x. The definition of DP extends to set of semantic rules: DP(R,e) =
{DP(fpax,€) | frax € R}. The purpose of DP is to make sure that a given attribute cannot
be evaluated before condition e, without altering its value.

Definition 2.9 (F°) For each block b, F® is the set of all semantic rules in b, qualified and
modified by the conjunction (path) of conditions that constrain (enable) them and attached to
their respective production:

o 7o ={((e,p), R)}

° f(R,(e,btme,bfazse» —
l@t fbtme == Ui((ciapi)aRi)a
Fraetee = U;((cs,15), By)
in Ui(((e,true).c;, p;), RUDP(R;,e)) UU;(((e, false).c;,pj), RUDP(R;, €)).

Figure 5 presents the productions and modified semantic rules in the AAG for the while
statement.

To summarize, for each block of rules in the DAG, the AAG will contain the production
associated with each leaf in the decision tree of the block, with the set of semantic rules that
appear on the path to the root of this tree, modified to make each “subtree” of rules dependent
on the condition labeling the node.

RR n°2881

12 Didier PARIGOT, Gilles ROUSSEL, Martin JOURDAN, Etienne DURIS

It is clear that, given an “abstract” tree that represents the same recursion scheme as some
computation described by the DAG, the AAG describes the same computation over this tree:
the values of the attributes will be the same and, a posteriori, we can check that the conditions
will have the same values, too. The other additions to the AAG are pure dependencies which
ensure that the evaluation of the conditions and of the attributes alternate in the “right” order.
This point will be further discussed below.

At this point, we can notice that there exist no explicit dependence in the AAG which
account for the “control dependence” between the various conditional expressions. It is quite
possible that the outermost condition be the most contrained (in term of data dependencies).

Definition 2.10 (Evaluation classes) A Dynamic Attribute Grammar is said to belong to
some class (e.g. non-circular, l-ordered, one-pass, etc.) iff its associated Abstract Attribute
Grammar belongs to this class.

3 Visit-Sequence-Based Implementation

3.1 Introduction

As pointed out in the introduction, our extensions to the Attribute Grammar formalism can
easily be added to an existing system based on static-order evaluation methods, such as FNC-2,
without major modifications to the evaluator generator. This is a very attractive result, because
the evaluator generator is the most intricate and most important part of an Attribute Grammar
system. However, as of today, the only evaluation method for which we have studied in detail
the feasibility and correctness of the “plane shift” technique described above is the visit sequence
paradigm [Kas80, Eng84, Kas91|, applicable to [-ordered AGs and, with a very slight extension,
to strongly non-circular AGs [Par88|. Other evaluation methods will be studied in a forthcoming
paper.

The visit sequence is our preferred method because: these evaluators reach the best com-
promise between the time and space efficiency and the generality of the AG class they can
implement; this is the paradigm we have implemented in FNC-2 [JPJ*90] (for the reason just
mentioned and for their versatility); and they are the easiest to transform into functions or
procedures, which gives a base for our studies on the relationships between AGs and functional
programming [PDRJ95].

The basic idea is as follows:

1. We construct the abstract AG corresponding to the given dynamic AG and test or make
sure that it is [-ordered by exhibiting or constructing appropriate totally-ordered parti-
tions (TOPs) of the attributes of each non-terminal.

2. Using these TOPs, we generate a separate visit sequence for each of the productions of
the AAG.

3. Each of the latter productions corresponds to some “guarded production” c.p in the dy-
namic AG. So we reintroduce in each “abstract” visit sequence marks for the evaluation
of the various conditions (guards) of the dynamic production it corresponds to. For each
condition, this is done as early as possible, i.e. as soon as the value of all the attribute
occurrences appearing in the condition are available.

INRIA

Dynamic Attribute Grammars 13

black box

Guard Merge Leave
AAG ——= TOPs 0OS —= ¢g0s ——= C0S —> dvs

ad-hoc

Figure 6: The basic idea

4. We then merge all the visit sequences corresponding to the same block, so as to obtain
a single conditional visit sequence structured just like the decision tree of the block. To
make this possible, we have to make sure that these visit sequences are “compatible”, i.e.
that, for a simple block of the form (R, (e, (pr, Rr), (pFr, Rr))), the part of the guarded
visit sequences for pr and pr that appear before the evaluation of the condition e both
compute exactly the same collection of attribute occurrences. We propose two approaches
to achieve this constraint.

5. We cut this tree of visit sequences in “slices” corresponding to the various visits to the LHS
node, so as to make each slice a separate function, and we reintroduce at the beginning
of each such function the branching code executed in previous visits.

Figure 6 illustrates this process and introduces the abbreviated names of the various objects it
manipulates; these objects will be defined as needed.

The rest of this section is organized as follows. First, we present a couple of definitions and
the “preprocessing” phase which produces the TOPs, together with the classical construction
which produces visit sequences (more precisely, in our case, ordered sequences) from the de-
pendency graphs augmented with these TOPs. Then, we present two approaches to prove that
the ordered sequences we construct are compatible and can be merged. Finally, in the “post-
processing” section, we show how to produce complete evaluators from the ordered sequences,
as outlined above.

3.1.1 Definitions and preprocessing

The definitions of /[-ordered Attribute Grammars, TOPs, augmented dependency graphs and
visit sequences, together with the construction of the latter from the formers, are quite classical
|[Eng84, Alb91|, but we repeat them here for the sake of completeness and because we introduce
ordered sequences which are easier to reason about than visit sequences.

Definition 3.1 (/-ordered Attribute Grammars et al.) Let AG = (G, A, F) be a (classi-
cal) Attribute Grammar, with G = (N, T, Z, P).

e For X € N, a Totally-Ordered Partition (TOP) on X, T, is an ordered sequence Hy(X),
S1(X), Ho(X), S2(X), ..., Huy(X), Suy(X), where nx is the number of visits to X,

such that H(X) = &JlgianHi(X); S(X) = &Jlgignxs’i(X); VZ,l <1 S nX,H,(X) 75 @
and Vi, 1 <1< nyx, S;(X) #0.

o Guwen a production p : Xog — Xi...X,, € P and a family of TOPs Tx,,0 < ¢ < n,
the augmented dependence graph v(p) = D(p)[Tx,, I'x,,---,1x,] is defined as follows:
v(p) = (W(p), E,y(p)) where E,(p) = E(p) U{a(Xi) — b(X;) | 0 <i<nFj1 <5<
nx,, (G, € H](XZ) Ab€E S](Xz)) V(a € S](Xz) Ab e H]—H(Xz))}
RR n°2881

14 Didier PARIGOT, Gilles ROUSSEL, Martin JOURDAN, Etienne DURIS

o The Attribute Grammar AG is l-ordered iff there exists a family of TOPs {Tx | X € N}
such that ¥p € P, v(p) is acyclic.

The problem of finding a family of TOPs such that a given Attribute Grammar is [-ord-
ered for this family is well-known to be NP-complete, but various polynomial, approximate
algorithms have been published [KW76, Kas80, Far83, Par88|.

In the rest of this section, we’ll consider only /-ordered Dynamic and Abstract Attribute
Grammars, for which the family of TOPs {Tx | X € N} is given by some not further specified
method.

Definition 3.2

e Given a(X) € W(p), DD(a(X)) = {b(Y) € W(p) | a(X) « b(Y) € ~v(p)}. Where
necessary, we will qualify DD with the name of the production.

e DD* is the transitive closure of DD. Since v(p) is acyclic, we know that DD (a(X)),
the cone of dependence of a(X), i.e. the set of attribute occurrences on which it transi-
tively depends, is also an acyclic subgraph of ~(p), with a frontier DD*(a(X)) = {u €
DD (a(X)) | DD(u) = 0} such that any path from (a(X)) to an element of the frontier
18 bounded in length.

We extend this notation to sets of attribute occurrences and to expressions over attribute
occurTEncCes.

e An ordered sequence os on p is an ordered subset of W (p) such that the total order on
os respects the partial order v(p).

e An ordered sequence os on p is complete if all a(X) € W(p) appear in os. A complete
ordered sequence is hence a valid evaluation order of all the attribute occurrences in p.

e For a given production p, the set of evaluable attributes after os is the set £(os) =
{a(X) € W(p) | DD(a(X)) C 0s,a(X) & os}.

e The function Pick(E(0s)) = a(X),a(X) € E(0s), is a choice function.

The notion of (complete) ordered sequence will be the basis of the proofs that we can
construct compatible visit sequences. There is a mapping from ordered sequences to visit
sequences and back, to be presented in the “post-processing” section, which preserves the fact
that they respect the order in v(p).

The construction of a complete ordered sequence from an augmented dependency graph is
simply a topological sort, such as performed by the algorithm in figure 7, worded with our
notations.

In our journey from a Dynamic Attribute Grammar to its evaluator, we have reached a
point where we can construct a classical complete ordered sequence for each production of the
Abstract Attribute Grammar. These sequences have no notion of conditions. Reintroducing
the latter in the former will lead to guarded ordered sequences.

Definition 3.3 (Guarded Ordered Sequence) Given a complete ordered sequence os on
p = c.pq € P,, we define the guarded ordered sequence gos = Guard(p, 0s)) as the result of the
Guard transformation, which adds marks for the evaluation of conditions (cond.) in the ordered
sequence, in the same order as in c, and is inductively defined as follows:

INRIA

Dynamic Attribute Grammars 15

08 — €
repeat
compute £(0s);
a(X) «— Pick(E(0s));
0s «— 0s.a(X);
until os is complete

Figure 7: Topological sort of v(p)

Je
]

henv w s.env

A
|
|
|
dp
\\ |
- P N |
henv cond sc henv body senv h.env w-rec s.env henv. cond sc
cond body W-rec cond
Figure 8: The dependencies of the while productions
Guard((s.c(cond), true).p,, 0sp,) =
h.env(w), h.env(cond), s.c(cond), cond;.(ond),
h.env(body), s.env(body), h.env(w-rec), s.env(w-rec), s.env(w)
Guard((s.c(cond), false).p, 0sp,) =
h.env(w), h.env(cond), s.c(cond), cond;c(ond), S-env(w)
Figure 9: Guarded ordered sequences for the while productions
e Guard(s.pg,08) = 0s;
e Guard((e,v).pe,08) = o0s'.cond..Guard(p,0s"), where os = o0s'.0s" with os' such that

DD(e) C os' and Yos, # 0s',08' = 081.089, DD(e) ¢ 0s;.

The definition of Guard ensures that each condition is evaluated as soon as possible, i.e. just
after the evaluation of the last attribute it depends on.

In the modified semantic rules of our while example, presented in figure 5, the polymorphic
function dp adds new dependencies in the dependence graph of each production. Figure 8 shows
the dependence graphs corresponding to (s.c(cond), true).p, and (s.c(cond), false).p;, with new
dp dependences as dashed lines. According to these graphs, we have two associated ordered
sequences, say, 0sp, and 0s,, . S0, the Guard transformation introduce in each of them a mark,
conds c(cond), and leads to the guarded ordered sequences presented in figure 9.

Now, consider a simple conditional block b = (R, (e, (pr, Rr), {pr, Rr))) and the two guar-
ded ordered sequences gosy = Guard(pr,osr) = o0sy.cond,.os} and gosp = Guard(pp,0sp) =

RR n°2881

16 Didier PARIGOT, Gilles ROUSSEL, Martin JOURDAN, Etienne DURIS

0s’p.cond,.os%. which will be constructed for pr and pr. We want to produce a conditional
ordered sequence which will:

1. evaluate the attributes “before” the condition;
2. evaluate the condition;
3. according to the value of the latter, continue with one of the sequences or the other.

To make this possible, we have to make sure that os’. and os’ are compatible, i.e. they contain
exactly the same set of attribute occurrences.

In the next sections, we present two approaches to the construction of ordered sequences
and the proof that they lead to compatible ordered sequences: the first one uses the classical
construction of ordered sequences but requires that we start with a more rigid AAG than
the one presented earlier; the second one starts with the standard AAG but requires that
the construction of ordered sequences is aware of the conditions. Then, we proceed with the
construction of complete evaluators.

3.1.2 The black-box approach

Here is the fundamental theorem that we want to prove:
Theorem 3.1 Given a block b = (R, (e, (p1, Rr), (p2, Rr))) which induces:
o pr = (e,true).pi,pr = (e, false).py € P,,
e ost and osp the ordered sequences generated by the topological sort algorithm,

e gosy = Guard(pr, 0st) = 0syp.conde.os] and gosp = Guard(pr, 0sp) = 0sy.cond,.os’y. the
corresponding guarded ordered sequences,

if Pick is a deterministic function, then osf, = 0s'.

It means that, if, to generate the individual ordered sequences, we use an unmodified* traditional
generator, provided—and this condition will easily be met in practice—that this generator is
deterministic, then these sequences will be compatible. We actually have the stronger result
that the subsequences between two conditions will be identical, rather than simply compatible.

Unfortunately, with the standard AAG defined above, it is impossible to prove this theo-
rem. Indeed, we may encounter the following problem. Suppose that, in some block b =
(R, (e, (pr, Rr), (PF, RF))), a non-terminal X appears only in production py and s is a purely-
synthesized attribute attached to X (i.e. s depends on no other attribute of X in the TOP).?
Then, the classical topological sort algorithm may decide to pick s(X) before e is ready for
evaluation, in which case the evaluation of s(X) will occur in os/.. Since s(X) does not occur
at all in gosp, os and os’. will certainly not be compatible.

Hence, to prove our theorem, we have to impose some further conditions on the dynamic AG
and slightly modify the abstract AG that is associated with it. However, these conditions will
easily be met or achieved in practice, so this does not reduce the interest of this approach. The
next section will present another approach which does not require these additional constraints
but requires to modify the ordered sequences generator.

“Hence the “black box” name for this approach.
5The example in figure 16 below illustrates this case.

INRIA

Dynamic Attribute Grammars 17

The abstract AG that we will hand over to our “black box” is not the one defined above but
a slight enrichment of it:

Definition 3.4 (Extended Abstract AG) The Extended Abstract Attribute Grammar for
a given Dynamic Attribute Grammar DAG = (G = (G4, G.,Concrete), A, F) is a tuple EAAG =
(Ga, Aa, F) where

o Gy = (NaaTaa Za> Pa); N, = Nd,'Za = Zd;' T, = Td;'

o A, =Uxen, Au(X), where Ay(Z,) = A(Zs) and VX € Ny, X # Za, Aa(X) = A(X)U{x};
X 18 a new boolean inherited attribute;

° Paz{c.pd:X0—>X1...and | 3b € F,((c,pa), R) € R® with pa: Xo — X1...X,,}

o F, = Upep, Fu(p) is a set of semantic rules, with F,(p) = R such that p = c.ps and
3b € F,((c,pa), R) € FL, with F? defined below.

X7

Definition 3.5 (F?) For each block b, F? is the set of all semantic rules in b, qualified and

modified by the conjunction (path) of conditions that constrain (enable) them.
Let F; the transformation which is inductively defined as follows:

o 7((p, R)) = {((s,p), B)}

o F((R,{e,br,bp))) =
let Fy(br) = U;((ci, i), Ri), Folbr) = U;((cs,p5), By),
Ve =N; RHS(p:), Ve =N; RHS(p;), V =VrN Vg,
or = U; (((e, true).ci, p;), RU DP(R;,e) U Ry(p;, Vi — V. e)),
or = U; (((e, false).c;,p;), RUDP(R;,e) U Ry(pj, Vi — V, €))
in ¢rUor
where, given a production p, a set of names V. C RHS(p) and a condition e over p,

Ru(p.V.e) = {x(X):=¢| X € V}.

Then F2 = {((¢,p), T(R)) | ((¢,p), R) € Fx(b)}, where T (R) is derived from R by the following
transformations:

e for each X € RHS(p) such that there is no rule in R defining x(X), add the semantic
rule x(X) := x(LHS(p)) (when LHS(p) = Z, add x(X) := true);

o if LHS(p) # Za, for each s € S(type,(LHS(p))), transform its definition s(LHS(p)) :=
exp into the rule s(LHS(p)) := dp(exp,x(LHS(p))).

Figure 10 shows the dependence graphs for productions while of our example, modified
by F. (the dependencies related to the x attribute appear in bold). This example is not very
significant, but we can see that, for each non-terminal in the RHS of a production, all its
synthesized attributes depend on its x attribute. This attribute depends either on the value of
the condition (if the non-terminal it is attached to is not in the intersection of the productions)
or on the value of x on the LHS of the production.

The differences with the original AAG construction, based on transformation F, are as
follows:

RR n°2881

18

Didier PARIGOT, Gilles ROUSSEL, Martin JOURDAN, Etienne DURIS

: ;

X henv W senv

Se T 7 N\

dp~ *|=" :

|

| H/
dp

X henv W-rec senv X henv cond sc

M _/’4 ~~ \/%

d~p~5 ¢’ dp~~ "'
Q.-—f S =

Figure 10: Dependences of the while productions with the x attribute

1. Addition of the x attributes. x(X) is an attribute occurrence whose value is irrelevant but
which becomes evaluable only when you have the right to reference X; in particular, if
X appears in only one of the alternatives of a conditional production, referencing X is
only meaningful after the evaluation of the condition, so x(X) depends on the condition.
Thus, although it was introduced mainly for technical reasons (see below), this attribute
has the semantic role to concretize the existence of the tree node it is attached to.

2. Addition of dependencies of all synthesized attributes of all non-terminals on their respec-
tive x attributes (except for the root non-terminal). This ensures that no visit to a node
can occur before its x attribute is evaluated.

3. Addition of “control” dependencies. Consider some non-terminal name X in a simple
block b = (R, {e, {pr, Rr), (pr, Rr))). As shown above, if X is not in the intersection of
pr and pr, we want to forbid that it is visited before the evaluation of the condition e.
The rules added by the calls to R, in transformation F;, precisely enforce this constraint.

This, of course, is a restriction, since it will lead to the rejection of some [-ordered DAGs
which can be handled by other methods (in particular the ad hoc approach of next section).
The DAGs which will be rejected are those in which there exists a conditional production
and a RHS non-terminal such that the condition depends on some of its attributes (say,
those of the first visit) but the definition of some other of its attributes (say, those of the
last visit) depends on the condition; in this case, the introduction of the x attribute and
its dependence on the condition will create a circularity.

Unfortunately, there is no way to relax this restriction, because the black box approach
gives no “source-level” way to distinguish, using only the local dependencies, the attributes
of some RHS non-terminal which really depend on the condition from those of the same
non-terminal which don’t. Hence, we have to enforce that a given RHS name is either
entirely in the common part—in which case none of its attributes may depend on the
condition—or entirely in one of the specific parts—in which case all of its attributes will
depend on the condition.

INRIA

Dynamic Attribute Grammars 19

Note that, when a block contains two nested conditions, the R, rules generated for the
inner one will be correctly processed by the DP transformation for the outer one, so that
the corresponding x attributes will depend on both conditions.

Now we are ready to prove our theorem.

Proof 3.1 The demonstration follows the steps of the topological sort algorithm and proceeds
by induction on the length of the ordered sequences.

First of all, notice that DD,,(e) = DD,,(e). Indeed, if the DAG is well-formed, e is
an expression over attribute occurrences which must be well-formed in both pr and pr, so the
elements of, say, DD,,(e), which are exactly the occurrences appearing in the expression e, must
also exist in pp, and vice-versa. So it makes sense to forget about pr or pr when reasoning
about DD(e).

Induction hypothesis: Fither e is evaluable or os} = osy, C W{(pr) N W (pr), where n is the
length of the ordered sequences.

o Initial Step: 0s% = 0s% =0, QED.

o Induction Step: Assume that the induction hypothesis is true after step n.

If DD(e) C os} = o0s}, e is evaluable and the induction terminates.

Otherwise, we note
Er = E(osy,pr) = {a(X) € W(pr) | DDy, (a(X)) C ost,a(X) & os7}

and

Er = E(0sy, pr) = {a(X) € W(pr) | DDy, (a(X)) C 0sf, a(X) & o5}
We want to show that Er = Ep C W (pr) "W (pr), knowing that os}. = os} and DD(e) ¢
08} = 0S'p.

Let a(X) € Er, let’s show that a(X) € Ep too. There are two cases:

a(X) € Wy(pr): Let’s first show that X € pr N pp.
i. If X = LHS(pr), this is true by definition.
i. If X € RHS(pr), then a € S(type,,. (X)) and, by virtue of 72, DD, (a(X)) # 0,
since it contains at least x(X).6 Since a(X) is ready for evaluation, x(X) €
0s} = osp. If X & pr N pp, by virtue of the rules in Ry(pr,pr — (pr N pr),€)

in the EAAG, x(X) depends on e, which contradicts the hypothesis that e is not
evaluable.

Since X € prNpr and, by definition, it has the same type in both productions, the Tx
used in y(pr) is the same as in y(pr). Thus, since, a(X) being an input occurrence,
all its dependencies are in Tx, we have DD,,(a(X)) = DD,,(a(X)) C os} = os’,
which implies that a(X) € Ep.

a(X) € Wy(pr): Fither a is the x attribute of some RHS name or the semantic rule f,; . x
which defines a(X) is in RU Rr.

6This is the technical point which mandates the introduction of the x attributes.

RR n°2881

20 Didier PARIGOT, Gilles ROUSSEL, Martin JOURDAN, Etienne DURIS

given v(p) where p = c.pq = (e1,t1).(e2,t2) ... (en, t,).pa do
08 +— ¢€; 1« 0;S «— 0;
repeat
1—1+1;
ifi=n+1then S — W(p)
else S« SUDD(e;) — dependency cone of the condition
repeat
compute E(0s); — the set of attributes ready for evaluation
a(X;) « Pick(E(os) N S);
0s «— o0s.a(X;);
until E(os)NS =0
until os is complete.

Figure 11: Conditional topological sort of W(p).

i. Ifa =%, if X & prNpp, the same reasoning as ii above leads to a contradiction.
So, X € pr N pr and x(X) depends only on x(LHS(pr)), which is the same as
x(LHS(pr)).”

. If fprax € Rr, it has been processed by the DP(Ry, e) transformation in Fy, so
DD(e) C DD,,(a(X)); this contradicts our assumption that e is not evaluable,
50 fopax € R, which implies X € pr Npr and fo,ax = forax. These two
facts imply that a(X) depends on the same attributes in pr as in pr, because all
its dependencies are either in the semantic rule or in (the same) Tx.

In all cases, we conclude that a(X) € Wy(pp) with the same definition and depen-
dencies as in pr, hence DD, (a(X)) = DD,,(a(X)) C os} = osh and, as above,
CL(X) € SF.

Since the above reasoning is obuviously symmetrical in pr and pr, we have shown that
Er = Er C W(pr) N W(pr). Then, if Pick is deterministic, Pick(Er) = Pick(Ep) =
a(X) € W(pr) "W (pr) and osi™ = o0s%.a(X) = osh.a(X) = osi™ € W(pr) N W (pr),
which concludes the proof of the induction step.

This proof obviously extends to blocks with a decision tree of height greater than one.

3.1.3 The ad-hoc approach

In this section, we present the second approach to ensure that the visit sequences for a simple
block are compatible. Unlike the black-box approach, it works with the standard AAG definition
but it requires some modification to the topological sort which is used to produce the ordered
sequences. More precisely, this modified topological sort is aware of the conditions. The basic
idea of this modification is to reduce at each step the set of attribute occurrences to be ordered
to only those that are necessary to compute the next condition. The modified algorithm is
given in figure 11.

"In a more general block, this translates into “x(X) depends only on conditions higher in the decision tree
than €”, which apply to both pr and pg.

INRIA

Dynamic Attribute Grammars 21

When we use this algorithm on the dependency graphs augmented with the TOPs derived
from the original AAG, we have a theorem equivalent to that of the first approach, stating that
the visit sequences for a simple block are compatible. To prove this theorem we will use the
two following lemmas.

The first one is the most important: it shows that, before the evaluation of some condition,
on each production subject to this condition, the topological sort algorithm orders exactly the
same set, of attribute occurrences.

Lemma 3.2 For a given block b = (R, (e, (pr, Rr), (pr, Rr))), we have DD (¢) = DD}, (e).

Proof 3.2 We will reason by recurrence about the transitivity of dependences in DD .

Initial step: DD,,(e) = DD, .(e)
Indeed, if the DAG is well-formed, e is an expression over attribute occurrences which must
be well-formed in both pr and pr, so the elements of, say, DD, (e), which are exactly the
occurrences appearing in the expression e, must also exist in pr, and vice-versa.

Used occurrence step: ’D’D;T(e) = DD;F (e)
For each a(X) in DDy, (e), a(X) must be an input (or used) occurrence in pr, and X
must appear both in pr and pp. Thus, since type,,(X) = type,.(X) = types(X), the
same Tx is used both in v(pr) and in v(pr). So we have DD, (a(X)) = DD, (a(X)).
Furthermore, since a(X) is an input occurrence in pr, all its direct dependencies are in
Tx: Vb(Y) € DD, (a(X)), Y = X.

Defined occurrence step: DD, (¢) = DD, (e)
Now, suppose that, with a(X) as in previous step, there exists an attribute occurrence
b(X) in DD,,(a(X)) such that DD,, (b(X)) # DD, (b(X)).
Since a(X) € Wy(pr), b(X) € Wu(pr) and the direct dependencies of b(X) (the elements
of DD,,.(b(X))) are induced either by the TOP Tx or by the semantic rule defining b(X).
The difference between DD, (b(X)) and DD,,(b(X)) cannot come from Tx because the
same is used both in v(pr) and in y(pr). Hence b(X) must be defined by different seman-
tic rules in pr and pp, which implies that f,,» x € Rr.
But then, this semantic rule must have been processed by the DP(Rr,e) transformation
in F, so b(X) «— e. However, by hypothesis, we also have e «+— a(X) «— b(X), so there
exists a circularity in v(pr) and v(pr). Since the AAG is supposed to be l-ordered, this
leads to a contradiction.
Hence, for all a(X) € DD, (e), for allb(X) € DD, (a(X)), DD,,(b(X)) = DD, (b(X)).

Recurrence
Since it is equivalent to reason about pr or pg, these two last steps can be alternatively
applied as long as there exists some unexplored dependencies in DD;FT(e) to show that
Vn, DD, _(e) = DD, _(e). Then, since DD, _(e) is acyclic and finite, we can conclude that
DD;T (e) = DD;F (e). QED.

The following lemma proves that the algorithm described in figure 11 terminates and that
it will never encounter a deadlock situation.

Lemma 3.3 For all executions of the conditional topological sort, if S* and os® are the values
of S and os at the end of the i-th inner loop, 1 < i < n, we have S* = os".

RR n°2881

22 Didier PARIGOT, Gilles ROUSSEL, Martin JOURDAN, Etienne DURIS

Proof 3.3
0s' C S* by construction.

St C os® by contradiction: Let’s assume that, at the end of the i-th inner loop, 3z € S =
Uj<: DD*(e;) such that x & os.

- Since the loop has ended, £(0s)N S = 0, which implies that x ¢ E(0s). By definition
of € and the assumption that © & os, we infer that DD(x) ¢ os. Furthermore, by
definition of DD (notion of transitivity), v € DD (e) = DD(x) C DD*(e), which
implies © € U;<; DD*(e;) = DD(z) C U;j<; DD (e;). So Ja € DD(x),a & 0s,a €
S.

- But a & £(0s), since E(os)NS =0 (loop hypothesis). So a € DD(x) is exactly in the
same situation as our hypothetical x and we can apply the same reasoning to show
that 3b € DD*(x),b & 0s,b € S and, by induction, Yn > 0,3c € DD"(x),c &€ 0s,c €
S.

- But, since y(p) is acyclic, Ing > 0,Vd € DD™(z), DD(d) = 0, which contradicts the
fact that d & os. QED.

Theorem 3.4 Given a block b = (R, (e, (p1, Rr), (p2, Rr))) which induces:
e pr = (e, true).p; and pr = (e, false).ps € P,
e ost and osy the ordered sequences generated by the conditional topological sort algorithm,

e gosr = Guard(pr, osr) = 0sp.cond,.os]. and gosp = Guard(pp, 0sp) = 08p.cond..os" the
corresponding guarded ordered sequences,

if Pick is a deterministic function, then osf, = 0s'p.

Proof 3.4 By lemma 3.2, DD, (e) = DD, (e). Furthermore, since the conditional topological
sort algorithm runs without deadlock until it ezhausts DD (e) (lemma 3.3) and Pick is a
deterministic function working on identical sets, osy = 0s".

3.1.4 DPost-processing

Both methods described above (black-box and ad-hoc) lead the evaluator generator to produce
compatible quarded ordered sequences gos for all productions c.p of an AAG. In this section we
show how to produce a complete evaluator from this collection.

Definition 3.6 (Conditional Ordered Sequence) For a given b € F, let V° be the set of
pairs (c.p, gos) where c.p € PR® and gos is its associated guarded ordered sequence. If all gos
in V® are compatible, the conditional ordered sequence cos associated with b is the result of the
Merge transformation over V°, defined as follows:

if Vb= {(p,os)}then Merge(V®) = os
else let Vi and Vg be the two following sets:
Vi = {(c;.ps, gost) | (c.pi, gos;) € VO, c.p; = (e, true).c;.p;, gos; = 0s;.cond,.gos}

Vi = {(c;.pj, gos;-) | (c.pj, gos;) € 1% c.pj = (e, false).cj.p;, gos; = Osj.conde.gosg-}
in Merge(V®) = os.(e, (Merge(Vr), Merge(Vr))), where os = os; = 0s;. INRIA

Dynamic Attribute Grammars 23

h.env(w), h.env(cond), s.c(cond),
(s.c(cond),
(h.env(body), s.env(body), h.env(w-rec), s.env(w-rec), s.env(w)),

(s.env(w) })

Figure 12: Conditional ordered sequence for the while block

Since the guarded ordered sequences given in figure 9 are compatible, we can construct the
conditional ordered sequence for the while block presented in figure 12.

In the same way as, in classical Attribute Grammars, the evaluator generator constructs a
visit sequence from a given ordered sequence, it now constructs a conditional visit sequence from
a given conditional ordered sequence. In order to explain how this conditional visit sequence
can be exploited, we will quickly recall the classical notion of evaluators based on the visit
sequence paradigm |[Kas80, Alb91, Kas91|. There exists one visit sequence per production p,
which is a sequence of instructions drawn from the following set:

begin i: begin the i-th visit to the current node.

eval a(X): evaluate the attribute occurrence a(X); the attributes on which a(X) depend are
guaranteed to be available.?

visit 4, X: perform a recursive visit (the i-th one) to son X of the current node (X € V,);
on that son, fetch the applied production and jump to the begin ¢ instruction in the
corresponding visit sequence.

leave i: terminate the current (i-th) visit of the current node and return to its father; continue
on the father with the instruction following the visit ¢, X which caused the current visit
to begin.

The algorithm producing a (classical) visit sequence from a given ordered sequence is given
in figure 13.° It makes use of the following auxiliary definition.

Definition 3.7 Given a production p and a complete ordered sequence os on W(p), let S be
some subset of W (p). Then:

L ifS=0

L t S = .
ast(0s, 5) { w otherwise, where os = 0s’.w.0s",w € S,0s" NS =10

1 ifS=0

F' = .
irst(os, S) { w otherwise, where 0s = os'.w.0s",w € S,08 NS =)

The visit sequences corresponding to the (plain) ordered sequences!® for the while produc-
tions are given in figure 14.

8This eval instruction is often extended to handle sets of attribute occurrences which are simultaneously
evaluable; this is more convenient when the topological sort algorithm is also able to handle sets—the elements
of the TOPs—rather than individual attributes in the graph. In this paper however, all our algorithms deal
with individual attributes; so will the eval instruction.

9The advised reader will have noticed that the last visit to some son X may be forgotten is this visit is
purely inherited, i.e. if S,, = 0. We believe that such non-productive visits are useless, at least in the case of
Dynamic AGs, so we didn’t bother to fix this.

19The ordered sequences were not given previously but they can be easily derived from their guarded coun-
terparts presented in figure 9.

RR n°2881

24

Didier PARIGOT, Gilles ROUSSEL, Martin JOURDAN, Etienne DURIS

Given p and os do
N NLHS(p) — number of wisits to p
vs « begin 1;
repeat
a(X) < head(os);
if X =LHS(p)Aa € S;(X) then
vs «— vs.eval a(X);
if a(X) = Last(o0s,S;(X)) Ai # n then
vs «— vs.leave i.begin i+ 1 fi
elsif X # LHS(p) Na € H;(X) then
vs « vs.eval a(X)
elsif X # LHS(p) A a(X) = First(os, S;(X)) then
vs «— vs.visit j, X
fi; 0s « tail(os)
until os = ¢;
vs < vs.leave n.

Figure 13: Algorithm to produce a visit sequence from an ordered sequence

For p,:
begin 1; eval h.env(cond); visit 1, cond;
eval h.env(body); visit 1, body;
eval h.env(w-rec); visit 1, w-rec;
eval s.env(w); leave 1.
For p;:
begin 1; eval h.env(cond); visit 1, cond;
eval s.env(w); leave 1.

Figure 14: Plain visit sequences for the while productions

INRIA

Dynamic Attribute Grammars 25

begin 1; eval h.env(cond); visit 1, cond;
(s.c(cond),

(eval h.env(body); visit 1, body;
eval h.env(w-rec); visit 1, w-rec;
eval s.env(w); leave 1),

(eval s.env(w); leave 1)).

Figure 15: Conditional visit sequence for the while block

The visit-sequence construction algorithm extends in an obvious way to more structured
versions of ordered sequences, namely guarded and conditional ordered sequences.

Definition 3.8 (Conditional visit sequence) For a given block b and its associated condi-
tional ordered sequence cos, the conditional visit sequence cvs is the result of the visit-sequence
construction algorithm over cos.

The conditional visit sequence for the while block, derived from the conditional ordered se-
quence in figure 12, is given in figure 15.

The visit sequences are easy to implement as recursive procedures which leave some state
information and attribute values at the tree nodes they traverse [Kas91]. Well-known works on
storage optimisation [Kas87, JP90| help reduce the total amount of needed memory but also
the proportion of attributes which must be stored in the tree. It is important to notice that the
most effective of these techniques, which are based on a static analysis of the whole collection
of visit sequences [JP90|, also apply to our Dynamic AGs (conditional visit sequences) because
they don’t rely on the sequence selection mechanism.

Another implementation, more appropriate for our future research works, is the wvisit func-
tion paradigm [SV91]|. An important property of this implementation is that, when we use the
above storage optimisation techniques and, as a last resort, the binding tree [SV91] technique,
no attribute needs to be stored in the tree anymore. It is hence quite appropriate for the
implementation of Dynamic AGs, in which the physical tree need not be isomorphic to the
computation tree or even exist at all.

A last step is required before we can generate visit functions, though. Indeed, in the classical
approach, there is one visit function per visit to some non-terminal, which tests the production
which is applied at the root of the argument subtree and branches to the appropriate sub-
sequence (delimited by begin i and leave i). In Dynamic AGs, however, the appropriate
sub-sequence depends not only on the production applied at the root of the argument subtree
(which may not exist at all) but also on the path of conditions which have been evaluated in
previous visits. So, when we cut a conditional visit sequence into “slices” corresponding to the
various visits to the LHS, we need to reintroduce in each of them the branching code executed
in previous visits. This is the purpose of the Leave transformation defined below, which will
produce a dynamic visit sequence directly transformable into a collection of visit functions.

Definition 3.9 (Dynamic Visit Sequence) For a given block and its associated conditional
visit sequence cvs, the dynamic visit sequence dvs is the result of the Leave transformation
over cvs, defined as follows:

o if cond & cus then Leave(cvs) = cvs;

RR n°2881

26 Didier PARIGOT, Gilles ROUSSEL, Martin JOURDAN, Etienne DURIS

o if cus=ws.(e{vsr,vsF)) and cond & vs
then Leave(cvs) = vs.Leave(e{vsr,vsF));

o if cus = (e(vsr,vsp)), with:
Leave(vsy) = vsr.leave.vss with leave & vsh
Leave(vsp) = vsh.leave.vss with leave & vsh
then if vs2 =wsk =¢
then Leave(cvs) = (e{vsk, vsh)).leave

else Leave(cvs) = (e(vsh,vsk)).1leave.Leave({e{vsh, vsh)).

Because of our while example is not significant enough to illustrate this transformation
(there is only one visit), we show in figure 16 the dependency graphs for two productions of
an imaginary abstract AG. These productions depend on a condition over a purely synthesi-
zed attribute of a variable common to both productions, s(W). If this condition is true, then
p: is applied, otherwise it is p;. In figure 17 we present successively the conditional ordered
sequence associated with these productions, the corresponding conditional visit sequence (pro-
duced by the Visit transformation) and the dynamic visit sequence (produced by the Leave
transformation).

It is clear how to turn such dynamic visit sequences into collections of visit functions, pro-
vided that the values of the various conditions computed in one visit are correctly transmitted
to subsequent visits as non-temporary local attributes. Also note that some of these condition
values to pass from one visit to the next may be undefined, but this is no problem since all the
values which will actually be used in the branching code will have been correctly computed.

This concludes the construction of visit-sequence-based evaluators for Dynamic Attribute
Grammars. As for traditional AGs, these evaluators are as efficient as possible. When the
dynamic AG is evaluable in one pass, the generated visit functions are the same as what you
could write by hand in any language with recursive functions; however, when dependencies are
more complicated, hand-writing the evaluator is close to impossible, unless you use some sort
of delayed evaluation mechanism—e.g. lazy evaluation of functional programs—, but then our
eager evaluators are more efficient. See [PDRJ95| for a longer discussion of this topic.

4 Conclusion

In this paper we have argued that in the term “Attribute Grammar” the notion of grammar does
not necessarily imply the existence of an underlying tree, and that the notion of attribute does
not necessarily mean decoration of a tree. We have presented Dynamic Attribute Grammars, a
new, simple extension to the Attribute Grammar formalism which allows the full exploitation of
the power of this observation. They are consistent with the general ideas underlying Attribute
Grammars, hence we retain the benefits of the results and techniques that are already available
in that domain.

Our goal in providing these extensions to the Attribute Grammar formalism is to bring this
powerful tool into a larger context of usefulness and applicability. The Attribute Grammar
programming style (declarative and structured) and existing Attribute Grammar techniques
(static analysis) become more general under this extended view and reveal themselves as com-
plementary to other formalisms such as functional programming or inference rule programming

[PDRJ95|.
INRIA

Dynamic Attribute Grammars 27

R R
RN RN
h X s r h X s r
h Y s r h W s r h W s r

Figure 16: An example of dependence graph

s(W),

(cond, — condition over s (W)
(s(Y), s(X), h(X), h(Y), h(W), r(Y), r(W), rX)),
(s(X), h(X), h(W), (W), r(X)))

(a) The conditional ordered sequence

begin 1; visit 1, W;
(cond,
(visit 1, Y; eval s(X); leave 1;
begin 2; eval h(Y); eval h(W); visit 2, Y;
visit 2, W; eval r(X); leave 2;),
(eval s(X); leave 1;
begin 2; eval h(W); visit 2, W; eval r(X); leave 2;))

(b) The conditional visit sequence

begin 1; visit 1, W;
(cond ,
(visit 1, Y; eval s(X);),
(eval s(X);))
leave 1;
begin 2;
(cond,
(eval h(Y); eval h(W); visit 2, Y; visit 2, W; eval r(X);),
(eval h(W); visit 2, W; eval r(X);))
leave 2;

(¢) The dynamic visit sequence

Figure 17: Example of Visit and Leave transformations

RR n°2881

28

Didier PARIGOT, Gilles ROUSSEL, Martin JOURDAN, Etienne DURIS

This approach is of practical interest because, as we have shown in detail, the mechanisms
necessary to support Dynamic Attribute Grammars were already part of the FNC-2 system,
which has proved its usefulness on real applications; this made their implementation easy. It
is also promising because it opens the way to the application of good results developed for
Attribute Grammars to other programming paradigms.

References

[A1b91]

|AMO1]

[Att89]

[Boy96]

[CFZ82]

[DJ9O]

[DJL8S

|Eng84]

[Far83|

[Far86]

[Fil83]

Henk Alblas. Attribute evaluation methods. In Alblas and Melichar [AM91], pages
48-113.

Henk Alblas and Botivoj Melichar, editors. Attribute Grammars, Applications and
Systems, volume 545 of Lect. Notes in Comp. Sci., Prague, June 1991. Springer-
Verlag.

Isabelle Attali. Compilation de programmes TYPOL par attributs sémantiques. PhD
thesis, Université de Nice, April 1989.

John Boyland. Conditional attribute grammars. ACM Transactions on Programming
Languages and Systems, 18(1):73-108, January 1996.

Bruno Courcelle and Paul Franchi-Zannettacci. Attribute Grammars and Recursive
Program Schemes (i and ii). Theor. Comp. Sci., 17(2 and 3):163-191 and 235-257,
1982.

Pierre Deransart and Martin Jourdan, editors. Attribute Grammars and their Appli-
cations (WAGA), volume 461 of Lect. Notes in Comp. Sci., Paris, September 1990.
Springer-Verlag.

Pierre Deransart, Martin Jourdan, and Bernard Lorho. Attribute Grammars: Defini-
tions, Systems and Bibliography, volume 323 of Lect. Notes in Comp. Sci. Springer-
Verlag, August 1988.

Joost Engelfriet. Attribute grammars: Attribute evaluation methods. In Bernard
Lorho, editor, Methods and Tools for Compiler Construction, pages 103-138. Cam-
bridge University Press, 1984.

Rodney Farrow. Covers of attribute grammars and sub-protocol attribute evaluators.
Technical report, Department of Comp. Sc., Columbia University, New York, NY,
September 1983.

Rodney Farrow. Automatic Generation of Fixed-point-finding Evaluators for Cir-
cular, but Well-defined, Attribute Grammars. In ACM SIGPLAN ’86 Symp. on
Compiler Construction, pages 85-98, Palo Alto, CA, June 1986.

Gilberto Filé. Interpretation and reduction of attribute grammars. Acta Informatica,
19:115-150, 1983. See also: memorandum 359, Onderafdeling der Informatica, Tech.
Hogeschool Twente (1981).

INRIA

Dynamic Attribute Grammars 29

[Jou92]

[TP90]

[JP93]

[IPI*+90]

|Kas80|

|Kas87|

[Kas91]

[Knu68|

[KW76]

[Paa95|

[Par88]

[PDRJ95]

[PDRJ96]

[SVo1]

RR n°2881

Martin Jourdan. Des bienfaits de [’analyse statique sur la mise en ceuvre des
grammasres attribuées. Mémoire d’habilitation, Département de Mathématiques et
d’Informatique, Université d’Orléans, April 1992.

Catherine Julié and Didier Parigot. Space Optimization in the FNC-2 Attribute
Grammar System. In Deransart and Jourdan [DJ90|, pages 29-45.

Martin Jourdan and Didier Parigot. The FNC-2 System User’s Guide and Reference
Manual. INRIA, Rocquencourt, 1.9 edition, 1993.

Martin Jourdan, Didier Parigot, Catherine Julié, Olivier Durin, and Carole Le Bellec.
Design, implementation and evaluation of the FNC-2 attribute grammar system. In
ACM SIGPLAN ’90 Conf. on Programming Languages Design and Implementation,
pages 209-222. White Plains, NY, June 1990. Published as ACM SIGPLAN Notices,
volume 25, number 6.

Uwe Kastens. Ordered attribute grammars. Acta Informatica, 13(3):229-256, 1980.
See also: Bericht 7/78, Institut fiir Informatik II, University Karlsruhe (1978).

Uwe Kastens. Lifetime analysis for attributes. Acta Informatica, 24(6):633-652,
November 1987.

Uwe Kastens. Implementation of visit-oriented attribute evaluators. In Alblas and
Melichar [AM91], pages 114-139.

Donald E. Knuth. Semantics of context-free languages. Math. Systems Theory,
2(2):127-145, June 1968.

Ken Kennedy and S. K. Warren. Automatic generation of efficient evaluators for
attribute grammars. In 3rd ACM Symp. on Principles of Progr. Languages, pages
32—-49. Atlanta, Ge, January 1976.

Jukka Paakki. Attribute grammar paradigms — A high-level methodology in lan-
guage implementation. ACM Computing Surveys, 27(2):196-255, June 1995.

Didier Parigot. Transformations, évaluation incrémentale et optimisations des gram-
maires attribuées: le systéme FNC-2. PhD thesis, Université de Paris-Sud, Orsay,
May 1988.

Didier Parigot, Etienne Duris, Gilles Roussel, and Martin Jourdan. Attribute gram-
mars: a declarative functional language. Rapport de recherche 2662, INRIA, October
1995.

Didier Parigot, Etienne Duris, Gilles Roussel, and Martin Jourdan. Les grammaires
attribuées: un langage fonctionnel déclaratif. In Journées Francophones des Lan-
gages Applicatifs 96, pages 263-279, Val-Morin, Québec, January 1996. Aussi dans
les Actes des journées du GDR Programmation 95.

S. Doaitse Swierstra and Harald H. Vogt. Higher Order Attribute Grammars. In
Alblas and Melichar [AM91], pages 256-296.

/<

Unité de recherche INRIA Lorraine, Technop6le de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhone-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1
Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

