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DYNAMICAL MESH ADAPTION CRITERIA
FOR ACCURATE CAPTURING
OF STIFF PHENOMENA IN COMBUSTION

Pénélope LEYLAND, Fayssal BENKHALDOUN
Nathan MAMAN, Bernard LARROUTUROU

Abstract

Adaptation criteria for dynamical mesh refinement algorithms aimed for simulating unsteady
phenomena are studied in this paper. The applications considered here mainly concern pre-
mixed laminar flame propagation in gaseous mixtures, solved by means of a finite-element
method in space and explicit time-stepping.

CRITERES POUR L’ADAPTATION
DYNAMIQUE DE MAILLAGES
ET APPLICATION A DES PROBLEMES DE COMBUSTION

Résumé

Nous étudions dans ce rapport les critéres d’adaptation de maillage pour des algorithmes de
raffinement-déraffinement dynamique. Les applications considérées concernent notamment la
simulation de flammes prémélangées instationnaires en milieu gazeux, sur des maillages de type
éléments finis, avec une intégration temporelle explicite.
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Abstract

Adaptation criteria for dynamical mesh refinement algorithms aimed
for simulating unsteady phenomena are studied in this paper. The
applications considered here mainly concern premixed laminar flame
propagation in gaseous mixtures, solved by means of a finite element
method in space and explicit time-stepping.

Introduction

Premixed flame simulation is a particularly hard problem: the governing
equations include as a sub-system a non-linear parabolic system with a high
degree of stiffness coming from the very different space and time scales. In
particular, the reaction takes place within a zone with a characteristic width
ten times smaller than the typical flame thickness, which itself is very small
compared to the global domain dimensions.

*IMHEF, Ecole Polytechnique Fédérale de Lausanne, Ecublens, 1015 Lausanne,
SWITZERLAND

'INSA - Rouen, Place Emile Blondel, 76131 Mont Saint Aignan Cedex, FRANCE

{INRIA, BP 93, 06go2 Sophia-Antipolis Cedex, FRANCE

$CERMICS & INRIA, BP 93, 06902 Sophia-Antipolis Cedex, FRANCE



A sufficient density of mesh points within these zones is required to cal-
culate the flame accurately enough and hence to obtain a correct physical
behaviour. Indeed, if a too coarse mesh is used, in comparison with the
typical flame thickness, the variables will be averaged in the sharp gradients
regions, which may result in a false flame speed, or may even extinguish the
flame.

Moreover, the flame propaga.tes through a gas, and there exists a cou-
pling between the combustion process and the underlying hydrodynamics,
the latter having again different characteristic time and length scales.

1 Motivatioln and “The state of the art”

An efficient resolution of this kind of unsteady problems can be done by using
the possibilities offered by the techniques of local refinement of unstructured
meshes, for example triangulations in two dimensions or tetrahedrisations in
three dimensions. Then, treated by a refinement/unrefinement procedure,
these adapted meshes can follow the flame front, allowmg ronvetgence accel-
eration and greater accuracy.

In order to do this, we extract from the modelisation and the approxi-
mation method a function, called the criterion, which indicates at each time
level t the regions where greater accuracy is required: discontinuities, high
gradients, preheating regions, reaction zones, etc. Also, at least in principle,
this function should be able to detect weaker secondary wave formation.

The mesh is thus locally refined in these zones, and as soon as for some
t' > t this function indicates that the flame has moved, the previously refined
regions of the mesh now useless are coarsened and new ones may be refined,
and so on. In, this way several time steps may be performed on the same
mesh, the criterion representing the key indication in this process.

1.1 Finite element mesh adaptation methods "

Appropriate algorithms to obtain this iterative remeshing are independent of
the problem under consideration, but the criterion is very closely related to
it. The algorithm developed here is based upon a multiple level hierarchical
data tree structure, such as those used in multigrid methods,(see e.g. [7], (8],



[39]), and multigrid methods based on adaptive, non necessarily embedded/
nested grids ([2], [6], [29], etc.)

Internal flagging simplifies the structure of the algorithm, which renders a
mesh that can be read by the solver in an usual direct way using counectivity
tables, global numbering sequences, etc. This adaptive procedure is called
ADAPT. From asolution calculated at time step t" by a snitable SOLVER for
the problem to handle, a decision is made on whether the error requirements
are acceptable or not, thus whether refinement or unrefinement is necessary
or not.

This decision, made from the criteria, is used to fill an array, IADIV, taken
on the current set of elements, which defines for each element the required
degree m of adaptation, and the procedure ADAPT is then called. After
rearrangement, renumbering and recalculation of the metrics, a new mesh is
obtained, and the next solutioun at time level t**! can be calculated on this
new mesh. Several time steps may be performed on this new mesh before
the next adaptation.

1.2 Criteria

In general, one could define a good criterion as one which allows us to generate
a smooth enough optimal mesh. [t must take into account the unsteady
nature of the problem and the stiffness coming from disparate scales.
In general we may divide error estimates for finite-element meshes into
three classes, which may overlap:
e those based upon an a priori error estimate acting directly on the
equatious of the problem (see e.g. [4]);

¢ those based on an a posteriori error estimate where the computed so-
lution uj(Z) is used to define the error (see e.g. [5), (7], [8], [9], [22])
(the index h denotes here a discretised solution);

e those which evaluate a combination of the derivatives of the computed
variables (see e.g. [10], [31], [37]).

This latter function may Le combined with the first two criteria. It is
in fact the only possible way for complex systems, as the first two methods
are only exact for model linear elliptic/parabolic equations ([21]). The two
first ways may also imply an expensive sub-algorithm resolution of a non-
symmetric problem at each intermediate time-step to determine the error on
the spatial part of the P.D.E. operator, which may heavily penalise the cost



of the calculations.

The criteria we develop here are based on these lines too, but where the
finite element estimations coming from the original system of equatlom are
exploited, ponderated by the relevant physical parameters.

As the error estimate can also give disparate values, it is necessary to
perform some additional smoothing in order to get a sufficiently regular mesh,
Such regularisation is required by the F.E. solver for accuracy a.n(l stability:
We shall extend these ideas in the sequel. :

1.3 lete element error estlmators

Let us recall some basic concepts oun error estimates and ada.pt.a.t.mn cnt.euo.
for finite-element triangulations. Throughout the sequel we are concerned
with a P -Galerkin finite-element discretisation, (the general P, context will
not be detailed here).

Let us define the finite-element spaces V), as dlscrete subspaces of the
functional space H'(f1), made of piecewise polynomial functions defined on a
triangulation 7, = {Tk} of the bounded domain 2 C IR?, When constructing
these V, spaces, certain conditions must be fulfilled in order to preserve
the compatibility of the approxnma.t.lou w1t11 tlle underlymg mathematical
framework. T

For a conforming P, ﬁmt.e element approxnmatlon

Vo C HYQ), Vi C C°QY), (L)

Vi={ve CO@) / VT, € 'r,‘,v,‘| cAm), (1 2)

where P‘(T) is the space of polynomials from  into IR, of degree less than
or equal to 1 with respect to the variables (z,.... z4) € !R"

When generating triangulations, and thus when adapting them, for ex-
ample by local refinement, we have to respect some rules of admissibility-
conformality of the mesh and obtain reasonable regularity of the resulting
elements. These properties of the mesh lead to a regular family of triangu-
lations {T;.}h and they are in particular necessary for a good approximation
of parabolic ar elliptic equations. :

In order to achieve this goal, the following fundamental hypotheses should
be fulfilled:



(1)

(H2)

(H3)

{7/.}/ is a regular family of triangnlations if
i

(1) There exists constants @ and f# such that. if we call
hi the diameter of the triangle Ty € Ty, (for instance, the longest
side of T}, and ‘
pi the diameter of the circumseribed circle in Ty,
then VT, € U7,
A e

/3ﬁzﬁ0 (1.3)

# is a measure of the smallest angle adimissible.
(11) There exists .z such that by < bz VT € U7y, and
h

h = max(h,) — 0 (1.4)

Ti€Ty

since VT, € Ty, oh} < ka dr where ¢, is a constant > 0.
(iii) The intersection of any two triangles T; and T} is empty, or is a
vertex, or is an edge, or the triangle itself.

There is affine equivalence for {'T/.},, i.e. there exists an invertible
\ ;

affine mapping [ : R* — R? such that

Ti = f(Tv) . (1.5)
W= flat) )
where a!,7 = 1,2,3, denotes the three nodes errors of the triangle 7).

Let u € V C H*(T}) be a solution of a variational problem in H*+!.
Let us define myu the Pj-interpolating function of u in in the triangle
Ti. Then for any integer m with 0 < m < 2, there exists a positive

constant 7, independent of Ty, u, and the approximation, such that:

2-m
lu —mu|, , < C.hk— ju
1 m,l — (Sill ljk)yn 2,1

where f; is the smallest angle of the element T},
[.1,.; is the H' semi-norm of order m < 2. (see e.g. {17]).

(1.7)

[ ]



For FPy-interpolation, we have Vm,0 < m < 2
2-m

- < Corrte—ul. 1.
lu 7rlu|m,,a — C(Sill ﬂk)m Iull,a ( 8)

One can see from this expression that, all other terms being equal, the
interpolation is optimal when the triangle T} is equilateral.

These considerations lead us to briefly discuss a priori finite-element error
estimates. Consider the equation:

Au= f,in Q (1.9)
for instance,the Poisson problem:

Au = —f inQ,

(1.10)
u = ¢ ondf,

on a convex domain Q, with f € L*(f2). Then the variational formulation
writes:

(Autnyvi) = (fis va), You € Vi, (1.11)
and we have the following error estimate: ' '
1/2
[ — up|y < Clu—mpuly < C [; hy Ium,(n)] ) (1.12)
&

This suggests a way of “optimally” adjusting h; as a function of |u|H,(7.k),
that is, by reducing hi where |u|yaq,, is big, and thus by controlling

'2 .
«Ju (1.13)

oX?
with o = 1,2, will optimise the rate of convergence. This is the principle of
adaptive meshing - uniformly equidistribute the error enhancing the overall
convergence.
However, this method is quickly expensive, as the error estimate are func-
32

tious of all derivatives . Moreover, it can only be evaluated exactly

u
Bx.-ax,-

for linear elliptic problems.



This leads to consider a posteriori error estimates, which are derived along
the same lines as a priori estimates, but rely on the calculated solution. Such
ervor estimates will give weaker conditions than the a priori ones, hut prove
to be more easily extended to parabolic and hyperbolic problems. Also,
since they depend on the local residuals, they are simpler and cheaper to
implement into existing computer codes. In [21], [22], such estimates read as
follows for the Poisson equation:

llw = wally < c|[B i, + B1Dua(unlly ~ [RRa| , (1.14)

where Rj,(u,) represents the discrete residual (Aug — [f1), and Dy, 2 denotes
the discrete second derivative. We shall use this quantity throughout the
sequel for the spatial part of our parabolic operator. It can be estimated as:

Fuu(Gr) - Vun(Gy)
= max

D’u, - - -
W T TLeviT) |G — Gl

(1.15)

where V(T,) is the set of neighbouring triangles to triangle T — i.e. having
a common edge with T — and G is the centroid of T).. We shall also use:

aun
a"-edge

where [.] denotes the jump of the gradient across the common edge. These
evaluations correspond to discrete H? norms, heuce we can use the estimate
(1.14) as in [21], [22]. Some modifications of this estimate will be needed
in our applications, since the source term [ is a non-linear function of u
corresponding to the finite reaction rate (see §2). -

The above estimates, although derived for an elliptic problem, have some-
times been used as a guide to mesh adaptation for the solution of parabolic
time-dependent problems. Then, they are just applied to the spatial *el-
liptic” operator. However, error estimates can be directly derived for time-
dependent parabolic partial differential equations discretised using conformal
finite elements, as we now briefly recall.

Let us consider the following nonlinear parabolic problem in

Df,u;‘| = max_ hedge (1.16)

T edgese Ty,

D=0 x(0,T)



ut—h‘,AUZf(I,t,U).,n :
u(0,z) = u%(z) in Q, o (1.17)
u(z,t) =0 forx € T =99,

with £ > 0. If f is Cl in u, then it can be shown that the so]utlon of (1.17)
lies in C' [(0, T); C*(2)] (see e.g. [15], [16]).

Recently in {34], {35], Nochetto, Paolini and Verdi studied the dynamical
mesh adaptation for a non-linear Stefan problem of the form (1.17) with
& = &(u), using similar arguments to what we will use below. However, we
follow now the error estimate analysis of Ushijima for the heat equation [42].

Here are some of the key steps of the latter paper. ‘

Let:
v={reco(m) /o], -0}

Let 7j; be a regular triangulation, (see above) and define
Vi={veV /VT € Ti,u|_€ P}.

The variational form of (1.17) with f = f(t) can be written:

{%(u(t),v)w(u(t),v) = (f(t)v), (1.18)

w(t=0) =

forall0 <t <T,withu(t)eVandveV.
Then, the standard mass:lumping discretisation of this problem reads (see

e.g. [24]):

-%'(.S'huh(t), Swvn) + a(un(t), vn) = (Safalt), Swvn), (1.19)

with uy € Vi, us(t = 0) = u?; here Sy, is the projection from Vj, outo RAm(Va) -
such that S,v, is the vector of the nodal values of v, for all v, € V.
Then for m < 2, we have (see [18]):



h maxo<<T ”U( )“Hm(n)

L™ max " "
+ 0Le<T |3t [l 1ym(q)

dnax Jlun(t) = u(®ll 2@ S e +am maxogest [ f(Ollgmeay (- (1.20)

+ "uh nhu ”L’(Q)

+ maXo<(<T ”fh - f(f')llL?(Q) L

if u(t) € D(A"™/?) and %t— € D(A™?); (m < 2).

Several of the terms in the right-hand side of (1.20) can be rewritten or
bounded using Kato’s stability conditions [28] or the maximum principle for
linear parabolic operators. Let us give the broad lines of these hounds.

Using the Kato stability conditions for

VicH!cH' CL? (1.21)

where H! denotes {u e H'(Q /Cu

= g}, we have

M = uf, < e(h)|vly, (1.22)
and

“e_wv,‘"m < Co [[orll (1.23)
whexe A, denotes the discretised operator associated to the bilinear form

), [42].
Then the last term in equatxon (1 20) can .be estimated by -

D () = SOl b et Olne (120

Thus for these finite element error estimations in the case of time de-
pendent problems, first the spatial part of the P.D. operator {-% + A}/ is
¢ 3
counsidered. An optimal error estimation then includes the term
o dun P ‘
D [—h yu€Viyandm <2 (1.25)
dn.

e€edges




The new triangulation 7j, should verify for all u, € Vj,
@ I fI| + B Dii(wi) < 6, m = 1 or 2 (1.26)

where é is some tolerance level. Applying this to the time-dependent problem
using Kato’s stability and the maximum principle for linear parabolic P.D.E’s
[25], we obtain estimations of the form:

() —ua® < a2 f] g

e [ St
(0.)xq
+ the terms in (1.20)

At each intermediate remeshing step, the new triangulation 7;, must verify
regularity and conformity in order to carry out the calculation on the new
mesh.

1.4 Local and Global error estimators

The above error estimators, for elliptic and parabolic problems, have been
used by several authors. Babuska, Rheinbolt and Zienkiewicz ({4, 5]) applied
widely a priori estimates to elliptic and parabolic linear problems, consider-
ing in the latter case the elliptic spatial operator for the spatial adaptation
of the discretisation. However Bauk, Eriksson, Rivara ({9, 20, 40]) preferred
a posteriort estimates.

In the framework of dynamical adaptation procedures for unsteady phe-
nomena, we can also quote the works of Book, Boris, Eriksson and John-
son, Lohner, Morgan, Nochetto and Paolini, Peraire, Verdi and Vahdati
({21, 31, 30, 34, 36]). In any case, the adaptation criterion choice starts
with the study of the spatial part of the partial derivative operators, even for
hyperbolic problems, such as the Euler equations. The former authors use
the elliptic techniques sketched above in order to obtain their local estimator.
The latter ones base their local a posteriori estimators upon linear parabolic
problems. '

For the sake of completeness, let us mention the possible use of physical
criteria. In this type of methods, the mesh is refined where the gradients of
certain quantities are large [1, 2, 3, 37}. The strategy used in any such case

10



is similar: one defines an adequate local ervor estimate per element 3(7%),
and proper tolerance levels:

= : 1 1.27
max 6 ( 27)

Here, §j(T%) can for instauce concern the neighbours of Ty, or the estimate
on the “father” triangle of Ty, i.e. a triangle of the previous unrefined level.
n(Tk) ‘ ’
#(T0)
For instance, in [31], the authors use an estimate of the H? semi-norm,
and then balance this value with the absolute value of the first derivative,
in such a way that it filters out secondary noise and let every discontinmity
be of the same importance, thus detecting secondary weak shocks as well as
straight shocks. In [36], a P, approximation and a standard FCT algorithm
is used, and the node-wise estimate:

> ([ etoian-v,)
E¥(j)) = =

2 (/g I"’“I {""‘;U:‘ +6 |tp;| |Uj|}dQ)
kJd

is introduced, where @; is the P; basis function for node i, l/, represents the
density at node j and 6 is an adjustable parameter “to detect noise™.

The choice of the deusity for the variable U allows good detection of
shocks and secondary shocks in transient problems. Indeed, the jump of the
gradient of the density is sharp across shocks, and an estimate of its second
derivative therefore adequately detects the location of this jump, rather than
the mathematical foundation of an a priari error estimation. This choice is
also related with the fact that the FCT scheme is essentially a characteristic
method for the continuity equation, i.e. that the density is the key variable
for this scheme. .

The close relationship between the scheme employed, the artificial dissipa-
tion or numerical viscosity within, and the efficiency of the mesh adaptation
criterion is present in all mesh adaptation techniques.

If the ratio > &, then T is to be refined.

(1.28)

To sum up this long introduction on some. finite-element adaptive mesh
techniques, let us recall that a survey of similar methods has been written by

11



Johnson [27] during completion of this work. In particular, a detailed error
estimate analysis for parabolic problems is given in {27] using discontinu-
ous Galerkin space-time finite-element discretisations, and streamline upwind
space-time finite elements for hyperbolic problems are described.

We can also mention another totally different type of dynamical mesh
adaptation which does not involve mesh refinement. Instead it consists in
moving the nodes of the triangulation to follow the phenomena. Such meth-
ods can be based upon an optimisation problem related to the equilibrium of
the mesh submitted to fictitious springs between the nodes with some given
stiffness. This leads to costly resolution by iterative meshes, but gives very
satisfactory results for shock capturing in steady-state solution calculations

({26]). However the quality of the triangulations can considerably deteriorate
and the use of these techniques for fast reaction rate pxob.ems would not be
optimal. "

2 Reaction-diffusion model

The system of equations describing the low Mach-number combustion of a
premixed laminar flame can be given by the following simplified set of equa-
tions, known as the thermo-diffusive model. This is a simplified reaction-
diffusion system, which retains the main features of low Mach number pre-
mixed flame propagation (see e.g. [12, 13]). Let us derive briefly this model
from the following simplified set of reaction-diffusion equations:

e continuity equation

(;t + dzv(pv) =0 o " - (%1)
e momentum equation
pi L ,
FT + dw(pv ') + div(p) =0 (2.2)
e energy equation
dpe . - )
— +-dwv((pe + p)v) = DTAT + QQUT,Y) - (2.3)

at

12



e mass fraclion conservation

,tY + div(pY¥) = Dy AY — SYT,Y) (2.4)
e reaction rate £
QY,T) = KYexp (--—f) (2.5)

where (p, U, p, ) represent the hydrodynamical variables of mass density,
velocity, pressure, and total energy of the mixture repectively. Y represents
the mass fraction of the reactant R, T denotes the normalised mixture tem-
perature, Dy and Dt are the normalised diffusion coefficients, coming from
respectively Fick ’s and Fourier's law. § is the normalised reaction rate, @
represents the heat produced by the reaction, and &, the adimensionalised
activation energy .These are all standard parameters defining the combustion
and can be given in explicit form from asymtotic analysis. X is the Arrhenius
counstant. Since we consider a premixed situation, the above equations may
be closed by the state equation:

mgp = pRT (2.6)

where mz denotes the mass of the consumed reactant R.
Assuming low Mach number, the convective part may be simplified fur-
ther, via an isobaric hypothesis. The above system becomes

2T = DrAT+QQ+ f(p, %)

(2.7)
2Y = DyAY —af

where £ 3= + V. -

A further mmphﬁcation comes from decoupling the hydrodymamics part
from the the reactive part within the numerical alogorithm employed. The
Euler equations (above) produce a solution U/ = (p, p¥, pe, pY'), which is
updated from the reactive part via the state equatoin. We may thus extract
the following simplified system for a flame propagating in a two-component
mixture, with the single one-step reaction R — P:

ST = DrAT+9

. (28)
2Y = DyAY -Q

13



Together with appropriate initial and bonndary conditions which we write
precisely below, this system is a stiff parabolic system with disparate time
and length scales, which must be appropriately resolved in order to calculate
an accurate solution. We refer to e.g. {11, 12, 13] for more details.

The typical spatial structure of the flame is given by the Figure 2.1,
below where the variables T,Y, and 2 are represented schematically. The
flame thickness Ly is extremely small within the reaction zone, requiring
a high degree of mesh refinement to obtain a correct evaluation of flame
speed, for instance. However, a coarse mesh would be sufficient within the
regions of mixture and burnt gas zones where the variables T, Y, and § are
approximately constant. :

The whole problem is translent thuq the time-dependent properhes of
each variable couples with the spatial discretisation requirements for accu-
racy. During ‘the initial phase, the gases are heated by conduction, in the
preheat zone, then at ignition point the reaction zone hogms The flame
front is propagating from right to left, with speed v, = —f This speed may
also be calculated by asymptotic theory [43, 41], and is a useful parameter
to analyse the precision of the numerical method described in more detail
below.

3 Auto-adaptive finite element method for
unsteady problems

The stiff coupled non-linear parabolic system describing the thermo-diffusive
part of the flame propagation given in section 2, needs an efficient algorithm
in time and in space to correctly calculate the characteristic transient phe-
nomena. This is the basis of the auto-adaptive finite element method.

A fourth-order Runge-Kutta method is used to integrate the time-depen-
dent model in time, and discretised in space by P -Galerkin finite elements,
on a family of (time-dependent) triangulations

kt=1, -, ktinax
{1} = {1}
heX '

kt denoting the time iteration count, H indexing the spatial discretisation,
generated by the adaptive refinement procedure. The refinement decisions
are based upon a local error estimate, which has to be carefully chosen in

14
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Figure 2.1: Structure of premixed flame

order to be as close as possible ta the global error |lu — U/,]|, where u denotes
the exact solution (T,Y) and U, the discrete solution.

The updated solution u} on (7;) at time t" is thus used to define a
global estimation of the error. The global algorithm is a split (one step
hydrodynamics)/(one step reactive part). This latter step is discretised-by
the Fy-Galerkin finite element approximation detailed in the next section
above, and integrated in time by an explicit Euler method.

3.1 Discrete approximation

in practice, the system is solved with a convection term of givén velocity V,
either taken to 0, i.e. system (3.1) then reduces to (2.8), or to the flame



speed, as proposed in 11, 12, 13]:

J -~ = :
E-t-T+V-VT = DrAT +Q

(3.1)
J

-~ -
EY+V_- VY = DyAY - Q

The boundary conditions associated with system (3.1) will be of the following
simple form:

(T = T., Y =Y, onl;,
$ T =T,,Y =Y onlo. (3.2)
{ % = 0 , %—3—:— = 0 ou [uan

Here the boundary of the computational domain, I, is assumed to be divided
into three parts representing respectively the inflow and ontflow boundaries
and a wall. Thus we have [’ = [;,, Ul UT yau. The boundary values T, and
Y. (respectively T, and V;) denote the temperature and mass fraction of the
unburnt gas at the inflow boundary (resp. of the burnt gas at the outflow
boundary). :

Let u denote the vector (T, Y)!. Then if t* = nAt denotes the time level
of the interval D x [t"~!, "] = D x I,,, we may reasonbly assume that 42, 28]:

et gy < Crllelt™ = Dllgagg
(™) 2 py € Co(t)(1 + At)lu(t" = Dl 2(p) (3.3)

Q€ C((0,t.); L*(D))

i From analysis of the thermo-diffusive system, we know that ¥ € {0, 1],
and that T is positive but unbounded.

System (3.1) is simply discretised in space using the mass-lumped P1
finite-element approximation. We refer to [12, 13] for more details on the
discretisation and on the evaluation of the time-step. '
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3.2 Discrete approximation

Let
= (T.VY (3.4)
The system can be written in detail as
Ju _ }: 4@ -anT)
ot (3.5)
oWy, T) = r;o-Y-exp &
where A is the diagonal matrix of the normaljsed transport coefficients.
D, O 0
A= and Q' = ‘ (3.6)
—a
O Dy

which is in fact a function of (', ¢,u), and is taken to be locally constant

at each fixed state in (T",t) (3.5) considered on a finite domain, D C R?,
representing, for example, a combustion chamber — say, flame propagation
from ignition — or modelising a semi-infinite cylinder — for studying relaxed
winkled flame asymjitotics.

Let 7 denote a triangulatlon of domain D at time t = nAt, and let us

define
Vroo= {v € C°(D) /”|n.ef,." € P'}
o {v v /vlr. _ 0} (3.7)

¢ - fen -t}

Then the variational formulation of (3.5) with approximate boundary condi-
tions leads to the following discrete approximation.
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{

Find u;, = 3;¢; ui(t)pi(ir) such that

Jo. (Ti%0) 05 = = Jp, MTiw(t) Vi) Voo, d T
+ [p, @YU u)p;dT

| Vo, e V2 jelo={ii€l [ii ¢ U low U lua)

(3.8)

D, denotes the discretised domain D, by the current triangulation 7.
The boundary terms are imposed within the variational formulation in
the usual way, by considering the problem

Find u, € V;? such that

Jo,M(Zi%) = = I MTiwVe) Vi, d®
(£2) 5 ) + fro, AT (3.9)

+ frn QQUun)p;d F
Vi, € VINVI NV

M denotes the dlagouahsmg mass matrix given by a suitable cholce of
scalar product,[23].

[ (oo = Area«?;)'L pipido - (@0)

C; denotes the cell centered on node i, constructed by joining the gravity
centres of each triangle connected to 2.

Other discretisations using disparate approximation spaces with upwind-
ing test functions {@, € W) # Wi}, or discontinuous Galerkin approxima-
tions can also be used [27].

Time integration is performed by explicit 4! order Runge-Kutta inte-
gration to enlarge the stability domain of straight forward explicit Euler
integration, as mentionned above. :



For each time step £* = nAt
Let  u(® =y
Fork=1,---4do

ulk) = k-1 _ g AL (du‘;"”)

then u"t! = ) _

Local time stepping is employed. Since we are using here a standard
Galerkin approximation, and ignoring dissipative effects -— coming from the
hydrodynamic coupling with the transport coefficients — then we may take
the optimal time step to be:

At* = min(At?, At") 3

where Aty corresponds to the optimal time step for the diffusive part

Ou
—_—= 3.12
= = Adu (3.12)
SO . (I'\)?
n mingeqn(h}}
At(l S ';lll&x(Dl. [)2) (3.13)

< 52@11\i11ke’r,,"( )2 - min( Dy, —D,)

with A} denoting the smallest height of triangle T}, € T,";
and At, comes from the reaction term and corresponds typically to the dis-
cretisation of the decay time t. of the consumed Y to e} of its original
value;

‘%- ~ KoY exp (—-f.,%)

¢ = {ren ()" =
So
, At < [Kfoma.x,'e,exp(__%n)].-l
; (3.15)

<
Ko exp(- %

where T, represents the asymptotic burnt up gas temperature.
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Grouping together these considerations, the diserete problem now reads

r Find u(t) = T.e; u(t)i(2) € CO]0,T], V;?) such t.ll?i;l.

un+l -y"

| o [pp MAT =~ [, g M (Ties wiV;) Voyd T
+ I QUuw ), d T

(3.16)

| Ve, € VNV NV

3.3 Error critéria

Let us now come to the question of defining the ¢riterion on which the re-
finement and unrefinement decisions will be based for the adaptive solution
of the convection-reaction-diffusion system (3.1)-(3.2).

Our basic criterion is inspired from the theoretical considerations on a
posteriori error estimates, which we briefly recalled in the introduction, con-
pled with a parametric study. 4

From a direct analysis of the original reaction-diffusion system a global
estimator of the error can be obtained, thus a local error estimator n(k),
which determines whether an element T}, should be subdivided can be defined.
This localised error estimator comes out from the smoothness (and lack of
smoothness) properties of the solution of the continuous problem (3.1), and is
also related to the discretisation algorithm used. We shall see, for example,
the effects of taking into account the truncation error or not. Although
the complete system is considered, with the underlying coupling with the
hydrodynamics via convection, the criterion is developed on the simplified
thermal-diffusion part. A global eriterion is always possible by taking the

n]ra.x(r)k(T, Y),{Ving) (347)
&
where . denotes the local mach number, and Vmy is its discretised gradi.ent..
Let us consider the thermo-diffusive part as in (3.5):
B,
Au = —,dltf — A= QT tu) (3.18)

Then the global error estimations are

”U.(t) - (/n”Lz < 51 (319)
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and
le(tn) = wp (Bl < 02 (3.20)

where §; and 8, depend on the different bounds of €2, u, 'T“‘ and Aw. They can
be identified using analogous arguments to those of Ushijama [42] for the heat

equation, since Q'Q(F, t,u) € C((0,T); L¥(§)) and even € C([O,T]; L*(D)).

Since u = (T, Y)* may be represented as

u = sign(X'(z — ')+ (3.21)
T#2!

such that X'(x) = H(x), we may assume that v’ € C((0,T}; L*(D)?).
Then using the Kato stability conditions for

dit, (1)

1 + A;,uh(l.) = ./:/l(l.,fl/‘) (3.22)

where @, represents the projection Suy, given by the mass-lumping projection
on the subspaces

VENVS AVECVEC HYQ) C LA(R) (3.23)
we deduce for ¢, € [0,T]

MaXogigT u(t,) — “h(tn)”u(n) < .
¢ {/z {muxoS,S'p [ (&) + I?#iyl + maxe<i<T b |f(f.)|H,} (3.24)
+ o S I ds + A(un) — T A}

where [, denotes the standard £y interpolation, and h = maxt, hy.
For each macro-element Ty, a local error estimation ™(7;) can thus be de-
fined, where

7™(Te) = Area(T )¢ (Tk) (3.25)

where ("(T}) is a local error estimate of [juj — u”|l;, of the form:
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|7 9]
1 L
- W = n
n-r |+ L
) + 1 Qn
¢"(Tw) = o Amm (3.26)

; ‘ b [ "] T,
7O Y
k

—

Ty
|+ w0

Here, the first factors on each line are weight factors coming from the
different scales of the variables T and Y: Y € [V, Y, ] and T € [T\, T,). We

Y
have set h® = max7, Ay, and the notation [VT”] stands for:
Ty

+ Y. -V, <+ IV”?Y"

. x e
‘} Tyt neighbours of T
{€edges of T

o

W -V Tz}'} (3.27)

T Tkl

Ty

where 7/ represents the outward normal as in Figure 3.1.
It is also possible to directly couple this criterion with the truncation
error coming from the explicit time-stepping

d

At "
- E(/)u) .

T~

2

Jd
5(/’

et u=(T,Y) (3.28)

then 7(T%) = n(Tk) + TIT . ;
However no great imkprovemeut in the results are noticed, although a
stronger coupling between the different parts of the criterion n(7}) and the
time evolution is present, (see results). We tried other different modifications
of the above criterion: different weights for each term; adding other evalu-
ations of the time derivative of the variables in order to take into account
their temporal evolution in a better way... etc. The above criterion, where
the weights of all terms (convective, diffusive and reactive) are chosen by
mimicing the governing equations, appeared to be altogether adequate.

22



Figﬁre 3.1: Ty neighbours and outward normal

The resulting criterion is extremely local, due to the stiffness of the prob-
lem, and the different scales of Y and T, there will thus be a tendency of
mesh clustering of refined elements. Indeed the region where:

VY Nnmax (3.29)

is not the same as

VT Nmax (3.30)

In order to smooth out n(T%), and thus regularise the new triangulation
7', we proceed in two stages:

1. Within the solver’s structure, the heat equation
¥ = AG™ n D

N

agn

s~ = 0. onTly,

(3.31)

can be extracted and directly solved with little extra cost, as it is part
of the governing equations of the system under consideration. We inter-
polate n(T%) onto the current mesh as initial condition, {7,*} to obtain

23



G". Then (3.31) is iterated up to ||, € €. By re-interpolation we
obtain a smoother criterion which we will denote now by C(T}).

2. Normalisation of this C(T) with respect to some reference value, (in
order to normalise its value along the flame front, for example). We
shall now discuss these possibilities in the next section.

We shall also present below the results of some computations where the
adaptive refinement-unrefinement procedure is used for the solution of the
unsteady Euler equations for perfect gas flow. In this case, the criterion used
for the refinement decisions is mainly a heuristic one, such as the norm of the
gradient of some quantity, like the density or the Mach number. Furthermore,
for the computations of reactive flows, we mix the “flow criterion” used for
the Euler equation with the “combustion criterion” (3.26) (see examples in
§5 below).

3.4 Criterion averaging and normalising

As discussed above, the resulting criterion is to be smoothed out and/or
averaged locally, then normalised with respect to some reference value before
being able to make the refinement and unrefinement decisions.

We now describe and discuss four possibilities of normalisation.

3.4.1 Global maximum

The normalised criterion is then evaluated as:
C(Ty)

CHTe) = maxr, C(T%)

(3.32)

Then the normalised criterion satisfies max C" = 1, and we can use it in the
simple following way:

Let (0 = by < by < -+ < bieyyr = 1) be a sequence of real
numbers, where lev is the desired number of refinement levels. If
the macro-element 7} is such that:

b < CM(Tk) < big (3.33)

then T} is divided into 4 subtriangles.
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This method is simple, but supposes that there exists large zones of the
computational domain D where C(T}) ~ 0, and others where C(Ty) > 0,
this 1ignoring intermediate values: the normalised criterion will not detect
gradients or layers of secondary importance. On the opposite, if the crite-
rion is almost constant, no matter it is big or small, we will refine almost
everywhere at the uppermost level.

3.4.2 Local maximum

We take the maximum of the unnormalised criterion over Ty and its neigh-
bours T+ as reference value:
C(T .
C*(Ty) = (Zx) (3.34)
max C(Tw)
Tk’ /Tk,nTk;éﬂ

This method also has the advantage that the normalised criterion is
known to take its values in the interval [0, 1}, which allows us to again make
the decisions using (3.33). Now the secondary wave will be detected, but will
be refined at the finest level as the main refined zones. This makes the result-
ing mesh very sensitive to small fluctuations in the unnormalised criterion
valnes. And the same drawback as before again appears if the unnormalised
criterion 1s almost constant. .

These two preceding normalisations of the criterion make it particularly
difficult to decide upon what thresholds b; to use for the refinement decisions
and to master the number of elements/nodes which the adaptation procedure
creates. Moreover when the number of levels of refinement/derefinement
changes then we have to redefine all the b;’s.

3.4.3 Mean value

Here, we evaluate the mean value C of the unnormalised criterion over the
whole triangulation, and define the normalised criterion as:

CY(Ty) = Area(Tk)-C—((_?L) - (3.35)

This normalised criterion can be used as follows.. Choosing a positive real
number o, we say that the triangle T} is divided into 4* subtriangles if:

471+ @) < CY(Ti) < 4(1 + a) - (336)

25



The interpretation of this is clear: a triangle is refined if it contains more
than 1 + o times the mean value C of the criterion.

This choice amounts to trying to equally distribute the criterion among all
elements. In some sense, this choice minimises the CPU as it leads to refine
almost nowhere if the variations of the unnormalised criterion are small. But
this can also be a drawback if an accurate computation is expected.

3.4.4 Relative localised criterion

We can also choose to use as a local reference value the primitive variable F°
upon which the evaluation of the unnormalised criterion is based, for instance
the temperature:

C(Tw)

F(Tw)

Thus, if the uunormalised criterion, C, is an approximation of the ervor
(respectively of the evolution terms) then the normalised criterion, C*(T%),
is the relative error on (resp. the relative variation of) the variable F in the
triangle T.

The thresholds which are used for the refinement decisions are then more
meaningful: one can decide to refine an element if the relative change of the
considered variable in this element is greater than, say, 5%. This choice of
the reference value is very appropriate for ensuring a given accuracy or a
good capturing of the phenomena under cousideration. But, like the first
two choices, it leads to a very difficult mastering of the number of elements
created by the adaptation procedure.

C"(Tk) = Area(Ty)

4 ADAPT’s algorithm

We give here a short introduction to the ADAPT algorithin. For more details
and extensions developed, we refer to [14, 11, 32].

4.1 Description

The algorithm ADAPT, a dynamical local mesh refinement /unrefinement
procedure, allows unsteady phenomena to be followed with precision during a
simulation run. It is based on a certain number of basic algorithmic principles
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taking into consideration the particuliarities of local mesh refinement for
finite element type generated meshes.

The algorithm was first inspired by an adaptive multigrid algorithm.
Which used different grid levels of non-constant subdivision to maintain
smaller memory requirements. Indeed, each level was obtained as a local
enrichmeunt of a coarser level. Thus one could benefit from the convergence
acceleration provided Ly use of a multigrid stategy within the numerical
scheme of resolution.

Here we are concerned with multi-levels of refinement. The local re-
finement/unrefinement procedure is multi-level in time: at each significant
eveolution of the simulation, the calculation mesh is modified by a multi-
level local refinement or coarsening. For instauce, in the cases presented here
of triangular (2D) meshes, once a suitable regularised criterion (see §3) has
been selected, the list of elements to be refined, their degree of refinement
(division of triangles 4" times, N being the refinement level), and those to
be unrefined are'established. So at each given remeshing step, the refinement
procedure follows a multi-level hierarchical structure.

A suitable data-base structure must thus be defined in order to facilitate
transfers of information, with dynamical memory allocation requirements
provided by use of dynamical identifications for internal fagging (pointers).
This data base structure is based upon a hierarchical data tree structure,
where the successive filiations allow scans backwards and forwards within
each data list.

Addition or suppression of data points or blocks corresponds to an inter-
nal extension of existing blocks within the data base. The global structure
remains fixed. This allows for a minimal blank memory storage, otherwise
prohibitive.

Other considerations must also be taken into account, coming from the
actual solution algorithm on such meshes: at each remeshing phase, the out-
put mesh should be renumbered, restructured for, for example, vectorisation
considerations, and colouring graph techniques reapplied at each phase for
gather/scatter operations. To facilitate a “black box” version of ADAPT, a
kind of doubling of the data structure may be allowed (I/O) at the cost of
greater memory usage.
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Enter MESH 1

4
Calculate SOLUTION at time t = t* = nAt
. 4
Evaluate CRITERIA
Lists of elements | FILL ARRAY
to be modified ' IADIV
| 4

= decision
= invalidation
=> suppression

ADAPT |= refinement
= conformity

=> rearrangement
= regulamty

New mesh ‘ MESH 2 .

Figure 4.1: Programme Structure

4.2 Data Structure

The general procedure can be resumed by the organigram as in Figure 4.1.
Let us now go into more details. In the case of 2D triangular finite
elements, a given triangle may be subdivided 4" times. Then for conformity,
neighbouring triangles may need to be divided iiito 2 or 3 subtriangles (the
latter is always excluded as adamissible subdivision). This may lead to a lack -
of regularity, and a smoothing process is applied, i.e. neighbouring zones to
a division into 4% are first dived into 4, then further out into 2. Starting from
a basic macro-mesh, which remains unaltered within the whole procedure,
we may cut up the data structure as indicated in the following Figure 4.2,
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MACRO | LEVEL| | LEVEL |. ... LEVETZ':-"
OB - wesn | 0 || 2 [i|s [
1

sons of macro level |
sons of level 1
grandsons of macro level

Figure 4.2: Mesh levels

The hashed block corresponds to dummy memory space. The invalida-
tion phase corresponding to suppression and reintroduction of elements takes
palce here. Globally, the data structure of such a given mesh is fixed by iden-
tifying arrays of pointers NE(2,LEVEL). :

A given element K in the macro-mesh has an etiquette IFATHER a value
IADIV(K) determined by the criterion calculation phase, and a filiation de-
cendence according to the Figure 4.3

IADIV(K) is the array defining the level of refinement per element, accord-
ing to the criterion (see §3). Let us resume how it is determined in function
of the refinement decision. This array indicates clearly the filiation:

e if IADIV(K) = 0 then K is not to be divided.

o if IADIV(K) = N > 0 then K is to be divided into 4 subtriangles and
each of its sons has its IADIV set to N — 1, i.e. each son will be divided
into 4V — | subtriangles (and their IADIV(ISON) = N — 1).

When a triangle K has to be invalidated and suppressed, its filiation must

be also. Again, the array IADIV along with the identifiers NE(* LEVEL), allow
us to scan the list correctly.

29



first grandson
first son /

-th lth

1 son - o

\ last grandson

Figure 4.3: Filiation Tree

grandson

last son

Division of a triangular element is undertaken by cutting each edge at its
midpoint. An array ICUT(NEDGE) indicates which edges are to be cut. If
1ICUT is equal to —1, the edge number NEDGE has to be divided; if ICUT is
- equal ta NN » 0, NN is the number of the node created at the midpoint;
if ICUT is equal to 0, this edge is not cut. This array must be updated and
reinitialised at each global step, after each global renumbering sweep.

4.3 Refinement Decision

As described in 3, after regularisation, a certain criterion 7j(K) per element
is adopted for the refinement/unrefinement, decision, which is transmitted by
the array IADIV(K). ‘ ,

Following §3, this procedure is implemented as in the figure 4.4, levelmaz
denotes the total number of levels of refinement per step.

define ﬁ—l =0< ﬂo <\ﬁl <---< ﬂlc«dmz—l < ﬂll‘vdw =1
For all elements K in Mesh 1 (7,°) Do ' '
level :=0.. : ( .
Until level = levelmaz Or Byu-1 < ;x%)'_‘-('ﬂ < i Do
) “level := level +1 - .
Euad Do’ -
TADIV(K) := level
End Do

Figure 4.4: decision loop
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4.4 Refinement/unrefinement procedure

ADAPT may now be explicited by the organigram of Figure 4.5.

5 Results

Some of the results showed here were made with an old version of ADAPT
that used to take as its input the decisions IADIV on the macro-elements and
transmits them to the higher levels. This has changed now: the decisions are
taken on the current refined mesh. This allows a finer resolution of refinement-
zones and results in a lower global overall number of nodes.

Firsly, different criteria are illustrated by standard shock t:be simulations
in order to see what each criterion was able to detect. As the goal was not
so much the solutions’s quality, but the detection ability of each criterion,
the exact solutions are not illustrated . Then simplified combustion chamber.
calculations concerning the propagation of a flame front within a square
chamber from an initial ignition zone on the upper side are simulated. Finally
flame propagation within a semi-infinite duct are studied, in order to test the
various criteria. For all calculations a standard P1 scheme for diffusive terms
was employed.

5.1 Shock tubes with relative error

The criterion normalisation used in this section is the relative one (see §3.3
3.4.4). The normalised criterion for each element T is thus defined as:
C(Ty)

F(Tw)

C™(T,) = Area(Ty)
where the functions C(T%) itself and F(T}) have to be chosen.

5.1.1 Adaptation on Mach gradiellts

C(Te) | FMa
F(T,) = max(Ma, Ma,,,)

The criterion used here is
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INPUT = MESH 1|
DO level =1, levelmax
DO K € MESH 1
where |IADIV(K) > 0
list of edges to be cut
No division by 3
IF first adaption sweep THEN
create new points
renumber internal flags (NE,2,LEVEL)
verify a) conformity/admissibilty
L) orientation
ELSE
suppression of invalid elements,
and their filiation.
END IF
create space for new elements.
create new elements and filiation in function of IADIV(K)
renumber internal flags.
verify a) conformity/admissibilty
b) orientation
END DO
Renumber globally new mesh, nodes.edges...for solution algorithm:
reorganise/optimise numbering

colouring elements/segments...

OUTPUT = MESH 2

Figure 4.5: ADAPT Organigram




where Ma is the Mach number and Ma,,;,, a threshold avoiding a division
by zero.

We can see in figures 5.1 the contact discontinuity is alinost missed with
this criterion. This is due to the difference of height between the jump of
the shock and the jump of the contact discontinuity. On the other hand, too
much nodes are put in the expansion wave by that criterion. :

5.1.2 Adaptation on temperature gradients

Here we use

C(T) = '€’T“
F(Ty) = max(T, Thin)

where T is the temperature in the element and T.,.in a threshold. In that
case the T,,,, value is not necessary'the temperature being strictly positive.

As we expect with that criterion fewer nodes are created in the expansion
wave and the contact discontinuity is captured better (see figures 5.2). That
is why we choose this criterion for our calculations.

5.1.3 Adaptation following both gradients

A combination of the maximum of both the previous criteria is experimented
5.3). We can see that the Ma relative criterion is much
more important than the temperature one. In fact, this is due to the parts
where the Ma is near of 0. In the figures 5.3, the error tolerance level was
of 2% that is when the normalised criterion is above that value the element
is to be refined. In the figures 5.4, the level is 1.1%. We can clearly see the

effect of the error tolerance level.

here, (see figures

5.1.4 Shock tubes with error equidistribution

To illustrate another criterion normalisation and the effect of the order of
the scheme, we use in this section the normalisation described in §3.3 3.4.3.
So we define: ' '

~ 1
C=— [ C(T
NT Jz» ¢(Tx)
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and the normalised criterion can now write:
C(T)
C
We also choose to use the maximum of both the criteria divided by their
maximum as the criterion: ‘

C*(Ty) = Area(T})

Cr(Ty) = "“VS’T .
Crna(Te) = ]]?quu

C(Ty) = max( Cr(Ti) Crta(Ti) )

maxr; Cr(T;)" maxr; Caa(T5)

Comparing figures 5.5 and 5.6, we see that the contact discontinuity is
more precisely captured using a second order approximation, however the
mesh is not altered significantly.

5.2 Combustion chamber

The criterion used here is

C(T) = |

’6’7“

(5.1)

which is normalised with the “Mean value™ method.

As said before in §3.3 3.4.3, this method only tries to equally distribute
the criterion throuhout the domain. As can be seen in figures 5.7 to 5.9 the
topmost level of refinement is not reached at all time steps of the calculation.
The result is very satisfactory compared to the cost needed to obtain it. -

5.3 FEM truncation error criterion
5.3.1 First version with ad-hoc parameters to be adjusted

The criterion tested now is the FEM truncation error. It should be the better
one in theory. However there are two ad-hoc parameters that occur in the
estimation, which are adjusted accordingly. Indeéd, a considerable part of
the phenomena (see figures 5.10 and 5.11)can be missed. Thus the choice of
those parameters is crucial and cannot be free.

34



5.3.2 Second version with correct criterion

Here the same criterion is employed but where the parameters have been
chosen directly from the governing equations. In that way their dimensions
are correct and they give better results as shown in the figures 5.12 and 5.13.
We can see now the phenomenon based criterion is simpler and more obvious
than the FEM truncation error one. :

5.4 Effects of regularisation of the criterion

We show here two different regularisations of the criterion. First, a very local
method that only makes some mean value with the criterion in the element
and in its neighbours. This method relies too much on the current topology
of the mesh, that is: refined parts and boundaries. In figure 5.14, the mesh
obviously shows inaccuracies in the boundaries.

The second method uses-a Laplacian in order to regularise the criterion. It
allows us to use an already computed Laplacian and regularises the criterion
without moving the maxima (see figures 5.15).
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Figure 5.1: Shock tube with Mach criterion
From left to right and top to bottom, there are the Mach and criterion, the
mesh, the pressure, the temperature, the density and the speed in the x
direction.
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Figure 5.2: Shock tube with temperature criterion
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See figure 5.1 for legend.
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Figﬁre 5.3: Shock tube with both criteria, 2% error

~ See figure 5.1 for legend.
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Figure 5.4: Shock tube with both criteria, 1.1% error

See figure 5.1 for legend.
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Figure 5.5: Shock tube with both criteria, equidistributed, order 1

See figure 5.1 for legend.
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Figure 5 () Shock tube with both criteria, equidistributed, order 2
See figure 5.1 for legend.
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Figure 5.7: Combustion chamber with mean value normalisation ¢ = 3.5

From left to right and top to bottom, there are the Mach, pressure, reaction
rate, mass fraction contours, the mesh and the temperature contours.
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Figure 5.8: Combustion chamber with mean value normalisation t = 4.5
See figure 5.7 for legend.
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Figure 5.9: Combustion chamber with mean value normalisation ¢ = 7.0
- See figure 5.7 for legend.
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Figure 5.10: FEM error with random coefficients for a tube
From top to bottom, there are the temperature coutours, the mesh and the
reaction rate contours.
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Figure 5.11: FEM error with random coefficients for a Combustion chamber
From left to right, there are the mesh and the reaction rate contours. We
show here two different time steps.
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Figure 5.12: FEM error for a semi-infinite duct with coefficients coming
directly from the equation system

From top to bottom, there are the reaction rate contonrs and the mesh
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Figure 5.13: FEM error for the Combustion chamber experiment with coef-
ficients coming directly from the equation system

From left to right, there are the mesh and the reaction rate contours. We
show here two different time steps.
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Figure 5.14: Regularisation by mean value

From top to bottom, there are the reaction rate contours, the mesh and the
criterion.
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Figure 5.15: Regularisation by Laplacian
See above for legend.
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Conclusion and perspectives

Dynamic Mesh refinement/derefinement algorithins provides powerful tools
for the simulation of complex reactive unsteady flows presenting disparate
scales in time and space. The discretisation thus follows the evolution of the
pertinent variables, with a high density of mesh points within critical regions,
and a low density of mesh points within zones of quasi-uniform behaviour.
The accuracy of the overall result is thus increased, for a relatively low cost
in memory and computation time. The criteria for adaptation decision needs
careful adjustement to the physical phenmena and the underlying governing
equations modelising the phenomena, coupled with the numerical scheme.
The use of a finite element approximation allows a precise coupling in this
way, using the a posteriori finite element error estimators for the scheme, to-
gether with normalising physical parameters, and/or physical criteria based
on normalised gradient norms of some chargteristic variable. Since the gov-
erning equations are non-linear, the evaluation of the discrete error estimator
is highly non-trivial. :

However, there is no unique golden rule, and many academic tests are
necessary to conclude, in order to obtain a sufficiently robust algorithm for
such unsteady flows arising in combustion studies. The algorithm has also
been adapted successfully to other kinds of unsteady, non-reactive flows {32].
In perspective, a closer coupling of generation principles (Delaunay advanc-
ing front algorithms [33]), thus geometrical criteria, to the physical and/or
finite element ones dre envisaged to maintain more regular discretisations,
~ which although may be bypassed by the simplicity of 2D applications, be-
come mandatory in 3D. Further algorithmic modifications can be made, for
instance, the loop over levels can be supressed in ADAPT, and suppres-
sion of the hierarchical arborescence can also be acheived [38]. Finally, such
algorithms are not adapted to standard Fortran requisites, many recursive
commands, conditionnal programming...etc.., but their integration into ex-
isting computational programs becomes more straightforward in this way. A
closer investigation of the parallelisation of the Mesh generation and Mesh
adaptation by refinement/derefinement will be undertaken, in order to eval-
uate the performances of this valuable tool on new machine architectures.
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