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NON-SYMMETRIC HALL-LITTLEWOOD POLYNOMIALS

Francois Descouens Alain Lascoux

A Adriano Garsia, en toute amitié

Abstract

Using the action of the Yang-Baxter elements of the Hecke algebra on polynomials,
we define two bases of polynomials in n variables. The Hall-Littlewood polynomials
are a subfamily of one of them. For ¢ = 0, these bases specialize into the two families
of classical Key polynomials (i.e. Demazure characters for type A). We give a scalar
product for which the two bases are adjoint of each other.

1 Introduction

We define two linear bases of the ring of polynomials in @1, ..., z,, with coefficients in g.

These polynomials, that we call g-Key polynomials, and denote U,, U,, v € N", special-
ize at ¢ = 0 into key polynomials K,, K,. The polynomials U, which are symmetrical in
x1,...,x, are precisely the Hall-Littlewood polynomials Py, indexed by partitions A € Part,
the relation between the two indices being A = [\, ..., Ay = [vn, ..., v1].

Our main tool is the Hecke algebra H,,(¢) of the symmetric group, acting on polynomials
by deformation of divided differences. This algebra contains two adjoint bases of Yang-
Baxter elements (Th. P]). The ¢-Key polynomials are the images of dominant monomials
under these Yang-Baxter elements (Def. B.1)). These polynomials are clearly two linear bases
of polynomials, since the transition matrix to monomials is uni-triangular.

We show in the last section that {U,} and {U,} are two adjoint bases with respect to a
certain scalar product reminiscent of Weyl’s scalar product on symmetric functions.

We have intensively used MuPAD (package MuPAD-Combinat [[]]) and Maple (package
AcE [[T).

2 The Hecke algebra H,(q)

Let H,(q) be the Hecke algebra of the symmetric group &,,, with coefficients the rational
functions in a parameter q. It has generators 11, ..., T, _; satisfying the braid relations

{T@-TmTi =T T\ T, )

LT =TT (1 —i > 1),
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and the Hecke relations
(T;+1)(Ti—q)=0, 1<i<n-1 (2)

For a permutation ¢ in &,,, we denote by T, the element T, = T, ...T; where (i, ...,i,)
is any reduced decomposition of o. The set {T,, : 0 € &,,} is a linear basis of H,,(q).

2.1 Yang-Baxter bases

Let s1,...,S8,-1 denote the simple transpositions, ¢(c) denote the length of o € &,,, and let
w be the permutation of maximal length.

Given any set of indeterminates u = (uy,...,u,), let Hy(q)|u1,...,u,] = Hn(q) ®
Clug, .y up).

One defines recursively a Yang-Baxter basis (Y*)s,es,, depending on u, by

lea

1—g¢q
1- u0'i+1/u0'i

Y =Y} <TZ + ) , when {(os;) > (o), (3)

starting with Y, = 1.
Let ¢ be the anti-automorphism of H,(q)[uy, . .., u,] such that

{ @(To) = TU_17
SO(UZ) = Up—i+1-

We define a bilinear form <, > on H,(q)[u1,...,u,] by
< h1, hy > := coefficient of T, in hy - p(hs) . (4)
The main result of [A, Th. 5.1] is the following duality property of Yang-Baxter bases.

Theorem 2.1 For any set of parameters u = (uq,...,u,), the basis adjoint to (Y')ses,
with respect to <, > is the basis (Y)ses, = (Yf(u))oegn. More precisely, one has

\V/O',I/ng, <Ygu7qu>:5)\,uw

Let us fix from now on the parameters u to be u = (1,q,¢2, ...,¢" ). Write H,, for

Hn(q) [17q7 A 7qn71:|' ~
In that case, the Yang-Baxter basis (Y;),ce, and its adjoint basis (Y, ),ce, are defined
recursively, starting with Y,y = 1 = Y4, by

Yoo, = Yo (T +1/[K]y)  and Yo, =Y, (T +¢"7"/[Kl,) ), Uos;) > (o), (5)

with k = 0,11 — oy and [k], = (1 — ¢*)/(1 — q).
Notice that the maximal Yang-Baxter elements have another expression [ :

Y, = Z T, and ?w = Z (—q)g((’w) T, .

0’6677, Ue@n



Example 2.2 For Hg, the transition matriz between {Y, }oes, and {T,}ses, 1S

1 1
123 |1 1 1 pr} @ 1
132 1 =1 1
213 | - - 1 o1 1 1 ’
231 1 . 1
312 | - - - . 1 1
321 1
writing - ¢ for 0. Each column represents the expansion of some element Y.
2.2 Action of H, on polynomials
Let Bol be the ring of polynomials in the variables x1,...,x, with coefficients the rational
functions in ¢. We write monomials exponentially: =¥ = z{* ...z v = (vq,...,v,) € Z™.

A monomial 2V is dominant if v; > ... > v,.
We extend the natural order on partitions to elements of Z" by

n

u<wo iff Vk>0, Z(vi—ui)zo.

i=k

For any polynomial P in Pol, we call leading term of P all the monomials (multiplied by their
coefficients) which are maximal with respect to this partial order. This order is compatible
with the right-to-left lexicographic order, that we shall also use. We also use the classiccal
notation n(v) = Ovy + lvg + 2u3 + - - - + (n—1)v,.

Let i be an integer such that 1 < ¢ < n — 1. As an operator on ‘Pol, the simple
transposition s; acts by switching z; and x; 1, and we denote this action by f — f®. The
i-th divided difference 0; and the i-th isobaric divided difference m;, written on the right of
the operand, are the following operators :

@‘1fo3¢1:¢ 7 Wi:foﬂi::M_
Ti — Tijt1 Ti — Tijt1

The Hecke algebra H,, has a faithful representation as an algebra of operators on ol

given by the following equivalent formulas [B,

T, = Ui—-1 = (&—qui1)0i—1 = (1—quipi/o)m— 1,
Y, = 0 = (T — qTiy1) O; = (1 —quip/2)m,
Y, = V; = 00— (1+9q) = 0; (w41 — qu;) .

The Hecke relations imply

D? = (1+¢0; , VZ? =—(14¢V,; and 0O;V,=V,0,=0.



One easily checks that the operators R;(a,b) and S;(a,b) defined by

b—a—1], b—a—1],
Ri(a,b) =0; —¢q—————— and S;(a,b) =V, +¢——
[b— al, b — dl,
satisfy the Yang-Baxter equation
Ri(a,b) Riti(a,c) Ri(b,c) = Rita1(c,b) Ri(a,c) Riti(a,b). (6)

We have implicitely used these equations in the recursive definition of Yang-Baxter elements

@)

This realization comes from geometry [B], where the maximal Yang-Baxter elements are
interpreted as Euler-Poincaré characteristic for the flag variety of GL,(C). This gives still
another expression of the maximal Yang-Baxter elements :

Y, = H (i — qx;) O, , ?w =0, H (x; — qz;) . (7)

1<i<j<n 1<i<j<n

Example 2.3 Let 0 = (3412) = s9535189. The elements Yas2 and }/}3412 can be written

q q q+q
Yoo = (05— —2 ) (0 - -2 ) (g, - 29
- 2< ’ 1+Q)< ' 1+Q)< ? 1+q+q2) ’

v q q q+q°
Y- = VyVs+ vV, + \V4 _
sz 2< ° 1—|—q)( ' 1+Q)( ’ 1+Q+q2)

We shall now identify the images of dominant monomials under the maximal Yang-Baxter
operators with Hall-Littlewood polynomials. Recall that there are two proportional families
{P\} and {Q@Q,} of Hall-Littlewood polynomials. Given a partition A = [A;, A9, ..., \] =

(0mo 1™ .. n™), with mg=n—r=n—mq —---—m,, then
@Qx = H H(l_qj)P)\-
1<i<n j=1

Let moreover dx(q) = [[o<i<, [17=[7]g- The definition of Hall-Littlewood polynomials

with raising operators [],[H, I11.2] can be rewritten, thanks to ([]), as follows.
Proposition 2.4 Let \ be a partition of n. Then one has
:L)\ Yw d)\(Q)_l = P)\([El,...,l’n;Q) (8)

The family of the Hall-Littlewood functions {@,} indexed by partitions can be extended
into a family {Q, : v € Z"}, using the following relations due to Littlewood ([[], [P, II.2.Ex.

2])
Q(...,ui,u¢+1,...) = _Q(...,u¢+171,u¢+1,...)+q Q(...,ui+1,ui,...)+q Q(...,u¢+1,ui+1fl,...) if Uy < Uit 1, (9)
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By iteration of the first relation, one can write any @), in terms of Hall-Littlewood functions

indexed by decreasing vectors v such that |v| = |u|. Consequently, if u such that |u| =0, Q,
must be proportionnal to (Qg.o = 1, i.e. is a constant that one can note as the specialisation
Qu0)inz; =0="---=ux,.

The final expansion of @, after iterating (J) many times, is not easy to predict. In
particular, one needs to know whether @), # 0. For that purpose, we shall isolate a distin-
guished term in the expansion of @,. Given a sum ), . ex (1)@, call top term the image
of the leading term ) ¢, ()@, after restricting each coefficient c,(t) to its term in highest
degree in t.

Given u € Z", define recursively p(u) € Part U {—oo} by

e if u 21[0,...,0] then p(u) = —o0

o if ug > ug > -+ > wu, >0 then p(u) is the maximal partition of length < n, of weight
|u| (eventual zero terminal parts are suppressed).

o p(u) =p(up(fuz, ... u.)))
Lemma 2.5 Let u € Z". Then
o ifu20,...,0] then Q, =0 |,
o ifu>10,...,0], let v=yp(u). Then Q, # 0 and its leading term is ¢"™—""Q, .

Proof. Given any decomposition u = u’.v”, then one can apply (f) to «” and write Q,, as

a linear combination of terms ,., with v decreasing, with |v| = |u”|. Therefore, if |u"| = 0,
then the last components of such v are negative, all Q,/, are 0, and @), = 0.
If u>10,...,0] and w is not a partition, write u = [...,a,b,...], with a, b the rightmost

increase in u. We apply relation (M), assuming the validity of lemma for the three terms in

the RHS
Q..ap,.. = —Q . p—1a41,.. T 9Q.  pa,... +9Q.  at1p-1,.
Notice that the first two terms have not necessarily an index > [0,...,0], but that [...,a +
Lb—1,...]>10,...,0].
In any case, it is clear that p([...,b—1,a+1,...]) =p1 < v, p([...,b,a,...]) =ps < v,
and p([...,a+1,b—1,...]) =wv.
Restricted to top terms, the expansion of the RHS in the basis () becomes

_ ((qn(u)-i-a—i—l—b—n(v) 4. ) Qu) + q((qn(u)—l—a—b—n(v) 4. ) Qv) + q((qn(u)—l—n(v) + ... ) QU> ’

where one or two of the first two terms may be replaced by 0, depending on the value of py,
or py. In final, the top term of the RHS is ¢"% =" (Q,, as wanted. Q.E.D



Example 2.6 Forv=[-2,3,2],

Q32=(" -+ (@ +q¢" — ¢ —2¢+9)Qu + (¢" —¢* — ¢+ 9)Quu,

and the top term is ¢*Q11, since 4 = (0(=2) + 1(3) + 2(2)) — (0(1) + 1(1) + 2(1)) and
[1,1,1] > [2,1], [1,1,1] > [3]. Notice that the coefficient of Qa1 is of higher degree.

3 ¢-Key Polynomials

In this section, we show that the images of dominant monomials under the Yang-Baxter
elements Y, (resp. Y,), 0 € G, constitute two bases of JPol, which specialize into the two
families of Demazure characters.

We have already identified in the preceding section the images of dominant monomials
under Y, to Hall-Littlewood polynomial, using the relation between Y, and d,. The other
polynomials are new.

3.1 Two bases

The dimension of the linear span of the image of a monomial x” under all permutations
depends upon the stabilizer of v. We meet the same phenomenon when taking the images
of a monomial under Yang-Baxter elements.

Let A = [A1, ..., \,] be a decreasing partition (adding eventual parts equal to 0). Denote
its orbit under permutations of components by O()\). Given any v in O(\), let ((v) be the
permutation of maximal length such that A {(v) = v and n(v) be the permutation of minimal
length such that An(v) = v. These two permutations are representative of the same coset of
S,, modulo the stabilizer of A.

Definition 3.1 For all v in N", the ¢-Key polynomials U, and (71, are the following poly-
nomials :

Uy(z:q) = (dx(q)xx) Y o Uulwiq) =2V,

where X is the dominant reordering of v.

In particular, if v is (weakly) increasing, then {(v) = w and U, is a Hall-Littlewood polyno-
mial.

Lemma 3.2 The leading term of U, and Uv is V. Consequently, the transition matriz
between the U, (resp. the U,) and the monomials is upper unitriangular with respect to the
right-to-left lexicographic order.

Proof. Let k be an integer and u be a weight such that w; > u,1. Suppose by induction
that z" is the leading term of U,. Recall the the explicit action of (i is (noting only the



two variables xy, Tpi1)

.[L'ﬁa Dk = 1‘504 + (1 _ t)(l_ﬁ—l,a-f—l et xa—l—l,ﬁ—l) + xaﬁ’ /8 > a
2P0, = (1+1t)2
.[L'Oéﬁ Dk = tlﬂa + (t _ 1)(1,5—1,044—1 4t :L,oz-i-l,ﬁ—l) + tl’aﬁ a < ﬁ .

. From these formulas, it is clear that for any constant ¢, the leading term of z* (OJj + ¢) is
(x")r, and, for any v such that v < u, all the monomials in zV ({J;, 4 ¢) are strictly less (with
respect to the partial order) than (z*). O

Example 3.3 For n =3, Figures 1 and 2 show the case of a reqular dominant weight x>*°
and Figures 3 and 4 correspond to a case, x°°°, where the stabilizer is not trivial. In this

last case, the polynomials belonging to the family are framed, the extra polynomials denoted
A, B do not belong to the basis.

U21() — 1‘210

o

O

U120 — :13120 + :13210 U201 — :13201 + :13210
Uo—q/(1+q) Ui—q/(1+9)
U102 — xlOQ + (1 _ q)l’lll + ﬁJBIQO + 213201 + ﬁJBQIO U021 — 213021 + (1 _ q)l’lll + LiiquOI + 1.120 + LiiquIO

th

o

Uoi2 :+x102+(—q—q+2)x111 +:L‘120+:L‘201 +$210

Figure 1: ¢-Key polynomials generated from 2.

3.2 Specialization at ¢ =0

The specialization at ¢ = 0 of the Hecke algebra is called the 0-Hecke algebra. The elementary
Yang-Baxter elements specialize in that case into

Yo=T+1=0; — z0;=m, (11)



Usz10 = 22

/ \
qa210

120 _ U201 = :B —

Ui20 = = 10

V2+#q V1+ﬁ

~ 2
Uiz = 2102 + (1 — g)a'1! — 220! — q 2120 4 q(il

S

Uoi2 = (14 q)B — qK120

2
_ 021 _)el11 a® 201 | @° 210
Uo21 = 2021 + (1-¢q)x qzl? s s el

Figure 2: Dual ¢-Key polynomials generated from 2%,
200/ 1+ q
U200 =2?
U2—q/(1+4q) Uh—g/(1+q)
\ Uozo = 2° 2?00 + (1 — g)a'1?
Unoz = (1 — q) 011Jrl 9z 101Jr 002Jr qflxnoi 20 22
qg+1 qg+1 1 + q

Figure 3: ¢-Key polynomials generated from 2% /(1 + q).

Definition 3.4 (Key polynomials) Let v € N". The Key polynomials K, and I/(\'U are



- 200
U200 ==

Vo
V1

~ 1

U020 — (1 _ q){L’llO 4 1,020 4 :13200 0

q+1

\/V2+q/(1+q) Vi+q/(1+q)

Tooz = (1= )z®™ 4 (1 — )20 4 2992 4 (1 — )z 110 4 020 4 ;200 0

Vi1
Vo
0

Figure 4: Dual ¢-Key polynomials generated from 2%,

defined recursively, starting with K, = z¥ = I?U if x¥ dominant, by

Ky, = Ky m; , Ky, = Ky7; ,  fori such that v; > v;4q .

In particular, the subfamily (K,) for v increasing, is the family of Schur functions in
T1,...,Z,. Demazure [ defined Key polynomials (using another terminology) for all the

classical groups, and not only the type A, _; which is our case.
Lemma B.3 specializes into :

Lemma 3.5 The transition matriz between the U, and the K, (resp. from ﬁv to IA(U) 18

upper unitriangular with respect to the lexicographic order.

Example 3.6 For n = 3, the transition matriz between {U,} and {K,} in weight 3 is

(reading a column as the expansion of some U,)

300 |1 - - . . . —q
o0 | - 1 - . . . .
201 |- - 1 - . . . ( Q)
2 |- - - 1 - =L g . :
mur - - - -1 —q : ¢ —qg+1) ¢
102 |- - . . . 1 . . . .

030 |- - . . . . 1 .

021 |- - . . . . . 1 . .

o12 |- - . . . . . . 1 —q
o003 |- - . . . : . . . 1




and the transition matriz between {U,} and {K,} is

300 |1 - - . . —q . . —q

q q q
20 41 =4 =4 - Gm 4 Gy 0 @D
201 . 1 . . —q . (;fl) q2 —q
2 |- - - 1 . =L 4 - 2 ¢

CES I q q (¢+1)
ur - - - -1 —¢ - —q qg+1) ¢
102 | - - . . 1 . . —q —q
030 | - . . . . 1 . . %
021 | - - . . . . 1 —q —q
o012 |- . . . . . . 1 —q
003 |- . . . . . . . 1

4 Orthogonality properties for the ¢-Key polynomials

We show in this section that the ¢-Key polynomials U, and ﬁv are two adjoint bases with
respect to a certain scalar product.

4.1 A scalar product on ‘ol
For any Laurent series f =Y °, fiz*, we denote by C'T,(f) the coefficient fo.

Let .
O = H 14 _
1<i<j<n = 9/
Therefore, for any Laurent polynomial f(x1,...,z,), the expression

OT(f0) := CT,, (CT,, (... (CT,, (£6))...))

is well defined. Let us use it to define a bilinear form (, ), on Pol by

(f.g)y=CT (fg"' 11 i) (13)

1—qxi/z,
1<i<j<n q Z/ J

where & is the automorphism defined by x; — 1/x,1; for 1 <i < n.
Since © is invariant under &, the form (, ), is symmetrical. Under the specialization
q = 0, the previous scalar product becomes

(f,9)=(f 9)l|_,=CT (fg‘" IT a- :cz-/xj)> : (14)

1<i<j<n

We can also write (f, g)g = (f, gQ) with @ =[], (1 —qz;/z;)~".
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Notice that, interpreting Schur functions as characters of unitary groups, Weyl defined
the scalar product of two symmetric functions f, g in n variables as the constant term of

%fg"' I @=ai/z;).

0,1 1]

Essentially, Weyl takes the square of the Vandermonde, while we are taking the quotient of
the Vandermonde by the ¢-Vandermonde.
We now examine the compatibility of [J; and V; with the scalar product.

Lemma 4.1 For i such that 1 < i < n-1, O0; (resp. V;) is adjoint to O, _; (resp. V,_;)
with respect to (, )q-

Proof. Since m; (resp. ;) is adjoint to m,—; (resp. 7,—;) with respect to (, ) (see [f] for
more details), we have
(fljla g)q - (fa g Q 71-n—i(]- - qxn—i+1/xn—i))

B (1 —qxp_is1/Tn—;) 0O
- (f’ (1 _ q$n—i+1/x"—i)

ani(l - qxnfiJrl/xnfi))

Since the polynomial Q/(1 — gz, _;11/%,—;) is symmetrical in the indeterminates x,_; and
Tn_it1, it commutes with the action of 7, _;. Therefore

(fDZ7 g)q = (f7 g (1 - qxn*iJrl/‘rn*i) Tn—i Q) = (f7 g ani)q :

This proves that [J; is adjoint to [J,,_;, and, equivalently, that V; is adjoint to V,,_;. Q.E.D
We shall need to characterize whether the scalar product of two monomials vanishes or
not. Notice that, by definition,

(ZE'UJ’ xfl)) — (xfll‘7fl}w’ 1)’
so that one of the two monomials can be taken equal to 1.

Lemma 4.2 For any u € Z", then (z*, 1), # 0 iff [u| =0 and u > [0,...0]. In that case,
(2", 1)g = Qu(0).

Proof. Let us first show that the scalar products (z*, 1), satisfy the same relations (f])
as the Hall-Littlewood functions @,.

Let k£ be a positive integer less than n. Write xy = vy, xx11 = 2. Any monomial ¥ can
be written zy%2°, with ' of degree 0 in x, 2j4;. The product

1 —IL‘Z‘/I‘]‘

ti oa b b_a o
L+ —ay) ] [

1<i<j<n

11



is equal to

1—y/z
1—qy/z
with F} symmetrical in y, 2. The constant term CT;, , ..
still symmetric in zy, x51. Therefore

(y*2" + y°2) (2 — qu) Fr=(y*2" +y°2") (2 —y) Fy

LOT,, (2t (y?2 + yb2*)Fy) = Fy is

CT,(CT.((= - y)F))

is null, and in final
t/ a b b_a - xi/xj
CT (a'(y'z" + 2"z —qy) [ —52) =0.
L1 —quifr;
1<i<j<n
This relation can be rewritten
(ya2b+1l‘t, ]-)q + (yb+12a+1l‘t, 1)q _ Q(yb+12a$‘t, ]-)q o q(ya+12bZL‘t, 1)q =0 ’

which is, indeed, relation ().

On the other hand, if u,, < 0, then there is no term of degree 0 in x, in 2" [, _;<,(1 —
z;/2;)(1 — qu;/z;) !, and (z*,1) = 0, so that rule ([Q) is also satisfied.

In consequence, the function u € Z" — (2% 1) is determined by the values (2},1),
A partition, as the function u € Z" — (@), is determined by its restriction to partitions.
However, for degree reasons, (z*,1) = 0 if X # 0. Since (2°,1) = 1, one has in final that

(x*,1) = Q.(0). Q.ED
Example 4.3 For u=[1,0,3] and v =0, 1, 3],

(@', 2" = (@7 1), = Qg13(0) = (1 —q)(1 = ¢°) .

A~

4.2 Duality between (U,),en» and (Uy)ypenn

Using that [J; is adjoint to [J,,_;, we are going to prove in this section that U, and (71, are
two adjoint bases of ol with respect to the scalar product (, ),.

We first need some technical lemmas, to allow an induction on the ¢-Key polynomials,
starting with dominant weights.

Lemma 4.4 Let i be an integer such that 1 < ¢ < n-1, let fi, fa, 91 be three polynomials
and b be a constant such that

f2:f1(Di+b)> (flagl)qzo and (fz,g1)q=1.

Then the polynomial go = g1(Vy,—; — b) is such that

(fi,g2)g =1, (f2, 92)g =0.

12



Proof. Using that V,,_; is adjoint to [J; and that [;V,; = 0, one has

(2 92)o = (F1 Qi +0), g1 (Vi = 1)y = (1 (O: +0) (Vi = 1), g0)s
= (fi(=b(1 +q) —b*),91), = 0.

Similarly, we have

(fis92)g = (f1, 91 (Vi = b))g
= (i, 91 (Oni =1 =g =),
=(i@i+b-1-g—-2b), q1)g = (f2, g1)g = 1.
Q.E.D

Corollary 4.5 Let ¢ be an integer such that 1 <1 < n-1, let V be a vector space such that
V=Veac< f1, fa > with fo = f1(0; +b) and V' stable under O;, and let g1 such that

(fi,g1)g=0 and (f2,g1)g=1 and (v, g1); =0, YoeV .
Then the element go = g1(V,—; — b) is such that
(f2,02)g=0 and (f1,92)g=1 and (v, g2)y =0, YoeV .

Lemma 4.6 Let u and \ be two dominant weights and v and p two permutations of u and
A respectively. If (¥, 2*) # 0 and (2%, 2*) # 0 then

u=XA , v=>M and p=uw.
Proof. Using lemma , the condition (z?,2), # 0 and (z“, 2#), # 0 implies two sys-

tems of inegalities

>\1 ) Mn
A1+ g, U + fn—1

(%%
Un + Un—1

Uy,

>
Z u1+u27

>
>

and

Up + ...+ 11

The first inequalities of the systems give v, > A\ > u, > u; > v, Consequently
u; = A\ = v, = u,. By recursion, using the other inequalities, one gets the lemma. Q.E.D

Corollary 4.7 Let v be a weight and A\ a dominant weight. Then,

(Uva :L)\)q = Oy dw

Proof. Let u be the decreasing reordering of v and o the permutation such that U, = x"Y,.
As the leading term of U, is 2V and using lemma [, we have that (z*Y, ,2*), # 0 implies
(zv, 2*), # 0. By denoting A, the adjoint of Y, with respect to (, ),, we have (2*Y, , 2*), =
(2%, 22 N,), # 0. As the leading term of 22 A, is :cA"/, where Ao’ is a permutation of \, we

obtain that (x", .T})‘J/)q # 0. Using lemma [L.§ we conclude that v = w.
QE.D

Our main result is the following duality property between U, and ﬁv.
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Theorem 4.8 The two sets of polynomials (Uy)yene and (Uy)yene are two adjoint bases of
Pol with respect to the scalar product (, ),. More precisely, they satisfy

~

(UU7 Uuw)q = 5v,u .

Proof. Let A be a dominant weight and V' the vector space spanned by the U, for v
in O(A). The idea of the proof is to build by iteration the elements (U,)yco(\) starting

with ) = (7,\. By definition of the ¢-Key polynomials, it exists a constant b such that
Urno = Uxws, (07 +b). One can write the decomposition V' = Ve < Uy, Upws, >, with
V' stable under the action of OJ;. Using the previous lemma, we have that (U, , 2%), =
(Unw (7,\)q =1 and (Uyuo,, 2V)g = (Urwoy (7,\)(1 = 0. Consequently, by lemma (.5, the
function z*(V,_; — b) = U \s; satisfy the duality conditions

(UAW, ﬁ)\sl)q =0 , (U)\wal , fjAsl)q =1 and (U, ﬁ)\sl)q =0 WYve Vl.
By iteration, this proves that for all u,v, one has (U,, ﬁuw)q =0y - Q.E.D

This theorem implies that the space of symmetric functions and the linear span of dom-
inant monomials are dual of each other, the Hall-Littlewood functions being the basis dual
to dominant monomials.

We finally mention that in the case ¢ = 0, one has a reproducing kernel, as stated by the
following theorem of M|, which gives another implicit definition of the scalar product (, ).

Theorem 4.9 The two families of polynomials (K, )yenn and (IA(U)UeNn satisfy the following

Cauchy formula .
S K@Rew) = ] (15)

1— 2y
uENP i+j<n+1 iY;
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