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Stochastic flows approach to Dupire’s formula

B.Jourdain∗

October 26, 2006

Abstract

The probabilistic equivalent formulation of Dupire’s PDE is the Put-Call duality equality.
In local volatility models including exponential Lévy jumps, we give a direct probabilistic
proof for this result based on stochastic flows arguments. This approach also enables us
to check the probabilistic equivalent formulation of various generalizations of Dupire’s PDE
recently obtained by Pironneau [7] by the adjoint equation technique in the case of complex
options.

Introduction

The second order derivative of the price of a Call option with respect to the strike variable is equal
to the risk-neutral density of the underlying stock at maturity multiplied by the actualization
factor. In a stock model with a local volatility function and a proportional dividend rate ((0.1)
with µ = m = 0), Dupire [4] takes advantage of this specificity to obtain a PDE (see (2.3) for
m = 0) satisfied by the Call pricing function in the maturity and strike variables. His proof
consists in integrating twice in space the Fokker-Planck equation governing the time evolution of
the density of the stock price. Alternatively, one may use the Green function of the problem or
the adjoint equation technique [7]. For calibration purposes, Dupire’s PDE permits to express
the local volatility function in terms of the function giving the Call prices for all strikes and
maturities.

Dupire’s PDE can be interpretated as the pricing PDE for a Put option. This leads to the Put-
Call duality (equality (2.2) for µ̃ = µ = m = 0) which is in fact an equivalent formulation : the
Call price is transformed into the Put price by simultaneous exchange of the interest and dividend
rates and of the spot and strike prices in addition to time-reversal of the local volatility function.
To our knowledge, no direct probabilistic proof is available for the equality of the expectations
giving the Call and Put prices. In [2], in models including exponential Lévy jumps, Carr and
Andreasen derive a PIDE generalizing Dupire’s PDE by computing the evolution of the Call
payoff with respect to maturity thanks to the Itô-Tanaka formula and taking expectations. The
present paper deals with such models (see (0.1)). In the second section, we give a probabilistic
proof of the Put-Call duality (2.2) equality equivalent to this PIDE. We check the equality of the
expectations by an argument based on stochastic flows of diffeomorphisms. The flow properties
of the SDE (0.1) involved in this argument are introduced in the first section and proved in the
appendix.
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sur Marne, 77455 Marne-la-Vallée Cedex 2, France - e-mail : jourdain@cermics.enpc.fr
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In a recent paper, Pironneau [7] obtains various generalizations of Dupire’s PDE to complex
options by the adjoint equation technique. More precisely, for a given complex option, he shows
that it is possible to compute the pricing function for all strikes and maturities by solving a
single PDE. In calibration procedures, solving this PDE instead of one pricing PDE for the
maturity and strike of each quoted option permits important computation time reduction. Most
of these generalized Dupire’s PDEs have equivalent probabilistic interpretations similar to the
Put-Call duality. In the third and fourth sections of the paper, we use stochastic flows to check
the equivalent interpretations corresponding to binary and options written on two assets.

The fifth section deals with barrier options in local volatility models without jumps. In section
1.1 [7], Pironneau addresses two-barriers options but we have only been able to give a proba-
bilistic equivalent interpretation (see (5.1)) in the one-barrier case. Moreover, besides particular
cases, it seems challenging to give a probabilistic proof of this equivalent formulation. The case
of American options is not addressed in [7]. In [1], we deal with the case of perpetual options
when the local volatility function does not depend on time. For the perpetual American Call
price to be equal to the perpetual American Put price, in addition to the exchanges of the
interest and dividend rates and of the spot and strike prices, the volatility function has to be
modified. Our approach consists in deriving and studying an ODE satisfied by the exercise
boundary as a function of the strike variable. Again, a direct probabilistic proof of the duality
results appears challenging. The stochastic flow approach presented in the present paper does
not seem suited to deal with options involving stopping times like barrier and American options.

Notations : For T > 0 and m a measure on R such that
∫

R
(1 + el) ∧ l2m(dl) < +∞, let

(Wt)t∈[0,T ] be a standard Brownian motion and µ denote an independent Poisson random point
measure on (0, T ] × R with intensity m(dl)dt.
We consider the following risk-neutral evolution for the underlying stock price

dXx
t = σ(t,Xx

t )Xx
t dWt + (r− δ)Xx

t dt+Xx
t−

∫

R

(el − 1)(µ(dt, dl) −m(dl)dt), Xx
0 = x > 0 (0.1)

where r denotes the interest rate and δ the dividend rate. The local volatility function σ(t, x)
is assumed to belong to the space

V =

{

f : [0, T ] × (0,+∞) → R : sup
[0,T ]×R

3
∑

k=0

|xk∂k2f(t, x)| < +∞

}

where ∂k2f denotes the k-th order derivative of the function f with respect to its second variable.
The process (Ŵt = WT−t −WT )t∈[0,T ] obtained by time-reversal of W is a Brownian motion
independent from the image µ̂ of µ by the mapping (t, l) ∈ (0, T ] × R → (T − t,−l) which is a
Poisson random point measure on [0, T )×R with intensity m̂(dl)dt where m̂ denotes the image
of m by l ∈ R → −l.
Let us also introduce the Lévy processes

Lt =

∫

(0,t]×R

l(µ(ds, dl) − 1{|l|≤1}m(dl)ds) − t

∫

R

(el − 1 − l1{|l|≤1})m(dl)

and L̂t = LT−t − LT =

∫

[0,t)×R

l(µ̂(ds, dl) − 1{|l|≤1}m̂(dl)ds) + t

∫

R

(el − 1 − l1{|l|≤1})m(dl).

(0.2)
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By the Lévy-Kinchine formula,

E(eiuLt) = etψ(u) where ψ(u) = −iu

∫

R

(el − 1 − l1{|l|≤1})m(dl) +

∫

R

(eiul − 1 − iul1{|l|≤1})m(dl)

=

∫

R

(eiul − 1 − iu(el − 1))m(dl). (0.3)

1 Stochastic flows of diffeomorphisms

According to the theory of stochastic flows of diffeomorphisms developped by Kunita [6], almost
surely, the solution at time t > 0 of a Stochastic Differential Equation with regular coefficients is
a diffeomorphism as a function of the initial position. Derivatives of the solution with respect to
the initial condition solve the linear equations obtained by formal derivation of the SDE. Last,
the inverse diffeomorphism is associated with a backward SDE. In the following proposition, we
adapt these results to a slight generalization of the SDE with jumps preserving positivity (0.1)
considered in the present paper.

Proposition 1.1 Assume that σ, β ∈ V and let η(t, x) = xσ(t, x). Then trajectorial uniqueness
holds for the stochastic differential equations

dXx
t = η(t,Xx

t )dWt + β(t,Xx
t )Xx

t dt+Xx
t−

∫

R

(el − 1)(µ(dt, dl) −m(dl)dt), t ≤ T, Xx
0 = x > 0

dZzt = η(T − t, Zzt )dŴt + Zzt (σ∂2η − β)(T − t, Zzt )dt + Zzt−

∫

R

(el − 1)(µ̂(dt, dl) +m(dl)dt), t ≤ T

where Zz0 = z > 0 and
∫

R
(el − 1)(µ̂(dt, dl) +m(dl)dt) stands for

∫

R

(el − 1)(µ̂(dt, dl) − 1|l|≤1m̂(dl)dt) +

∫

R

(el − 1 + 1{|l|≤1}(e
−l − 1))m(dl).

They admit solutions such that for almost all ω ∈ Ω, the mappings x → Xx
T and z → ZzT are

inverse increasing diffeomorphisms of (0,+∞),

∀t ∈ [0, T ], Zzt = ze
∫ t
0 σ(T−s,Zz

s )dŴs+
∫ t
0 [σ∂2η−β−

σ2

2
](T−s,Zz

s )ds+L̂t+ (with L̂T+ = L̂T ), (1.1)

∂xX
x
T = e

∫ T

0
∂2η(s,Xx

s )dWs+
∫ T

0
(β+Xx

s ∂2β−
(∂2η)2

2
)(s,Xx

s )ds+LT (1.2)

and ∀x, z > 0, {Xx
T ≥ z} = {x ≥ ZzT }. (1.3)

The rather technical proof of this proposition is postponed to the appendix. To deduce the
Put-Call duality equality (2.2), we are going to check the equality of the derivatives of both
sides with respect to x. The next result enables us to justify the formula ∂xE(e−rT (Xx

T −y)
+) =

E

(

e−rT∂xX
x
T 1{Xx

T ≥y}

)

obtained by formal derivation and where the indicator funtion in the

right-hand side will be replaced thanks to (1.3). Its proof is also postponed to the appendix.

Proposition 1.2 Under the assumptions and notations of Proposition 1.1, when for some z >
0, the local volatility function σ does not vanish on a neighbourhood of (T, z) in [0, T ]× (0,+∞),
then

∀x > 0, P(Xx
T = z) = P(ZzT = x) = 0. (1.4)
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Last, if β(t, x) = γ for some constant γ ∈ R then

∀x > 0, E(e−γTXx
T ) = x and E(e−γT ∂xX

x
T ) = 1 (1.5)

and for any sequence (hn)n≥0 of non-zero real numbers greater than −x converging to zero, the

random variables
(

(Xx+hn

T −Xx
T )/hn

)

n≥0
are uniformly integrable.

2 Standard options

For y > 0, let C(T, x, y) = E(e−rT (Xx
T − y)+) denote the price of the Call option with maturity

T and strike y written on the underlying Xx evolving according to (0.1).
We are going to derive the Put-Call duality (2.2) from the following proposition.

Theorem 2.1 Assume that the local volatility function does not vanish in a neighbourhood of
(T, y) in [0, T ] × (0,+∞). Then

∀x > 0, ∂xC(T, x, y) = ∂xE
(

e−δT (x− Y y
T )+

)

(2.1)

where dY y
t = σ(T − t, Y y

t )Y y
t dŴt + (δ− r)Y y

t dt+ Y y

t−

∫

R
(e−l − 1)(µ̃(dt, dl)− elm(dl)dt), Y y

0 = y

and µ̃ is a Poisson random point measure with intensity elm(dl)dt independent from Ŵ .

As E
(

e−δT (x− Y y
T )+

)

≤ e−δTx and C(T, x, y) ≤ E(e−rTXx
T ) with E(e−rTXx

T ) = e−δTx accord-
ing to (1.5), one has limx→0+ C(T, x, y) = limx→0+ E

(

e−δT (x− Y y
T )+

)

= 0. Hence the Put-Call
duality follows from (2.1) :

Corollary 2.2 If the local volatility function does not vanish in a neighbourhood of (T, y),

∀x > 0, C(T, x, y) = E

(

e−δT (x− Y y
T )+

)

. (2.2)

Remark 2.3 If the local volatility function σ is positive and belongs to V for any T > 0, then
the Put-Call duality (2.2) holds for all (T, y) ∈ [0,+∞)× (0,+∞). This implies Dupire’s PIDE.
Indeed, for s ∈ [0, T ], let (Y s,y,T

t )t∈[s,T ] solve Y s,y,T
s = y and for t ∈ [s, T ],

dY s,y,T
t = σ(T − t, Y s,y,Tt )Y s,y,T

t dŴt + (δ− r)Y s,y,Tt dt+Y s,y,T

t−

∫

R

(e−l− 1)(µ̃(dt, dl)− elm(dl)dt).

For fixed s, by time translation, the expectation E

(

e−δ(T−(T−s))(x− Y T−s,y,T
T )+

)

does not de-

pend on T greater than s and may be denoted u(s, y). By the Feynman-Kac formula, one has










∂su(s, y) = 1
2σ

2(s, y)y2∂yyu(s, y) + (δ − r)y∂yu(s, y) − δu(s, y)

+
∫

R

[

u(s, ye−l) − u(s, y) − ∂yu(s, y)y(e
−l − 1)

]

elm(dl), s, y > 0

u(0, y) = (x− y)+, y > 0

.

Since C(T, x, y) = u(T, y), one deduces that the function C solves Dupire’s PIDE in the variables
(T, y) :










∂TC(T, x, y) = 1
2σ

2(T, y)y2∂yyC(T, x, y) + (δ − r)y∂yC(T, x, y) − δC(T, x, y)

+
∫

R

[

C(T, x, ye−l) − C(T, x, y) − ∂yC(T, x, y)y(e−l − 1)
]

elm(dl), T, y > 0

C(0, x, y) = (x− y)+, y > 0

.

(2.3)
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Conversely, if (2.3) holds, the function v(t, y) = C(T − t, x, y) satisfies the PIDE

∂tv(t, y) +
1

2
σ2(T − t, y)y2∂yyv + (δ − r)y∂yv − δv

+

∫

R

[

v(t, ye−l) − v(t, y) − ∂yv(t, y)y(e
−l − 1)

]

elm(dl) = 0

with terminal condition v(T, y) = (y−x)+. By the Feynman-Kac representation for the solution
of this PIDE, v(0, y) = E

(

e−δT (x− Y y
T )+

)

and (2.2) holds.

Proof of Theorem 2.1 : Let (hn)n≥0 be a sequence of non-zero real numbers greater than
−x converging to zero. Since x→ Xx

T is increasing according to Proposition 1.1, one has

0 ≤
(Xx+hn

T − y)+ − (Xx
T − y)+

hn
≤
Xx+hn

T −Xx
T

hn
,

and the variables
(

((Xx+hn

T − y)+ − (Xx
T − y)+)/hn

)

n≥0
are uniformly integrable by Proposition

1.2. By (1.4), these variables converge a.s. to ∂xX
x
T 1{Xx

T ≥y} as n → +∞. One deduces that

C(T, x, y) is differentiable with respect to x and ∂xC(T, x, y) = e−δTE

(

e(δ−r)T ∂xX
x
T 1{Xx

T ≥y}

)

.

By (1.2), this implies

∂xC(T, x, y) = e−δTE

(

eLT E

(

e
∫ T
0
∂2η(u,Xx

u )dWu−
1
2

∫ T
0

(∂2η(u,Xx
u ))2du1{Xx

T ≥y}

∣

∣

∣

∣

(Ls)s∈[0,T ]

))

.

Since ∂2η(t, x) = σ(t, x) + x∂2σ(t, x) is bounded on [0, T ] × R, for y = 0 the conditional expec-
tation in the right-hand-side is equal to 1 by Novikov’s criterion (Proposition 1.15 p.308 [8]).
Therefore, by Girsanov theorem,

E

(

e
∫ T
0 ∂2η(u,Xx

u )dWu−
1
2

∫ T
0 (∂2η(u,Xx

u ))2du1{Xx
T ≥y}

∣

∣

∣

∣

(Ls)s∈[0,T ]

)

= E

(

1{X̄x
T ≥y}

∣

∣

∣

∣

(Ls)s∈[0,T ]

)

where dX̄x
t = η(t, X̄x

t )dWt + β(t, X̄x
t )X̄x

t dt+ X̄x
t−

∫

R

l(µ(dl, dt) − 1{|l|≤1}m(dl)dt), X̄x
0 = x

with β(t, z) = σ∂2η(t, z) + (r − δ). By (1.3), one deduces that

∂xC(T, x, y) = e−δTE

(

eLT 1{x≥Zy
T }

)

, (2.4)

where, according to (1.1) and the definition of β,

∀t ∈ [0, T ], Zzt = ze
∫ t
0 σ(T−s,Zz

s )dŴs+(δ−r)t− 1
2

∫ t
0 σ

2(T−s,Zz
s )ds+L̂t+ (convention : L̂T+ = L̂T ).

When m = 0, we are done. Otherwise, we still have to derive the dynamics of L̂t+ under the
probability measure with density eLT with respect to P. By (0.3), for t ∈ [0, T ] and u ∈ R,

E(eLT eiuL̂t+ ) = E(e(1−iu)(LT −LT−t))E(eLT−t) = etψ(−(u+i)) and

ψ(−(u + i)) =

∫

R

(ele−iul − 1 + (iu− 1)(el − 1))m(dl)

=

∫

R

(e−iul − 1 + iul1{|l|≤1})e
lm(dl) + iu

∫

R

(el − 1 − lel1{|l|≤1})m(dl).
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Therefore, under the probability measure with density eLT with respect to P,

L̂t+ = −

∫

(0,t]×R

l(µ̄(ds, dl) − 1{|l|≤1}e
lm(dl)ds) + t

∫

R

(el − 1 − lel1{|l|≤1})m(dl)

with µ̄ a Poisson random point measure with intensity elm(dl)dt independent from W . By Itô’s
formula

dZzt = η(T − t, Zzt )dŴt + (δ − r)Zzt dt+ Zzt−

∫

R

(e−l − 1)(µ̄(dt, dl) − elm(dl)dt), Zz0 = z.

Since trajectorial and therefore weak uniqueness holds for this SDE with jumps, E(eLT 1{x≥Zy
T }) =

P(x ≥ Y y
T ) and by (2.4), ∂xC(T, x, y) = e−δTE(1{x≥Y y

T }). According to Lebesgue’s Theorem,

the right-hand-side is equal to ∂xE
(

e−δT (x− Y y
T )+

)

since P(Y y
T = x) = E(eLT 1{Zy

T =x}) = 0 by

(1.4).

Remark 2.4 Many authors have obtained another type of Put-Call duality by the following
change of numéraire approach :

E(e−rT (Xx
T − y)+) = EQ

(

e−δT
(

x−
yx

Xx
T

)+
)

with
dQ

dP
= e(δ−r)T

Xx
T

x
.

In exponential Lévy models, the local volatility function is constant and Fajardo and Mordecki
[5] derive (2.2) by this approach. But in general, the coefficients of the SDE with jumps satisfied
by xy

Xx
t

under Q depend on the primal spot variable and dual strike variable x. Then it is not

clear to deduce a PIDE in the variables T and y for the pricing function C(T, x, y).

3 Binary options

For z > 0, let c(T, x, z) = E

(

e−rT 1{Xx
T ≥z}

)

denote the price of the binary Call option with strike

z and maturity T written on the underlying Xx. The following result is a direct consequence of
(1.3) :

Proposition 3.1

∀x, z > 0, c(T, x, z) = E

(

e−rT 1{x≥Zz
T }

)

(3.1)

where Zz solves dZzt = η(T−t, Zzt )dŴt+(η∂2η(T−t, Z
z
t )+(δ−r)Zzt )dt+Z

z
t−

∫

R
(el−1)(µ̂(dt, dl)+

m(dl)dt), Zz0 = z.

Remark 3.2 By a reasoning similar to the one made for the standard Dupire’s PIDE in Remark
2.3, one deduces that as a function of the maturity and strike variables, the function c(T, x, z)
solves










∂T c(T, x, z) = 1
2σ

2(T, z)z2∂zzc(T, x, z) + (η∂2η(T, z) + (δ − r)z)∂zc(T, x, z) − rc(T, x, z)

+
∫

R

[

c(T, x, ze−l) − c(T, x, z) + ∂zc(T, x, z)z(e
l − 1)

]

m(dl), T, z > 0

c(0, x, z) = 1{x≥z}, z > 0

.

(3.2)
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Remarking that

1

2
σ2(T, z)z2∂zzc(T, x, z) + η∂2η(T, z)∂zc(T, x, z) =

1

2
∂z
(

σ2(T, z)z2∂zc(T, x, z)
)

,

one recognizes the PDE obtained in [7] in the absence of jumps (m=0).

Remark 3.3 The standard Call and the binary Call pricing functions are linked by

C(T, x, y) = E

(

e−rT
∫ +∞

y

1{Xx
T ≥z}dz

)

=

∫ +∞

y

c(T, x, z)dz.

Integrating the PIDE (3.2) with respect to z on the interval [y,+∞[ and remarking that
∫ +∞

y

[

c(T, x, ze−l) − c(T, x, z) + ∂zc(T, x, z)z(e
l − 1)

]

dz

=

∫ +∞

ye−l

c(T, x,w)eldw + (el − 1)

∫ +∞

y

∂z(zc(T, x, z))dz − el
∫ +∞

y

c(T, x, z)dz

= −
[

elC(T, x, ye−l) + (el − 1)y∂yC(T, x, y) − elC(T, x, y)
]

= −el
[

C(T, x, ye−l) − C(T, x, y) − (e−l − 1)y∂yC(T, x, y)
]

one recovers (2.3). This alternative proof of (2.3) relies on properties of the derivative of the
pricing function C with respect to the strike variable, whereas Proposition 2.1 deals with its
derivative with respect to the spot variable.

4 Options written on two assets

We now consider a model with two assets evolving according to the following dynamics






















dX1,x1
t = σ1(t,X

1,x1
t )X1,x1

t dW 1
t + (r − δ1)X

1,x1
t dt

+X1,x1

t−

∫

R2(e
l1 − 1)(µ(dt, dl1,R) −m(dl1,R)dt), X1,x1

0 = x1

dX2,x2
t = σ2(t,X

2,x2
t )X2,x2

t dW 2
t + (r − δ2)X

2,x2
t dt

+X2,x2

t−

∫

R2(e
l2 − 1)(µ(dt,R, dl2) −m(R, dl2)dt), X

2,x2
0 = x2

, (4.1)

where for i ∈ {1, 2}, σi ∈ V. Here W 1 and W 2 are two standard Brownian motions such that
d < W 1,W 2 >t= ρtdt with ρ an adapted process and µ is an independent Poisson random point
measure on (0, T ] × R2 with intensity m(dl1, dl2)dt where

∫

R2

(el1 + el2 + 1) ∧ (l21 + l22)m(dl1, dl2) < +∞.

Let for i ∈ {1, 2}, ηi(t, zi) = ziσi(t, zi), (Ŵ i
t = W i

T−t −W i
T )t∈[0,T ] and µ̂ denote the image of µ

by the mapping (t, l1, l2) ∈ (0, T ] × R2 → (T − t,−l1,−l2).

Proposition 4.1 Let (Z1,z1, Z2,z2) solve

dZ1,z1
t = η1(T − t, Z1,z1)dŴ 1

t + (η1∂2η1(T − t, Z1,z1
t ) + (δ1 − r)Z1,z1

t )dt

+ Z1,z1
t−

∫

R2

(el1 − 1)(µ̂(dt, dl1,R) +m(dl1,R)dt), Z1,z1
0 = z1

dZ2,z2
t = η2(T − t, Z2,z2)dŴ 2

t + (η2∂2η2(T − t, Z2,z2
t ) + (δ2 − r)Z2,z2

t )dt

+ Z2,z2
t−

∫

R2

(el2 − 1)(µ̂(dt,R, dl2) +m(R, dl2)dt), Z
2,z2
0 = z2.
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Then for w(T, x1, x2, z1, z2) = E

(

e−rT 1
{x1≥Z

1,z1
T ,x2≥Z

2,z2
T }

)

, one has

∀x1, x2, y > 0,E
(

(X1,x1

T +X2,x2

T − y)+
)

=

∫ y

0
w(T, x1, x2, z, y − z)dz

+

∫ +∞

y

w(T, x1, x2, z, 0) + w(T, x1, x2, 0, z)dz

(4.2)

and E

(

(X1,x1

T ∨X2,x2

T − y)+
)

=

∫ +∞

y

w(T, x1, x2, z, 0) + w(T, x1, x2, 0, z) − w(T, x1, x2, z, z)dz.

Remark 4.2 When ρt = −q(t,X1,x1
t ,X2,x2

t ), by a reasoning similar to the one made in Remark
3.2, one checks that the function w solves the following PIDE obtained in [7] Section 2.1 in the
absence of jumps :











∂Tw =
∑2

i=1

[

1
2∂zi

(

σ2
i (T, zi)z

2
i ∂zi

w
)

+ (δi − r)zi∂zi
w
]

− 2qz1z2∂z1z2w − rw

+
∫

R2 w(T, z1e
−l1 , z2e

−l2) − [w −
∑2

i=1 zi(e
li − 1)∂zi

w](T, z1, z2)m(dl1, dl2)

w(0, x1, x2, z1, z2) = 1{x1≥z1,x2≥z2}

.

Proof : One has

∀y1, y2, y ≥ 0, (y1 + y2 − y)+ =

∫ y

0
1{y1≥z,y2≥y−z}dz +

∫ +∞

y

1{y1≥z} + 1{y2≥z}dz.

Therefore

E

(

(X1,x1

T +X2,x2

T − y)+
)

= e−rTE

(
∫ y

0
1
{X

1,x1
T ≥z,X

2,x2
T ≥y−z}

dz +

∫ +∞

y

1
{X

1,x1
T ≥z}

+ 1
{X

2,x2
T ≥z}

dz

)

.

Since by (1.3), a.s., ∀x1, x2, z1, z2 > 0, {X1,x1

T ≥ z1} = {x1 ≥ Z1,z1
T } and {X2,x2

T ≥ z2} = {x2 ≥

Z2,z2
T },

C(T, x1, x2, y) = e−rTE

(
∫ y

0
1{x1≥Z

1,z
T ,x2≥Z

2,y−z
T }dz +

∫ +∞

y

1{x1≥Z
1,z
T } + 1{x2≥Z

2,z
T }dz

)

As by Proposition 1.1, z2 → Z2,z2
T (resp. z1 → Z1,z1

T ) is an increasing diffeomorphism of

(0,+∞), limz2→0+ w(T, x1, x2, z1, z2) = e−rTP(x1 ≥ Z1,z1
T ) (resp. limz1→0+ w(T, x1, x2, z1, z2) =

e−rTP(x2 ≥ Z2,z2
T )). One easily deduces (4.2).

The formula for the best-off Call option is obtained similarly remarking that

∀y1, y2, y ≥ 0, (y1 ∨ y2 − y)+ =

∫ +∞

y

1{y1≥z} + 1{y2≥z} − 1{y1≥z,y2≥z}dz.

Remark 4.3 When σi may depend smoothly on xj for j 6= i in (4.1), (x1, x2) → (X1,x1,x2

T ,X2,x1,x2

T )

is still a diffeomorphism with inverse (z1, z2) → (Z1,z1,z2
T , Z2,z1,z2

T ) obtained as the solution of a

two-dimensional SDE at time T . But in general, the events {X1,x1,x2

T ≥ z1,X
2,x1,x2

T ≥ z2} and

{x1 ≥ Z1,z1,z2
T , x2 ≥ Z2,z1,z2

T } are not equal and the argument above fails.
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5 Barrier options

In absence of jumps m = 0 and in the particular case of equal interest and dividend rates

r = δ , as a consequence of Proposition 1.2 [7],

∀x, y ≥ z > 0, E
(

(Xx
T − y)+1{τx

z >T}

)

= E

(

(x− Y y

T∧tyz
)+
)

(5.1)

with Xx solving (0.1), Y y defined in Proposition 2.1, τxz = inf{t ≥ 0 : Xx
t ≤ z} and tyz = inf{t ≥

0 : Y y
t ≤ z}. Notice that since r = δ, there is no drift term in the dynamics of Xx and Y y and

both processes are martingales in their natural filtration. This equality generalizes (2.2) which
can be recovered by taking the limit z → 0. It is easy to prove when either x or y is equal to z.
Indeed, when y ≥ x = z, both sides are equal to 0. And when x ≥ y = z, using the martingale
property of Xx for the third equality,

E

(

(Xx
T − y)+1{τx

y>T}

)

= E

(

(Xx
T − y)1{τx

y >T}

)

= E(Xx
T ) − E

(

Xx
T 1{τx

y ≤T}

)

− yP(τxy > T )

= x− yP(τxy ≤ T ) − yP(τxy > T )

while the right-hand-side of (5.1) is obviously equal to x− y.

Equation (5.1) is equivalent to an equality where x and y play symmetric roles. Indeed sub-
stracting (5.1) to (2.2), and using the martingale property of Y y for the second equality, one
gets

E
(

(Xx
T − y)+1{τx

z ≤T}

)

= E

(

(

(x− Y y
T )+ − (x− z)

)

1{tyz≤T}

)

= E

(

(

(x− Y y
T )+ − (x− Y y

T )
)

1{tyz≤T}

)

= E

(

(Y y
T − x)+1{tyz≤T}

)

.

In case the local volatility function σ does not depend on the time variable, this last equality
obviously holds when x = y.
Beside these particular cases, it seems challenging to give a probabilistic proof of (5.1). Deriva-
tion of the equality with respect to x or y does not lead to nice probabilistic equalities like (2.1)
obtained in the case of standard options. Even in the Black-Scholes model with constant volatil-
ity, (5.1) is not obvious. For instance, the change of numéraire approach presented in Remark

2.4 then enables to check that E

(

(Xx
T − y)+1{τx

y>T}

)

= E

(

(x− Y y
T )+1{sup[0,T ] Y

y
t <

yx
z
}

)

. But it

is not clear that the right-hand-side coincides with the one in (5.1).

Appendix

The proof of Proposition 1.1 relies on the following result concerning SDEs without jumps which
is a consequence of Kunita’s theory on stochastic flows of diffeomorphisms (see [6] Corollary 4.6.6
for the first statement and equation (21) in the proof of Theorem 4.6.5 for the second).

Proposition 5.1 Let a, b : [0, T ] × R → R be functions bounded together with their derivatives
with respect to their second variable up to the order 3. Then the stochastic differential equation

dχξt = a(t, χξt )dWt + b(t, χξt )dt, t ≤ T, χξ0 = ξ (5.2)

(resp. dζνt = a(T − t, ζνt )dŴt + (a∂2a− b)(T − t, ζνt )dt, t ≤ T, ζν0 = ν) (5.3)
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admits a solution such that for each (t, ω) ∈ [0, T ] × Ω, the map ξ → χξt (resp. ν → ζνt ) is an

increasing diffeomorphism of R. The derivative ∂ξχ
ξ
t solves the SDE

d∂ξχ
ξ
t = ∂2a(t, χ

ξ
t )∂ξχ

ξ
tdWt + ∂2b(t, χ

ξ
t )∂ξχ

ξ
tdt, ∂ξχ

ξ
0 = 1.

Moreover

dP a.s., ∀(t, ξ) ∈ [0, T ] × R, ζ
χ

ξ
T

t = χξT−t. (5.4)

Proof of Proposition 1.1 : Under our assumptions, the functions xσ(t, x), xβ(t, x) and
x(σ∂2η − β)(t, x) vanish for x = 0 and are Lipschitz continuous in x uniformly for t ∈ [0, T ].
Therefore existence and trajectorial uniqueness follows from standard result concerning SDEs.

For [ā, b̄](t, ξ) =
[

σ, β − σ2

2

]

(t, eξ), one has

[ā∂2ā− b̄](t, ξ) =

[

σeξ∂2σ + σ2 − β −
σ2

2

]

(t, eξ) =

[

σ∂2η − β −
σ2

2

]

(t, eξ). (5.5)

By Itô’s formula, one easily deduces that for χ̄ and ζ̄ solving

dχ̄ξt = ā(t, χ̄ξt )dWt + b̄(t, χ̄ξt )dt+ dLt, t ≤ T, χξ0 = ξ

dζ̄νt = ā(T − t, ζ̄νt )dŴt +
(

ā∂2ā− b̄
)

(T − t, ζ̄νt ) + dL̂t, t ≤ T, ζ̄ν0 = ν.

(eχ̄
log x
t )t∈[0,T ] solves the SDE satisfied by Xx and (eζ

log z

t+ )t∈[0,T ] where by convention ζν
T+ = ζνT

solves the SDE satisfied by Zz as soon as eζ
log z

0+ = z. Since the last equality holds as soon as
LT− = LT and therefore with probability 1, by trajectorial uniqueness,

P

(

ZzT = eζ
log z
T and ∀t ∈ [0, T ], (Xx

t , Z
z
t ) = (eχ̄

log x
t , eζ̄

log z

t+ )
)

= 1.

With (5.5) one deduces (1.1).

For a fixed realization of µ or equivalently of the Lévy process (Lt)t∈[0,T ], setting [a, b](t, ξ) =

[ā, b̄](t, ξ + Lt), the process χξt = χ̄ξt − Lt and ζνt = ζ̄ν+LT
t − LT−t respectively solve (5.2) and

(5.3). Since the functions a and b satisfy the hypotheses in Proposition 5.1, this result implies

that ξ → χξT = χ̄ξT − LT and ν → ζνT = ζ̄ν+LT

T are inverse increasing diffeomorphisms of R and

∂ξχ̄
ξ
T = ∂ξχ

ξ
T = e

∫ T
0 ∂2a(t,χ

ξ
t )dWt+

∫ T
0 (∂2b−

1
2
(∂2a)2)(t,χξ

t )dt = e
∫ T
0 ∂2ā(t,χ̄

ξ
t )dWt+

∫ T
0 (∂2 b̄−

1
2
(∂2ā)2)(t,χ̄ξ

t )dt.

Since ξ = ζ
χ

ξ
T

T = ζ̄
(χ̄ξ

T −LT )+LT

T = ζ̄
χ̄

ξ
T

T , ξ → χ̄ξT and ν → ζ̄νT and therefore x → Xx
T and z → ZzT

are inverse increasing diffeomorphisms. Equality (1.3) follows easily. Moreover, on the almost

sure event {∀t ∈ [0, T ], Xx
t = eχ̄

log x
t },

∂xX
x
T =

1

x
∂ξχ̄

log x
T eχ̄

log x
T = e

∫ T
0 (ā+∂2ā)(t,χ̄

log x
t )dWt+

∫ T
0 [b̄+∂2 b̄−

(∂2ā)2

2
](t,χ̄log x

t )dt+LT .

One deduces (1.2) by remarking that ā+ ∂2ā(t, ξ) = (σ + eξ∂2σ)(t, eξ) = ∂2η(t, e
ξ) and

[

b̄+ ∂2b̄−
(∂2ā)

2

2

]

(t, ξ) =

[

β −
σ2

2
+ eξ∂2β − eξσ∂2σ −

(eξ∂2σ)2

2

]

(t, eξ)

=

[

β + eξ∂2β −
(σ + eξ∂2σ)2

2

]

(t, eξ) =

[

β + eξ∂2β −
(∂2η)

2

2

]

(t, eξ).
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Proof of Proposition 1.2 : When for fixed z > 0, the function σ does not vanish in a
neighbourhood of (T, z), then for some ε ∈ (0, T ) the function a does not vanish on [T − ε, T ]×
[log z−2ε, log z+2ε]. Conditionally on (Lt)t∈[0,T ], as soon as LT− = LT , by Bouleau and Hirsch

absolute continuity criterion (see Theorem 2.1.3 p.162 [3]) , ζ̄ log z
T = ζ log z−LT

T has a density

with respect to the Lebesgue measure and for all ξ ∈ R, either P(χ̄ξT ∈ [log z − ε, log z + ε]) =

P(χξT ∈ [log z − LT − ε, log z − LT + ε]) = 0 or the conditional law of χ̄ξT = χξT + LT given

χξT ∈ [log z − LT − ε, log z − LT + ε] has a density. As P(LT− = LT ) = 1, one deduces (1.4).

Let us now suppose that β(t, x) = γ. Then Xx
t = xe

∫ t

0
σ(s,Xx

s )dWs+γt− 1
2

∫ t

0
σ2(s,Xx

s )ds+Lt and

E(e−γtXx
t ) = xE

(

eLtE

(

e
∫ t
0 σ(s,Xx

s )dWs−
1
2

∫ t
0 σ

2(s,Xx
s )ds

∣

∣

∣

∣

(Ls)s∈[0,T ]

))

.

Since σ is bounded, the conditional expectation in the right-hand-side is equal to 1 by Novikov’s
criterion (Proposition 1.15 p.308 [8]) and the right-hand-side is equal to x as E(eLt) = 1 (take
u = −i in (0.3)). Moreover, as the function ∂2η(t, x) = (σ + x∂2σ)(t, x) is bounded, the

expectation of e−γT∂xX
x
T = e

∫ T
0 ∂2η(s,Xx

s )dWs−
1
2

∫ T
0 (∂2η)2(s,Xx

s )ds+LT is equal to 1 by the same
argument.
Let (hn)n≥0 be a sequence of non-zero real numbers greater than −x converging to zero. The

random variables
(

(Xx+hn

T −Xx
T )/hn

)

n≥0
converge to ∂xX

x
T as n → +∞. Since they are non-

negative and

lim
n→+∞

E

(

Xx+hn

T −Xx
T

hn

)

= eγT = E (∂xX
x
T ) ,

they converge in L1 to ∂xX
x
T , which ensures uniform integrability.
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