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Hyperdeterminants on semilattices

Jean-Gabriel Luque ∗

November 22, 2006

Abstract

We compute hyperdeterminants of hypermatrices whose indices
belongs in a meet-semilattice and whose entries depend only of the
greatest lower bound of the indices. One shows that an elementary
expansion of such a polynomial allows to generalize a theorem of Lind-
ström to higher-dimensional determinants. And we gave as an applica-
tion generalizations of some results due to Lehmer, Li and Haukkanen.

keywords:Hyperdeterminants, meet semilattices, GCD-matrices, multiplicative functions.

AMS: 15A15, 15A69, 06A12.

1 Introduction

Since the end of the nineteen century, it is known that some determinants,
with entries depending only of the gcd of the indices, factorize. Readers in-
terested in the story of the problem can refer to [13] and [2]. In 1876, Smith
[15] evaluated the determinant of a GCD matrix whose entries belong to a
factor closed set (i.e., a set which contains all the factors of its elements) as
a product of Euler’s totient. The interest of this computation lies in its links
with arithmetic functions [1] and in particular multiplicative functions (see
[7, 8] for interesting remarks about the last notion). During the last century,
many generalizations of Smith’s theorem have been investigated. One of the
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ways to extend his result consists in changing the set of the indices of the
matrices. In 1990, Li [10] gave the value of GCD determinant for an arbitrary
set of indices. Beslin and Ligh [3] shown that such a determinant factorizes
when the indices belongs to a gcd-closed set (i.e., a set which contains the
gcd of any pairs of its elements) as a product of certain functions evaluated
in terms of Euler’s totient. The fact that these determinants factorize can
be seen as a corollary of a very elegant theorem due to Lindström [11] which
evaluated the determinant of the GCD-matrix whose indices are chosen in a
meet semilattice, i.e., a poset such that each pair admits a greatest lower
bound. Another way to generalize Smith’s result consists in computing mul-
tidimensional analogous. In 1930 Lehmer gave [9] the first multi-indexed
version of Smith’s determinant. Other related computation are collected in
[16, 17]. More recently, Haukkanen [12] generalized the results of Beslin and
Ligh [3] and Li [10]) to hyperdeterminants.

We will see in Section 2 that the main trick for computing these multidi-
mensional determinants consists in expanding it as a sum of (classical 2-way)
determinants. In the aim to highlight this method, we apply it to a more
general object DetF.
In Section 3, we recall shortly a classical technic and give a slight generaliza-
tion of Lindström’s Theorem. As a consequence, we give a multidimensional
analogue of Lindström’s Theorem.
In Section 4, one investigates minors of meet hypermatrices and generalizes
two theorems due to Haukkanen [12].

2 Hyperdeterminants and F-determinants

The question of extending the notion of determinant to higher dimensional
arrays has been raised by Cayley [5, 6] few after he introduced the modern
notation as square arrays [4]. The simplest generalization is defined for a
kth order tensor on an n-dimensional space M = (Mi1,··· ,ik)1≤i1,··· ,ik≤n by the
alternated sum

DetM =
1

n!

∑

σ=(σ1,··· ,σk)∈Sk
n

sign(σ)Mσ,

where sign(σ) = sign(σ1) · · · sign(σk), Mσ = Mσ1(1)...σk(1) · · ·Mσ1(n)...σk(n) and
Sn is the symmetric group. A straightforward computation gives DetM = 0
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if k is odd.
For any k (even if k is odd), one defines the polynomial

Det1M =
∑

σ=(Id,σ2,··· ,σk)∈Sk
n

sign(σ)Mσ.

When k is even the two notions coincide but for k odd, only Det1 does not
vanish. This is a special case of the ”less-than-full-sign” determinant theory
due to Rice [14].
Let us denote by F a map from Sk−2

n to a commutative ring. One defines a
more general object, which will be called F-determinant of M by

DetF(M) =
∑

σ=(σ2,··· ,σk)∈S
k−1
n

sign(σ2)F(σ3, . . . , σk)
∏

i

Miσ2(i)...σk(i).

It exists an elementary identity which consists in expanding the F-determinant
as a sum of (n!)k−2 classical (2-way) determinants.

Lemma 2.1 (Determinantal expansion)
One has

DetFM =
∑

σ3,...,σk

F(σ3, . . . , σk) det(Mσ3,...,σk),

where Mσ3,...,σk denotes the n×n matrix such that M
σ3,...,σk

i,j = Mi,j,σ3(i),...,σk(i).

Proof – It suffices to remark that

DetFM =
∑

σ3,...,σk

F(σ3, . . . , σk)
∑

σ2

sign(σ2)
∏

i

Miσ2(i)σ3(i)···σk(i)

One of the most important property of hyperdeterminants is the invariance
under the action of k copies of the special linear group. It is a very classical
result which can be recover as a straightforward consequence of the following
proposition.

Proposition 2.2 The polynomial DetFM is invariant under the action of
linear group on M in the following sense

DetFg.M = det gDetFM, (1)

where

g.M =

(

∑

1≤j2≤n

gi2j2Mi1,j2,i3··· ,ik

)

1≤i1,··· ,ik≤n

.
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Proof – By applying Lemma 2.1 to g.M , one gets

DetFg.M =
∑

σ3,...,σk

F(σ3, . . . , σk) det(g.Mσ3,...,σk)

=
∑

σ3,...,σk

F(σ3, . . . , σk) det g det(Mσ3,...,σk)

= det gDetFM.

3 Hyperdeterminants of meet hypermatrices

3.1 Meet semilattice

Consider a partially ordered finite set L so that every pairs (x, y) ∈ L2 has
a greatest lower bound denoted by x ∧ y. Such a poset is called a meet
semilattice. One defines classically its ζ function by

ζ(x, y) =

{

1 if x ≤ y,

0 otherwise.

Its Möbius function is the inverse of the zeta function and can be computed
by the induction

µ(x, y) =







1 if x = y,

−
∑

x≤z<y µ(z, y) if x < y,

0 in the other cases.

If F and f verify the equality

F (x) =
∑

y≤x

f(y) =
∑

y∈L

ζ(y, x)f(y), (2)

then, one has

f(x) =
∑

y∈L

µ(y, x)F (y) = (F ⋆ µ)(x) (3)

where the symbol ⋆ means the convolution product.
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3.2 Lindström Theorem

The factorization properties of the GCD determinants are the consequence
of the semilattice structure of the integers with respect to divisibility and
can be stated in a more general way. The manipulations of the identities (2)
and (3) are the keys of the proof of Lindström’s Theorem [11]. We recall its
proof in a very slightly more general version.

For each x ∈ L, one considers a fixed element zx ≤ x. Let Fx be a
function from L to C (or more generally to a commutative ring). Let M be
the matrix defined by

M = (Fx(zx ∧ y))x,y∈L .

Remark that it suffices to define Fx(z) only when z ≤ x. In particular, one
can suppose that Fx(z) = F (z, x) is an incidence function, i.e., F (x, z) = 0
unless x ≤ z. One has

Fx(zx ∧ y) =
∑

z∈L

ζ(z, zx)ζ(z, y)fx(z),

where fx(z) =
∑

y∈L µ(y, z)Fx(y). Hence, det M factorizes as the product

det M = det Φ. det Z,

where Φ = (ζ(y, zx)fx(y))x,y∈L and Z = (ζ(x, y))x,y∈L. As Φ and Z are
triangular, det Z = 1 and

det Φ =
∏

x

ζ(x, zx)fx(x) =







∏

x

fx(y) if zx = x for each x,

0 otherwise.
(4)

Then one obtains Lindström’s Theorem.

Theorem 3.1 (Lindström [11])

det (Fx(zx ∧ y))x,y∈L =

{
∏

x fx(x) if zx = x for each x,

0 otherwise.
(5)

Note that, the original Lindstöm ’s Theorem deals with the case where zx = x

for each x. Furthermore, equality (4) generalizes a lemma of Cesaro.

Lemma 3.2 (Cesaro)
Denote by gcdm(n) = gcd(m, n). One has,

(µ ∗ (f ◦ gcdm))(n) =

{

(f ∗ µ)(n) if m = n,

0 otherwise,
(6)

where ∗ is the Dirichlet convolution and ◦ is the composition of functions.
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3.3 Linström’s Theorem for F-determinants

Lindstöm’s Theorem can be extended to F-determinants.

Theorem 3.3 (Lindström’s theorem for F-determinants)
If L = {x1, . . . , xn} denotes a meet semilattice, one has

DetF

(

Fxi1
(zxi1

∧ · · · ∧ xik)
)

=







F(Id, · · · , Id)
∏

x

fx(x) if zx = x for each x

0 otherwise

Proof – Lemma 2.1 gives

DetF (Fx1
(zx1

∧ · · · ∧ xk))x1,··· ,xk∈L =
∑

σ3,...,σk

F(σ3, . . . , σk) det
(

Fxi
(zxi

∧ xj ∧ xσ3(i) ∧ · · · ∧ xσk(i)

)

i,j

From Linström’s Theorem (Theorem 3.1), one has

det
(

Fxi
(zxi

∧ xj ∧ xσ3(i) ∧ · · · ∧ xσk(i)

)

6= 0

if and only if for each xi one has

zxi
∧ xσ3(i) ∧ · · · ∧ xσk

(i) = xi.

Equivalently,
zxi

∧ xσ3(i) ∧ · · · ∧ xσk
(i) ≥ xi,

for eacu i. Hence, σ3 = · · · = σk = Id and zxi
= xi for each i. The result

follows.

Example 3.4 Consider the semilattice constituted with two elements 2 ≥ 1.
The expansion of the F-determinant gives

DetF(Fi(i ∧ j ∧ k ∧ l)) = F(12, 12)

∣

∣

∣

∣

F1(1) F1(1)
F2(1) F2(2)

∣

∣

∣

∣

+ (F(12, 21) + F(21, 12) + F(21, 21))

∣

∣

∣

∣

F1(1) F1(1)
F2(1) F2(1)

∣

∣

∣

∣

= F(12, 12)F1(1)(F2(2) − F2(1))
= F(12, 12)f1(2)f2(2)
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4 Minors of meet Hypermatrices

4.1 Meet closed subsets

Consider a meet closed subset S of L (i.e., a subset closed under the opera-
tion ∧) and fix a linear extension l = y1 . . . yn of S. Following the notations
of [2], we denote by x E yi the relation x ≤ yi and x 6≤ yj for each j < i.
Consider a pair of functions f and F verifying

F (yi) =
∑

x≤yi
x∈L

f(x) (7)

and set f̂(yi) =
∑

xEyi
f(x). One has the following lemma.

Lemma 4.1
F (yi) =

∑

yk≤yi

f̂(yk). (8)

Proof – Remarking that for each x ∈ L, it exists i such that x E yi (it suffices
to set yi = min{j|x ≤ yj} and that x E yi and x E yj implies i = j, we have

F (yi) =
∑

x≤yi
x∈L

f(x) =
∑

yk≤yi

∑

xEyk

f(x) =
∑

yk≤yi

f̂(yk).

Note that this identity appears in [2] (Theorem 4.1, p 7). Hence, using
Theorem 3.3 and Lemma 4.1, one generalizes a result by Altinisik, Sagan
and Tuglu ([2], Theorem 4.1 p 7).

Corollary 4.2

DetF(Fyi1
(yi1 ∧ · · · ∧ yik)) = F(Id, · · · , Id)

n
∏

i=1

(

∑

x1Eyi

∑

x2∈L

µ(x1, x2)Fyi
(x2)

)

.

Example 4.3 Consider the semilattice L given by its Hasse diagram

L =

4 5
↑ ր ↑
2 3
↑ ր
1
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where i → j means i ≤ j. The sublattice generated by 2, 4 and 5,

S =
4 5
↑ ր
2

is meet closed and
f̂2(2) = f2(2) + f2(1)

f̂4(4) = f4(4)

f̂5(5) = f5(5) + f5(3).

Hence,

DetF (Fi(i ∧ j ∧ k))i,j,k∈S = F(123)

∣

∣

∣

∣

∣

∣

F2(2) F2(2) F2(2)
F4(2) F4(4) F4(2)
F5(2) F5(2) F5(5)

∣

∣

∣

∣

∣

∣

+F(213)

∣

∣

∣

∣

∣

∣

F2(2) F2(2) F2(2)
F4(2) F4(2) F4(2)
F5(2) F5(2) F5(5)

∣

∣

∣

∣

∣

∣

+F(321)

∣

∣

∣

∣

∣

∣

F2(2) F2(2) F2(2)
F4(2) F4(2) F4(2)
F5(2) F5(2) F5(2)

∣

∣

∣

∣

∣

∣

+(F(132) + F(231) + F(312))

∣

∣

∣

∣

∣

∣

F2(2) F2(2) F2(2)
F4(2) F4(2) F4(2)
F5(2) F5(2) F4(2)

∣

∣

∣

∣

∣

∣

The permutation 123 is the only one having a non zero contribution in
this sum. Hence,

DetF (Fi(i ∧ j ∧ k))i,j,k∈S = F(123)F2(2)(F4(4) − F4(2))(F5(5) − F5(2))

= F(123)(f2(2) + f2(1))f4(4)(f5(5) + f5(3))

= F(123)f̂2(2)f̂4(4)f̂5(5)

Remark 4.4 If L is the semilattice structure of the integers with respect to
divisibility. By the specialization F(σ3, . . . , σk) = sign(σ3) . . . sign(σk), one
recovers the computations of Lehmer [9] as a special case of Theorem 3.3
and the result of Haukkanen ([12] Theorem 1. p 56) from Corollary 4.2.

4.2 Factor closed subsets

Let S be a factor closed subset of L. Then, f = f̂ and

DetF (Fx1
(x1 ∧ · · · ∧ xk))x1,...,xk∈S = F(Id, · · · , Id)

∏

x

fx(x). (9)
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As special cases of equality (9), one recovers Lehmer’s identities [9] and
the original result of Smith [15].

4.3 General case

Let X = {x1, . . . , xn} be a subposet of a meet semi-lattice L. We will de-
note by X = {x1, . . . , xn, xn+1, . . . , xm} the smallest factor-closed subset of
L containing X. The aim of this section consists in investigating the F -
determinant

DF (X) := DetF

(

Fxi1
(zxi1

∧ xi2 ∧ · · · ∧ xik)
)

1≤i1,...,ik≤n
(10)

where for each x ∈ X, zx denotes a fixed element of X such that z ≤ x. As in
the previous section, the result follows from the case k = 2 and Proposition
2.1.
Let us consider first the determinant det(Fxi

(zxi
∧ xj))1≤i,j≤n. The functions

Fxi
can be chosen such that F (x, y) is an incidence function. The set X

being closed by factors, the functions fx and f̂x are equal. Hence,

Fxi
(zxi

∧ xj) =
n+m
∑

k=1

Cxi,xk
ζ(xk, xj) (11)

where

Cx,y = fx(y)ζ(y, zx) =

{

fx(y) if y ≤ zx

0 otherwise.
(12)

One has

Proposition 4.5

det(Fxi
(xi ∧ xj)) =

∑

1≤k1<···<kn≤n+m

det
(

Cxi,xkj

)

1≤i,j≤n
det (ζ(xki

, xj))1≤i,j≤n
.

(13)
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Proof – By multi-linearity, one obtains

det(Fxi
(xi ∧ xj)) = det

(

n+m
∑

k=1

Cxi,xk
ζ(xk, xj)

)

=
∑

1≤k1,...,kn≤n+m

det
(

Cxi,xkj
ζ(xkj

, xj)
)

=
∑

1≤k1,...,kn≤n+m

det
(

Cxi,xkj

)

∏

i

ζ(xki
, xi)

=
∑

1≤k1<···<kn≤n+m

det
(

Cxi,xkj

)

1≤i,j≤n
det (ζ(xki

, xj))1≤i,j≤n

Example 4.6 Let us consider the semilattice L whose Hasse diagram is

4 5 6

1

OO

88rrrrrrrrrrrrrr
2

OO]]::::::::

3

]]::::::::

OO

0

AA��������

]]::::::::

OO

and X = {4, 5, 6}. We set z4 = 1, z5 = 2 and z6 = 6 . Consider the
determinant

det(Fi(zi ∧ j ∧ k))i,j,k∈X =

∣

∣

∣

∣

∣

∣

f4(1) + f4(0) f4(0) f4(1) + f4(0)
f5(2) + f5(0) f5(2) + f5(0) f5(0)
f6(1) + f6(0) f6(3) + f6(0) f6(6) + f6(3) + f6(1) + f6(0)

∣

∣

∣

∣

∣

∣

= −f4(0)f6(1)f5 (2) + f4 (1)f6 0f5 (2) + f4 (1)f5 (0)f6 (3)
+f4 1f5 (0)f6 (6) + f4 (0)f5 (2)f6 3 + 2 f4 (1)f5 (2)f6 (3)
+f4 (1)f5 (2)f6 (6)

Using the multilinearity of det, one recovers the expression given by Propo-
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sition 4.5

det(Fi(zi ∧ j)) =

∣

∣

∣

∣

∣

∣

f4(0) f4(1) 0
f5(0) 0 f5(2)
f6(0) f6(1) 0

∣

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

∣

1 1 0
1 0 1
1 1 0

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

f4 (0) f4 (1 ) 0
f5 (0) 0 0
f6(0) f6(1) f6 (3)

∣

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

∣

1 1 0
1 0 0
1 1 1

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

f4 (0) f4 (1) 0
f5(0) 0 0
f6(0) f6(1) f6 (6)

∣

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

∣

1 1 0
1 0 0
1 1 1

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

f4 (0) 0 0
f5(0) f5 (2) 0
f6(0) 0 f6 (3)

∣

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

∣

1 0 0
1 1 0
1 0 1

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

f4 (1) 0 0
0 f5 (2) 0

f6(1) 0 f6 (3)

∣

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

∣

1 0 0
0 1 0
1 0 1

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

f4 (1) 0 0
0 f5 (2) 0

f6(1) 0 f6 (6)

∣

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

∣

1 0 0
0 1 0
1 0 1

∣

∣

∣

∣

∣

∣

More generally, one has a multi-indexed version of Proposition 4.5.

Theorem 4.7

DF (X) =
∑

1≤k1<···<kn≤n+m

DetF

(

fxi1
(xki2

)ζ(xki2
, zxi1

∧ xi3 ∧ · · · ∧ xik)
)

×

× det (ζ(xki
, xj))

(14)

Proof – We use Lemma 2.1 to expand DF (X) and we obtain

DF (X) =
∑

σ1,...,σk

F(σ1, . . . , σk) det
(

Fxi
(zxi

∧ xj ∧ xσ3(i) ∧ · · · ∧ xσk(i))
)

.

Now, by Proposition 4.5, one gets

DF (X) =
∑

σ1,...,σk

F(σ1, . . . , σk)
∑

1≤k1<···<kn≤n+m

det (ζ(xki
, xj))×

× det
(

fxi
(xkj

ζ(xkj
, zxi

∧ xσ3(i) ∧ · · · ∧ xσk(i)))
)

=
∑

1≤k1<···<kn≤n+m

det (ζ(xki
, xj))

∑

σ1,...,σk

F(σ1, . . . , σk)×

× det
(

fxi
(xkj

ζ(xkj
, zxi

∧ xσ3(i) ∧ · · · ∧ xσk(i)))
)

=
∑

1≤k1<···<kn≤n+m

DetF

(

fxi1
(xki2

)ζ(xki2
, zxi1

∧ xi3 ∧ · · · ∧ xik)
)

×

× det (ζ(xki
, xj))

This ends the proof.

Let set Fx1
= Fx2

= · · · = Fxn
= F then for 1 ≤ k1, k2, . . . , kn ≤ n, we get

11



Corollary 4.8

DetF

(

F (zxi1
∧ xi2 ∧ · · · ∧ xik)

)

=
∑

1≤k1<···<kn≤n+m

∏

i

f(xki
)×

×DetF

(

ζ(xki2
, zxi1

∧ xi3 ∧ · · · ∧ xik)
)

det (ζ(xki
, xj))

Proof – By applying the equality,

DetF

(

f(xki1
)ζ(xki2

, zxi1
∧ xi3 ∧ · · · ∧ xik)

)

=
∑

σ3,...,σk

F(σ3, · · · , σk) det
(

f(xki
)ζ(xkj

, zxi
∧ xσ1(i) ∧ · · · ∧ xσk(i))

)

=

∏

i

f(xki
)DetF

(

ζ(xki2
, zxi1

∧ xi3 ∧ · · · ∧ xik)
)

.

to identity 14, one obtains the result.

Remark 4.9 Assume that L is the integer lattice. Then, if zx = x for
each x ∈ X and F(σ3, · · · , σk) = sign(σ3) . . . sign(σk) in Corollary 4.8, one
recovers Theorem 2 in [12]. Moreover, Proposition 4.5 generalizes the result
of Li[10].
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