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recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00125876v2


appor t  
de  r ech er ch e 

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
61

04
--

F
R

+
E

N
G

Thème BIO

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Non Rigid Registration of Diffusion Tensor Images

Oliver Faugeras — Christophe Lenglet — Théodore Papadopoulo — Rachid Deriche

N° 6104

January 22, 2007





Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Non Rigid Registration of Diffusion Tensor Images

Oliver Faugeras∗ , Christophe Lenglet† , Théodore Papadopoulo‡ ,
Rachid Deriche§

Thème BIO — Systèmes biologiques
Projet Odyssée

Rapport de recherche n° 6104 — January 22, 2007 —39 pages
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Recalage non-rigide d’IRM du tenseur de diffusion

Résumé : Nous proposons un nouveau cadre variationnel pour le recalage dense non-rigide
d’IRM du Tenseur de Diffusion (IRM-TD). Notre approche repose sur les propriétés géométriques
de la variété Riemannienne des distributions normales multivariées, équipée d’une métrique déri-
vée de la matrice d’information de Fisher. L’existence de formes closes pour les géodésiques et
les symboles de Christoffel nous permet de définire certaines statistiques et de réaliser le trans-
port parallèle de vecteurs tangents dans cet espace. Nous proposons une énergie, pour notre
problème de recalage, dont l’objectif est de minimiser les différences entre statistiques locales
(moyennes et matrices de covariance) de deux IRM-TD à travers une descente de gradient. Le
résultat de l’algorithme est un champs de vecteurs dense qui peut être utiliser pour transformer
l’image source vers l’image cible. Cet article est essentiellement une étude mathématique du pro-
blème de recalage. Des experiences numériques sont présentées dans le but d’illustrer la faisabilité
de la méthode.

Mots-clés : recalage, recalage non-rigide, équations aux dérivées partielles, géométrie différen-
tielle, transport parallèle, statistiques, élasticité linéaire
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4 Faugeras, Lenglet et al.

1 Introduction

We deal with the problem of estimating the geometric deformations between two diffusion tensor
images. This is reminiscent of the problem of estimating the deformation of two images where
the values at each voxel are real numbers [12]. This is solved by minimizing with respect to the
deformation field h an error criterion that takes into account two sources of a priori knowledge:

1. The properties of the images intensities characterizing their similarity.
2. The constraints on the possible geometric deformations.

In our case the "intensities" are diffusion tensors. The problem of measuring their similarity is
much more complicated and the corresponding gradient descent scheme becomes significantly
more involved.

Previous works on the subject was initiated by Alexander et al. [1] by extending multiresolu-
tion registration techniques to DTI after having introduced various possible dissimilarity measures
for such images [2]. In [30] and [29] the authors proposed to register three-dimensional scalar,
vector and tensor data by matching areas with a high degree of structure and then interpolating
the sparse estimated displacement field to the complete dataset. Other approaches like [18], [15],
[25] and [28] rely on one or several transformation invariant tensor characteristics like the eigen-
values, the anisotropy measures, the apparent diffusion coefficient or even the tensor components
to perform the registration. When several characteristics are used, which is often the case, multiple
input channel registration methods like the demons algorithm [16] are used. In [35, 33] and then
[34], the authors proposed a piecewise affine registration technique based on the L2 inner product
of diffusion profiles. They also investigate the tensors reorientation issue raised by Alexander et
al. in [3]. Recently, Cao et al. [8] proposed to apply the framework of the large deformations
diffeomorphic metric mapping to DTI. Finally, Leemans [19] introduced an affine multi-channel
registration technique based on the mutual information as well as an original feature based regis-
tration method based on the curvature and torsion of fibers pathways. We also want to point out
that a few recent works have used the Riemannian or Log-Euclidean metrics to characterize the
properties of deformation fields [4, 6, 26] obtained by scalar images registration algorithms.

Contributions of this paper:
In this paper, we extend the approach presented in [12] to matrix-valued images I : Ω →

S+(3). To our knowledge, this is the very first work to make use of the Riemannian structure
of S+(3), proved to be relevant for DTI processing for instance in [27, 13, 5, 20], in a non-rigid
DTI registration algorithm. The numerical implementation of the method is very tedious. We will
illustrate the feasibility of the approach on two-dimensional synthetic datasets.

Organization of this paper:
We first set up the registration problem in section 2 and recall some important notions on S+(3).

We then detail the regularization (section 3) and the data (section 4) terms of the initial value

INRIA
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problem 3. We detail the computation of the gradient of the data term in section 5. Finally, we
present numerical experiments in section 6.

2 The Registration Problem

We consider the problem of estimating the geometric deformations between two Diffusion Tensor
Images (DTI). At a conceptual level, DT images are integrable bounded functions defined in R

n,
n = 2, 3 with values in S+(3) (noted S+ in the sequel). As briefly recalled below, this space has a
natural Riemannian structure. Bounded means that all observed diffusion tensors are within a ball
of center I, the 3 × 3 identity matrix, for the distance defined by equation 4. The same equation
shows that the eigenvalues must lie between two strictly positive constants and therefore that the
set of bounded diffusion tensors (for the Riemannian metric) is also bounded for the 2-norm and
therefore for all the usual p-norms and the Frobenius norm.

These abstract images are not directly observable because of the physics of acquisition. What
we call an image is an element of C∞(Rn, S+), the space of infinitely differentiable functions.
They are bounded and Lipschitz continuous as well as all their derivatives.

2.1 Statement of the problem

Let I1 and I2 be two images and h : Ω → R
n a vector field defined on a bounded and regular

region of interest Ω ⊂ R
n. The registration or matching problem may be defined as that of finding

a vector field h∗ minimizing an error criterion between I1 and I2 ◦ h. The search for this function
is done within a set F of admissible functions so as to minimize an energy functional I : F → R

+

of the form
I(h) = J (h) +R(h).

The term J is designed to measure the "dissimilarity" between the reference image I1 and the
h-warped image, noted Th(I2). We have the following proposition

Proposition 2.1.1. If the relation between the two images I1 and I2 is a change of coordinates
x′ = h(x) then the value I1(x) should be equal to the value Th(I2)(x), where

Th(I2) = Dh−1I2(h)Dh−T . (1)

Proof. I1(x) is a twice contravariant tensor. In the new coordinate system defined by x′ = h(x) it
is equal to

I ′1(x′) = Dh(x)I1(x)DhT (x),

because of the way tensor components change with changes of coordinates. This new tensor should
be equal to I2(x′) and this yields the expression for Th(I2)(x).

Note that other possibilities for Th(I2) have been considered in the literature (see [3] for in-
stance). R. Sierra [31], has considered the case where one wants to preserve the determinant of I2;
this leads to

Th(I2) = (det(Dh))2/3Dh−1I2(h)Dh−T

RR n° 6104



6 Faugeras, Lenglet et al.

In the following we consider that Th(I2) is defined by equation 1. The term R(h) is designed to
penalize fast variations of the function h. It is a regularization term introducing an a priori pref-
erence for smoothly varying functions. Our error criterion is classically the sum of a data term J
and a regularization termR.

The set F is a dense linear subspace of a Hilbert space H whose scalar product is denoted by
(·, ·)H . If I is sufficiently regular, its first variation (also called the Gâteaux derivative) at h ∈ F is
defined (see, e.g., [10]) as

δkI(h) = lim
ε→0

I(h+ εk)− I(h)

ε
(2)

If the mapping k → δkI(h) is linear and continuous, the Riesz representation theorem [11] guar-
antees the existence of a unique vector, denoted by ∇HI(h), and called the gradient of I, which
satisfies the equality

δkI(h) = (∇HI(h), k)H ,

for every k ∈ H . The gradient depends on the choice of the scalar product (·, ·)H though, a fact
which explains our notation. If a minimizer h∗ of I exists, then the set of equations δkI(h∗) = 0
must hold for every k ∈ H , which is equivalent to ∇HI(h∗) = 0.
These equations are called the Euler-Lagrange equations associated with the energy functional I.
They give necessary conditions for the existence of a minimizer but they are not sufficient since
they only guarantee the existence of a critical point of the functional I. These critical points can be
found in many ways, including methods for nonlinear equations. Rather than solving them directly
the search for a minimizer of I is done using a gradient descent strategy. Given an initial estimate
h0 ∈ F , a time-dependent differentiable function (also denoted by h) from the interval [0,+∞[
into H is computed as the solution of the following initial value problem:





dh

dt
= −

(
∇HJ (h) +∇HR(h)

)
,

h(0)(·) = h0(·).
(3)

The asymptotic state (i.e. when t → ∞) of h(t) is then chosen as the solution of the matching
problem, provided that h(t) ∈ F ∀t > 0.

2.2 Precisions on the Riemannian structure of S+(n)

In this section, we remind some basic concepts that will be useful for the following. We recall
that S+(n) denotes the set of n × n real symmetric positive definite matrices, Σ. It is a subset
of Mn(R), the set of n × n real matrices. It is also a mn-dimensional C∞ submanifold of R

mn

(mn = n(n + 1)/2) whose local coordinates can be chosen as the mn algebraically independent
components of the elements of Σ. We note ϕn : S+(n) → R

mn the natural coordinates mapping
of this manifold. We recall that TΣS

+(n), the tangent space at Σ of S+(n), coincides with the set
S(n) of n × n real symmetric matrices. This is a vector space which can be identified with R

mn

through the mapping ϕn. Elements in that space are contravariant vectors. We finally denote by
T ∗

ΣS
+(n) the cotangent space at Σ of S+(n), the dual space of TΣS

+(n). Elements in that space

INRIA
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are covariant vectors. The basis of TΣS
+(n) and T ∗

ΣS
+(n) are taken to be as in [20].

We recall the following theorem, see, e.g. [22]:

Theorem 2.2.1. Let E be the set of real n × n matrices such that all the eigenvalues λi are such
that |Im(λi)| < π. The restriction to E of the exponential is a diffeomorphism between E and
exp E .

There are two consequences of this theorem that are used in the sequel. The first one is the

Corollary 2.2.1. The exponential is a diffeomorphism between S(n) and S+(n).

In other words, the exponential of any symmetric matrix is a positive definite symmetric matrix
and the inverse of the exponential (i.e. the principal logarithm) of any positive definite symmetric
matrix is a symmetric matrix. Moreover, both the exponential and the logarithm are continuously
differentiable in S(n) and S+(n), respectively.
The second one is the

Corollary 2.2.2. The logarithm of a matrix with positive eigenvalues exists, and is unique and
differentiable.

Proof. Any such matrix belongs to exp E defined in theorem 2.2.1. Therefore its logarithm exists,
is unique and differentiable.

We introduce two notations

Definition 2.2.1. We note exp and log the exponential and its inverse, the logarithm. Given M ∈
Mn(R), we note dexp (M,X) the derivative of exp at M , applied to the element X ∈ Mn(R).
This is also sometimes called the derivative of the function exp at M in the direction X . In a
similar manner, given M ∈ exp E we note dlog (M,X) the derivative of the function log at M in
the direction X .

Details on the directional derivative of the matrix exponential and its computation can be found
in [24]. However, to our knowledge, there is no previous work on the computation of the direc-
tional derivative of the matrix logarithm. As we will see in section 5, this will be a key component
of our method. In [21], we proposed a novel formulation for the directional derivative of the matrix
logarithm dlog (M,X) based on the spectral decomposition of M . We will show that it is in fact a
linear function of its second argument X .

The geodesic distance between two elements Σ1 and Σ2 of S+(n) was described in [20] and is
defined by

D(Σ1,Σ2) =

√
1

2
tr

(
log2

(
Σ

−1/2
1 Σ2Σ

−1/2
1

))
, (4)

It is justified by corollary 2.2.1. At each point Σ of S+, the metric tensor G acts on pairs of tangent
vectors of TΣS

+ and defines an inner product. Its inverse G−1 is twice contravariant. For any real
differentiable function f defined on S+, one defines its differential, noted Df = [ ∂f

∂x1 , · · · , ∂f
∂xmn

],

RR n° 6104



8 Faugeras, Lenglet et al.

with respect to the coordinates defined by the chart ϕn, a covariant vector, and its gradient, noted
∇f , which is a vector of TΣS

+. The relation between Df and ∇f is through the metric tensor:

∇f = G−1Df (5)

Equation 4 defines a real function on S+(n) × S+(n) which is differentiable. The gradient of D2

with respect to Σ1, noted ∇Σ1
, at Σ1 and for some fixed Σ2, is equal to [23]:

∇Σ1
D2(Σ1,Σ2) = Σ1 log

(
Σ−1

2 Σ1

)
. (6)

It is a vector of TΣ1
S+(n), hence a symmetric matrix. This can also be seen from the general

relation
log(A−1BA) = A−1(logB)A, (7)

by writing

Σ1 log
(
Σ−1

2 Σ1

)
= Σ1 log

(
Σ−1

1 Σ1Σ−1
2 Σ1

)
= log

(
Σ1Σ−1

2

)
Σ1 =

(
Σ1 log

(
Σ−1

2 Σ1

))T

It is tangent at Σ1 to the (unique) geodesic between Σ1 and Σ2. In the following, we use the cases
n = 3 and n = 6. To facilitate the reading of the formulas, indexes running from 1 to 3 are
lower case Latin characters, e.g., i = 1, 2, 3, indexes running from 1 to 6 are upper case Latin
characters, e.g., I = 1, . . . , 6, and indexes running from 1 to 9 are lower case Greek characters,
e.g., κ = 1, . . . , 9.

3 Regularization term

This section studies the regularization part of the initial value problem 3, i.e. the term∇HR(h). We
choose concrete functional spacesF andH and specify the domain of the regularization operators.

3.1 Function spaces and boundary conditions

We begin by a brief description of the function spaces that will be appropriate for our purposes. In
doing this, we will make reference to Sobolev spaces, denoted by W k,p(Ω). We refer to the books
of Evans [11] and Brezis [7] for formal definitions and in-depth studies of the properties of these
functional spaces.

For the definition of ∇HI, we use the Hilbert space

H = L
2(Ω) = L2(Ω)× · · · × L2(Ω)︸ ︷︷ ︸

n terms

= (W 0,2(Ω))
n
.

The regularization functionals that we consider are of the form

R(h) = κ

∫

Ω

ϕ(Dh(x)) dx, (8)

INRIA
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where Dh(x) is the Jacobian of h at x, ϕ is a quadratic form of the elements of the matrix Dh(x)
and κ > 0. Therefore the set of admissible functions F will be contained in the space

H
1(Ω) = (W 1,2(Ω))

n
.

Additionally, the boundary conditions for h will be specified in F . We consider Dirichlet condi-
tions of the form h = 0 almost everywhere on ∂Ω (in fact, because of the regularity of h, this
condition holds everywhere on ∂Ω), and set

F = H
1
0(Ω) = (W 1,2

0 (Ω))
n
.

Because of the special form of R(h), the corresponding regularization operator is a second order
differential one, and we therefore will need the space

H
2(Ω) = (W 2,2(Ω))

n

for the definition of its domain.

3.2 Linearized elasticity

The family that we consider is inspired from the equilibrium equations of linearized elasticity (we
refer to [9] for a formal study of three-dimensional elasticity) obtained by defining ϕ in equation 8
by

ϕ(Dh) =
1

2

(
ξTr(DhTDh) + (1− ξ)Tr(Dh)2

)
, (9)

where 1/2 < ξ ≤ 1. It is straightforward to verify that the Euler-Lagrange equation corresponding
to equation 8 in this case is:

∇HR(h) = div (Dϕ(Dh)) = ξ∆h+ (1− ξ)∇(∇ · h)

We thus define the corresponding regularization operator as follows.

Definition 3.2.1. The linear operator A : D(A)→ H is defined as




D(A) = H
1
0(Ω) ∩H

2(Ω),

Ah = ∇HR(h) = ξ∆h+ (1− ξ)∇(∇ · h)

for 1/2 < ξ ≤ 1

4 Definition of the data term J
We want to compare the values of the image I1 in a neighborhood of a voxel x to those of I2 in the
corresponding neighborhood transformed by h. We propose a statistical framework for doing so, in
the spirit of block-matching techniques. Local statistics (mean, covariance matrix) has been found
to be very useful for warping scalar images, i.e. real-valued images. This idea can be generalized
to tensor-valued images as follows.

RR n° 6104



10 Faugeras, Lenglet et al.

4.1 Local mean and covariance matrix

Given a voxel x in the volume Ω, the local mean µ̂1(x) is defined as one of the minima with respect
to its first argument of the following function defined on S+ × Ω

C1(µ1, x) =
1

| Ω |

∫

Ω

D2(µ1, I1(y))Gγ(x− y) dy,

where Gγ is a three-dimensional Gaussian with 0-mean and variance γ2

Gγ(x) =
1

(2πγ2)3/2
exp

(
−|x|

2

2γ2

)
.

|x| is the Euclidean norm of the vector x and D is the geodesic distance defined in equation 4 be-
tween the two elements µ1 and I1(y) of S+ [20]. C is a weighted average of the squared geodesic
distances between the element µ1 of S+ and the elements of the image I1. The amount of locality
is controlled by the parameter γ2, the variance of the Gaussian. We call µ̂1(x) the element of S+

that minimizes C1. It is the weighted Riemannian mean of the family I1(y) of elements of S+,
where y varies in Ω, a notion introduced by Grove, Karcher and Ruh [14].

Hence we have

µ̂1(x) = argmin
µ1

1

| Ω |

∫

Ω

D2(µ1, I1(y))Gγ(x− y) dy

Because of equation 6 we can write an expression for the gradient of the function C with respect
to µ1, at µ1:

∇µ1
C1(µ1, x) =

µ1

| Ω |

∫

Ω

log
(
I1(y)−1µ1

)
Gγ(x− y) dy

At the minimum µ̂1(x), this gradient is equal to 0:

µ̂1(x)

| Ω |

∫

Ω

log
(
I1(y)−1µ̂1(x)

)
Gγ(x− y) dy = 0 (10)

An interpretation of this relation is the following. Each of the matrices

β1(x, y)
def
= −µ̂1(x) log

(
I1(y)−1µ̂1(x)

)
Gγ(x− y)

belongs to the tangent space Tµ̂1(x)S
+, a copy of S, the space of symmetric matrices. Since

Tµ̂1(x)S
+ is identified to R

6 through the chart ϕ3, one can define the covariance matrix of the
vectors ϕ3(β1(x, y)), noted β1(x, y) for simplicity, which have zero-mean according to equation
10:

Λ1(x) =
1

| Ω |

∫

Ω

β1(x, y)βT1 (x, y) dy.

This is a twice contravariant tensor defined on Tµ̂1(x)S
+.

INRIA
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Applying the transformation h to the second image I2, we can define the corresponding quanti-
ties. The local mean at the voxel h(x) becomes:

µ̂2(x, h) = argmin
µ2

C2(µ2, x) = argmin
µ2

1

| Ω |

∫

Ω

D2(µ2, Th(I2)(y))Gγ(x− y) dy,

and satisfies

∇µ2
C2(µ̂2(x, h), x) =

µ̂2(x, h)

| Ω |

∫

Ω

log
(
Th(I2)−1(y)µ̂2(x, h)

)
Gγ(x− y) dy = 0. (11)

The tangent vectors to S+ at µ̂2(x, h) are

β2(x, y, h)
def
= −µ̂2(x, h) log

(
Th(I2)−1(y)µ̂2(x, h)

)
Gγ(x− y) (12)

and their covariance matrix is

Λ2(x, h) =
1

| Ω |

∫

Ω

β2(x, y, h)βT2 (x, y, h) dy. (13)

We now face a difficulty. We would like to compare the tangent vectors β1(x, y) and β2(x, y, h)
but this cannot be done in a straightforward manner since they live in two different vector spaces,
Tµ̂1(x)S

+ and Tµ̂2(x,h)S
+. In order to compare them, we must either parallel transport the vectors

β1(x, y) to Tµ̂2(x,h)S
+ (obtaining the vectors β̃1(x, y, h)) or the vectors β2(x, y, h) to Tµ̂1(x)S

+ (ob-
taining the vectors β̃2(x, y, h)).

We can then define the covariance matrices Λ̃12(x, h) and Λ̃21(x, h) of the parallel transported
vectors β̃1(x, y, h) and β̃2(x, y, h), respectively:

Λ̃12(x, h) =
1

| Ω |

∫

Ω

β̃1(x, y, h)β̃T1 (x, y, h) dy (14)

and

Λ̃21(x, h) =
1

| Ω |

∫

Ω

β̃2(x, y, h)β̃T2 (x, y, h) dy (15)

4.2 Parallel transport

We now detail the process of parallel transport as illustrated on figure 1.

4.2.1 The equations

To parallel transport a vector β1(x, y) from Tµ̂1(x)S
+ along the curve G(t) such that G(0) = µ̂1(x)

and G(1) = µ̂2(x, h) one has to solve the first-order linear differential equation

∇Ġ(t)β(t) = 0 (16)
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β2(x, y, h)

G(1) = µ̂2(x, h)

G(t)

I2

G(0) = µ̂1(x)

I1

Figure 1: Parallel transport of vector β2(x, y, h) along G(t)

with initial condition β(0) = β1(x, y). ∇Ġ(t) stands for the covariant derivative in the direction

Ġ(t) of TG(t)S
+ and equation 16 can be rewritten in local coordinates as:

(
∇Ġ(t)β(t)

)I
=
d βI

dt
+ ΓIJK(G(t))Ġ(t)JβK(t) = 0 (17)

where the ΓIJK’s are the Christoffel symbols of the second kind associated to the metric of S+.
This linear differential equation can be written in the form

d β(t)

dt
= −A(t)β(t) (18)

with the same initial condition β(0) = β1(x, y). The 6× 6 matrix A(t) is equal to

(A)IK (t) = ΓIJK(G(t))Ġ(t)J . (19)

We recall that G(t) is the geodesic between µ̂1(x) and µ̂2(x, h) whose equation is [20]

G(t) = µ̂1(x)1/2 exp (tX) µ̂1(x)1/2, (20)

where
X = log

(
µ̂1(x)−1/2µ̂2(x, h)µ̂1(x)−1/2

)
(21)

Similar considerations apply to the problem of the parallel transport of the vector β2(x, y, h) along
the geodesic G(t) from Tµ̂2(x,h)S

+to Tµ̂1(x)S
+ by introducing the matrix B(t).

4.2.2 The matrices A and B
In the following, we prove that the matrices A(t) and B(t) do not depend on the curve parameter
t. The solution of equation 18 is therefore

β̃1(x, y, h) = β(1) = exp (−A) β(0) = exp (−A) β1(x, y) (22)

Similarly
β̃2(x, y, h) = exp (−B) β2(x, y, h) (23)

We have the following
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Proposition 4.2.1. The matrix A(t) is independent of t. It is given by the following expression

A(x, h) = (24)

−




ψ1
1 ψ2

1/2 0 ψ3
1/2 0 0

ψ1
2 (ψ1

1 + ψ2
2)/2 ψ2

1 ψ3
2/2 ψ3

1/2 0

0 ψ1
2/2 ψ2

2 0 ψ3
2/2 0

ψ1
3 ψ2

3/2 0 (ψ1
1 + ψ3

3)/2 ψ2
1/2 ψ3

1

0 ψ1
3/2 ψ2

3 ψ1
2/2 (ψ2

2 + ψ3
3)/2 ψ3

2

0 0 0 ψ1
3/2 ψ2

3/2 ψ3
3




Def
= M(ψ),

where the matrix ψ is equal to log (µ̂2(x, h)µ̂1(x)−1).

The matrix B(t) is also independent of t and its expression is similar to that of A by replacing
the matrix ψ with the matrix θ = log (µ̂1(x)−1µ̂2(x, h)).

Proof. It can be shown [32] that the Christoffel symbols, at G(t) ∈ S+, are given by:

Γ (Epq, Ers;E
∗
uv) = −1

2
tr

(
EpqG(t)−1ErsE

∗
uv

)
− 1

2
tr

(
ErsG(t)−1EpqE

∗
uv

)

∀p, q, r, s, u, v = 1, 2, 3

The indices p, q, r, s, u, v are used to access the components of the basis elements in matrix form
and therefore run from 1 to 3. We introduce the indices I, J,K which run from 1 to 6 since they
correspond to the coordinates of a given matrix expressed in the associated local coordinate system
(see, for example, equations 17 or 19). Hence we use the following convention:

K = 3(r − 1) + s if r ≤ s
J = 3(p− 1) + q if p ≤ q
I = 3(u− 1) + v if u ≤ v

(25)

We can now express the quantity ΓIJK (G(t)) ĠJ(t) as:

Γ (EJ , EK ;E∗
I ) Ġ(t)J = −1

2
tr

(
Ġ(t)JEJG(t)−1EKE

∗
I

)
− 1

2
tr

(
EKG(t)−1Ġ(t)JEJE

∗
I

)

Noting that Ġ(t)JEJ = Ġ(t), this reduces to:

Γ (EJ , EK ;E∗
I ) Ġ(t)J = −1

2
tr

(
Ġ(t)G(t)−1EKE

∗
I

)
− 1

2
tr

(
EKG(t)−1Ġ(t)E∗

I

)

In our case G(t) ∈ S+, and since

Ġ(t) = µ̂1(x)1/2X exp (tX) µ̂1(x)1/2 = µ̂1(x)1/2 exp (tX)Xµ̂1(x)1/2
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14 Faugeras, Lenglet et al.

and
G−1(t) = µ̂1(x)−1/2 exp(−tX)µ̂1(x)−1/2

we have

Ġ(t)G−1(t)
def
= ψ(x, h) = µ̂1(x)1/2Xµ̂1(x)−1/2 = log

(
µ̂2(x, h)µ̂1(x)−1

)

G−1(t)Ġ(t)
def
= θ(x, h)T = µ̂1(x)−1/2Xµ̂1(x)1/2 = log

(
µ̂1(x)−1µ̂2(x, h)

)

which do not depend on t. Note that ψ and θ are once contravariant and once covariant tensors.

The last equality in the previous two equations holds because of equation 7.
The matrix A(t) is therefore independent of t but depends on x and h, thus we note A(x, h). The
contraction of the Christoffel symbols then yields the once covariant, once contravariant tensor:

Γ (EJ , EK ;E∗
I ) Ġ(t)J = AIK(x, h)

= −1

2
tr (ψ(x, h)EKE

∗
I )−

1

2
tr

(
EKψ(x, h)TE∗

I

)

= −1

2
tr

((
ψ(x, h)EK + (ψ(x, h)EK)T

)
E∗
I

)

This provides an expression for A(x, h), as a function of ψ(x, h), in terms of µ̂1(x) and µ̂2(x, h)
(We use the notation ψpq to denote the pqth element of ψ(x, h)).

4.3 The data term J
We are now ready to define the data term J in the error criterion for the registration of two DT
images I1 and I2. This data term is the combination of two terms. The first enforces that the means
µ̂1(x) and µ̂2(x, h) at two corresponding voxels x and h(x) are sufficiently similar. We define the
local energy:

JMean(x, h) = D2(µ̂2(x, h), µ̂1(x)), (26)

where D2 is the geodesic distance 4 in S+.

We also want the covariance matrices Λ1(x) and Λ̃21(x, h) (respectively Λ2(x, h) and Λ̃12(x, h)) to
be as close as possible. We therefore define the local energy

JAC(x, h) =
1

2

(
|Λ1(x)− Λ̃21(x, h)|2F + |Λ2(x, h)− Λ̃12(x, h)|2F

)
(27)

where | · |F denotes the Frobenius norm. A more consistent definition of JAC(x, h) can be obtained
by using the geodesic distance instead of the Frobenius norm

JAC(x, h) =
1

2

(
D2

(
Λ1(x), Λ̃21(x, h)

)
+D2

(
Λ2(x, h), Λ̃12(x, h)

))
(28)

This has very little incidence on the final form of the gradient of JAC but may be the source of
numerical problems. Indeed, if the region of interest is homogeneous, the covariance matrices
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tend to be degenerate and the geodesic distance is not defined anymore. In practice, we check if
that case happens and only use the Euclidean distance if this is the case. Otherwise, we use the
geodesic distance.

We combine these two local criteria into a local data term

J (x, h) = JMean(x, h) + α1JAC(x, h), (29)

where α1 is a positive weight. The global criterion is obtained by integrating the local one over Ω:

J (h,Dh) =

∫

Ω

J (x, h) dx = JMean(h,Dh) + α1JAC(h,Dh). (30)

For the sake of clarity, we usually do not express the dependence in Dh of J (x, h). However, we
have to keep in mind that JMean(x, h) and JAC(x, h) do depend on the Jacobian of the vector field
h because of equation 1. Hence the equation 30.

5 The gradient of the data term

We show that the gradient of the data term exists in H and can be effectively computed and imple-
mented for numerical experiments. The main ingredient in the proof is to show that δkJ (h,Dh)
can be written as (Jh, k)H + (JDh, Dk)H , where Jh and JDh are complicated but computable
functions of H . We spend the next sections to prove the following

Theorem 5.0.1. For any k ∈ F the quantity

δkJ (h,Dh) = lim
ε→0

J (h+ εk,Dh+ εDk)− J (h,Dh)

ε

exists and is equal to
(Jh, k)H − (JDh, Dk)H ,

where the functions Jh and JDh are defined in the proof.

5.1 The first variation of JMean(h,Dh)

Because of equation 30 we have

δkJMean(h,Dh) =

∫

Ω

δkJMean(x, h) dx.

Because of equations 5, 6 and 26 we have

δkJMean(x, h) = DJMean(x, h)ϕ3(δkµ̂2(x, h)) =

G
(
ϕ3(µ̂2(x, h) log

(
(µ̂1(x))−1 µ̂2(x, h)

)
)
)
ϕ3(δkµ̂2(x, h)), (31)
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whereDJMean(x, h) is the differential with respect to its first argument of the functionD2(µ̂2(x, h), µ̂1(x)).
Note that

G
(
ϕ3(µ̂2(x, h) log

(
(µ̂1(x))−1 µ̂2(x, h)

)
)
)

is a covariant vector of Tµ̂2(x,h)S
+ while ϕ3(δkµ̂2(x, h)) is a contravariant vector. We thus need to

compute δkµ̂2(x, h).

5.1.1 Computation of δk µ̂2(x, h)

We remember that the minimum of the functional

C2(µ2, x) =
1

| Ω |

∫

Ω

D2(µ2, Th(I2)(y))Gγ(x− y) dy,

is achieved at µ̂2(x, h). It therefore satisfies

∇µ2
C2(µ̂2, x) = 0.

To simplify notation, we note L the vector ∇µ2
C2 of Tµ̂2

S+. This vector is a 3 × 3 symmetric
matrix which we identify with its image by ϕ3, a vector of R

6. The previous equation becomes

L(µ̂2(x, h), x, h) = 0,

where the notation indicates that L depends upon h indirectly through µ̂2 and directly through its
definition. We compute δk of the lefthand side and equal it to zero.

∂L
∂µ2

(µ̂2, x, h)ϕ3(δkµ̂2(x, h)) + δkL(µ̂2, x, h) = 0

We next compute ∂L
∂µ2

, a once contravariant and once covariant tensor, a 6 × 6 matrix, as well as
δkL. For the sake of clarity we drop in the sequel the index 2 in µ2.

Computation of ∂L
∂µ

: According to equation 11 we have

ϕ−1
3

(
∂L
∂µI

)
=
EI
| Ω |

∫

Ω

log
(
Th(I2)−1(y)µ

)
Gγ(x− y) dy+

µ

| Ω |

∫

Ω

dlog

(
Th(I2)−1(y)µ,

∂ (Th(I2)−1(y)µ)

∂µI

)
Gγ(x− y) dy, I = 1, · · · , 6,

where the notation EI has been defined in section 4.2.2. We also have

∂Th(I2)−1(y)µ

∂µI
= Th(I2)−1(y)EI .
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Computation of δkL: δkL is the sum of two terms corresponding to the variation with respect to
h and Dh, respectively. We note them (δkL)1 and (δkL)2. We have

ϕ−1
3 ((δkL)1) =

µ

| Ω |

∫

Ω

dlog

(
Th(I2)−1(y)µ,

∂ (Th(I2)−1(y)µ)

∂hi(y)
ki(y)

)
Gγ(x− y) dy.

Because of equation 1,

∂Th(I2)−1(y)µ

∂hi(y)
= −Dh(y)T I2(h(y))−1 (DI2(h(y)))i I2(h(y))−1Dh(y)µ,

where DI2 is the twice contravariant once covariant tensor obtained by taking the derivative of I2

with respect to the space coordinates.

We introduce the thrice covariant tensor ∂Th(I2)−1

∂h
such that

∂Th(I2)−1

∂h
(y) = −DhT (y)I2(h(y))−1DI2(h(y))I2(h(y))−1Dh(y) (32)

Because of the linearity of the function dlog (, ) with respect to its second argument we obtain

ϕ−1
3 ((δkL)1) = − µ

| Ω |

∫

Ω

dlog

(
Th(I2)−1(y)µ,

∂Th(I2)−1

∂h
(y)µ

)
k(y)Gγ(x − y) dy. (33)

Note that for each value of the covariant index i, the matrix

µdlog

(
Th(I2)−1(y)µ,

(
∂Th(I2)−1

∂h

)

i

(y)µ

)

is symmetric. At this point we introduce the corresponding once contravariant and once covariant
tensor, noted ∂L

∂h
:

(
∂L
∂h

)·

i

(x, y, h) =

− Gγ(x− y)

| Ω | ϕ3

(
µ̂2(x, h)dlog

(
Th(I2)−1(y)µ̂2(x, h),

∂Th(I2)−1

∂h
(y)µ̂2(x, h)

))
. (34)

We write

(δkL)1(x, h) =

∫

Ω

∂L
∂h

(x, y, h)k(y) dy

(δkL)2 is obtained in a similar manner:

ϕ−1
3 ((δkL)2) =

µ

| Ω |

∫

Ω

dlog

(
Th(I2)−1(y)µ,

∂ (Th(I2)−1(y)µ)

∂Dhlm(y)
Dklm(y)

)
Gγ(x− y) dy
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where, because of equation 1,

∂Th(I2)−1(y)µ

∂Dhlm(y)
= 1mlI2(h(y))−1Dh(y)µ+Dh(y)T I2(h(y))−11lmµ,

where 1lmand 1ml are matrices whose only non zero element is located respectively at line l, row
m or line m, row l. We introduce a once contravariant thrice covariant tensor ∂Th(I2)−1

∂Dh
such that

(
∂Th(I2)−1

∂Dh

)m

l

(y) = 1mlI2(h(y))−1Dh(y) +Dh(y)T I2(h(y))−11lm (35)

and therefore
∂Th(I2)−1

∂Dh
(y)Dk(y) =

(
∂Th(I2)−1

∂Dh

)m

l

(y)Dklm(y),

where l and m vary from 1 to 3. Using again the linearity of the function dlog ( , ) with respect to
its second argument we obtain

ϕ−1
3 ((δkL)2) =

µ

| Ω |

∫

Ω

dlog

(
Th(I2)−1(y)µ,

∂Th(I2)−1

∂Dh
(y)µ

)
Dk(y)Gγ(x − y) dy. (36)

Note that for each value of the covariant index l and contravariant index m, the matrix

µdlog

(
Th(I2)−1(y)µ,

(
∂Th(I2)−1

∂Dh

)m

l

(y)µ

)

is symmetric. At this point we introduce the twice contravariant and once covariant tensor, noted
∂L
∂Dh

, such that

(
∂L
∂Dh

)·m

l

(x, y, h) =

Gγ(x− y)

| Ω | ϕ3

(
µ̂2(x, h)dlog

(
Th(I2)−1(y)µ̂2(x, h),

(
∂Th(I2)−1

∂Dh

)m

l

(y)µ̂2(x, h)

))
. (37)

We write

(δkL)2(x, h) =

∫

Ω

∂L
∂Dh

(x, y, h)Dk(y) dy

This allows us to compute δkµ̂2(x, h) if the matrix ∂L
∂µ2

is invertible:

ϕ3(δkµ̂2(x, h)) = −
(
∂L
∂µ2

(x, h)

)−1 ∫

Ω

∂L
∂h

(x, y, h)k(y) dy−
(
∂L
∂µ2

(x, h)

)−1 ∫

Ω

∂L
∂Dh

(x, y, h)Dk(y) dy (38)

INRIA



Non Rigid Registration of DTI 19

all expressions being evaluated at (µ̂2, x, h).

We define the once contravariant and once covariant tensor

T(x, y, h) = −
(
∂L
∂µ2

(x, h)

)−1
∂L
∂h

(x, y, h), (39)

and the twice contravariant and once covariant tensor

U(x, y, h) =

(
∂L
∂µ2

(x, h)

)−1
∂L
∂Dh

(x, y, h), (40)

and rewrite equation 38 in a more compact manner, namely:

ϕ3(δkµ̂2(x, h)) =

∫

Ω

T(x, y, h)k(y) dy −
∫

Ω

U(x, y, h)Dk(y) dy. (41)

Using indexes, this is equivalent to

(ϕ3(δkµ̂2(x, h)))I =

∫

Ω

T
I
l (x, y, h)kl(y) dy −

∫

Ω

U
Im
l (x, y, h)Dklm(y) dy,

I = 1, · · · , 6, l,m = 1, · · · , 3

In the next sections we will also need the twice contravariant and once covariant tensor ϕ−1
3 (T) and

the thrice contravariant and once covariant tensor ϕ−1
3 (U) which we note t and u. The previous

formula can be rewritten as

(δkµ̂2(x, h))ij = −
∫

Ω

t
ij
l (x, y, h)kl(y) dy −

∫

Ω

u
ijm
l (x, y, h)Dklm(y) dy,

i, j = 1, · · · , 3, l,m = 1, · · · , 3 (42)

5.1.2 An expression for δkJMEAN(h,Dh)

We are in a position to prove the following

Proposition 5.1.1. δkJMEAN(h,Dh) exists and is of the form of theorem 5.0.1.

Proof. We introduce the once covariant tensor

tMean(x, y, h) = DJMean(x, h)T(x, y, h),

the once covariant and once contravariant tensor

uMean(x, y, h) = DJMean(x, h)U(x, y, h),

and write

δkJMean(x, h) =

∫

Ω

tMean(x, y, h)k(y) dy −
∫

Ω

uMean(x)Dk(y) dy,
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or, using indexes

δkJMean(x, h) =

∫

Ω

tMean l(x, y, h)kl(y) dy −
∫

Ω

u
m
Mean l(x, y, h)Dklm(y) dy,

where, for example:
tMean l(x, y, h) = DJMean I(x, h)TI

l (x, y, h)

We finally introduce the once covariant tensor

TMean(x, h) =

∫

Ω

tMean(z, x, h) dz,

and the once covariant and once contravariant tensor

UMean(x, h) =

∫

Ω

uMean(z, x, h) dz,

From this follows the fact that δkJMean(h,Dh) can be written in the form of theorem 5.0.1

δkJMean(h,Dh) =

∫

Ω

TMean(x, h)k(x) dx−
∫

Ω

UMean(x, h)Dk(x) dx

It is then possible to rewrite δkJMean(h,Dh) in the form of a scalar product with k(x). Indeed,
integrating by part, and using the fact that k is zero on ∂Ω, we obtain

(UMean, Dk)H = −
∫

Ω

divUMean(x, h)k(x) dx = −
∫

Ω

∂

∂xm
U
m
Mean l(x, h)kl(x) dx

with xm the mth ∈ [1, 2, 3] coordinate of the position x ∈ R
3. Hence,

δkJMean(h,Dh) =

∫

Ω

(TMean(x, h) + divUMean(x, h)) k(x) dx

and
∇HJMean(x, h) = TMean(x, h) + divUMean(x, h)

This is the first contribution to ∇HJ (x, h) (see equation 3) to be used in our gradient descent.

5.2 The First Variation of JAC(h)

We would like to compute the second contribution to∇HJ (x, h), associated to the matching term
for covariance matrices. The calculations are similar to the previous ones but very much involved
so we detail them in appendix A.
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5.3 Conclusion

We are now ready to give the proof of theorem 5.0.1.

Proof. It suffices to combine propositions 5.1.1, A.2.1, A.3.1 and A.4.1 to obtain

δkJ (h,Dh) = (TMean + T
1
AC + T

2
AC + T

3
AC, k)H − (UMean + U

1
AC + U

2
AC + U

3
AC, Dk)H (43)

This yields the existence of the gradient of the data term:

Proposition 5.3.1. The gradient ∇HJ (h) of data term J (h) exists and is given by

∇HJ (h) = TMean + T
1
AC + T

2
AC + T

3
AC + div

(
UMean + U

1
AC + U

2
AC + U

3
AC

)

Proof. This is a direct consequence of the proof of theorem 5.0.1 and of equation 43.

We thus know how to compute the gradient of the data and regularization terms. In the next
section, we address some of the many numerical difficulties arising in the implementation of this
registration technique. We also provide examples on two dimensional synthetic datasets, as a proof
of concept.

6 Numerical experiments

In this section, we will illustrate our method on three different examples. An in-depth study of
many numerical aspects of this problem is still needed but we believe that current results, though
simple, demonstrate the feasibility of the approach. The code was written in C++.

Up to now, we concentrated on the implementation of the gradient of the matching termJMean(x, h).
The gradient of the other term JAC(x, h) is much more tricky to compute and, most importantly,
extremely time consuming because of the numerous numerical integrations to perform. The ex-
amples below were thus generated by only using ∇HJMean(x, h), which makes sense since we
definitely want the local means to match before the local covariance matrices do. Regarding the
computation of the gradient of the linear elasticity regularization term, ∇HR(h) (equation 3.2.1),
we refer to [17] where adequate numerical schemes were given.

In order to recover large displacements, we used a multiresolution approach. The original im-
ages I1 and I2 were subsampled such that every level of the multiscale pyramid had a resolution
equal to half of the resolution at the previous level. Details on that point can also be found in [17].
In the following experiments, we used 2 levels in the pyramid in addition to the original images.
Subsampling was performed by computing local Riemannian averages of I1 and I2. Whenever the
algorithm converged at a given level, it is easy to propagate the resulting diffeomorphism to the
next level by bilinear interpolation. This serves as the initial value of the evolution for the next
level. At the lowest resolution, the vector field h is initialized with the identity.
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At each resolution, the evolution 3 requires the definition of a few parameters. First of all, we
check for convergence by simply looking at the evolution of the energy 30. Whenever it stops
decreasing for many iterations, we stop the gradient descent at the current level and propagate the
estimated diffeomorphism to the next scale. The scale parameter γ, used to smooth the images
at each resolution was fixed, in all our experiments to a small value, typically between 0.5 and 1
pixel.
Finally, the coefficient κ of the regularization term (see equation 8) and the time step dt can be
chosen, as proposed in [12], as follows. In order to control the range of the regularization term,
κ is normalized by the maximum value κ0 = |∇HJ (h)|∞ such that C = κκ0. Using C instead
of κ makes the algorithm much more stable and we used κ = 10. The time step dt is adapted at
each level of the pyramid so that Cdt is less than a specified value. In our experiments, we set
Cdt = 0.2.

It also makes sense to favor rigid transformations like translations and rotations at coarse reso-
lutions. Consequently, at the first and second levels of the pyramid, we fit the estimated non-rigid
deformation field with the best rigid transformation, expressed as the combination of a rotation and
a translation, and this rigid transformation is used in place of the estimated non-rigid one. This is
easily achieved by solving, for the 2D case, the following linear system



h(x1)1 · · · h(xN)1

h(x1)2 · · · h(xN)2

1 · · · 1




︸ ︷︷ ︸
X̃

=



R11 R12 T 1

R12 R22 T 2

0 0 1




︸ ︷︷ ︸
M



x1

1 · · · x1
N

x2
1 · · · x2

N

1 · · · 1




︸ ︷︷ ︸
X

where, for an image containing N pixels, X̃ is the 3 × N matrix whose columns contain the
components of the estimated diffeomorphism, X is the 3 × N matrix whose columns contain the
coordinates of each pixel and M is the 3× 3 matrix containing the rotation matrix R and the trans-
lation T . X̃ and X being given, we simply have M = X̃

(
XTX

)−1
XT . A QR decomposition of

the submatrix R of M should be used to replace R by only its rotational component.

In figure 2, we present the very simple example of a translation. It is perfectly recovered. In
figure 3, the more complicated example of a rotation is shown. We can see that the rotation is well
recovered and, most importantly, that the tensor reorientation is correctly performed. Finally, we
considered the case of a non-rigid transformation taking an ellipse onto a circle (figure 4). During
the evolution, the algorithm first estimated a translation that maximized the overlap of the ellipse
on the circle. Afterwards, non-rigid effects took the advantage in order to fully deform the ellipse
into the circle.

7 Conclusion

We have presented a mathematical study of the non-rigid registration problem for diffusion tensor
images. We setup a variational formulation taking into account the Riemannian structure of the
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space of diffusion tensors to derive the matching energy. To our knowledge, this is the first time
that the properties of the manifold S+ are exploited for DTI registration. As shown in this pa-
per, the computations are a bit tedious and the numerical implementation must be done carefully.
We demonstrated the feasibility of the approach by successfully applying the algorithm to three
different transformations.

Figure 2: Estimation of the translation (6 pixels) of a square. I2, I1 and Th(I2) on top, h at bottom.
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Figure 3: Estimation of the rotation (π/4) of a square. I2, I1 and Th(I2) on top, h at bottom.

INRIA



Non Rigid Registration of DTI 25

Figure 4: Estimation of the diffeomorphism taking an ellipse onto a circle. I2, I1 and Th(I2) on
top, h at bottom.
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A Details on the first Variation of JAC(h,Dh)

A.1 Introduction

In this appendix, we compute the first variation of the term JAC(h,Dh) introduced in section 4 and
corresponding to the matching term, for the DTI registration problem, between local covariance
matrices of the images I1 and Th(I2).
We identify the covariance matrices, elements of S(6) with their images by the canonical map ϕ6.
Because of (30) we have

δkJAC(h,Dh) =

∫

Ω

δkJAC(x, h) dx.

Because of (27) we have

δkJAC(x, h) =
1

2

(
∂
∂Λ2

‖Λ2(x, h)− Λ̃12(x, h)‖2
F δkΛ2(x, h) +

∂
∂Λ̃12

‖Λ2(x, h)− Λ̃12(x, h)‖2
F δkΛ̃12(x, h) +

∂
∂Λ̃21

‖Λ1(x)− Λ̃21(x, h)‖2
F δkΛ̃21(x, h)

)

In this equation, the partial derivatives are covariant vectors and the variations δk · are contravari-
ant vectors. The expression of the partial derivatives follows from the fact that ‖A − B‖2

F =
tr

(
(A−B)(A−B)T

)
and ∂

∂A
‖A−B‖2

F = A−B = − ∂
∂B
‖A−B‖2

F

1

2

∂

∂Λ2

‖Λ2(x, h)− Λ̃12(x, h)‖2
F = Λ2(x, h)− Λ̃12(x, h)

def
= Θ(x)

1

2

∂

∂Λ̃12

‖Λ2(x, h)− Λ̃12(x, h)‖2
F = Λ̃12(x, h)− Λ2(x, h) = −Θ(x)

1

2

∂

∂Λ̃21

‖Λ1(x)− Λ̃21(x, h)‖2
F = Λ̃21(x, h)− Λ1(x)

def
= Φ(x)

Note that in these formulas, Θ and Φ are 21-dimensional covariant vectors that we identify for con-
venience with their images by ϕ−1

9 . Θ and Φ are therefore twice covariant tensors. Note that, since
we know how to compute the gradient of the geodesic distance function D, it is straightforward to
define these quantities when they involve D instead of the Frobenius norm.

We have obtained an expression for δkJAC(x, h) and thus, by integration, δkJAC(h,Dh) as the
sum of three terms

δkJ 1
AC(x, h) = Θ(x)δkΛ2(x, h)

δkJ 2
AC(x, h) = −Θ(x)δkΛ̃12(x, h)

δkJ 3
AC(x, h) = Φ(x)δkΛ̃21(x, h)

Let us write the first equation using indexes:

δkJ 1
AC(x, h) = ΘIJδkΛ

IJ
2 (x, h)
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We thus need to compute the three quantities δkΛ2(x, h), δkΛ̃12(x, h), δkΛ̃21(x, h). It involves
taking derivatives of logarithms and exponentials of matrices which require some numerical care.
In [21], we detailed how to evaluate the directional derivative of matrix logarithms and we already
referred the reader to [24] for details on the exponential case. The following computations are not
difficult but tend to be a little bit involved.

A.2 Computation of δkΛ2(x, h)

Because of (13) we have

δkΛ2(x, h) =
1

| Ω |

∫

Ω

(
(δkβ2(x, y, h))βT2 (x, y, h) + β2(x, y, h)(δkβ2(x, y, h))T

)
dy (44)

Because of (12) we have

δkβ2(x, y, h) = −Gγ(x− y)ϕ3

(
(δkµ̂2(x, h)) log

(
Th(I2)−1(y)µ̂2(x, h)

)
+

µ̂2(x, h)
(
δk log

(
Th(I2)−1(y)µ̂2(x, h)

)) )
(45)

We have computed δkµ̂2(x, h) in section 5.1.1, we now compute δk log (Th(I2)−1(y)µ̂2(x, h)).

Computation of δk log (Th(I2)−1(y)µ̂2(x, h)): We note that since the matrix Th(I2)−1(y)µ̂2(x, h)
is similar to µ̂2(x, h)1/2Th(I2)−1(y)µ̂2(x, h)1/2 which belongs to S+, it satisfies the hypotheses of
corollary 2.2.2 and we can write

δk
(
log

(
Th(I2)−1(y)µ̂2(x, h)

))
= dlog

(
Th(I2)−1(y)µ̂2(x, h), δk

(
Th(I2)−1(y)µ̂2(x, h)

))

We need to compute δk (Th(I2)−1(y)µ̂2(x, h)). Using the formula for the derivative of a product

δk
(
Th(I2)−1(y)µ̂2(x, h)

)
= δk

(
Th(I2)−1(y)

)
µ̂2(x, h) + Th(I2)−1(y)δkµ̂2(x, h)

We have already computed the second term in the righthand side (equations (32) and (35)), hence

δk
(
Th(I2)−1(y)

)
µ̂2(x, h) =

∂Th(I2)−1

∂h
(y)µ̂2(x, h)k(y) +

∂Th(I2)−1

∂Dh
(y)µ̂2(x, h)Dk(y)

Hence we get,

δk
(
Th(I2)−1(y)µ̂2(x, h)

)
= Th(I2)−1(y)δk µ̂2(x, h)

+
∂Th(I2)−1

∂h
(y)µ̂2(x, h)k(y) +

∂Th(I2)−1

∂Dh
(y)µ̂2(x, h)Dk(y),

which we write in tensor form

δk
(
Th(I2)−1(y)µ̂2(x, h)

)
=∫

Ω

t1(x, y, z)k(z) dz + t2(x, y)k(y)−
∫

Ω

u1(x, y, z)Dk(z) dz − u2(x, y)Dk(y), (46)
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where t1 is the once contravariant and twice covariant tensor obtained by contracting the second
covariant index of Th(I2)−1(y) with the first contravariant index of t:

t
i

1 jl(x, y, z) = −(Th(I2)−1)jm(y)tmil (x, z),

and u1 is the twice covariant and twice contravariant tensor obtained from U in a similar fashion:

u
im

1 jl (x, y, z) = −(Th(I2)−1)jn(y)uniml (x, z).

The tensor t2 = ∂Th(I2)−1

∂h
(y)µ̂2 is once contravariant and twice covariant; its coordinates are given

by

t
i

2 jl =

(
∂Th(I2)−1

∂h

)

jlm

µ̂mi2 .

The tensor u2 = ∂Th(I2)−1

∂Dh
(y)µ̂2 is twice contravariant and twice covariant; its coordinates are given

by

u
im

2 jl =

(
∂Th(I2)−1

∂Dh

)m

jln

µ̂ni2 .

Computation of δkβ2 and δkΛ2: We now do a bit of rewriting in order to get an expression for
δkβ2 and δkΛ2. This is tedious but not difficult. We first prove the following

Lemma A.2.1. δkβ2 can be written as

δkβ2(x, y) =

∫

Ω

T1β2
(x, y, z)k(z) dz + T2β2

(x, y)k(y)−
∫

Ω

U1β2
(x, y, z)Dk(z) dz −U2β2

(x, y)Dk(y),

where the expressions of the tensors T1β2
, T2β2

, U1β2
and U2β2

are given in the proof.

Proof. We combine equations (41) and (46). Using equation (45) we can then write

δkβ2(x, y) =

− ϕ3(
(( ∫

Ω

t(x, z)k(z) dz −
∫

Ω

u(x, z)Dk(z) dz
)

log
(
Th(I2)−1(y)µ̂2(x, h)

)
+

µ̂2(x, h)
( ∫

Ω

t1(x, y, z)k(z) dz + t2(x, y)k(y)−
∫

Ω

u1(x, y, z)Dk(z)− u2(x, y)Dk(y)
))
G(x− y)),

and obtain

T1β2
(x, y, z) = −ϕ3((t(x, z) log

(
Th(I2)−1(y)µ̂2(x)

)
+ µ̂2(x, h)t1(x, y))G(x− y))

T2β2
(x, y) = −ϕ3(µ̂2(x, h)t2(x, y)G(x− y))

U1β2
(x, y, z) = ϕ3((u(x, z) log

(
Th(I2)−1(y)µ̂2(x, h)

)
+ µ̂2(x, h)u1(x, y))G(x− y))

U2β2
(x, y) = ϕ3(µ̂2(x, h)u2(x, y)G(x− y))
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This lemma allows us to prove the following proposition concerning the form of the first term
in the expression of δkJAC .

Proposition A.2.1. The first term δkJ 1
AC in the expression of δkJAC is of the form described in

theorem 5.0.1.

Proof. The previous manipulations and equation (44) yield

(δkΛ2(x))IJ =

1

| Ω |

∫

Ω

(( ∫

Ω

T
I
1β2 l

(x, y, z)kl(z) dz + T
I
2β2 l

(x, y)kl(y)

−
∫

Ω

U
Im
2β2 l

(x, y, z)Dklm(z) dz −U
Im
1β2 l

(x, y)Dklm(y)
)
βJ2 (x, y)

+ βI2(x, y)
( ∫

Ω

T
J
1β2 l

(x, y, z)kl(z) dz + T
J
2β2 l

(x, y)kl(y)

−
∫

Ω

U
Jm
1β2 l

(x, y, z)Dklm(z) dz −U
Jm
2β2 l

(x, y)Dklm(y)
))

dy

The corresponding term δkJ 1
AC(x, h) = ΘIJ(x)(δkΛ2(x))IJ in δkJAC(x, h) is

ΘIJ(x)

| Ω |

∫

Ω

(( ∫

Ω

T
I
1β2 l

(x, y, z)kl(z) dz + T
I
2β2 l

(x, y)kl(y)

−
∫

Ω

U
Im
1β2 l

(x, y, z)Dklm(z) dz −U
Im
l (x, y)Dk2β2 l

m (y)
)
βJ2 (x, y)

+ βI2(x, y)
( ∫

Ω

T
J
1β2 l

(x, y, z)kl(z) dz + T
J
2β2 l

(x, y)kl(y)

−
∫

Ω

U
Jm
1β2 l

(x, y, z)Dklm(z) dz −U
Jm
2β2 l

(x, y)Dklm(y)
))

dy (47)

We define

Hl(x, y) =
ΘIJ(x)

| Ω |

∫

Ω

(
T
I
1β2 l

(x, z, y)βJ2 (x, z) + βI2(x, z)TJ
1β2 l

(x, z, y)
)
dz+

ΘIJ(x)

2 | Ω |
(
T
I
2β2 l

(x, y)βJ2 (x, y) + βI2(x, y)TJ
2β2 l

(x, y)
)
,

and

K
m
l (x, y) =

ΘIJ(x)

| Ω |

∫

Ω

(
U
Im
1β2 l

(x, z, y)βJ2 (x, z) + βI2(x, z)UJm
1β2 l

(x, z, y)
)
dz+

ΘIJ(x)

2 | Ω |
(
U
Im
2β2 l

(x, y)βJ2 (x, y) + βI2(x, y)UJm
2β2 l

(x, y)
)
,
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and rewrite (47) as

δkJ 1
AC(x, h) =

∫

Ω

Hl(x, y, h)kl(y) dy −
∫

Ω

K
m
l (x, y, h)Dklm(y) dy

The corresponding term in δkJAC(h) is
∫

Ω

(∫

Ω

Hl(x, y, h)kl(y) dy

)
dx−

∫

Ω

(∫

Ω

K
m
l (x, y, h)Dklm(y) dy

)
dx. (48)

Now define

Hl(x, h) =

∫

Ω

Hl(z, x, h) dz,

and

K
m

l (x, h) =

∫

Ω

K
m
l (z, x, h) dz.

Exchanging the order of summation in the second term of (48) and renaming the variables, we
obtain a new form of (48):

∫

Ω

Hl(x, h)kl(x) dx−
∫

Ω

K
m

l (x, h)Dklm(x) dx
Def
=

∫

Ω

T
1
AC(x, h)k(x) dx−

∫

Ω

U
1
AC(x, h)Dk(x) dx

A.3 Computation of δkΛ̃12(x, h)

According to equation (14), we have

δkΛ̃12(x, h) =
1

| Ω |

∫

Ω

(
δkβ̃1(x, y, h)β̃T1 (x, y, h) + β̃1(x, y, h)

(
δkβ̃1(x, y, h)

)T)
dy

Because of (22), we have

δkβ̃1(x, y, h) = δk

(
exp (−A(x, h))β1(x, y)

)
=

(
δk exp (−A(x, h))

)
β1(x, y), (49)

since the vectors β1(x, y) are not functions of h. A(x, h) is defined in section 4.2. In order to
compute δk exp (−A(x, h)), we use the following result from [24]. Let X be a diagonalizable
matrix of Mn(R), and V a matrix. We are interested in computing the directional derivative of the
exponential of X in the direction V

dexp (X,V ) = lim
t→0

1

t
(exp(X + tV )− exp(X))

The following theorem (page 41 of [24]) provides an answer and shows that dexp (X,V ) is, like
the matrix logarithm, linear in its second argument V .
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Theorem A.3.1. If X = ZDZ−1 is the spectral decomposition of the semi-simple matrix X , its
directional derivative in the direction V is given by

dexp (X,V ) = Z
(
V • Ξ

)
Z−1

where V = Z−1V Z and V •Ξ denote the Hadamard (entry-by-entry) product of V with the matrix
Ξ whose entries are given by:

Ξi
j = Ξj

i =

{
eλi−eλj

λi−λj
ifλi 6= λj

eλi ifλi = λj

Computation of δk exp (−A(x, h)): According to definition 2.2.1 and the chain rule

δk exp (−A(x, h)) = −dexp (−A(x, h), δkA(x, h)) .

According to equation (24), in order to compute δkA(x, h), we need to compute δkψ(x, h) where

ψ(x, h) = log
(
µ̂2(x, h)µ̂1(x)−1

)
.

According to corollary 2.2.2 and definition 2.2.1 we can write

δkψ(x, h) = dlog
(
µ̂2(x, h)µ̂1(x)−1, (δkµ̂2(x, h)) µ̂1(x)−1

)
.

Because dlog (, ) is a linear function of its second argument, using equation (41), the previous
equation can be rewritten as

δkψ(x, h) =

∫

Ω

tψ(x, z)k(z) dz −
∫

Ω

uψ(x, z)Dk(z) dz,

where

tψ(x, z) = dlog
(
µ̂2(x, h)µ̂1(x)−1, t(x, z)µ̂1(x)−1

)

uψ(x, z) = dlog
(
µ̂2(x, h)µ̂1(x)−1,u(x, z)µ̂1(x)−1

)
.

Using indexes,

t
· ·
ψ l =

3∑

m=1

dlog
(
µ̂2(x, h)µ̂1(x)−1,T·m

l

(
µ̂1(x)−1

)
m ·

)

Since the relation between ψ and A is linear (A =M(ψ), see equation (24)), we have

δkA(x, h) =

∫

Ω

M(tψ(x, z))k(z) dz −
∫

Ω

M(uψ(x, z))Dk(z) dz,

and therefore, using the linearity in the second argument of dexp (·, ·),

δk exp (−A(x, h)) =

−
∫

Ω

dexp (−A(x, h),M(tψ(x, z))) k(z) dz +

∫

Ω

dexp (−A(x, h),M(uψ(x, z)))Dk(z) dz.
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We obtain an expression for δkβ̃1

δkβ̃1(x, y) =

∫

Ω

Tβ̃1
(x, y, z)k(z) dz −

∫

Ω

Uβ̃1
(x, y, z)Dk(z) dz,

where

Tβ̃1
(x, y, z) = −dexp (−A(x),M(tψ(x, z))) β1(x, y)

Uβ̃1
(x, y, z) = −dexp (−A(x),M(uψ(x, z))) β1(x, y)

This allows us to prove the following

Proposition A.3.1. The second term, δkJ 2
AC , in the expression of δkJAC is of the form described

in theorem 5.0.1.

Proof. The previous manipulations yield

(
δkΛ̃12(x)

)IJ
=

1

| Ω |

∫

Ω

(( ∫

Ω

(
T
I
β̃1 l

(x, y, z)kl(z)−U
Im
β̃1 l

(x, y, z)Dkml (z)
)
dz

)
β̃J1 (x, y)+

β̃I1(x, y)

∫

Ω

(
T
J
β̃1 l

(x, y, z)kl(z)−U
Jm
β̃1 l

(x, y, z)Dkml (z)
)
dz

)
dy

The corresponding term, δkJ 2
AC(x, h), in δkJAC(x, h) is

− ΘIJ(x)

| Ω |

∫

Ω

(( ∫

Ω

(
T
I
β̃1 l

(x, y, z)kl(z)−U
Im
β̃1 l

(x, y, z)Dkml (z)
)
dz

)
β̃J1 (x, y)+

β̃I1(x, y)

∫

Ω

(
T
J
β̃1 l

(x, y, z)kl(z)−U
Jm
β̃1 l

(x, y, z)Dkml (z)
)
dz

)
dy

This results in the following expression for δkJ 2
AC(h)

δkJ 2
AC(h) =

∫

Ω

T
2
AC(x, h)k(x) dx−

∫

Ω

U
2
AC(x, h)Dk(x) dx,

where

T
2
AC l(x, h) = − 1

| Ω |

∫

Ω

∫

Ω

ΘIJ(y)
(
T
I
β̃1 l

(y, z, x)β̃J1 (y, z) + β̃I1(y, z)TJ
β̃1 l

(y, z, x)
)
dy dz,

and

U
2 m
AC l(x, h) = − 1

| Ω |

∫

Ω

∫

Ω

ΘIJ(y)
(
U
Im
β̃1 l

(y, z, x)β̃J1 (y, z) + β̃I1(y, z)UJm
β̃1 l

(y, z, x)
)
dy dz
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A.4 Computation of δkΛ̃21(x, h)

According to equation (15), we have

δkΛ̃21(x, h) =
1

| Ω |

∫

Ω

(
δkβ̃2(x, y, h)β̃T2 (x, y, h) + β̃2(x, y, h)

(
δkβ̃2(x, y, h)

)T )
dy (50)

Because of (23), we have

δkβ̃2(x, y, h) = δk

(
exp (−B(x, h)) β2(x, y, h)

)

=
(
δk exp (−B(x, h))

)
β2(x, y, h) + exp (−B(x, h))

(
δkβ2(x, y, h)

)

We have already derived, in the previous sections, all we need to evaluate this derivative.

Computation of the first term of δkβ̃2(x, y, h): The first term of δkβ̃2(x, y, h), namely
(
δk exp (−B(x, h))

)
β2(x, y, h),

is readily obtained from the derivations carried out in section A.3. Since

δk exp (−B(x, h)) = −dexp (−B(x, h), δkB(x, h)) ,

all the arguments used previously to derive an expression for δk exp (−A(x, h)) are still valid.
Replacing ψ by

θ(x, h) = log
(
µ̂1(x)−1µ̂2(x, h)

)
,

results in the expressions

δkθ(x, h) =

∫

Ω

tθ(x, z)k(z) dz −
∫

Ω

uθ(x, z)Dk(z),

where

tθ(x, z) = dlog
(
µ̂1(x)−1µ̂2(x, h), µ̂1(x)−1

t(x, z)
)

uθ(x, z) = dlog
(
µ̂1(x)−1µ̂2(x, h), µ̂1(x)−1

u(x, z)
)
.

Using indexes,

t
· ·

θ l =
3∑

m=1

dlog
(
µ̂1(x)−1µ̂2(x, h),

(
µ̂1(x)−1

)
m ·

t
·m
l

)

Since the relation between θ and B is linear (B =M(θ), see equation (24)), we have

δkB(x, h) =

∫

Ω

M(tθ(x, z))k(z) dz −
∫

Ω

M(uθ(x, z))Dk(z) dz,

and therefore, using the linearity of dexp (·, ·) with respect to its second argument:

δk exp (−B(x, h))β2(x, y, h) =

−
∫

Ω

dexp (−B(x, h),M(tθ(x, z))) β2(x, y, h)k(z) dz+
∫

Ω

dexp (−B(x, h),M(uθ(x, z))) β2(x, y, h)Dk(z) dz
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Computation of the second term of δkβ̃2(x, y, h): The second term of δkβ̃2(x, y, h), namely

exp (−B(x, h))
(
δkβ2(x, y, h)

)

is readily obtained from the derivations lead in section A.2. Indeed the derivative δkβ2(x, y, h) was
proved in lemma A.2.1 to be equal to

δkβ2 =

∫

Ω

T1β2
(x, y, z)k(z) dz + T2β2

(x, y)k(y)−
∫

Ω

U1β2
(x, y, z)Dk(z) dz −U2β2

(x, y)Dk(y)

Combining these two results allows us to prove the following lemma, analog to lemma A.2.1

Lemma A.4.1. δkβ̃2 can be written as

δkβ2(x, y) =

∫

Ω

T1β̃2
(x, y, z)k(z) dz + T2β̃2

(x, y)k(y)−
∫

Ω

U1β̃2
(x, y, z)Dk(z) dz −U2β̃2

(x, y)Dk(y),

where the expressions of the tensors T1β̃2
, T2β̃2

, U1β̃2
and U2β̃2

are given in the proof.

Proof. We can write immediately

δkβ̃2 =

∫

Ω

T1β̃2
(x, y, z, h)k(z) dz + T2β̃2

(x, y, h)k(y)−
∫

Ω

U1β̃2
(x, y, z, h)Dk(z) dz −U2β̃2

(x, y, h)Dk(y),

where

T1β̃2
(x, y, z) = −dexp (−B(x, h),M(tθ(x, z))) β2(x, y, h) + exp (−B(x, h))T1β2

(x, y, z, h)

T2β̃2
(x, y) = exp (−B(x, h))T2β2

(x, y, h)

U1β̃2
(x, y, z) = −dexp (−B(x, h),M(uθ(x, z))) β2(x, y, h) + exp (−B(x, h))U1β2

(x, y, z, h)

U2β̃2
(x, y) = exp (−B(x, h))U2β2

(x, y, h)

This allows us to prove the following

Proposition A.4.1. The third term, δkJ 3
AC, in the expression of δkJAC is of the form described in

theorem 5.0.1.
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Proof. The proof is completely analog to that of proposition A.2.1. We end up with

δkJ 3
AC(h) =

∫

Ω

T
3
AC(x, h)k(x) dx−

∫

Ω

U
3
AC(x, h)Dk(x) dx,

where

T
3
AC l(x, h) = H̃(x, h) =

∫

Ω

H̃(z, x, h) dz

U
3 m
AC l(x, h) = K̃(x, h) =

∫

Ω

K̃(z, x, h) dz,

where the once covariant tensor H̃(z, x, h) is given by the following expression

H̃l(x, y) =
ΦIJ(x)

| Ω |

∫

Ω

(
T
I
1β̃2 l

(x, z, y)β̃J2 (x, z) + β̃I2(x, z)TJ
1β̃2 l

(x, z, y)
)
dz+

ΦIJ(x)

2 | Ω |
(
T
I
2β̃2 l

(x, y)β̃J2 (x, y) + β̃I2(x, y)TJ
2β̃2 l

(x, y)
)
,

and the once covariant once contravariant tensor K̃(z, x, h) is given by the following expression

K̃
m
l (x, y) =

ΦIJ(x)

| Ω |

∫

Ω

(
U
Im
1β̃2 l

(x, z, y)β̃J2 (x, z) + β̃I2(x, z)UJm
1β̃2 l

(x, z, y)
)
dz+

ΦIJ(x)

2 | Ω |
(
U
Im
2β̃2 l

(x, y)β̃J2 (x, y) + β̃I2(x, y)UJm
2β̃2 l

(x, y)
)
.
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