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Abstract

The aim of this note is to give some factorisation formulas for different versions
of the Macdonald polynomials when the parameter t is specialized at roots of unity,
generalizing those given in [9] for Hall-Littlewood functions.

1 Introduction

In [9], Lascoux, Leclerc and Thibon give some factorisation formulas for Hall-Littlewood
functions when the parameter q is specialized at roots of unity. They also give formulas in
terms of cyclic characters of the symmetric group. In this article, we give a generalization
of these specializations for different versions of the Macdonald polynomials and we obtain
similar formulas in terms of plethysms and cyclic characters. In the last section, we give
congruence formulas for (q, t)-Kostka polynomials using Schur functions in the alphabet of
the powers of the parameter t. We will mainly follow the notations of [11].

Acknowlegdements: All computations on Macdonald polynomials have been done us-
ing the MuPAD package MuPAD-Combinat (see [5] for more details on the project and the
website http://mupad-combinat.sourceforge.net/).

2 Preliminaries

For a partition λ = (λ1, . . . , λn), λ1 ≥ . . . ≥ λ1, we write l(λ) its length, |λ| its weight, mi(λ)
the multiplicity of the part of length i and λ

′

its conjugate partition. Let q and t be two
indeterminates and F = Q(q, t). Let ΛF be the ring of symmetric functions over the field F .
Let denote by 〈·, ·〉q,t the inner product on ΛF defined on the powersums by

〈 pλ , pµ 〉q,t = δλµzλ(q, t),
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where

zλ(q, t) =
∏

i≥1

(mi)! i
mi(λ)

l(λ)∏

i=1

1 − qλi

1 − tλi
.

The special case 〈·, ·〉 := 〈·, ·〉 q=0
t=0

is the usual inner product.

Let {Pλ(x; q, t)}λ be the family of Macdonald polynomials obtained by orthogonalization
of the Schur functions basis with respect to the inner product 〈·, ·〉q,t. Let us define a
normalization of these functions by

Qλ(x; q, t) =
1

〈Pλ(x; q, t), Pλ(x; q, t)〉q,t

Pλ(x; q, t).

It is clear from the previous definitions that the families {Pλ(x; q, t)}λ and {Qµ(x; q, t)}µ are
dual to each other with respect to the inner product 〈·, ·〉q,t (c.f. [11], Chap. I, section 4 and
Chap. VI, formula (2.7)]).

Proposition 2.1 [[11],VI, (4.13)] Let x = (x1, x2, . . . ) and y = (y1, y2, . . . ) be two alphabets.
The Macdonald polynomials {Pλ(x; q, t)}λ and {Qλ(x; q, t)}λ satisfy the Cauchy formula

∑

λ

Pλ(x; q, t)Qλ(y; q, t) =
∏

i,j

(txiyj; q)∞
(xiyj; q)∞

, (1)

where (a; q)∞ is the infinite product
∏

r≥0(1 − aqr).

We consider the following algebra homomorphism

′ : ΛF −→ ΛF

f(x) 7−→ f ′(x) = f
(

1−q
1−t

x
)
.

The images of the powersums (pk)k ≥ 1 by these morphisms are

p
′

k(x) =
1 − qk

1 − tk
pk(x).

Let us consider the following modified version of the Macdonald polynomial

Q′
µ(x; q, t) = Qµ

(
1 − q

1 − t
x; q, t

)
.

We can see that the families {Q′
µ(x; q, t)}µ and {Pλ(x; q, t)}λ are dual to each other with

respect to the usual inner product.

Proposition 2.2 Let x = (x1, x2, . . . ) and y = (y1, y2, . . . ) be two alphabets. The Macdonald
polynomials {Pλ(x; q, t)}λ and {Q

′

λ(x; q, t)}λ satisfy the following Cauchy formula

∑

λ

Pλ(x; q, t)Q
′
λ(y; q, t) =

∏

i,j

1

1 − xiyj
. (2)
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Proof. By Proposition 2.1, we have

∑

λ

Pλ(x; q, t)Qλ(y; q, t) =
∏

i,j

∏

r≥0

1 − txiyjq
r

1 − xiyjqr
.

Since the map x 7→ x/(1− t) corresponds to the transformation of the alphabet {x1, x2, . . .}
into the alphabet {xit

j , i ≥ 1, j ≥ 0}, a straightforward computation shows that

∑

λ

Pλ(x; q, t)Qλ

(
y

1 − t
; q, t

)
=

∏

r≥0

∏

i,j

1

1 − xiyjqr
.

This means that the families {Pλ(x; q, t)}λ on the alphabet x and
{
Qµ

(
y

1−q
; q, t

)}

µ
on the

alphabet y/(1 − q) are dual to each other with respect to the usual inner product. Since
the transformation of alphabets y 7→ y/(1 − q) is invertible and the inverse map is given by
y 7→ (1 − q)y, it follows that

∑

λ

Pλ(x; q, t)Qλ

(
1 − q

1 − t
y; q, t

)
= Pλ(x; q, t)Q

′
λ(y; q, t) =

∏

i,j

1

1 − xiyj
.

�

We recall some definitions of combinatorial quantities associated to a cell s = (i, j) of a given
partition. The arm length a(s), arm-colength a

′

(s), leg length l(s) and leg-colength l
′

(s) are
respectively the number of cells at the east, at the west, at the south and at the north of
the cell s (c.f. [11], Chap. VI, formula (6.14)), i.e

a(s) = λi − j , a
′

(s) = j − 1,

l(s) = λ
′

j − i , l
′

(s) = i− 1.

We also define the quantity

n(λ) =
∑

i

(i− 1)λi.

Let Jµ(x; q, t) be the symmetric function with two parameters defined by

Jµ(x; q, t) = cµ(q, t)Pµ(x; q, t) = c′µ(q, t)Qµ(x; q, t) , (3)

with
cµ(q, t) =

∏

s∈µ

(1 − qa(s)tl(s)+1) and c′µ(q, t) =
∏

s∈µ

(1 − qa(s)+1tl(s)).

The symmetric function Jµ(x; q, t) is called the integral form of Pµ(x; q, t) or Qµ(x; q, t) (c.f.
[11], Chap. VI, section 8). Using this integral form, we can define an other modified version
of the Macdonald polynomial and the (q, t)-Kostka polynomials Kλ,µ(q, t) by

Jµ

(
x

1 − t
; q, t

)
=

∑

λ

Kλ,µ(q, t)sλ. (4)
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In [4], Haglund, Haiman and Loehr consider a modified version of Jµ

(
x

1−t
; q, t

)
and introduce

other (q, t)-Kostka polynomials K̃λ,µ(q, t) by defining the functions

H̃µ(x; q, t) = tn(µ)Jµ

(
x

1 − t−1
; q, t−1

)
=

∑

λ

K̃λ,µ(q, t)sλ . (5)

They give a combinatorial interpretation of this modified version expanded on the monomials
basis by defining two statistics (major index and inversions) on arbitrary fillings by integers
of µ.

Remark 2.1 Let µ and ρ be two partitions of the same weight. We have

Xµ
ρ (q, t) = 〈 H̃µ(q, t) , pρ(x) 〉,

where Xµ
ρ (q, t) is the Green polynomial with two variables, defined by

Xµ
ρ (q, t) =

∑

λ

χλ
ρK̃λµ(q, t).

Here χλ
ρ is the value of the irreducible character of the symmetric group corresponding to

the partition λ on the conjugacy class indexed by ρ. For related topics, see [12, 13].

3 Plethystic formula

In this section, we prove a plethystic formula for Macdonald polynomials indexed by rect-
angular partitions when the second parameter t is specialized at primitive roots of unity.

Proposition 3.1 [[11],VI, (6.11’)] Let l be a positive integer and λ be a partition such
that l(λ) ≤ l. The Macdonald polynomials Pλ(x; t, q) on the alphabet {xi = ti, 0 ≤ i ≤
l − 1, and xi = 0, ∀i ≥ l}, can be written

Pλ(1, t, . . . , t
l−1; q, t) = tn(λ)

∏

s∈λ

1 − qa′(s)tl−l′(s)

1 − qa(s)tl(s)+1
. (6)

Corollary 3.1 Let l be a positive integer and λ a partition such that l(λ) ≤ l. For ζ a
primitive l-th root of unity, the Macdonald polynomials Pλ(x; q, t) satisfy the specialization

Pλ(1, ζ, ζ
2, . . . , ζ l−1; q, ζ) =

{
(−1)(l−1)r if λ = (rl) for some r ≥ 0,

0 otherwise.
(7)
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Proof. Supplying zeros at the end of λ, we consider the partition λ as a sequence of length
exactly equal to l. The multiplicity of 0 in λ is m0 = l − l(λ). We will denote by ϕr(t) the
polynomial

ϕr(t) = (1 − t)(1 − t2) . . . (1 − tr).

Let

f(t) =
(1 − tl)(1 − tl−1) · · · (1 − tl−l(λ))(1 − tl−l(λ)−1) · · · (1 − t2)(1 − t)

ϕm0(t)ϕm1(t)ϕm2(t) · · · · · ·

be the product of factors of the form 1 − q0tα for some α > 0 in the formula (6). If we
suppose that f(ζ) 6= 0, the factor 1 − tl should be contained in one of ϕmi

(t). This means
that there exists i ≥ 0 such that mi ≥ l. Since we consider λ as a sequence of length exactly
l, this implies the condition mr = l for some r ≥ 0. Thus, if Pλ(1, ζ, ζ

2, . . . , ζ l−1; q, ζ) 6= 0,
the shape of λ should be (rl).

Suppose now that λ = (rl). By Proposition 3.1, it follows that

Pλ(1, ζ, ζ
2, . . . , ζ l−1; q, ζ) = ζn(λ)

∏

s∈λ

1 − qa′(s)ζ l−l′(s)

1 − qa(s)ζ1+l(s)

= ζn(λ)
∏

(i,j)∈λ

1 − qj−1ζ l−(i−1)

1 − qr−jtl−i+1

= ζn(λ)
l∏

i=1

r∏

j=1

1 − qj−1ζ l−i+1

1 − qr−jtl−i+1
.

For each i, it is easy to see that

r∏

j=1

1 − qj−1ζ l−i+1

1 − qr−jtl−i+1
= 1.

Hence, we obtain
Pλ(1, ζ, ζ

2, . . . , ζ l−1; q, ζ) = ζn(λ),

and it follows immediately from the definition of n(λ) that

ζn(λ) = ζ l(l−1))r/2 = (−1)(l−1)r.

�

Theorem 3.1 Let l and r be two positive integers and ζ a primitive l-th root of unity. The
Macdonald polynomials Q

′

rl(x; q, t) satisfy the following specialization formula at t = ζ

Q′
(rl)(x; q, ζ) = (−1)(l−1)r(pl ◦ hr)(x) . (8)
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Proof. Recall that ∑

λ

Pλ(x; q, t)Q
′
λ(y; q, t) =

∏

i,j

1

1 − xiyj
.

If we let xi = ζ i−1, for i = 1, 2, . . . , l, and xi = 0, for i > l, and t = ζ , we obtain

∑

λ

Pλ(1, ζ, ζ
2, . . . , ζ l−1; q, ζ)Q′

λ(y; q, ζ) =
∏

j≥1

l∏

i=1

1

1 − ζ i−1yj
. (9)

By Corollary 3.1, the left hand side of (9) is equal to
∑

r≥0

(−1)(r−1)lQ′
(rl)(y; q, ζ).

Since
∏l

i=1(1 − ζ i−1t) = 1 − tl, the right hand side of (9) coincides with
∑

r≥o hr(y
l), where

yl denotes the alphabet (yl
1, y

l
2, · · · ). Comparing the degrees, we can conclude that

Q′
(rl)(y; q, ζ) = (−1)(l−1)rhr(y

l) = (−1)(l−1)r(pl ◦ hr)(y).

�

Example 3.2 For λ = (222) and l = 3, we can compute the specialization

Q
′

(222)(x; q, e
2iπ
3 ) = −s321 + s33 + s411 − s51 + s6 + s222

= p3 ◦ h2(x).

In order to give a similar formula for the modified versions of the integral form of the
Macdonald polynomials, we give a formula for the specialization of the constant c′rl(t, q) at
t a primitive l-th root of unity.

Lemma 3.3 Let l and r be two positive integers and ζ a l-th primitive root of unity. The
normalization constant c

′

λ(q, t) satisfies the following specialization at t = ζ

c
′

rl(q, ζ) =

r∏

i=1

(qil − 1). (10)

Proof. Recall the definition of the normalization constant

c′rl(q, t) =
∏

s∈µ

(1 − qa(s)+1tl(s)) =
r∏

i=1

l∏

j=1

(1 − qr−i+1tj) =
r∏

i=1

l∏

j=1

(1 − qitj).

Specializing t at ζ a l-th primitive root of unity, we obtain

c′rl(q, ζ) =
r∏

i=1

l∏

j=1

(1 − qr−i+1tj) =
r∏

i=1

(qil − 1).

�
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Corollary 3.2 With the same notations as in Theorem 3.1, the modified integral form of
the Macdonald polynomials H̃µ(x; q, t) satisfy a similar formula at t = ζ,

H̃(rl)(x; q, ζ) =

r∏

i=1

(qil − 1) pl ◦ hr

(
x

1 − q

)
. (11)

Proof. Using the definition 3 of the integral form of the Macdonald polynomials

J(rl)

(
x

1 − t
; q, t

)
= c

′

rl(q, t)Q(rl)

(
x

1−t
; q, t

)

= c
′

rl(q, t)Q
′

(rl)

(
x

1−q
; q, t

)
.

This expression can be rewritten in terms of plethysms by the powersum p1, consequently

J(rl)

(
x

1 − t
; q, t

)
= c

′

rl(q, t)

(
Q

′

(rl)( . ; q, t) ◦
1

1 − q
p1

)
(x) .

By specializing in this egality, t at a primitive l-th root of unity ζ , using Theorem 3.1, we
obtain

J(rl)

(
x

1 − ζ
; q, ζ

)
= c

′

rl(q, ζ)

(
Q

′

(rl)( . ; q, ζ) ◦
1

1 − q
p1

)
(x)

= c
′

rl(q, ζ)(−1)r(l−1)

(
(pl ◦ hr) ◦

1

1 − q
p1

)
(x).

As plethysm is associative, we can write

J(rl)

(
x

1 − ζ
; q, ζ

)
= c

′

rl(q, ζ)(−1)r(l−1)pl ◦

(
hr ◦

1

1 − q
p1

)
(x)

= c
′

rl(q, ζ)(−1)r(l−1)pl ◦ hr

(
x

1 − q

)
.

Using the formula of Lemma 3.3 and ζn(λ) = (−1)(l−1)r. we obtain the formula.
�

Example 3.4 For λ = (222) and l = 3, we can compute

H̃(2222)(x; q, i) = s611 + s8 − s5111 − s71 + q4(s11111111 + s311111 − s2111111 − s41111) +

(q4 + 1)(s2222 + s332 + s4211 + s44 − s431 − s3221)

= (1 − q4)(1 − q8) p4 ◦ h2

(
x

1 − q

)
.

Remark 3.5 At t = ζ , a primitive l-th root of unity, the inverse of the norm of the
Macdonald polynomial P(rl)(x; q, t) satisfies

1

〈P(rl)(x; q, t) , P(rl)(x; q, t)〉q,t

∣∣∣∣
t=ζ

= 0 .

Consequently, we obtain the following specializations

Q(rl)(x; q, ζ) = 0 and J(rl)(x; q, ζ) = 0.
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4 Pieri formula at roots of unity

In order to prove the factorization formulas, we give an auxiliary result, in Proposition 4.1,
on the coefficients of Pieri formula at root of unity (c.f. [11], Chap. VI, formula (6.24 ii))

Q
′

µ(x; q, t)g
′

r(x; q, t) =
∑

λ

ψλ/µ(q, t) Q
′

λ(x; q, t), (12)

with

∀r ≥ 0 , g
′

r

(
1 − q

1 − t
x; q, t

)
=

∑

|λ|=n

zλ(q, t)
−1pλ

(
1 − q

1 − t
x

)
.

Let λ and µ be partitions such that λ/µ is an horizontal (r-)strip θ. Let Cλ/µ (resp. Rλ/µ)
be the union of columns (resp. rows) of λ that intersects with θ, and Dλ/µ = Cλ/µ − Rλ/µ

the set theoretical difference. Then it can be seen from the definition that for each cell s of
Dλ/µ (resp. Dλ̃/µ̃) there exists a unique connected component of θ (resp. θ̃), which lies in

the same row as s. We denote the corresponding component by θs (resp. θ̃s).

Suppose that l and r are positive integers. Set λ̃ = λ ∪ (rl) and µ̃ = µ ∪ (rl). We shall
consider the difference between Dλ̃/µ̃ and Dλ/µ. It can be seen that there exists a projection

p = pλ/µ : Dλ̃/µ̃ −→ Dλ/µ.

The cardinality of the fiber of each cell s = (i, j) ∈ Dλ/µ is exactly one or two. Let Js

denote the set of second coordinates of the cells in θs. If all elements of Js are all strictly
larger than r, the fiber p−1(s) consists of a single element s = (i, j). If all elements of Js are
strictly smaller than r, then the fiber p−1(s) consists of a single element s̃ := (i, j + l). In
the case where Js contains r, then the fiber p−1(s) consists of exactly two elements s = (i, j)
and s̃ = (i, j + l). For the case where r ∈ Js, we have the following lemma, which follows
immediately from the definition of the projection p = pλ/µ.

Lemma 4.1 Let s = (i, j) be a cell of Dλ/µ and s̃ = (i, j + l) be a cell of Dλ̃/µ̃ such that
r ∈ Js. The arm length, the arm-colength, the leg length and the leg-colength satisfy the
following properties

aµ̃(s) = aλ̃(s̃) , lµ̃(s) − lλ̃(s̃) = l , (13)

aµ̃(s̃) = aµ(s) , lµ̃(s̃) = lµ(s) , (14)

aλ̃(s) = aλ(s) , lλ̃(s) − lλ(s) = l . (15)

Proposition 4.1 Let λ and µ be two partitions such that µ ⊂ λ and θ = λ−µ an horizontal
strip. Let r and l be positive integers and ζ a primitive root of unity. It follows that

ψλ∪(rl)/µ∪(rl)(q, ζ) = ψλ/µ(q, ζ).
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Proof. Recall that for a cell s of the partition ν,

ψλ/µ(q, t) =
∏

s∈Dλ/µ

bµ(s)

bλ(s)
,

where

bν(s) =
1 − qaν(s)tlν(s)+1

1 − qaν(s)+1tlν(s)
.

If s = (i, j) ∈ λ satisfies the condition r < j for all j ∈ Js, then the fiber p−1(s) of the
projection p is {s = (i, j)}, and we have aµ(s) = aµ̃(s), aλ(s) = aλ̃(s) and lµ(s) + l =
lµ̃(s), lλ(s) + l = lλ̃(s). It is clear from these identities that bµ(s)/bλ(s) = bµ̃(s)/bλ̃(s) at
t = ζ in this case. Suppose that s satisfies j < r for all j ∈ Js. In this case, the fiber p−1(s)
consisits of a single element {s̃ = (i, j + l)}, and we have aµ(s) = aµ̃(s) and aλ(s) = aλ̃(s)
and lµ(s) = lµ̃(s) and lλ(s) = lλ̃(s). Hence we have bµ(s)/bλ(s) = bµ̃(s)/bλ̃(s). Consider
the case where r ∈ Js. In this case, the fiber p−1(s) consists of two elements {s, s̃}. Let us
consider

∏

u∈p−1(s)

bµ̃(u)

bλ̃(u)
=

1 − qaµ̃(s)tlµ̃(s)+1

1 − qaµ̃(s)+1tlµ̃(s)

1 − qaλ̃(s)+1tlλ̃(s)

1 − qaλ̃(s)tlλ̃(s)+1

1 − qaµ̃(s̃)tlµ̃(s̃)+1

1 − qaµ̃(s̃)+1tlµ̃(s̃)

1 − qaλ̃(s̃)+1tlλ̃(s̃)

1 − qaλ̃(s̃)tlλ̃(s̃)+1
.

By (13) it follows that

{
1 − qaµ̃(s)tlµ̃(s)+1

1 − qaµ̃(s)+1tlµ̃(s)

}−1 ∣∣∣∣
t=ζ

=
1 − qaλ̃(s̃)+1tlλ̃(s̃)

1 − qaλ̃(s̃)tlλ̃(s̃)+1

∣∣∣∣
t=ζ

.

It also follows by (14)

1 − qaµ̃(s̃)tlµ̃(s̃)+1

1 − qaµ̃(s̃)+1tlµ̃(s̃)

∣∣∣∣
t=ζ

=
1 − qaµ(s)tlµ(s)+1

1 − qaµ(s)+1tlµ(s)

∣∣∣∣
t=ζ

,

and from (15)
1 − qaλ̃(s)+1tlλ̃(s)

1 − qaλ̃(s)tlλ̃(s)+1

∣∣∣∣
t=ζ

=
1 − qaλ(s)+1tlλ(s)

1 − qaλ(s)tlλ(s)+1

∣∣∣∣
t=ζ

.

Therefore, it follows that
∏

u∈p−1(s)

bµ̃(u)

bλ̃(u)
=
bµ(s)

bλ(s)
.

Combining these, the assertion follows. �

5 Factorization formulas

In this section, we shall show factorization formulas for different kinds of Macdonald poly-
nomials at roots of unity.
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Theorem 5.1 Let l be a positive integer and ζ a primitive l-th root of unity. Let µ =
(1m1 , 2m2 , · · · , nmn) be a partition of a positive integer n. For each i, let mi = lqi + ri with
0 ≤ ri ≤ l−1 and let µ̄ = (1r12r2 · · ·mrn). The function Q

′

µ satisfy the following factorisation
formula at t = ζ

Q
′

µ(x; q, ζ) =
(
Q

′

(1l)(x; q, ζ)
)q1

(
Q

′

(2l)(x; q, ζ)
)q2

· · ·
(
Q

′

(nl)(x; q, ζ)
)qn

Q
′

µ̄(x; q, ζ). (16)

Proof. We shall show that the C-linear map defined by

fr : ΛF −→ ΛF

Q
′

µ(x; q, ζ) 7−→ Q
′

µ∪(rl)(x; q, ζ) ,

is an ΛC(q)-linear map. Let ζ be a primitive l-th root of unity. From (12), we have

Q
′

µ(x; q, ζ)g
′

k(x; q, ζ) =
∑

λ

ψλ/µ(q, ζ)Q
′

λ(x; q, ζ) ,

where the sum is taken over the partitions λ such that λ− µ is an horizontal k-strip. Using
the result of Proposition 4.1, it follows that

Q
′

µ∪(rl)(x; q, ζ)g
′

k(x; q, ζ) =
∑

λ

ψλ∪(rl)/µ∪(rl)(q, ζ)Q
′

λ∪(rl)(x; q, ζ)

=
∑

λ

ψλ/µ(q, ζ)Q
′

λ∪(rl)(x; q, ζ).

Consequently, for each r ≥ 1, the multiplication by gk commutes with the morphism fr.
Since the family {g

′

k(x; q, ζl)}k≥1 generates the algebra ΛC(q) (see [11], Chap. VI, formula
(2.12)), the map fr is ΛC(q)-linear. This implies that

∀F ∈ ΛCq , fr(F (x)) = F (x)fr(1)

= F (x)Q
′

rl(x; q, ζ).

�

Corollary 5.1 With the same notation as in Theorem 3.1, we have the following factorisa-
tion formula for the Macdonald polynomials H̃µ(x; q, t)

H̃µ(x; q, ζ) =
(
H̃(1l)(x; q, ζ)

)q1
(
H̃(2l)(x; q, ζ)

)q2

· · ·
(
H̃(nl)(x; q, ζ)

)qn

H̃µ̄(x; q, ζ). (17)

Proof. If we define

Ψλ/µ(q, t) := ψλ/µ(q, t)
c′µ(q, t)

c′λ(q, t)
,

10



then the Pieri formula for the modified integral form Jµ

(
x

1−t
; q, t

)
is written as follows

Jµ

(
x

1 − t
; q, t

)
g

′

r

(
x

1 − q

)
=

∑

λ

Ψλ/µ(q, t)Jλ

(
x

1 − t
; q, t

)
,

where the sum is over the partitions λ such that λ− µ is a horizontal k-strip.
Let a positive integer r be arbitrarily fixed, and ν̃ denote the partition ν ∪ (rl). Since we
have already shown that ψλ̃/µ̃(q, ζ) = ψλ/µ(q, ζ), it suffices to show that

c′µ̃(q, ζ)

c′
λ̃
(q, ζ)

=
c′µ(q, ζ)

c′λ(q, ζ)
.

We shall actually show that
c′µ̃(q, ζ)

c′µ(q, ζ)
=
c′
λ̃
(q, ζ)

c′λ(q, ζ)
.

It follows from the definition that

c′µ̃(q, t)

c′µ(q, t)
=

∏
s∈µ̃(1 − qaµ̃(s)+1tlµ̃(s))

∏
s∈µ(1 − qaµ̃(s)+1tlµ̃(s))

=

∏
s∈µ̃

s/∈(rl)

(1 − qaµ̃(s)+1tlµ̃(s))
∏

s∈µ(1 − qaµ̃(s)+1tlµ̃(s))

∏

s∈(rl)⊂µ̃

(1 − qaµ̃(s)+1tlµ̃(s)).

The Young diagram of the partition µ̃ is the disjoint union of the cells {s̃ ∈ µ̃|s ∈ µ} and (rl).
For each s ∈ µ, we have as seen in previous theorem that aµ̃(s̃) = aµ(s), and lµ̃(s̃) = lµ(s)
or lµ(s) + l. Hence at t = ζ , we have

c′µ(q, ζ)

c′µ̃(q, ζ)
=

∏

s∈(rl)⊂µ̃

(1 − qaµ̃(s)+1tlµ̃(s)) and (18)

c′λ(q, ζ)

c′
λ̃
(q, ζ)

=
∏

s∈(rl)⊂λ̃

(1 − qaλ̃(s)+1tlλ̃(s)). (19)

Although there is a difference between the positions where the block (rl) is inserted in
the Young diagram of µ and λ, (3.1) and (3.2) coincide at t = ζ , since aµ̃(s) = aλ̃(s) for each
s ∈ (rl). Thus we have

c′µ(q, ζ)

c′µ̃(q, ζ)
=
c′λ(q, ζ)

c′
λ̃
(q, ζ)

.

�

Let ν = (ν1, . . . , νp) be a partition. For some l ≥ 0, we denote by νl the partition where each
part of ν is repeated l times. We can give a more explicit expression for the factorisation
formula in the special case where µ = νl.

11



Corollary 5.2 Let ν be a partition and l a positive integer. We have the following special
cases for the factorisation formulas

Q
′

νl(X; q, ζ) = (−1)(l−1)|ν|pl ◦ hν(x) , (20)

H̃νl(X; q, ζ) =

l(ν)∏

j=1

νj∏

i=1

(qil − 1) pl ◦ hν

(
x

1 − q

)
. (21)

Example 5.2 For λ = (222111) and k = 3, we can compute the specialization

Q
′

222111(x; q, e
2iπ/3) = −s22221 − s321111 + s3222 + s33111 − s3321 + 3s333 + s411111

−2s432 + 2s441 − s51111 + 2s522 − 2s54 + s6111 − 2s621 + 2s63

+s711 − s81 + s9 + s222111

= p3 ◦ h21(x).

6 A generalization of the plethystic formula

In this section, using the factorisation formula given in Theorem 5.1, we shall give a gener-
alization of the plethystic formula obtained by specializing Macdonald polynomials at roots
of unity in Theorem 3.1. For λ a partition, let consider the following map which is the
plethystic substitution by the powersum pλ

Ψλ : ΛF −→ ΛF

f 7−→ pλ ◦ f .

Lemma 6.1 Let λ and µ be two partitions, the maps Ψ satisfy the multiplicative rule

Ψλ (f)Ψµ (f) = Ψλ∪µ (f) .

Proposition 6.1 Let d be an integer such that d|l and ζd be a primitive d-th root of unity,

Q
′

(rl)(x; q, ζd) = (−1)
rl(d−1)

d p
l/d
d ◦ hr(x) . (22)

Proof. Let d and l be two integers such that d divide l. Let µ = (rl) the rectangle partition
with parts of length r. Using the factorisation formula described in Theorem 5.1, we can
write

Q
′

(rl)(x; q, ζd) =
(
Q

′

(rd)(x; q, ζd)
)l/d

. (23)

With the specialization formula at root of unity written in Theorem 3.1, we have

12



(
Q

′

(rd)(x; q, ζd)
)l/d

=
(
(−1)(d−1)rpd ◦ hr(x)

)l/d

= (−1)
lr(d−1)

d (pd ◦ hr(x))
l/d

Using the Lemma 6.1, we obtain

(
Q

′

(rd)(x; q, ζd)
)l/d

= (−1)
lr(d−1)

d p
l/d
d ◦ hr(x) .

Finally, we obtain by the factorization formula of Theorem 5.1

Q
′

(rl)(x; q, ζd) = (−1)
lr(d−1)

d p
l/d
d ◦ hr(x) .

�

Using the same proof, we can write a similar specialization for integral forms of the Mac-
donald Polynomials.

Corollary 6.1 With the same notations as in Proposition 6.1, the modified Macdonald poly-
nomials H̃λ(x; q, t) satisfy the same specialization

H̃(rl)(x; q, ζd) =
r∏

i=1

(qil − 1)p
l/d
d ◦ hr

(
x

1 − q

)
. (24)

Example 6.2 For λ = (222222), i.e r = 2 and l = 6 and d = 3, we can compute

Q
′

(222222)(x; q, e
2iπ/3) = −s322221 + s33222 + 2s333111 − 2s33321 + 2s3333 + s422211 − 2s432111

+s43221 + 2s441111 − s4422 + 4s444 + s522111 − 2s52221 + s53211 − 2s54111

+s5421 − 4s543 + 3s552 − s621111 + 2s6222 + s63111 − 2s6321 + 4s633

+s6411 − 3s651 + 3s66 + s711111 − 2s732 + 2s741 − s81111 + 2s822 − 2s84

+s9111 − 2s921 + 2s93 + s1011 − s111 + s12 + s222222

= p2
3 ◦ h2(x) = p(33) ◦ h2(x).

7 Macdonald polynomials at roots of unity and cyclic

characters of the symmetric group

In the following, we will denote the symmetric group of order k by Sk. Let Γ ⊂ Sk be
a cyclic subgroup generated by an element of order r. As Γ is a commutative subgroup
its irreducible representations are one-dimensional vector spaces. The corresponding maps
(γj)j=0...r−1 can be defined by

γj : Γ −→ GL(C) ≃ C∗

τ 7−→ ζj
r ,
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where ζr is a r-th primitive root of unity (See [14] for more details). In [3], Foulkes consid-
ered the Frobenius characteristic of the representations of Sk induced by these irreducible
representations and obtained an explicit formula that we will give in the next proposition.
Let k and n be two positive integers such that u = (k, d) (the greater common divisor be-
tween k and n) and d = u ·m. Let us define the Ramanujan (or Von Sterneck) sum c(k, d)
by

c(k, d) =
µ(m)φ(d)

φ(m)

where µ is the Moebius function and φ the Euler totient. The quantity c(k, d) corresponds
to the sum of the k-th powers of the primitive d-th roots of unity (the previous expression
was given first by Hölder in [6]).

Proposition 7.1 Let τ be a cyclic permutation of length k and Γ the maximal cyclic sub-
group of Sk generated by τ . Let j be a positive integer less than k. The Frobenius character-
istic of the representation of Sk induced by the irreducible representation of Γ, γj : τ 7−→ ζj

r ,
is given by

l
(j)
k (x) =

1

k

∑

d|k

c(j, d) p
k/d
d (x). (25)

Example 7.1 For S6 and k = 2, the cyclic character l
(2)
6 expanded on powersums and Schur

basis is

l
(2)
6 =

1

6
(p111111 + p222 − p33 − p6)

= s51 + 2s42 + s411 + 3s321 + 2s3111 + s222 + s2211 + s21111.

Theorem 7.2 Let r and l be two positive integers. The specialization of the Macdonald
polynomials indexed by the rectangle partition (rl) at a primitive l-th root of unity is equivalent
to

Q
′

(rl)(x; q, t) mod Φl(t) =
l−1∑

j=0

tj (l
(j)
l ◦ hr)(x) . (26)

Proof. We will first give a generalization of the Moebius inversion formula due to E. Cohen
(see [1] for the original work and [2] for a simpler proof). Let

P (q) =

n−1∑

k=0

akq
k ,

be a polynomial of degree less than n − 1 with coefficients ak in Z. P is said to be even
modulo n if

(i, n) = (j, n) =⇒ ai = aj .

14



Lemma 7.3 The polynomial P is even modulo n if and only if for every divisor d of n, the
residue of P modulo the d-th cyclotomic polynomial Φd is a constant rd in Z. In this case,
one has

ak =
1

n

∑

d|n

c(k, d) rd and rd =
∑

t|n

c(n/d, t) an/t.

Let d be an integer such that d|l. By expanding Q
′

(rl)(x; q, t) (and more generally Q
′

λ(x; q, t))

on the Schur basis, we can define a kind of (q, t)-Kostka polynomials K
′

µ,(rl)(q, t) by

Q
′

(rl)(x; q, t) =
∑

µ

K
′

µ,(rl)(q, t) sµ(x).

Let µ be a partition and d an integer such that d|l. The polynomial P q
µ(t) =

∑l−1
j=0 aj(q)t

j is

the residue modulo 1 − tl of the (q, t)-Kostka polynomial K
′

µ,(rl)(q, t), if and only if, for all
ζd primitive d-th root of unity,

P q
µ(ζd) = K

′

µ,(rl)(q, ζd).

Using Theorem 5.1 , one has

P q
µ(ζd) = (−1)(d−1)rl/d 〈 p

l/d
d ◦ hr(x) , sµ(x) 〉.

Consequently P (ζd) is an integer since the entries of the transition matrix between the
powersums and the Schur functions are all integers. Using the Lemma 7.3, we obtain

aj(q) =
1

l

∑

d|l

c(j, d) 〈 p
l/d
d ◦ hr(x) , sµ(x) 〉

= 〈 l
(j)
l ◦ hr(x) , sµ(x) 〉.

�

Example 7.4 Let define g as the right hand side of 26 for r = 2 and l = 3

g(t) = l
(0)
3 ◦ h2 + t l

(1)
3 ◦ h2 + t2 l

(2)
3 ◦ h2

= s411 + (t2 + t+ 1)s42 + t(t+ 1)s51 + t(t+ 1)s321 + s222 + s33 + s6 .

The specialization of g(t) and Q
′

222(X; q, t) at t the 3-th primitive roots of unity satisfy

g(j) = Q
′

222(X; q, j) = s411 − s51 − s321 + s222 + s33 + s6 ,

g(j2) = Q
′

222(X; q, j2) = s411 − s51 − s321 + s222 + s33 + s6 .

Corollary 7.1 For two positive integers r and l, the same residue formulas occurs for the
modified Macdonald polynomials H̃(rl)(x; q, t)

H̃(rl)(x; q, t) mod Φl(t) ≡

r∏

i=1

(qil − 1)

l−1∑

j=0

tj (l
(j)
l ◦ hr)

(
x

1 − q

)
. (27)
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8 Congruences for (q, t)-Kostka polynomials

For a given partition partition λ, let denote by s̃
(q)
λ the symmetic function defined by

s̃
(q)
λ (x) = sλ

(
x

1 − q

)
.

Let ⋆ be the internal product on ΛF defined by (see [11], Chap. I, formula (7.12))

pλ ⋆ pµ = δλ,µzλpλ.

Proposition 8.1 Let r and l be two positive integers and µ a partition of weight nl. Let
denote by Φl(t) the cyclotomic polynomial of order l. The (q, t)-Kostka polynomial K̃(rl),µ(q, t)
satisfy the following congruence modulo Φl(t)

K̃µ,(rl)(q, t) ≡
r∏

i=1

(qil − 1) s̃ (q)
µ (1, t, t2, . . . , tl−1) mod Φl(t). (28)

More generally, for all partitions ν = (ν1, . . . , νp) of weight r ,

K̃µ,νl(q, t) ≡

l(ν)∏

j=1

νj∏

i=1

(qil − 1) h̃lν ⋆ sµ

(q)

(1, t, t2, . . . , tl−1) mod Φl(t) , (29)

where lν = (lν1, . . . , lνp).

Proof. Let ζ be a primitive root of unity and Zl = {1, ζ, . . . , ζ l−1} be the alphabet of the
l-roots of unity. Using λ-ring notations (see [7] for more details) and Theorem 3.1, we have
for all positive integer r

H̃rl(X; q, ζ) =
r∏

i=1

(qil − 1)(pl ◦ hr)

(
x

1 − q

)
= hlr

(
Z.x

1 − q

)
.

Consequently, for all partitions µ of size rl, we can write

K̃µ,rl(q, ζ) =
r∏

i=1

(qil − 1) s̃ (q)
µ (Zl) ,

which is equivalent to the first statement of the theorem. The second statement follows from
the following identity

(pl ◦ hν)

(
x

1 − q

)
= (hlν ⋆ hlr)

(
Zlx

1 − q

)
.

�

Example 8.1 Let consider r = 2 and l = 3. For µ = (222), we have

K̃222,222(q, j) = K̃222,222(q, j
2) = 1 + q3 and (1 − q6)(1 − q3)s̃

(q)
222 (1, j, j2) = 1 + q3 .
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