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A CLT FOR INFORMATION-THEORETIC STATISTICS OF GRAM

RANDOM MATRICES WITH A GIVEN VARIANCE PROFILE

W. HACHEM, P. LOUBATON AND J. NAJIM

Abstract. Consider a N × n random matrix Yn = (Y n
ij ) where the entries are given by

Y n
ij =

σij(n)√
n

Xn
ij ,

the Xn
ij being centered, independent and identically distributed random variables with

unit variance and (σij(n); 1 ≤ i ≤ N, 1 ≤ j ≤ n) being an array of numbers we shall refer
to as a variance profile. We study in this article the fluctuations of the random variable

log det (YnY ∗

n + ρIN )

where Y ∗ is the Hermitian adjoint of Y and ρ > 0 is an additional parameter. We prove
that when centered and properly rescaled, this random variable satisfies a Central Limit
Theorem (CLT) and has a Gaussian limit whose parameters are identified. A complete
description of the scaling parameter is given; in particular it is shown that an additional
term appears in this parameter in the case where the 4th moment of the Xij ’s differs

from the 4th moment of a Gaussian random variable. Such a CLT is of interest in the
field of wireless communications.

Key words and phrases: Random Matrix, empirical distribution of the eigenvalues, Stielt-
jes Transform.
AMS 2000 subject classification: Primary 15A52, Secondary 15A18, 60F15.

1. Introduction

The model and the statistics. Consider a N ×n random matrix Yn = (Y n
ij ) whose entries

are given by

Y n
ij =

σij(n)√
n

Xn
ij , (1.1)

where (σij(n), 1 ≤ i ≤ N, 1 ≤ j ≤ n) is a uniformly bounded sequence of real numbers,
and the random variables Xn

ij are complex, centered, independent and identically distributed

(i.i.d.) with unit variance and finite 8th moment. Consider the following linear statistics of
the eigenvalues:

In(ρ) =
1

N
log det (YnY ∗

n + ρIN ) =
1

N

N∑

i=1

log(λi + ρ)

where IN is the N × N identity matrix, ρ > 0 is a given parameter and the λi’s are the
eigenvalues of matrix YnY ∗

n . This functional known as the mutual information for multiple
antenna radio channels is very popular in wireless communication. Understanding its fluctu-
ations and in particular being able to approximate its standard deviation is of major interest
for various purposes such as for instance the computation of the so-called outage probability.

Date: June 1, 2007.
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Presentation of the results. The purpose of this article is to establish a Central Limit
Theorem (CLT) for In(ρ) whenever n → ∞ and N

n → c ∈ (0,∞).

The centering procedure. It has been proved in Hachem et al. [17] that there exists a sequence
of deterministic probability measures (πn) such that the mathematical expectation EIn(ρ)
satisfies:

EIn(ρ) −
∫

log(λ + ρ)πn( dλ) −−−−→
n→∞

0 .

Moreover,
∫

log(λ + ρ)πn( dλ) has a closed form formula (see Section 2.3) and is easier to
compute1 than EIn (whose evaluation would rely on massive Monte-Carlo simulations). For
these reasons, we study in this article the fluctuations of

1

N
log det(YnY ∗

n + ρIN ) −
∫

log(ρ + t)πn( dt) ,

and prove that this quantity properly rescaled converges in distribution toward a Gaussian
random variable. Although phrased differently, such a centering procedure relying on a
deterministic equivalent is used in [1] and [3].

In order to prove the CLT, we study separately the quantity N(In(ρ) − EIn(ρ)) from
which the fluctuations arise and the quantity N(EIn(ρ) −

∫
log(λ + ρ)πn( dλ)) which yields

a bias.

The fluctuations. We shall prove in this paper that the variance Θ2
n of N(In(ρ) − EIn(ρ))

takes a remarkably simple closed-form expression. In fact, there exists a n×n deterministic
matrix An (described in Theorem 3.1) whose entries depend on the variance profile (σij)
such that the variance takes the form:

Θ2
n = log det(In − An) + κTrAn,

where κ = E|X11|4 − 2 in the fourth cumulant of the complex variable X11 and the CLT
expresses as:

N

Θn
(In − EIn)

L−−−−→
n→∞

N (0, 1).

In the case where κ = 0 (which happens if Xij is a complex gaussian random variable for
instance), the variance has the log-form Θ2

n = log det(In − An). This has already been
noticed for different models in the engineering literature by Moustakas et al. [22], Taricco
[29]. See also Hachem et al. in [14].

The bias. It is proved in this paper that there exists a deterministic quantity Bn(ρ) (described
in Theorem 3.3) such that:

N

(
EIn(ρ) −

∫
log(λ + ρ)πn( dλ)

)
− Bn(ρ) −−−−→

n→∞
0 .

If κ = 0, then Bn(ρ) = 0 and there is no bias in the CLT.

1especially in the important case where the variance profile is separable, i.e., where σ2

ij(n) is written as

σ2

ij(n) = di(n)d̃j(n).
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About the literature. Central limit theorems have been widely studied for various models
of random matrices and for various classes of linear statistics of the eigenvalues in the physics,
engineering and mathematical literature.

In the mathematical literature, CLTs for Wigner matrices can be traced back to Girko
[9] (see also [12]). Results for this class of matrices have also been obtained by Khorunzhy
et al. [21], Johansson [19], Sinai and Sochnikov [26], Soshnikov [28], Cabanal-Duvillard [7].
For band matrices, let us mention the paper by Khorunzhy et al. [21], Boutet de Monvel
and Khorunzhy [5], Guionnet [13], Anderson and Zeitouni [1]. The case of Gram matrices
has been studied in Jonsson [20] and Bai and Silverstein [3]. For a more detailed overview,
the reader is referred to the introduction in [1]. In the physics literature, so-called replica
methods as well as saddle-point methods have long been a popular tool to compute the
moments of the limiting distributions related to the fluctuations of the statistics of the
eigenvalues.

Previous results and methods have recently been exploited in the engineering literature,
with the growing interest in random matrix models for wireless communications (see the
seminal paper by Telatar [30] and the subsequent papers of Tse and co-workers [31], [32];
see also the monograph by Tulino and Verdu [33] and the references therein). One main
interest lies in the study of the convergence and the fluctuations of the mutual information
1
N log det (YnY ∗

n + ρIN ) for various models of matrices Yn. General convergence results have
been established by the authors in [17, 15, 16] while fluctuation results based on Bai and
Silverstein [3] have been developed in Debbah and Müller [8] and Tulino and Verdu [34].
Other fluctuation results either based on the replica method or on saddle-point analysis
have been developed by Moustakas, Sengupta and coauthors [22, 23], Taricco [29]. In a
different fashion and extensively based on the Gaussianity of the entries, a CLT has been
proved in Hachem et al. [14].

Comparison with existing work. There are many overlaps between this work and other works
in the literature, in particular with the paper by Bai and Silverstein [3] and the paper by
Anderson and Zeitouni [1] (although this last paper is primarily devoted to band matrix
models, i.e. symmetric matrices with a symmetric variance profile). The computation of the
variance and the obtention of a closed-form formula significantly extend the results obtained
in [14].

In this paper, we deal with complex variables which are more relevant for wireless com-
munication applications. The case of real random variables would have led to very similar
computation, the cumulant κ = E|X |4 − 2 being replaced by κ̃ = EX4 − 3. Due to the
complex nature of the variables, the CLT in [1] does not apply directly. Moreover, we sub-
stantially relax the moment assumptions concerning the entries with respect to [1] where the
existence of moments of all order is required. In fact, we shall only assume the finiteness of

the 8th moment. Bai and Silverstein [3] consider the model T
1
2

n XnX∗
nT

1
2

n where the entries
of Xn are i.i.d. and have gaussian fourth moment. This assumption can be skipped in our
framework, where a good understanding of the behaviour of the diagonal individual entries
of the resolvent (−zIn + YnY ∗

n )−1 enables us to deal with non-gaussian entries.

On the other hand, it must be noticed that we establish the CLT for the single functional
log det(YnY ∗

n +ρIN ) and do not provide results for a general class of functionals as in [1] and
[3]. We do believe however that all the computations performed in this article are a good
starting point to address this issue.
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Outline of the article.

Non-asymptotic vs asymptotic results. As one may check in Theorems 3.1, 3.2 and 3.3,
we have deliberately chosen to provide non-asymptotic (i.e. depending on n) determinis-
tic formulas for the variance and the bias that appear in the fluctuations of In(ρ). This
approach has at least two virtues: Non-asymptotic formulas exist for very general vari-
ance profiles (σij(n)) and provide a natural discretization which can easily be implemented.
In the case where the variance profile is the sampling of some continuous function , i.e.
σij(n) = σ(i/N, j/n) (we shall refer to this as the existence of a limiting variance profile),
the deterministic formulas converge as n goes to infinity (see Section 4) and one has to
consider Fredholm determinants in order to express the results.

The general approach. The approach developed in this article is conceptually simple. The
quantity In(ρ)−EIn(ρ) is decomposed into a sum of martingale differences; we then system-
atically approximate random quantities such as quadratic forms xT Ax where x is some ran-
dom vector and A is some deterministic matrix, by their deterministic counterparts 1

nTraceA

(in the case where the entries of x are i.i.d. with variance 1
n ) as the size of the vectors and the

matrices goes to infinity. A careful study of the deterministic quantities that arise, mainly
based on (deterministic) matrix analysis is carried out and yields the closed-form variance
formula. The martingale method which is used to establish the fluctuations of In(ρ) can
be traced back to Girko’s REFORM (REsolvent, FORmula and Martingale) method (see
[9, 12]) and is close to the one developed in [3].

Contents. In Section 2, we introduce the main notations, we provide the main assumptions
and we recall all the first order results (deterministic approximation of EIn(ρ)) needed in
the expression of the CLT. In Section 3, we state the main results of the paper: Definition of
the variance Θ2

n (Theorem 3.1), asymptotic behaviour (fluctuations) of N (In(ρ) − EIn(ρ))
(Theorem 3.2), asymptotic behaviour (bias) of N

(
EIn(ρ) −

∫
log(ρ + t)πn(dt)

)
(Theorem

3.3). Section 5 is devoted to the proof of Theorem 3.1, Section 6, to the proof of Theorem
3.2 and Section 7, to the proof of Theorem 3.3.

Acknowlegment. This work was partially supported by the Fonds National de la Science
(France) via the ACI program “Nouvelles Interfaces des Mathématiques”, project MALCOM
n◦ 205.

2. Notations, assumptions and first order results

2.1. Notations and assumptions. Let N = N(n) be a sequence of integers such that

lim
n→∞

N(n)

n
= c ∈ (0,∞) .

In the sequel, we shall consider a N × n random matrix Yn with individual entries:

Y n
ij =

σij(n)√
n

Xn
ij ,

where Xn
ij are complex centered i.i.d random variables with unit variance and (σij(n); 1 ≤

i ≤ N, 1 ≤ j ≤ n) is a triangular array of real numbers. Denote by var(Z) the variance of
the random variable Z. Since var(Y n

ij ) = σ2
ij(n)/n, the family (σij(n)) will be referred to as
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a variance profile.

The main assumptions.

Assumption A-1. The random variables (Xn
ij ; 1 ≤ i ≤ N, 1 ≤ j ≤ n , n ≥ 1) are complex,

independent and identically distributed. They satisfy

EXn
ij = E(Xn

ij)
2 = 0, E|Xn

ij |2 = 1 and E|Xn
ij |8 < ∞ .

Assumption A-2. There exists a finite positive real number σmax such that the family of
real numbers (σij(n), 1 ≤ i ≤ N, 1 ≤ j ≤ n, n ≥ 1) satisfies:

sup
n≥1

max
1≤i≤N

1≤j≤n

|σij(n)| ≤ σmax .

Assumption A-3. There exists a real number σ2
min > 0 such that

lim inf
n≥1

min
1≤j≤n

1

n

N∑

i=1

σ2
ij(n) ≥ σ2

min .

Sometimes we shall assume that the variance profile is obtained by sampling a function
on the unit square of R2. This helps to get limiting expressions and limiting behaviours (cf.
Theorem 2.5):

Assumption A-4. There exists a continuous function σ2 : [0, 1]× [0, 1] → (0,∞) such that
σ2

ij(n) = σ2(i/N, j/n).

Remarks related to the assumptions.

(1) Using truncation arguments à la Bai and Silverstein [2, 24, 25], one may lower the
moment assumption related to the Xij ’s in A-1.

(2) Obviously, assumption A-3 holds if σ2
ij is uniformly lower bounded by some nonneg-

ative quantity.
(3) Obviously, assumption A-4 implies both A-2 and A-3. When A-4 holds, we shall

say that there exists a limiting variance profile.
(4) If necessary, assumption A-3 can be slightly improved by stating:

max



lim inf
n≥1

min
1≤j≤n

1

n

N∑

i=1

σ2
ij(n) , lim inf

n≥1
min

1≤i≤N

1

n

n∑

j=1

σ2
ij(n)



 > 0 .

In the case where the first liminf is zero, one may notice that log det(YnY ∗
n +ρIN ) =

log det(Y ∗
n Yn + ρIn) + (n − N) log ρ and consider Y ∗

n Yn instead.

Notations. The indicator function of the set A will be denoted by 1A(x), its cardinality by
#A. As usual, R+ = {x ∈ R : x ≥ 0} and C+ = {z ∈ C : Im(z) > 0}.

We denote by
P−→ the convergence in probability of random variables and by

D−→ the
convergence in distribution of probability measures.

Denote by diag(ai; 1 ≤ i ≤ k) the k × k diagonal matrix whose diagonal entries are
the ai’s. Element (i, j) of matrix M will be either denoted mij or [M ]ij depending on the
notational context. Denote by MT the matrix transpose of M , by M∗ its Hermitian adjoint,
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by Tr(M) its trace and det(M) its determinant (if M is square), and by FM M∗

, the empirical
distribution function of the eigenvalues of M M∗, i.e.

FM M∗

(x) =
1

N
#{i : λi ≤ x} ,

where M M∗ has dimensions N × N and the λi’s are the eigenvalues of M M∗.

When dealing with vectors, ‖ · ‖ will refer to the Euclidean norm, and ‖ · ‖∞, to the
max (or ℓ∞) norm. In the case of matrices, ‖ · ‖ will refer to the spectral norm and
|||·|||∞ to the maximum row sum norm (referred to as the max-row norm), i.e., |||M |||∞ =

max1≤i≤N

∑N
j=1 |[M ]ij | when M is a N × N matrix. We shall denote by r(M) the spectral

radius of matrix M .

When no confusion can occur, we shall often drop subscripts and superscripts n for read-
ability.

2.2. Stieltjes Transforms and Resolvents. In this paper, Stieltjes transforms of proba-
bility measures play a fundamental role. Let ν be a bounded non-negative measure over R.
Its Stieltjes transform f is defined as:

f(z) =

∫

R

ν(dλ)

λ − z
, z ∈ C \ supp(ν) ,

where supp(ν) is the support of the measure ν. We shall denote by S(R+) the set of Stieltjes
transforms of probability measures with support in R+.

We list in the following proposition the main properties of the Stieltjes transforms that
will be needed in the paper:

Proposition 2.1. The following properties hold true.

(1) Let f be the Stieltjes transform of a probability measure ν on R, then:
- The function f is analytic over C \ supp(ν).
- If f(z) ∈ S(R+), then |f(z)| ≤ (d(z, R+))−1 where d(z, R+) denotes the dis-

tance from z to R+.

(2) Let Pn and P be probability measures over R and denote by fn and f their Stieltjes
transforms. Then

(
∀z ∈ C

+, fn(z) −−−−→
n→∞

f(z)
)

⇒ Pn
D−−−−→

n→∞
P.

There are very close ties between the Stieltjes transform of the empirical distribution of
the eigenvalues of a matrix and the resolvent of this matrix. Let M be a N ×n matrix. The
resolvent of MM∗ is defined as:

Q(z) = (MM∗ − z IN )−1 = (qij(z))1≤i,j,≤N , z ∈ C − R
+ .

The following properties are straightforward.

Proposition 2.2. Let Q(z) be the resolvent of MM∗, then:

(1) The function hn(z) = 1
N Tr Q(z) is the Stieltjes transform of the empirical distri-

bution of the eigenvalues of MM∗. Since the eigenvalues of this matrix are non-
negative, hn(z) ∈ S(R+).
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(2) For every z ∈ C − R+, ‖Q(z)‖ ≤ (d(z, R+))
−1

. In particular, if ρ > 0, ‖Q(−ρ)‖ ≤
ρ−1.

2.3. First Order Results: A primer. Recall that In(ρ) = 1
N log det(YnY ∗

n + ρI) and let
ρ > 0. We remind below some results related to the asymptotic behaviour of EIn(ρ). As

In(ρ) =
1

N

N∑

i=1

log (λi + ρ) =

∫ ∞

0

log(λ + ρ) dFYnY ∗
n (λ) ,

where the λi’s are the eigenvalues of Y Y ∗, the approximation of EIn(ρ) is closely related to

the “first order” approximation of FYnY ∗
n as n → ∞ and N/n → c > 0.

The following theorem summarizes the first order results needed in the sequel. It is a
direct consequence of [17, Sections 2 and 4] (see also [11]):

Theorem 2.3 ([17], [11]). Consider the family of random matrices (YnY ∗
n ) and assume that

A-1 and A-2 hold. Then, the following hold true:

(1) The system of N functional equations:

ti(z) =
1

−z + 1
n

∑n
j=1

σ2
ij(n)

1+ 1
n

∑
N
ℓ=1 σ2

ℓj
(n)tℓ(z)

(2.1)

admits a unique solution (t1(z), · · · , tN (z)) in S(R+)N . In particular, mn(z) =
1
N

∑N
i=1 ti(z) belongs to S(R+) and there exists a probability measure πn on R+ such

that:

mn(z) =

∫ ∞

0

πn(dλ)

λ − z
.

(2) For every continuous and bounded function g on R+,
∫

R+

g(λ) dFYnY ∗
n (λ) −

∫

R+

g(λ)πn(dλ) −−−−→
n→∞

0 a.e.

(3) The function Vn(ρ) =
∫

R+ log(λ + ρ)πn(dλ) is finite for every ρ > 0 and

EIn(ρ) − Vn(ρ) −−−−→
n→∞

0 where In(ρ) =
1

N
log det (YnY ∗

n + ρIN ) .

Moreover, Vn(ρ) admits the following closed form formula:

Vn(ρ) = − 1

N

N∑

i=1

log ti(−ρ) +
1

N

n∑

j=1

log

(
1 +

1

n

N∑

ℓ=1

σ2
ℓj(n)tℓ(−ρ)

)

− 1

Nn

∑

i=1:N,j=1:n

σ2
ij(n)ti(−ρ)

1 + 1
n

∑N
ℓ=1 σ2

ℓj(n)tℓ(−ρ)
.

where the ti’s are defined above.

Theorem 2.3 partly follows from the following lemma which will be often invoked later
on and whose statement emphasizes the symmetry between the study of YnY ∗

n and Y ∗
n Yn.

Denote by Qn(z) and Q̃n(z) the resolvents of YnY ∗
n and Y ∗

n Yn, i.e.

Qn(z) = (YnY ∗
n − zIN)−1 = (qij(z))1≤i,j≤N , z ∈ C − R

+

Q̃n(z) = (Y ∗
n Yn − zIn)−1 = (q̃ij(z))1≤i,j≤n , z ∈ C − R

+ .
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Lemma 2.4. Consider the family of random matrices (YnY ∗
n ) and assume that A-1 and

A-2 hold. Consider the following system of N + n equations:

{
ti,n(z) = −1

z(1+ 1
n

TrD̃i,nT̃n(z))
for 1 ≤ i ≤ N

t̃j,n(z) = −1

z(1+ 1
n

TrDj,nTn(z))
for 1 ≤ j ≤ n

where

Tn(z) = diag(ti,n(z), 1 ≤ i ≤ N), T̃n(z) = diag(t̃j,n(z), 1 ≤ j ≤ n) ,

Dj,n = diag(σ2
ij(n), 1 ≤ i ≤ N), D̃i,n = diag(σ2

ij(n), 1 ≤ j ≤ n) .

Then the following holds true:

(a) [17, Theorem 2.4] This system admits a unique solution

(t1,n, · · · , tN,n, t̃1,n, · · · t̃n,n) ∈ S(R+)N+n

(b) [17, Lemmas 6.1 and 6.6] For every sequence Un of N × N diagonal matrices and

every sequence Ũn of n×n diagonal matrices such as supn max
(
‖Un‖, ‖Ũn‖

)
< ∞ ,

the following limits hold true almost surely:

lim
n→∞,N/n→c

1

N
Tr (Un (Qn(z) − Tn(z))) = 0 ∀z ∈ C − R+,

lim
n→∞,N/n→c

1

n
Tr
(
Ũn

(
Q̃n(z) − T̃n(z)

))
= 0 ∀z ∈ C − R

+ .

In the case where there exists a limiting variance profile, the results can be expressed in
the following manner:

Theorem 2.5 ([6], [10], [16] ). Consider the family of random matrices (YnY ∗
n ) and assume

that A-1 and A-4 hold. Then:

(1) The functional equation

τ(u, z) =

(
−z +

∫ 1

0

σ2(u, v)

1 + c
∫ 1

0
σ2(x, v)τ(x, z) dx

dv

)−1

(2.2)

admits a unique solution among the class of functions Φ : [0, 1] × C \ R → C such
that u 7→ Φ(u, z) is continuous over [0, 1] and z 7→ Φ(u, z) belongs to S(R+).

(2) The function f(z) =
∫ 1

0
τ(u, z) du where τ(u, z) is defined above is the Stieltjes trans-

form of a probability measure P. Moreover, we have

FYnY ∗
n

D−−−−→
n→∞

P a.s.

Remark 2.1. If one is interested in the Stieltjes function related to the limit of FY ∗
n Yn , then

one must introduce the following function τ̃ , which is the counterpart of τ :

τ̃(v, z) =

(
−z + c

∫ 1

0

σ2(t, v)

1 +
∫ 1

0 σ2(t, s)τ̃ (s, z) ds
dt

)−1

.



CLT FOR CERTAIN STATISTICS OF GRAM RANDOM MATRICES 9

Functions τ and τ̃ are related via the following equations:

τ(u, z) =
−1

z
(
1 +

∫ 1

0 σ2(u, v)τ̃ (v, z) dv
) and τ̃ (v, z) =

−1

z
(
1 + c

∫ 1

0 σ2(t, v)τ(t, z) dt
) .

(2.3)

Remark 2.2. We briefly indicate here how Theorems 2.3 and 2.5 above can be deduced from
Lemma 2.4. As 1

N TrQn(z) is the Stieltjes transform of FYnY ∗
n , Theorem 2.4–(b) with Un = IN

yields 1
N TrQn(z) − 1

N TrTn(z) → 0 almost surely. When a limit variance profile exists as

described by A-4, one can easily show that 1
N TrTn(z) converges to the Stieltjes transform

f(z) given by Theorem 2.5 (Equation (2.2) is the “continuous equivalent” of Equations
(2.1)). Thanks to Proposition 2.1–(2), we then obtain the almost sure weak convergence of

FYnY ∗
n to F . In the case where A-4 is not satisfied, one can prove similarly that FYnY ∗

n is
approximated by πn as stated in Theorem 2.3-(2).

3. The Central Limit Theorem for In(ρ)

When given a variance profile, one can consider the ti’s defined in Theorem 2.3-(1). Recall
that

T (z) = diag(ti(z), 1 ≤ i ≤ N) and Dj = diag(σ2
ij , 1 ≤ i ≤ N) .

We shall first define in Theorem 3.1 a non-negative real number that will play the role of
the variance in the CLT. We then state the CLT in Theorem 3.2. Theorem 3.3 deals with
the bias term N(EI − V ).

Theorem 3.1 (Definition of the variance). Consider a variance profile (σij) which fulfills
assumptions A-2 and A-3 and the related ti’s defined in Theorem 2.3-(1). Let ρ > 0.

(1) Let An = (aℓ,m) be the matrix defined by:

aℓ,m =
1

n

1
nTrDℓDmT (−ρ)2
(
1 + 1

nTrDℓT (−ρ)
)2 , 1 ≤ ℓ, m ≤ n ,

then the quantity Vn = − log det(In − An) is well-defined.

(2) Denote by Wn = TrAn and let κ be a real number2 satisfying κ ≥ −1. The sequence
(Vn + κWn) satisfies

0 < lim inf
n

(Vn + κWn) ≤ lim sup
n

(Vn + κWn) < ∞

as n → ∞ and N/n → c > 0. We shall denote by:

Θ2
n

△
= − log det(I − An) + κTrAn .

Proof of Theorem 3.1 is postponed to Section 5.

In the sequel and for obvious reasons, we shall refer to matrix An as the variance matrix.
In order to study the CLT for N(In(ρ)− Vn(ρ)), we decompose it into a random term from
which the fluctuations arise:

N (In(ρ) − EIn(ρ)) = log det(YnY ∗
n + ρIN ) − E log det(YnY ∗

n + ρIN ) ,

2In the sequel, κ is defined as κ = E|X11|4 − 2.
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and into a deterministic one which yields to a bias in the CLT:

N (EIn(ρ) − Vn(ρ)) = E log det(YnY ∗
n + ρIN ) − N

∫
log(λ + ρ)πn( dλ) .

We can now state the CLT.

Theorem 3.2 (The CLT). Consider the family of random matrices (YnY ∗
n ) and assume

that A-1, A-2 and A-3 hold true. Let ρ > 0, let κ = E|X11|4 − 2, and let Θ2
n be given by

Theorem 3.1. Then

Θ−1
n

(
log det(YnY ∗

n + ρIN ) − E log det(YnY ∗
n + ρIN )

)
D−−−−−−−−→

n→∞, N
n
→c

N (0, 1) .

Proof of Theorem 3.2 is postponed to Section 6.

Remark 3.1. In the case where the entries Xij are complex Gaussian (i.e. with independent
normal real and imaginary parts, each of them centered with variance 2−1) then κ = 0 and
Θ2

n reduces to the term Vn.

The asymptotic bias is described in the following theorem:

Theorem 3.3 (The bias). Assume that the setting of Theorem 3.2 holds true. Then

(1) For every ω ∈ [ρ, +∞), the system of n linear equations with unknown parameters
(wℓ,n(ω); 1 ≤ ℓ ≤ n):

wℓ,n(ω) =
1

n

n∑

m=1

1
nTrDℓDmT (−ω)2

(1 + 1
nTrDℓT (−ω))2

wm,n(ω) + pℓ,n(ω), 1 ≤ ℓ ≤ n (3.1)

with

pℓ,n(ω) = κ ω2t̃ℓ(−ω)2

(
ω

n

N∑

i=1

(
σ2

iℓti(−ω)3

n
TrD̃2

i T̃ (−ω)2
)

− t̃ℓ(−ω)

n
TrD2

ℓT (−ω)2

)

(3.2)
admits a unique solution for n large enough. In particular if κ = 0, then pℓ,n = 0
and wℓ,n = 0.

(2) Let

βn(ω) =
1

n

n∑

ℓ=1

wℓ,n(ω) . (3.3)

Then Bn(ρ)
△
=
∫∞

ρ
βn(ω) dω is well-defined, moreover,

lim sup
n

∫ ∞

ρ

|βn(ω)| dω < ∞. (3.4)

Furthermore,

N (EIn(ρ) − Vn(ρ)) − Bn(ρ) −−−−−−−−→
n→∞, N

n
→c

0 . (3.5)

Proof of Theorem 3.3 is postponed to Section 7.
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4. The CLT for a limiting variance profile

In this section, we shall assume that Assumption A-4 holds, i.e. σ2
ij(n) = σ2(i/N, j/n)

for some continuous nonnegative function σ2(x, y). Recall the definitions (2.2) of function
τ and of the ti’s (defined in Theorem 2.3-(1)). In the sequel, we take ρ > 0, z = −ρ and

denote τ(t)
△
= τ(t,−ρ). We first gather convergence results relating the ti’s and τ .

Lemma 4.1. Consider a variance profile (σij) which fulfills assumption A-4. Recall the
definitions of the ti’s and τ . Let ρ > 0 and let z = −ρ be fixed. Then, the following
convergences hold true:

(1) 1
N

∑N
i=1 tiδ i

N

w−−−−→
n→∞

τ(u) du , where
w−→ stands for the weak convergence of measures.

(2) supi≤N |ti − τ(i/N)| −−−−→
n→∞

0 .

(3) 1
N

∑N
i=1 t2i δ i

N

w−−−−→
n→∞

τ2(u) du ,

Proof. The first item of the lemma follows from Lemma 2.4-(b) together with Theorem
2.3-(3) in [16].

In order to prove item (2), one has to compute

ti − τ(i/N) =


ρ +

1

n

n∑

j=1

σ2(i/N, j/n)

1 + 1
n

∑N
ℓ=1 σ2(ℓ/N, j/n)tℓ




−1

−
(

ρ +

∫ 1

0

σ2(u, v)

1 + c
∫ 1

0
σ2(x, v)τ(x) dx

dv

)−1

and use the convergence proved in the first part of the lemma. In order to prove the unifor-
mity over i ≤ N , one may recall that C[0, 1]2 = C[0, 1] ⊗ C[0, 1] which in particular implies

that ∀ε > 0, there exist gℓ and hℓ such that supx,y |σ2(x, y) −∑L
ℓ=1 gℓ(x)hℓ(y)| ≤ ε. Details

are left to the reader.

The convergence stated in item (3) is a direct consequence of item (2). �

4.1. A continuous kernel and its Fredholm determinant. Let K : [0, 1]2 → R be
some non-negative continuous function we shall refer to as a kernel. Consider the associated
operator (similarly denoted with a slight abuse of notations):

K : C[0, 1] → C[0, 1]

f 7→ Kf(x) =

∫

[0,1]

K(x, y)f(y) dy .

Then one can define (see for instance [27, Theorem 5.3.1]) the Fredholm determinant det(1+
λK), where 1 : f 7→ f is the identity operator, as

det(1 − λK) =

∞∑

k=0

(−1)kλk

k!

∫

[0,1]k
K

(
x1 · · · xk

x1 · · · xk

)
⊗k

i=1 d xi (4.1)

where

K

(
x1 · · · xk

y1 · · · yk

)
= det(K(xi, yj), 1 ≤ i, j ≤ n) ,
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for every λ ∈ C. One can define the trace of the iterated kernel as:

TrKk =

∫

[0,1]k
K(x1, x2) · · ·K(xk−1, xk)K(xk, x1)dx1 · · · dxk

In the sequel, we shall focus on the following kernel:

K∞(x, y) =
c
∫
[0,1]

σ2(u, x)σ2(u, y)τ2(u) du
(
1 + c

∫
[0,1] σ

2(u, x)τ(u) du
)2 . (4.2)

Theorem 4.2 (The variance). Assume that assumptions A-1 and A-4 hold. Let ρ > 0 and
recall the definition of matrix An:

aℓ,m =
1

n

1
n

∑N
i=1 σ2

(
i
N , ℓ

n

)
σ2
(

i
N , m

n

)
t2i(

1 + 1
n

∑N
i=1 σ2

(
i
N , ℓ

n

)
ti

)2 , 1 ≤ ℓ, m ≤ n .

Then:

(1) TrAn −−−−→
n→∞

TrK∞ .

(2) det(In − An) −−−−→
n→∞

det(1 − K∞) and det(1 − K∞) 6= 0.

(3) Let κ = E|X11|4 − 2, then

0 < − log det(1 − K∞) + κTrK∞ < ∞ .

Proof. The convergence of TrAn toward TrK∞ follows from Lemma 4.1-(1),(3). Details of
the proof are left to the reader.

Let us introduce the following kernel:

Kn(x, y) =
1
n

∑N
i=1 σ2( i

N , x)σ2( i
N , y)t2i(

1 + 1
n

∑N
i=1 σ2( i

N , x)ti

)2 .

One may notice in particular that aℓ,m = 1
nKn( ℓ

n , m
n ). Denote by ‖ ·‖∞ the supremum norm

for a function over [0, 1]2 and by σ2
max = ‖σ2‖∞, then:

‖Kn‖∞ ≤ N

n

σ4
max

ρ2
and ‖K∞‖∞ ≤ c

σ4
max

ρ2
. (4.3)

The following facts (whose proof is omitted) can be established:

(1) The family (Kn)n≥1 is uniformly equicontinuous,
(2) For every (x, y), Kn(x, y) → K∞(x, y) as n → ∞.

In particular, Ascoli’s theorem implies the uniform convergence of Kn toward K∞. It is now
a matter of routine to extend these results and to get the following convergence:

Kn

(
x1 · · · xk

y1 · · · yk

)
−−−−→
n→∞

K∞

(
x1 · · · xk

y1 · · · yk

)
(4.4)
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uniformly over [0, 1]2k. Using the uniform convergence (4.4) and a dominated convergence
argument, we obtain:

1

nk

∑

1≤i1,··· ,ik≤n

Kn

(
i1/n · · · ik/n
i1/n · · · ik/n

)
−−−−→
n→∞

∫

[0,1]k
K∞

(
x1 · · · xk

x1 · · · xk

)
⊗k

i=1 d xi .

Now, writing the determinant det(In +λAn) explicitely and expanding it as a polynomial in
λ, we obtain:

det(In − λAn) =

n∑

k=0

(−1)kλk

k!



 1

nk

∑

1≤i1,··· ,ik≤n

Kn

(
i1/n · · · ik/n
i1/n · · · ik/n

)

 .

Applying Hadamard’s inequality ([27, Theorem 5.2.1]) to the determinants Kn(·) and K∞(·)
yields:

1

nk

∑

1≤i1,··· ,ik≤n

Kn

(
i1/n · · · ik/n
i1/n · · · ik/n

)
≤ k

k
2 ‖Kn‖k

∞
(a)

≤ k
k
2 Mk ,

where (a) follows from (4.3). Similarly,

∫

[0,1]k
K∞

(
x1 · · · xk

x1 · · · xk

)
⊗k

i=1 d xi ≤ k
k
2 Mk .

Since the series
∑

k
Mkk

k
2

k! |λ|k converges, a dominated convergence argument yields the con-
vergence

det(In + λAn) −−−−→
n→∞

det(1 + λK∞) ,

and item (2) of the theorem is proved. Item (3) follows from Theorem 3.1-(2) and the proof
of the theorem is completed.

�

4.2. The CLT: Fluctuations and bias.

Corollary 4.3 (Fluctuations). Assume that (A-1) and (A-4) hold. Denote by

Θ2
∞ = − log det(1 − K∞) + κTrK∞ ,

then

N

Θ∞
(In(ρ) − EIn(ρ))

= Θ−1
∞ (log det (YnY ∗

n + ρIN ) − E log det (YnY ∗
n + ρIN ))

L−−−−→
n→∞

N (0, 1) .

Proof. follows easily from Theorem 3.2 and Theorem 4.2. �

Recall the definition of τ̃ (cf. Remark 2.1).
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Theorem 4.4 (The bias). Assume that the setting of Corollary 4.3 holds true. Let ω ∈
[ρ,∞) and denote by p : [0, 1] → R the quantity:

p(x, ω) = κω2τ̃2(x,−ω)

×
{

ωc

∫ 1

0

σ2(u, x)τ3(u)

(∫ 1

0

σ2(s, u)τ̃2(s) ds

)
du

− τ̃ (x)c

∫ 1

0

σ2(u, x)τ2(u) du
}

.

The following functional equation admits a unique solution:

w(x, ω) =

∫ 1

0

c
∫ 1

0 σ2(u, x)σ2(u, y)τ2(u) du
(
1 + c

∫ 1

0
σ2(u, x)τ(u) du

)2 w(y, ω) dy + p(x, ω) .

Let β∞(ω) =
∫ 1

0 w(x, ω) dx . Then
∫∞

ρ |β∞(ω)| dω < ∞. Moreover,

N (EIn(ρ) − Vn(ρ)) −−−−−−−−→
n→∞, N

n
→c

B∞(ρ)
△
=

∫ ∞

ρ

β∞(ω)dω . (4.5)

Proof of Theorem 4.4, although technical, follows closely the classical Fredholm theory as
presented for instance in [27, Chapter 5]. We sketch it below.

Sketch of proof. The existence and unicity of the functional equation follows from the fact
that the Fredholm determinant det(1 − K∞) differs from zero. In order to prove the con-
vergence (4.5), one may prove the convergence

∫∞
ρ βn →

∫∞
ρ β∞ (where βn is defined in

Theorem 3.3) by using an explicit representation for β∞ relying on the explicit representa-
tion of the solution w via the resolvent kernel associated to K∞ (see for instance [27, Section
5.4]) and then approximate the resolvent kernel as done in the proof of Theorem 4.2. �

4.3. The case of a separable variance profile. We now state a consequence of Corollary
4.3 in the case where the variance profile is separable. Recall the definitions of τ and τ̃ given
in (2.3).

Corollary 4.5 (Separable variance profile). Assume that A-1 and A-4 hold. Assume more-
over that ρ > 0 and that σ2 is separable, i.e. that

σ2(x, y) = d(x)d̃(y) ,

where both d : [0, 1] → (0,∞) and d̃ : [0, 1] → (0,∞) are continuous functions. Denote by

γ = c

∫ 1

0

d2(t)τ2(t) dt and γ̃ =

∫ 1

0

d̃2(t)τ̃2(t) dt .

Then
Θ2

∞ = − log
(
1 − ρ2γγ̃

)
+ κρ2γγ̃ . (4.6)

Remark 4.1. In the case where the random variables Xij are standard complex circular
gaussian (i.e. Xij = Uij + iVij with Uij and Vij independent real centered gaussian random
variables with variance 2−1) and where the variance profile is separable, then

N(In(ρ) − Vn(ρ))
L−−−−→

n→∞
N
(
0,− log

(
1 − ρ2γγ̃

))
.

This result is in accordance with those in [22] and in [14].
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Proof. Recall the definitions of τ and τ̃ given in (2.3). In the case where the variance profile
is separable, the kernel K∞ writes:

K∞(x, y) =
cd̃(x)d̃(y)

∫
[0,1] d

2(u)τ2(u) du
(
1 + cd̃(x)

∫
[0,1] d(u)τ(u) du

)2 = ρ2γd̃(x)d̃(y)τ̃2(x) .

In particular, one can readily prove that TrK∞ = ρ2γγ̃. Since the kernel K∞(x, y) is itself
a product of a function depending on x times a function depending on y, the determinant

K∞
(

x1 · · · xk
y1 · · · yk

)
is equal to zero for k ≥ 2 and the Fredholm determinant writes det(1−

K∞) = 1 −
∫
[0,1]

K∞(x, x)dx = 1 − ρ2γγ̃ . This yields

− log det(1 − A∞) + κTrK∞ = − log(1 − ρ2γγ̃) + κρ2γγ̃ ,

which ends the proof. �

5. Proof of Theorem 3.1

Recall the definition of the n × n variance matrix An:

aℓ,m =
1

n2

TrDℓDmT (−ρ)2
(
1 + 1

nTrDℓT (−ρ)
)2 , 1 ≤ ℓ, m ≤ n.

In the course of the proof of the CLT (Theorem 3.2), the quantity that will naturally pop
up as a variance will turn out to be:

Θ̃2
n = Ṽn + κWn (5.1)

(recall that Wn = TrAn) where Ṽn is introduced in the following lemma:

Lemma 5.1. Consider a variance profile (σij) which fulfills assumptions A-2 and A-3 and
the related ti’s defined in Theorem 2.3-(1). Let ρ > 0 and consider the matrix An as defined
above.

(1) For 1 ≤ j ≤ n, the system of (n − j + 1) linear equations with unknown parameters

(y
(j)
ℓ,n, j ≤ ℓ ≤ n):

y
(j)
ℓ,n =

n∑

m=j+1

aℓ,m y(j)
m,n + aℓ,j (5.2)

admits a unique solution for n large enough.

Denote by Ṽn the sum of the first components of vectors (y
(j)
ℓ,n, j ≤ ℓ ≤ n), i.e.:

Ṽn =

n∑

j=1

y
(j)
j,n.

2. Let κ be a real number satisfying κ ≥ −1. The sequence
(
Ṽn + κWn

)
satisfies

0 < lim inf
n

(
Ṽn + κWn

)
≤ lim sup

n

(
Ṽn + κWn

)
< ∞

as n → ∞ and N/n → c > 0.
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3. The following holds true:

Ṽn + log det(In − An) −−−−→
n→∞

0.

Obviously, Theorem 3.1 is a by-product of Lemma 5.1. The remainder of the section is
devoted to the proof of this lemma.

We cast the linear system (5.2) into a matrix framework and we denote by A
(j)
n the

(n− j + 1)× (n− j + 1) submatrix A
(j)
n = (aℓ,m)n

ℓ,m=j, by A
0,(j)
n the (n− j + 1)× (n− j + 1)

matrix A
(j)
n where the first column is replaced by zeros. Denote by d(j)

n the (n − j + 1) × 1
vector :

d(j)
n =

(
1

n

1
nTrDℓDjT (−ρ)2

(
1 + 1

nTrDℓT (−ρ)
)2

)n

ℓ=j

.

These notations being introduced, the system can be rewritten as:

y(j)
n = A0,(j)

n y(j)
n + d(j)

n ⇔ (I − A0,(j)
n )y(j)

n = d(j)
n . (5.3)

The key issue that appears is to study the invertibility of matrix (I −A
0,(j)
n ) and to get some

bounds on its inverse.

5.1. Results related to matrices with nonnegative entries. The purpose of the next
lemma is to state some of the properties of matrices with non-negative entriess that will

appear to be satisfied by matrices A
0,(j)
n . We shall use the following notations. Assume that

M is a real matrix. By M ≻ 0 (resp. M < 0) we mean that mij > 0 (resp. mij ≥ 0) for
every element mij of M . We shall write M ≻ M ′ (resp. M < M ′) if M − M ′ ≻ 0 (resp.
M − M ′ < 0). If x and y are vectors, we denote similarly x ≻ 0, x < 0 and x < y.

Lemma 5.2. Let A = (aℓ,m)n
ℓ,m=1 be a n × n real matrix and u = (uℓ, 1 ≤ ℓ ≤ n),

v = (vℓ, 1 ≤ ℓ ≤ n) be two real n × 1 vectors. Assume that A < 0, u ≻ 0, and v ≻ 0.
Assume furthermore that equation

u = Au + v

is satisfied. Then:

(1) The spectral radius r(A) of A satisfies r(A) ≤ 1 − min(vℓ)
max(uℓ)

< 1.

(2) Matrix In − A is invertible and its inverse (In − A)
−1

satisfies:

(In − A)−1
< 0 and

[
(In − A)−1

]

ℓℓ
≥ 1

for every 1 ≤ ℓ ≤ n.

(3) The max-row norm of the inverse is bounded:
∣∣∣
∣∣∣
∣∣∣(In − A)

−1
∣∣∣
∣∣∣
∣∣∣
∞

≤ maxℓ(uℓ)
minℓ(vℓ)

.

(4) Consider the (n − j + 1) × (n − j + 1) submatrix A(j) = (aℓm)n
ℓ,m=j and denote by

A0,(j) matrix A(j) whenever the first column is replaced by zeros. Then properties
(1) and (2) are valid for A0,(j) and

∣∣∣∣
∣∣∣∣
∣∣∣∣
(
I(n−j+1) − A(j)

)−1
∣∣∣∣
∣∣∣∣
∣∣∣∣
∞

≤ max1≤ℓ≤n(uℓ)

min1≤ℓ≤n(vℓ)
.

Proof. Let α = 1− min(vℓ)
max(uℓ)

. Since u ≻ 0 and v ≻ 0, α readily satisfies α < 1 and αu < u−v =

Au which in turn implies that r(A) ≤ α < 1 [18, Corollary 8.1.29] and (1) is proved. In order
to prove (2), first note that ∀m ≥ 1, Am < 0. As r(A) < 1, the series

∑
m≥0 Am converges,
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matrix In −A is invertible and (In −A)−1 =
∑

m≥0 Am < In < 0. This in particular implies

that [(In − A)
−1

]ℓℓ ≥ 1 for every 1 ≤ ℓ ≤ n and (2) is proved. Now u = (In −A)−1v implies
that for every 1 ≤ k ≤ n,

uk =

n∑

ℓ=1

[
(In − A)

−1
]

kℓ
vℓ ≥ min(vℓ)

n∑

ℓ=1

[
(In − A)

−1
]

kℓ
,

hence (3).

We shall first prove (4) for matrix A(j), then show how A0,(j) inherits from A(j)’s proper-
ties. In [18], matrix A(j) is called a principal submatrix of A. In particular, r(A(j)) ≤ r(A)
by [18, Corollary 8.1.20]. As A < 0, one readily has A(j) < 0 which in turn implies prop-

erty (2) for A(j). Let Ã(j) be the matrix A(j) augmented with zeros to reach the size of

A. The inverse (In−j+1 − A(j))−1 is a principal submatrix of (In − Ã(j))−1 < 0. There-

fore,
∣∣∣
∣∣∣
∣∣∣
(
I(n−j+1) − A(j)

)−1
∣∣∣
∣∣∣
∣∣∣
∞

≤
∣∣∣∣
∣∣∣∣
∣∣∣∣
(
In − Ã(j)

)−1
∣∣∣∣
∣∣∣∣
∣∣∣∣
∞

. Since Am < (Ã(j))m for every m,

one has
∑

m≥0 Am <
∑

m≥0(Ã
(j))m; equivalently (I − A)−1 < (I − Ã(j))−1 which yields∣∣∣∣

∣∣∣∣
∣∣∣∣
(
I − Ã(j)

)−1
∣∣∣∣
∣∣∣∣
∣∣∣∣
∞

≤
∣∣∣
∣∣∣
∣∣∣(I − A)

−1
∣∣∣
∣∣∣
∣∣∣
∞

. Finally (4) is proved for matrix A(j).

We now prove (4) for A0,(j). By [18, Corollary 8.1.18], r(A0,(j)) ≤ r(A(j)) < 1 as A(j) <

A0,(j). Therefore, (I − A0,(j)) is invertible and

(I − A0,(j))−1 =
∞∑

k=0

[A0,(j)]k .

This in particular yields (I −A0,(j))−1 < 0 and (I −A0,(j))−1
kk ≥ 1. Finally, as A(j) < A0,(j),

one has ∣∣∣∣
∣∣∣∣
∣∣∣∣
(
I − Ã0,(j)

)−1
∣∣∣∣
∣∣∣∣
∣∣∣∣
∞

≤
∣∣∣∣
∣∣∣∣
∣∣∣∣
(
I − Ã(j)

)−1
∣∣∣∣
∣∣∣∣
∣∣∣∣
∞

.

Item (4) is proved and so is Lemma 5.2. �

5.2. Proof of Lemma 5.1: Some preparation. The following bounds will be needed:

Proposition 5.3. Let ρ > 0, consider a variance profile (σij) which fulfills assumption A-2
and consider the related ti’s defined in Theorem 2.3-(1). The following holds true:

1

ρ
≥ tℓ(−ρ) ≥ 1

ρ + σ2
max

.

Proof. Recall that tℓ(z) ∈ S(R+) by Theorem 2.3. In particular, tℓ(−ρ) =
∫

R+

µℓ(dλ)
λ+ρ for

some probability measure µℓ. This yields the upper bound tℓ(−ρ) ≤ ρ−1 and the fact that
tℓ(−ρ) ≥ 0. Now the lower bound readily follows from Eq. (2.1). �

Proposition 5.4. Let ρ > 0. Consider a variance profile (σij) which fulfills assumptions
A-2 and A-3; consider the related ti’s defined in Theorem 2.3-(1). Then:

lim inf
n≥1

min
1≤j≤n

1

n
TrDjTn(−ρ)2 > 0 and lim inf

n≥1
min

1≤j≤n

1

n
TrD2

j Tn(−ρ)2 > 0 .



18 HACHEM ET AL.

Proof. Applying Proposition 5.3 yields:

1

N
TrDjT (−ρ)2 =

1

N

N∑

i=1

σ2
ijt

2
i (−ρ) ≥ 1

(ρ + σ2
max)

2

1

N

N∑

i=1

σ2
ij , (5.4)

which is bounded away from zero by Assumption A-3. Similarly,

1

N
TrD2

jT (−ρ)2 ≥ 1

(ρ + σ2
max)

2

1

N

N∑

i=1

σ4
ij

(a)

≥ 1

(ρ + σ2
max)

2

(
1

N

N∑

i=1

σ2
ij

)2

,

which remains bounded away from zero for the same reasons (notice that (a) follows from
the elementary inequality (n−1

∑
xi)

2 ≤ n−1
∑

x2
i ). �

We are now in position to study matrix An = A
(1)
n .

Proposition 5.5. Let ρ > 0. Consider a variance profile (σij) which fulfills assumptions
A-2 and A-3; consider the related ti’s defined in Theorem 2.3-(1) and let An be the variance
matrix. Then there exist two n× 1 real vectors un = (uℓn) ≻ 0 and vn = (vℓn) ≻ 0 such that
un = Anun + vn. Moreover,

sup
n

max
1≤ℓ≤n

(uℓn) < ∞ and lim inf
n

min
1≤ℓ≤n

(vℓn) > 0 .

Proof. Let z = −ρ + δi with δ ∈ R−{0}. An equation involving matrix An will show up by
developing the expression of Im(T (z)) = (T (z)− T ∗(z)) /2i and by using the expression of
the ti(z)’s given by Theorem 2.3-(1). We first rewrite the system (2.1) as:

T (z) =

(
−zIN +

1

n

n∑

m=1

Dm

1 + 1
nTrDmT

)−1

.

We then have

Im(T ) =
1

2i
(T − T ∗) =

1

2i
TT ∗

(
T ∗−1 − T−1

)
,

=
1

n

n∑

m=1

DmTT ∗
∣∣1 + 1

nTrDmT
∣∣2 Im

(
1

n
TrDmT

)
+ δTT ∗ .

This yields in particular, for any 1 ≤ ℓ ≤ n:

1

δ
Im

(
1

n
TrDℓT

)
=

1

n2

n∑

m=1

TrDℓDmTT ∗
∣∣1 + 1

nTrDmT
∣∣2

1

δ
Im

(
1

n
TrDmT

)
+

1

n
TrDℓTT ∗ . (5.5)

Recall that for every 1 ≤ i ≤ N , ti(z) ∈ S(R+). Denote by µi the probability measure

associated with ti i.e. ti(z) =
∫

R+

µi(dλ)
λ−z . Then

1

δ
Im

(
1

n
TrDℓT

)
=

1

n

N∑

i=1

σ2
iℓ

∫ ∞

0

µi(dλ)

|λ − z|2 −−−→
δ→0

1

n

N∑

i=1

σ2
iℓ

∫ ∞

0

µi(dλ)

(λ + ρ)2
.

Denote by ũℓn the right handside of the previous limit and let uℓn = ũℓn

(1+ 1
n

TrDℓT (−ρ))2
.

Plugging this expression into (5.5) and letting δ → 0, we end up with equation:

un = Anun + vn
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An < 0 is given in the statement of the lemma, un = (uℓ,n; 1 ≤ ℓ ≤ n) and vn = (vℓn; 1 ≤
ℓ ≤ n) are the n × 1 vectors with elements

uℓ,n =

1
n

∑N
i=1 σ2

iℓ

∫∞
0

µi(dλ)
(λ+ρ)2(

1 + 1
nTrDℓT (−ρ)

)2 and vℓ,n =
1
nTrDℓT

2(−ρ)
(
1 + 1

nTrDℓT (−ρ)
)2 . (5.6)

It remains to notice that un ≻ 0 and vn ≻ 0 for n large enough due to A-3, that the
numerator of uℓ,n is lower than (Nσ2

max)/(nρ2) and that its denominator is bounded away
from zero (uniformly in n) by Propositions 5.3 and 5.4. Similar arguments hold to get a
uniform upper bound for vℓ,n. This concludes the proof of Proposition 5.5. �

5.3. Proof of Lemma 5.1: End of proof.

Proof of Lemma 5.1-(1). Proposition 5.5 together with Lemma 5.2-(4) yield that I − A0,(j)

is invertible, therefore the system 5.3 admits a unique solution given by:

y(j)
n = (I − A0,(j)

n )−1d(j)
n ,

and (1) is proved. �

Proof of Lemma 5.1-(2). Let us first prove the upper bound. Proposition 5.5 together with
Lemma 5.2 yield

lim sup
n

max
j

∣∣∣
∣∣∣
∣∣∣(I − A0,(j))−1

∣∣∣
∣∣∣
∣∣∣
∞

≤ lim sup
n≥1

max1≤ℓ≤n(uℓn)

min1≤ℓ≤n(vℓn)
< ∞ .

Each component of vector d(j)
n satisfies d

(j)
ℓ,n ≤ Nσ4

max

n2ρ2 i.e. sup1≤j≤n ‖d(j)
n ‖∞ < K

n . There-

fore, vector y(j)
n satisfies:

sup
j

‖y(j)
n ‖∞ ≤ sup

j
|||(I − A0,(j)

n )−1|||∞‖d(j)
n ‖∞ <

K

n
.

Consequently,

0 ≤ V̌n =

n∑

j=1

y̌
(j)
j,n ≤

n∑

j=1

‖y̌(j)
n ‖∞

satisfies lim supn V̌n < ∞. Moreover, Proposition 5.3 yields Wn ≤ n−2
∑n

j=1 TrD2
jT

2 ≤
σ4

maxN(ρ2n)−1. In particular, Wn is also bounded and lim supn(V̌n +κWn) ≤ lim supn(V̌n +
|κ|Wn) < ∞.

We now prove the lower bound.

V̌n + κWn =

n∑

j=1

y
(j)
j,n + κd

(j)
j,n ≥

n∑

j=1

y
(j)
j,n − d(j)

j,n .

Recall that y(j)
n = (I − A0,(j))−1d(j)

n . We therefore have:

y
(j)
j,n − d(j)

j,n =
[
y(j)

n − d(j)
n

]

1
=

[(
(I − A0,(j)

n )−1 − I
)
d(j)

n

]

1

=
[
(I − A0,(j)

n )−1A0,(j)
n d(j)

n

]

1
.
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As (I − A
0,(j)
n )−1 < I, we have:

y
(j)
j,n − d(j)

j,n ≥
[
A0,(j)

n d(j)
n

]

1
=

n∑

ℓ=j+1

1

n2

(
1
nTrDℓDjT

2(−ρ)
)2

(
1 + 1

nTrDjT (−ρ)
)4

(a)

≥ K
n∑

ℓ=j+1

1

n2

(
1

n
TrDℓDj

)2

,

where (a) follows from Proposition 5.3, which is used both to get a lower bound for the
numerator and an upper bound for the denominator: (1+ 1

nTrDjT )4 ≤ (1+Nn−1σ2
maxρ

−1)4.
Some computations remain to be done in order to take advantage of A-3 to get the lower

bound. Recall that 1
m

∑m
k=1 x2

k ≥
(

1
m

∑m
k=1 xk

)2
. We have:

n∑

j=1

y
(j)
j,n − d(j)

j,n ≥
n∑

j=1

n∑

ℓ=j+1

1

n2

(
1

n
TrDℓDj

)2

=
1

n2
× n(n − 1)

2
× 2

n(n − 1)

∑

j<ℓ

(
1

n
TrDℓDj

)2

(a)

≥ 1

3


 2

n(n − 1)

∑

j<ℓ

1

n
TrDℓDj




2

(b)
=

1

3



 1

n(n − 1)

∑

1≤j,ℓ≤n

1

n
TrDℓDj




2

+ o(1)

≥ 1

3




1

n3

N∑

i=1




n∑

j=1

σ2
ij




2



2

+ o(1)

≥ 1

3




N

n3


 1

N

N∑

i=1

n∑

j=1

σ2
ij




2



2

+ o(1)

≥ 1

3




N

n3




n∑

j=1

1

N

N∑

i=1

σ2
ij




2



2

+ o(1)

where (a) follows from the bound n(n−1)
2n2 ≥ 1

3 valid for n large enough. The term o(1) at
step (b) goes to zero as n → ∞ and takes into account the diagonal terms in the formula
2
∑

j<ℓ αjℓ +
∑

j αjj =
∑

j,ℓ αjℓ. It remains now to take the lim inf to obtain:

lim inf
n→∞




n∑

j=1

y
(j)
j,n + κd

(j)
j,n



 ≥ c2σ8
min

3
.

Item (2) is proved. �
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Proof of Lemma 5.1-(3). We first introduce the following block-matrix notations:

A(j)
n =

(
d

(j)
j,n ā

(j)
n

d̄(j)
n A

(j+1)
n

)
and A0,(j)

n =

(
0 ā

(j)
n

0 A
(j+1)
n

)
.

We can now express the following inverse:

(I − A0,(j)
n ) =

(
1 −ā

(j)
n

0 (I − A
(j+1)
n )

)
as (I − A0,(j)

n )−1 =

(
1 ā

(j)
n (I − A

(j+1)
n )−1

0 (I − A
(j+1)
n )−1

)
.

This in turn yields y
(j)
j,n = d

(j)
j,n + ā

(j)
n (I − A

(J+1)
n )−1d̄(j)

n and one can easily check that

y
(j)
j,n ≤ K

n , where K does not depend on j and n, as

|y(j)
j,n| ≤ |d(j)

j,n| + n‖ā(j)
n ‖∞

∣∣∣
∣∣∣
∣∣∣(I − A0,(j)

n )−1
∣∣∣
∣∣∣
∣∣∣
∞

‖d̄(j)
n ‖∞ .

Remark that

log det(I − A(j)
n ) − log det(I − A(j+1)

n )

= log det

([
1 − d(j)

j,n −ā
(j)
n

−d̄(j)
n I − A

(j+1)
n

][
1 0

0 (I − A
(j+1)
n )−1

])

= log det

[
1 − d(j)

j,n −ā
(j)
n (I − A

(j+1)
n )−1

−d̄(j)
n I

]

= log
(
1 − d(j)

j,n − ā(j)
n (I − A(j+1)

n )−1d̄(j)
n

)

and write log det(I − An) as:

log det(I − An) =
n−1∑

j=1

(
log det(I − A(j)

n ) − log det(I − A(j+1)
n )

)
+ log(1 − ann)

=

n−1∑

j=1

log
(
1 − d(j)

j,n − ā(j)
n (I − A(j+1)

n )−1d̄(j)
n

)
+ log(1 − ann)

= −
n−1∑

j=1

(
d

(j)
j,n + ā(j)

n (I − A(j+1)
n )−1d̄(j)

n

)
+ o (1)

= −
n−1∑

j=1

y
(j)
j,n + o (1) = −

n∑

j=1

y
(j)
j,n + o (1)

= −V̌n + o(1) .

This concludes the proof of Lemma 5.1.

�

6. Proof of Theorem 3.2

6.1. More notations; outline of the proof; key lemmas.
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More notations. Recall that Yn = (Y n
ij ) is a N × n matrix where Y n

ij =
σij√

n
Xij and that

Qn(z) = (qij(z) ) = (YnY ∗
n − zIN )−1. We denote

(1) by Q̃n(z) = (q̃ij(z) ) = (Y ∗
n Yn − zIn)−1,

(2) by yj the column number j of Yn,
(3) by Y j

n the N × (n− 1) matrix that remains after deleting column number j from Yn,
(4) by Qj,n(z) (or Qj(z) for short when there is no confusion with Qn(z)) the N × N

matrix

Qj(z) = (Y jY j ∗ − zIN)−1,

(5) by ξi the row number i of Yn,
(6) by Yi,n (or Yi for short when there is no confusion with Yn) the (N − 1)× n matrix

that remains after deleting row i from Y ,
(7) by Q̃i,n(z) (or Q̃i(z)) the n × n matrix

Q̃i(z) = (Y ∗
i Yi − zIn)−1.

Recall that we use both notations qij or [Q]ij for the individual element of Q(z) depending
on the context (same for other matrices). The following formulas are well-known (see for
instance Sections 0.7.3 and 0.7.4 in [18]):

Q = Qj −
Qjyjy

∗
j Qj

1 + y∗
j Qjyj

, Q̃ = Q̃i −
Q̃iξ

∗
i ξiQ̃i

1 + ξiQ̃iξ∗i
(6.1)

qii(z) =
−1

z(1 + ξiQ̃i(z)ξ∗i )
, q̃jj(z) =

−1

z(1 + y∗
j Qj(z)yj)

. (6.2)

For 1 ≤ j ≤ n, denote by Fj the σ-field Fj = σ(yj , · · · , yn) generated by the random
vectors (yj , · · · , yn). Denote by Ej the conditional expectation with respect to Fj, i.e.
Ej = E(· | Fj). By convention, Fn+1 is the trivial σ-field; in particular, En+1 = E.

Outline of the proof. In order to prove the convergence of Θ−1
n (log det(YnY ∗

n + ρIN ) −
E log det(YnY ∗

n + ρIN )) toward the standard gaussian law N (0, 1), we shall rely on the
following CLT for martingales:

Theorem 6.1 (CLT for martingales, Th. 35.12 in [4]). Let γ
(n)
n , γ

(n)
n−1, . . . , γ

(n)
1 be a martin-

gale difference sequence with respect to the increasing filtration F (n)
n , . . . ,F (n)

1 . Assume that
there exists a sequence of real positive numbers Θ2

n such that

1

Θ2
n

n∑

j=1

Ej+1γ
(n)
j

2 P−−−−→
n→∞

1 . (6.3)

Assume further that the Lindeberg condition holds:

∀ǫ > 0,
1

Θ2
n

n∑

j=1

E

(
γ

(n)
j

2
1∣∣∣γ(n)

j

∣∣∣≥ǫΘn

)
−−−−→
n→∞

0 .

Then Θ−1
n

∑n
j=1 γ

(n)
j converges in distribution to N (0, 1).

Remark 6.1. The following condition:

∃δ > 0,
1

Θ
2(1+δ)
n

n∑

j=1

E

∣∣∣γ(n)
j

∣∣∣
2+δ

−−−−→
n→∞

0 , (6.4)
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known as Lyapounov’s condition implies Lindeberg’s condition and is easier to establish (see
for instance [4], Section 27, page 362).

The proof of the CLT will be carried out following three steps:

(1) We first show that log det(YnY ∗
n + ρI) − E log det(YnY ∗

n + ρI) can be written as

log det(YnY ∗
n + ρI) − E log det(YnY ∗

n + ρI) =

n∑

j=1

γj ,

where (γj) is a martingale difference sequence.
(2) We then prove that (γj) satisfies Lyapounov’s condition (6.4) where Θ2

n is given by
Theorem 3.1.

(3) We finally prove (6.3) which implies the CLT.

Key Lemmas. The two lemmas stated below will be of constant use in the sequel. The first
lemma describes the asymptotic behaviour of quadratic forms related to random matrices.

Lemma 6.2. Let x = (x1, · · · , xn) be a n×1 vector where the xi are centered i.i.d. complex
random variables with unit variance. Let M be a n × n deterministic complex matrix.

(1) (Bai and Silverstein, Lemma 2.7 in [2]) Then, for any p ≥ 2, there exists a constant
Kp for which

E|x∗Mx− TrM |p ≤ Kp

((
E|x1|4TrMM∗)p/2

+ E|x1|2pTr(MM∗)p/2
)

.

(2) (see also Eq. (1.15) in [3]) Assume moreover that E x2
1 = 0 and that M is real, then

E (x∗Mx− TrM)2 = TrM2 + κ
n∑

i=1

m2
ii ,

where κ = E|x1|4 − 2.

As a consequence of the first part of this lemma, there exists a constant K independent
of j and n for which

E

∣∣∣∣y
∗
j Qj(−ρ)yj −

1

n
TrDjQj(−ρ)

∣∣∣∣
p

≤ Kn−p/2 (6.5)

for p ≤ 4.

We introduce here various intermediate quantities:

ci(z) =
−1

z
(
1 + 1

nTrD̃iEQ̃(z)
) , 1 ≤ i ≤ N ; C(z) = diag(ci(z); 1 ≤ i ≤ N) ,

c̃j(z) =
−1

z
(
1 + 1

nTrDjEQ(z)
) , 1 ≤ j ≤ n; C̃(z) = diag(c̃j(z); 1 ≤ j ≤ n) ,

bi(z) =
−1

z
(
1 + 1

nTrD̃iC̃(z)
) , 1 ≤ i ≤ N ; B(z) = diag(bi(z); 1 ≤ i ≤ N)

b̃j(z) =
−1

z
(
1 + 1

nTrDjC(z)
) , 1 ≤ j ≤ n; B̃(z) = diag(b̃j(z); 1 ≤ j ≤ n) . (6.6)

The following lemma provides various bounds and approximation results.
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Lemma 6.3. Consider the family of random matrices (YnY ∗
n ) and assume that A-1 and

A-2 hold true. Let z = −ρ where ρ > 0. Then,

(1) Matrices Cn satisfy ‖Cn‖ ≤ 1
ρ and 0 < ci ≤ 1

ρ . These inequalities remain true

when C is replaced with B or C̃.

(2) Let Un and Ũn be two sequences of real diagonal deterministic N ×N and n×n ma-

trices. Assume that supn≥1 max
(
‖Un‖, ‖Ũn‖

)
< ∞ , then the following hold true:

(a) 1
nTrU(EQ − T ) −−−−→

n→∞
0 and 1

nTrŨ(EQ̃ − T̃ ) −−−−→
n→∞

0 ,

(b) 1
nTrU(B − T ) −−−−→

n→∞
0 ,

(c) supn E (TrU (Q − EQ))2 < ∞,

(d) supn
1

n2 E (TrU (Q − EQ))
4

< ∞,

(3) [Rank-one perturbation inequality] The resolvent Qj satisfies |TrM (Q − Qj)| ≤ ‖M‖
ρ

for any N × N matrix M (see Lemma 2.6 in [25]).

Proof of Lemma 6.3 is postponed to Appendix A.

Finally, we shall frequently use the following identities which are obtained from the defi-
nitions of ci and c̃j together with Equations (6.2):

[Q(z)]ii = ci + zci[Q]ii

(
ξiQ̃iξ

∗
i − 1

n
TrD̃iEQ̃

)
(6.7)

[Q̃(z)]jj = c̃j + zc̃j[Q̃]jj

(
y∗

j Qjyj −
1

n
TrDjEQ

)
(6.8)

6.2. Proof of Step 1: The sum of a martingale difference sequence. Recall that
Ej = E(· | Fj) where Fj = σ(yℓ, j ≤ ℓ ≤ n). We have:

log det(Y Y ∗ + ρIN ) − E log det(Y Y ∗ + ρIN )

=

n∑

j=1

(Ej − Ej+1) log det(Y Y ∗ + ρIN )

(a)
= −

n∑

j=1

(Ej − Ej+1) log

(
det
(
Y jY j∗ + ρIN

)

det (Y Y ∗ + ρIN )

)
,

(b)
= −

n∑

j=1

(Ej − Ej+1) log

(
det
(
Y j∗Y j + ρIn−1

)

det (Y ∗Y + ρIn)

)

(c)
= −

n∑

j=1

(Ej − Ej+1) log
[
Q̃ (−ρ)

]

jj
,

(d)
=

n∑

j=1

(Ej − Ej+1) log
(
1 + y∗

j Qj (−ρ) yj

)
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where (a) follows from the fact that Y j does not depend upon yj , in particular Ej log det
(
Y jY j∗ + ρIN

)
=

Ej+1 log det
(
Y jY j∗ + ρIN

)
; (b) follows from the fact that det(Y j∗Y j+ρIn−1) = det(Y jY j∗+

ρIN )× ρn−1−N (and a similar expression for det(Y ∗Y + ρIn)); (c) follows from the equality

[Q̃(−ρ)]jj =
det(Y j ∗Y j + ρIn−1)

det(Y ∗Y + ρIn)

which is a consequence of the general inverse formula A−1 = 1
det(A)adj(A) where adj(A) is

the transposed matrix of cofactors of A (see Section 0.8.2 in [18]); and (d) follows from (6.2).
We therefore have

log det(Y Y ∗ + ρIN ) − E log det(Y Y ∗ + ρIN )

=
n∑

j=1

(Ej − Ej+1) log
(
1 + y∗

j Qj (−ρ) yj

) △
=

n∑

j=1

γj .

As the following identity holds true,

Ej log

(
1 +

1

n
TrDjQj

)
= Ej+1 log

(
1 +

1

n
TrDjQj

)
,

one can express γj as:

γj = (Ej − Ej+1) log

(
1 +

y∗
j Qjyj − 1

nTrDjQj

1 + 1
nTrDjQj

)

= (Ej − Ej+1) log (1 + Γj) where Γj =
y∗

j Qjyj − 1
nTrDjQj

1 + 1
nTrDjQj

. (6.9)

The sequence γn, . . . , γ1 is a martingale difference sequence with respect to the increasing
filtration Fn, . . . ,F1 and Step 1 is established.

6.3. Proof of Step 2: Validation of Lyapounov’s condition (6.4). In the remainder
of this section, z = −ρ. Let δ > 0 be a fixed positive number that will be specified below.
As lim inf Θ2

n > 0 by Theorem 3.1, we only need to prove that
∑n

j=1 E|γj |2+δ →n 0. We

have E|γj |2+δ = E |(Ej − Ej+1) log(1 + Γj)|2+δ; Minkowski and Jensen inequalities yield:

(
E|γj |2+δ

) 1
2+δ ≤

(
E |Ej log(1 + Γj)|2+δ

) 1
2+δ

+
(

E |Ej+1 log(1 + Γj)|2+δ
) 1

2+δ

≤ 2
(
E |log(1 + Γj)|2+δ

) 1
2+δ

.

Otherwise stated,

E|γj |2+δ ≤ K0 E |log(1 + Γj)|2+δ
(6.10)

where K0 = 22+δ. Since y∗
j Qjyj ≥ 0, Γj (defined in (6.9)) is lower bounded:

Γj ≥ − 1
nTrDjQj

1 + 1
nTrDjQj

.

Now, since

0 ≤ 1

n
TrDjQj (−ρ) ≤ ‖Dj‖

n
Tr Qj (−ρ) ≤ K1

△
=

σ2
max

ρ
sup

n

(
N

n

)
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and since x 7→ x
1+x is non-decreasing, we have:

1
nTrDjQj

1 + 1
nTrDjQj

≤ K2
△
=

K1

1 + K1
< 1. (6.11)

In particular, Γj ≥ −K2 > −1. The function (−1,∞) ∋ x 7→ log(1+x)
x is non-negative,

non-increasing. Therefore, log(1+x)
x ≤ log(1−K2)

K2
for x ∈ [−K2,∞). Plugging this into (6.10)

yields

E|γj |2+δ ≤ K0K
2+δ
2 E|Γj |2+δ

△
= K3 E|Γj |2+δ ≤ K3 E

∣∣∣∣y
∗
j Qjyj −

1

n
TrDjQj

∣∣∣∣
2+δ

.

By lemma 6.2-(1), the right hand side of the last inequality is lower than K4 n−(1+δ/2) as
soon as E|X11|2+δ < ∞. This is ensured by A-1 for δ ≤ 6. Therefore, Lyapounov’s condition
(6.4) holds and Step 2 is proved.

6.4. Proof of Step 3: Convergence of the normalized sum of conditional variances.
This section, by far the most involved in this article, is devoted to establish the convergence
(6.3), hence the CLT. In an attempt to guide the reader, we divide it into five stages. Recall
that z = −ρ and

γj = (Ej − Ej+1) log (1 + Γj) where Γj =
y∗

j Qjyj − 1
nTrDjQj

1 + 1
nTrDjQj

.

In order to apply Theorem 6.1, we shall prove that Θ−2
n

∑n
j=1 Ej+1γ

2
j

P−→ 1 where Θ2
n is given

by Theorem 3.1. Since lim inf Θ2
n > 0, it is sufficient to establish the following convergence:

n∑

j=1

Ej+1γ
2
j − Θ2

n
P−−−−→

n→∞
0 . (6.12)

Instead of working with Θn, we shall work with Θ̃n (introduced in Section 5, see Eq. (5.1))
and prove:

n∑

j=1

Ej+1γ
2
j − Θ̃2

n
P−−−−→

n→∞
0 . (6.13)

In the sequel, K will denote a constant whose value may change from line to line but which
will neither depend on n nor on j ≤ n.

Here are the main steps of the proof:

(1) The following convergence holds true:

n∑

j=1

Ej+1γ
2
j −

n∑

j=1

Ej+1 (EjΓj)
2 P−−−−→

n→∞
0 . (6.14)

This convergence roughly follows from a first order approximation, as we informally
discuss: Recall that γi = (Ej − Ej+1) log(1 + Γj) and that Γj → 0 by Lemma
6.2-(1). A first order approximation of log(1 + x) yields γj ≈ (Ej − Ej+1)Γj . As
Ej+1(y

∗
j Qjyj) = 1

nTrDjEj+1Qj , one has Ej+1Γj = 0, hence γj ≈ EjΓj and one may

expect Ej+1γ
2
j ≈ Ej+1(EjΓj)

2 and even (6.14) as we shall demonstrate.
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(2) Recall that κ = E|X11|4 − 2. The following equality holds true

Ej+1 (EjΓj)
2

=
1

n2
(
1 + 1

nTrDjEQ
)2

(
TrDj (Ej+1Qj)Dj (Ej+1Qj)

+ κ

N∑

i=1

σ4
ij (Ej+1[Qj ]ii)

2

)
+ ε2,j (6.15)

where

max
j≤n

E|ε2,j| ≤
K

n3/2

for some given K.

A closer look to the right hand side of (6.15) yields the following comments: By Lemma 6.3-
(2a), the denominator (1 + 1

nTrDjEQ)2 can be approximated by (1 + 1
nTrDjT )2; moreover,

it is possible to prove that [Qj ]ii ≈ [T ]ii (some details are given in the course of the proof of
step (5) below). Hence,

κ

n

N∑

i=1

σ4
ij (Ej+1[Qj ]ii)

2 ≈ κ

n
TrD2

jT
2 .

Therefore it remains to study the asymptotic behaviour of the term 1
nTrDj(Ej+1Qj)Dj(Ej+1Qj)

in order to understand (6.15). This is the purpose of step (3) below.

(3) In order to evaluate 1
nTrDj(Ej+1Qj)Dj(Ej+1Qj) for large n, we introduce the ran-

dom variables

χ
(j)
ℓ,n =

1

n
TrDℓ(Ej+1Q)DjQ, j ≤ ℓ ≤ n. (6.16)

Note that, up to rank-one perturbations, Ejχ
(j)
j,n is very close to the term of interest.

We prove here that χ
(j)
ℓ,n satisfies the following equation:

χ
(j)
ℓ,n =

1

n

n∑

m=j+1

1
nTr(DℓBDmEQ)
(
1 + 1

nTrDmEQ
)2χ

(j)
m,n +

1

n
TrDℓBDjEQ + ε3,ℓj, j ≤ ℓ ≤ n , (6.17)

where B is defined in Section 6.1 and where

max
ℓ,j≤n

E|ε3,ℓj| ≤
K√
n

.

(4) Recall that we have proved in Section 5 (Lemma 5.1) that the following (determin-
istic) system:

y
(j)
ℓ,n =

n∑

m=j+1

aℓ,m y(j)
m,n + aℓ,j for j ≤ ℓ ≤ n ,

where aℓ,m = 1
n2

TrDℓDmT 2

(1+ 1
n

TrDℓT)
2 admits a unique solution. Denote by x

(j)
ℓ,n = n

(
1 + 1

nTrDℓT
)2
y

(j)
ℓ,n,

then (x
(j)
ℓ,n, j ≤ ℓ ≤ n) readily satisfies the following system:

x
(j)
ℓ,n =

1

n

n∑

m=j+1

1
nTrDℓDmT 2

(
1 + 1

nTrDmT
)2x

(j)
m,n +

1

n
TrDℓDjT

2, j ≤ ℓ ≤ n .
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As one may notice, (6.17) is a perturbated version of the system above and we shall
indeed prove that:

χ
(j)
j,n = x

(j)
j,n + ε41,j + ε42,j where max

j≤n
E|ε41,j | ≤

K√
n

and max
j≤n

|ε42,j| ≤ δn, (6.18)

the sequence (δn) being deterministic with δn → 0 as n → ∞.

(5) Combining the previous results, we finally prove that

n∑

j=1

Ej+1(EjΓj)
2 − Θ̃2

n
P−−−−→

n→∞
0 . (6.19)

This, together with (6.14), yields convergence (6.13) and (6.12) which in turn proves
(6.3), ending the proof of Theorem 3.2.

Proof of (6.14). Recall that
1
n

TrDjQj

1+ 1
n

TrDjQj
≤ K2 < 1 by (6.11). In particular, Γj ≥ −K2 > −1.

We first prove that

Ej log(1 + Γj) = EjΓj + ε11,j + ε12,j

where
{
ε11,j = Ej log(1 + Γj)1|Γj |≤K2

− EjΓj

ε12,j = Ej log(1 + Γj)1(K2,∞)(Γj)
and

{
maxj≤n E ε11,j

2 ≤ K
n2

maxj≤n E ε12,j
2 ≤ K

n2

. (6.20)

In the sequel, we shall often omit subscript j while dealing with the ε’s. As 0 < K2 < 1, we
have:

|ε11| =

∣∣∣∣∣Ej

( ∞∑

k=1

(−1)k−1

k
Γk

j 1|Γj|≤K2
− Γj

)∣∣∣∣∣ ,

≤ EjΓj1Γj>K2 +
∞∑

k=2

Ej |Γj |k 1|Γj|≤K2
≤ EjΓj1Γj>K2 +

EjΓ
2
j1|Γj |≤K2

1 − K2
.

Therefore,

E ε11
2

(a)

≤ 2

(
EΓ2

j1Γj>K2 +
EΓ4

j1|Γj |≤K2

(1 − K2)2

)

(b)

≤
2EΓ4

j

K2
2

+
2EΓ4

j

(1 − K2)2

(c)

≤
(

2

K2
2

+
2

(1 − K2)2

)
E

(
y∗

j Qjyj −
1

n
TrDjQj

)4 (d)

≤ K

n2

where (a) follows from (a+b)2 ≤ 2(a2+b2), (b) from the inequality Γ2
j1Γj>K2 ≤ Γ2

j

(
Γj

K2

)2

1Γj>K2 ,

(c) from the fact that the denominator of Γj is larger than one, and (d) from Lemma 6.2-(1)
as X11 has a finite 8th moment by A-1.

Now, 0 ≤ ε12 ≤ EjΓj1Γj>K2 . Thus, Eε12
2 ≤ EΓ2

j1Γj>K2 ≤ K−2
2 EΓ4

j1Γj>K2 . Lemma

6.2-(1) yields again:

E ε12
2 ≤ K

n2
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and (6.20) is proved. Similarly, we can prove

Ej+1 log(1 + Γj) = Ej+1Γj + ε13,j with max
j≤n

E ε13,j
2 ≤ K

n2
.

Note that since yj and Fj+1 are independent, we have Ej+1(y
∗
j Qjyj) = 1

nTrDjEj+1Qj which
yields Ej+1Γj = 0. Gathering all the previous estimates, we obtain:

γj = EjΓj + ε11,j + ε12,j − ε13,j

△
= EjΓj + ε14,j ,

where maxj≤n E ε14,j
2 ≤ K n−2 by Minkowski’s inequality. We therefore have Ej+1(γj)

2 =
Ej+1(EjΓj + ε14,j)

2. Let

ε1,j
△
= Ej+1(γj)

2 − Ej+1(EjΓj)
2 = Ej+1ε14,j

2 + 2Ej+1(ε14,j EjΓj).

Then

E|ε1,j | ≤ Eε14,j
2 + 2E|ε14,j EjΓj | ,

(a)

≤ Eε14,j
2 + 2(Eε14,j

2)1/2(EΓ2
j )

1/2
(b)

≤ K

n3/2
,

where (a) follows from Cauchy-Schwarz inequality and (EjΓj)
2 ≤ EjΓ

2
j , and (b) follows

from Lemma 6.2-(1) which yields EΓ2
j ≤ Kn−1. Finally, we have

∑n
j=1 E|Ej+1(γj)

2 −
Ej+1(EjΓj)

2| ≤ Kn− 1
2 which implies (6.14). �

Proof of (6.15). We have:

EjΓj = Ej

(
y∗

j Qjyj − 1
nTrDjQj

1 + 1
nTrDjQj

)
,

=
1

1 + 1
nTrDjEQ

{
Ej

(
y∗

j Qjyj −
1

n
TrDjQj

)

− Ej

(
y∗

j Qjyj − 1
nTrDjQj

1 + 1
nTrDjQj

(
1

n
TrDjQj −

1

n
TrDjEQ

))}
.

Hence,

Ej+1(EjΓj)
2 =

1

(1 + 1
nTrDjEQ)2

Ej+1

((
y∗

j (EjQj)yj −
1

n
TrDjEjQj

)2

+ ε21,j + ε22,j

)

=
1

(1 + 1
nTrDjEQ)2

Ej+1

(
y∗

j (EjQj)yj −
1

n
TrDjEjQj

)2

+ ε2,j (6.21)
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where

ε21,j =

[
Ej

(
y∗

j Qjyj − 1
nTrDjQj

1 + 1
nTrDjQj

(
1

n
TrDjQj −

1

n
TrDjEQ

))]2

,

ε22,j = −2 Ej

(
y∗

j Qjyj −
1

n
TrDjQj

)
×

Ej

(
y∗

j Qjyj − 1
nTrDjQj

1 + 1
nTrDjQj

(
1

n
TrDjQj −

1

n
TrDjEQ

))
,

ε2,j =
Ej+1(ε21,j + ε22,j)

(1 + 1
nTrDjEQ)2

.

As 1
nTrDjQj ≥ 0, standard inequalities yield:

Eε21,j ≤
[
E

(
y∗

j Qjyj −
1

n
TrDjQj

)4
] 1

2
[
E

(
1

n
TrDjQj −

1

n
TrDjEQ

)4
] 1

2

.

By Lemma 6.2-(1), E
(
y∗

j Qjyj − 1
nTrDjQj

)4 ≤ Kn−2. Due to the convex inequality (a +

b)4 ≤ 23(a4 + b4), we obtain:

E

(
1

n
TrDj(Qj − EQ)

)4

= E

(
1

n
TrDj(Qj − EQj) +

1

n
TrDj(EQj − EQ)

)4

≤ K

{
E

(
1

n
TrDj(Qj − EQj)

)4

+ E

(
1

n
TrDj(EQj − EQ)

)4
}

,

where the first term of the right hand side is bounded by Kn−2 by (2d) in Lemma 6.3 and
the second one is bounded by Kn−4 due to the rank-one perturbation inequality [Lemma

6.3-(3)]. Therefore Eε21,j ≤ Kn−2 and similar derivations yield E|ε22,j| ≤ Kn− 3
2 . Gath-

ering these two results yields the bound E|ε2,j| ≤ Kn− 3
2 . Let us now expand the term

Ej+1

(
y∗

j EjQjyj − 1
nTrDjEjQj

)2
in the right hand side of (6.21).

Recall that EjQj = Ej+1Qj and that yj = D
1
2

j

(
X1j√

n
, · · · ,

XNj√
n

)T

. Note also that Ej+1

(
y∗

j EjQjyj

)
=

1
nTrDjEj+1Qj. Then Lemma 6.2-(2) immediatly yields:

Ej+1

(
y∗

j EjQjyj −
1

n
TrDjEjQj

)2

=
1

n2

(
TrDj (Ej+1Qj)Dj (Ej+1Qj) + κ

N∑

ℓ=1

σ4
ℓj (Ej+1[Qj]ℓℓ)

2

)
.

Equation (6.15) is proved. �

Proof of (6.17). Recall that χ
(j)
ℓ,n = 1

nTrDℓ(Ej+1Q)DjQ. The outline of the proof of (6.17)
is given by the following set of equations, the χ’s and ε’s being introduced as and when
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required.

χ
(j)
ℓ,n =χ1+χ2−χ3 (6.22)

χ3 = χ′
3+ε3 (6.23)

χ′
3 = χ4+ χ5+ε

′
3 (6.24)

χ5 =χ6−χ7 + ε6−ε7 (6.25)

Gathering the previous equations, we will end up with

χ
(j)
ℓ,n = χ1 + χ2 − χ4 − χ6 + χ7 + ε where ε = −ε3 + ε′3 − ε6 + ε7. (6.26)

Let us first give decomposition (6.22) and introduce χ1, χ2 and χ3. Recall that B (defined

in Section 6.1) is the N ×N diagonal matrix B = diag(bi) where bi =
(
ρ(1 + 1

nTrD̃iC̃)
)−1

.

The following identity yields:

Q = B + B(B−1 − Q−1)Q

= B + B

(
ρ diag

(
1

n
TrD̃iC̃

)
− Y Y ∗

)
Q.

Therefore,

χ
(j)
ℓ,n =

1

n
TrDℓ(Ej+1Q)DjQ

=
1

n
TrDℓBDjQ +

ρ

n
TrDℓBdiag

(
1

n
TrD̃iC̃

)
(Ej+1Q)DjQ

− 1

n
TrDℓB

(
n∑

m=1

Ej+1ymy∗
mQ

)
DjQ

△
= χ1 + χ2 − χ3 ,

and (6.22) is established. We now turn to decomposition (6.23). Identities (6.1) and (6.2)
yield:

y∗
mQ = y∗

mQm − y∗
m

Qmymy∗
mQm

1 + y∗
mQmym

=
y∗

mQm

1 + y∗
mQmym

= ρ[Q̃]mmy∗
mQm .

Using this equation, we have

χ3 =
1

n
TrDℓB

(
n∑

m=1

Ej+1ymy∗
mQ

)
DjQ

=
ρ

n
TrDℓB

(
n∑

m=1

Ej+1

(
[Q̃]mmymy∗

mQm

))
DjQ

(a)
=

ρ

n
TrDℓB

(
n∑

m=1

c̃mEj+1 (ymy∗
mQm)

)
DjQ

−ρ2

n
TrDℓB

(
n∑

m=1

c̃mEj+1

(
[Q̃]mm

(
y∗

mQmym − 1

n
TrDmEQ

)
ymy∗

mQm

))
DjQ

△
= χ′

3 + ε3 ,
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where (a) follows directly from (6.8). We are now in position to prove that :

max
ℓ,j≤n

E|ε3| ≤
K√
n

. (6.27)

Using the fact that |TrAyy∗B| = |y∗BAy| ≤ ‖AB‖ ‖y‖2 together with the norm inequality
‖AB‖ ≤ ‖A‖ ‖B‖, we obtain:

|ε3| ≤ ρ2

n

n∑

m=1

‖DjQDℓB‖c̃mEj+1

(
[Q̃]mm

∣∣∣∣y
∗
mQmym − 1

n
TrDmEQ

∣∣∣∣ ‖ym‖2‖Qm‖
)

,

(a)

≤ σ4
max

ρ3

1

n

n∑

m=1

Ej+1

(∣∣∣∣y
∗
mQmym − 1

n
TrDmEQ

∣∣∣∣ ‖ym‖2

)
,

where (a) follows from the fact that ‖DjQDℓB‖c̃m ≤ σ4
maxρ

−3 and [Q̃]mm‖Qm‖ ≤ ρ−2.
Writing 1

nTrDmEQ = 1
nTrDmQ+ 1

nTrDm(EQ−Q) and replacing in the previous inequality,
we obtain:

E

(∣∣∣∣y
∗
mQmym − 1

n
TrDmEQ

∣∣∣∣ ‖ym‖2

)

≤




[
E

∣∣∣∣y
∗
mQmym − 1

n
TrDmQ

∣∣∣∣
2
] 1

2

+

[
E

∣∣∣∣
1

n
TrDm(Q − EQ)

∣∣∣∣
2
] 1

2



(E‖ym‖4
) 1

2 ,

where
[
E
∣∣y∗

mQmym − 1
nTrDmQ

∣∣2
] 1

2 ≤ Kn− 1
2 by Lemma 6.2-(1) combined with Lemma 6.3-

(3),
[
E
∣∣ 1
nTrDm(Q − EQ)

∣∣2
] 1

2 ≤ Kn−1 by Lemma 6.3-(2c) and E‖ym‖4 ≤ σ4
maxE|X11|4(Nn−1)2.

This in particular yields maxℓ,j≤n E|ε3| ≤ Kn− 1
2 and proves (6.27).

Recall that if m ≤ j, then

Ej+1(ymy∗
mQm) = Ej+1(ymy∗

m)Ej+1(Qm) =
Dm

n
Ej+1(Qm).
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We now turn to Equation (6.24) and introduce χ4, χ5 and ε′3.

χ′
3 =

ρ

n
TrDℓB

(
n∑

m=1

c̃mEj+1 (ymy∗
mQm)

)
DjQ ,

=
ρ

n2
TrDℓB

(
j∑

m=1

c̃mDmEj+1Qm

)
DjQ

+
ρ

n
TrDℓB




n∑

m=j+1

c̃mEj+1 (ymy∗
mQm)



DjQ ,

=
ρ

n2
TrDℓB

(
j∑

m=1

c̃mDmEj+1Q

)
DjQ

+
ρ

n
TrDℓB




n∑

m=j+1

c̃mEj+1 (ymy∗
mQm)



DjQ ,

+
ρ

n2
TrDℓB

(
j∑

m=1

c̃mDmEj+1 (Qm − Q)

)
DjQ

△
= χ4 + χ5 + ε′3 ,

and decomposition (6.24) is introduced. In order to estimate ε′3, recall that given two square
matrices R and S, one has |TrRS| ≤ ‖R‖TrS for S non-negative and Hermitian. As matrix
Qm − Q is non-negative and hermitian by (6.1), we obtain:

|ε′3| ≤
1

n2
‖DℓBDjQ‖

j∑

m=1

E (TrDm (Qm − Q)) ≤ σ6
max

nρ3
(6.28)

by Lemma 6.3-(3).

We now turn to χ5 and provide decomposition (6.25). Recall that TrAyy∗B = y∗BAy.

Combining (6.1) and (6.2), we get Q = Qm − ρ[Q̃]mmQmymy∗
mQm. Plugging this expression

into the definition χ5 and using the fact that ym is measurable with respect to Fj+1 (since
m ≥ j + 1), we obtain:

χ5 =
ρ

n
TrDℓB




n∑

m=j+1

c̃mEj+1 (ymy∗
mQm)


DjQ

=
ρ

n

n∑

m=j+1

c̃my∗
m (Ej+1Qm)DjQmDℓBym

−ρ2

n

n∑

m=j+1

c̃m[Q̃]mmy∗
m (Ej+1Qm)DjQmymy∗

mQmDℓBym .

In order to understand the forthcoming decomposition, recall that asymptotically y∗
mAmym ∼

1
nTrDmAm as long as ym and Am are independent, and that 1

nTrDmAm ∼ 1
nTrDmA if Am
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is a rank-one perturbation of A. We can now introduce χ6 and χ7:

χ5 =
ρ

n

n∑

m=j+1

c̃m

n
TrDℓBDm (Ej+1Q)DjQ

−ρ2

n

n∑

m=j+1

c̃2
m

n
TrDm (Ej+1Q)DjQ × 1

n
Tr(DmQDℓB) + ε6 − ε7

△
= χ6 − χ7 + ε6 − ε7 ,

where

ε6 =
ρ

n

n∑

m=j+1

c̃m y∗
m (Ej+1Qm)DjQmDℓBym

− ρ

n

n∑

m=j+1

c̃m

n
TrDℓBDm (Ej+1Q)DjQ

ε7 =
ρ2

n

n∑

m=j+1

c̃m[Q̃]mm y∗
m (Ej+1Qm)DjQmym y∗

mQmDℓBym

−ρ2

n

n∑

m=j+1

c̃2
m

n
TrDm (Ej+1Q)DjQ × 1

n
Tr(DmQDℓB) .

It is now a matter of routine to check that:

E|ε6| ≤
K√
n

and E|ε7| ≤
K√
n

. (6.29)

Let us provide some details.

Recall that ym is independent from Ej+1(Qm). To obtain the bound on E|ε6|, we use
the facts that E(y∗

m (Ej+1Qm) DjQmDℓBym − 1
nTrDℓBDm (Ej+1Qm)DjQm)2 ≤ Kn−1 by

Lemma 6.2-(1), | 1nTrDℓBDm (Ej+1Qm)Dj(Qm − Q)| ≤ Kn−1 by Lemma 6.3-(3), etc.

In order to prove that E|ε7| ≤ Kn− 1
2 , we use similar arguments but we also need two

additional estimates. The control [Q̃]mm− c̃m which has already been done while estimating
ε3 relies on (6.8). The bounded character of E(y∗

mAmym)2 where Am is independent of ym

and of finite spectral norm. This is a by-product of Lemma 6.2-(1).
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We now put the pieces together and provide Eq. (6.26) satisfied by χℓj . Recall that

χ1 =
1

n
TrDℓBDjQ

χ2 =
ρ

n
TrDℓB diag

(
1

n
TrD̃iC̃

)
(Ej+1Q)DjQ

χ4 =
ρ

n2
TrDℓB




∑

m≤j

c̃mDm



 (Ej+1Q)DjQ

χ6 =
ρ

n2
TrDℓB




n∑

m=j+1

c̃mDm



 (Ej+1Q)DjQ

χ7 =
ρ2

n

n∑

m=j+1

c̃2
m

n
TrDm (Ej+1Q)DjQ × 1

n
Tr(DmQDℓB)

=
1

n

n∑

m=j+1

1
nTr(DℓBDmQ)

(1 + 1
nTrDmEQ)2

χm,j .

As 1
n

∑n
m=1 c̃mDm = diag

(
1
nTrD̃1C̃, . . . , 1

nTrD̃N C̃
)
, we have χ2 −χ4 −χ6 = 0, and (6.26)

becomes

χ
(j)
ℓ,n =

1

n
TrDℓBDjQ +

1

n

n∑

m=j+1

1
nTr(DℓBDmQ)

(1 + 1
nTrDmEQ)2

χ(j)
m,n + ε ,

where E|ε| ≤ Kn− 1
2 thanks to Inequalities (6.27), (6.28), and (6.29). Small adjustments

need to be done in order to obtain (6.17). Now replace 1
nTrDℓBDpQ by 1

nTrDℓBDpEQ (use

Lemma 6.3-(2c)). The new error term ε3,ℓj still satisfies maxℓ,j≤n E|ε3,ℓ,j| ≤ Kn− 1
2 . Eq.

(6.17) is proved. �

Proof of (6.18). Recall that χℓ,j and ε3,ℓj have been introduced above.

Following the matrix framework introduced to express the system satisfied by the y’s (ma-

trices An, A
(j)
n and A

0,(j)
n ), we introduce matrix Gn = AT

n = (gℓm)n
ℓ,m=1, its (n−j+1)×(n−

j+1) principal submatrix G
(j)
n = (gℓ,m)n

ℓ,m=j and the matrix G
0,(j)
n which differs from matrix

G
(j)
n by its first column, equal to zero. Denoting by δ(j)n =

(
1
nTrDℓDjT

2; j ≤ ℓ ≤ n
)
, we

have:
x(j)

n = G0,(j)
n x(j)

n + δ(j)n .

Define here the (n − j + 1) × 1 vector ε
(j)
3 = (ε3,ℓj; j ≤ ℓ ≤ n) and the (n − j + 1) × 1

vectors:

χ(j) = (χ
(j)
ℓ,n; j ≤ ℓ ≤ n) ,

δ̆(j) =

(
1

n
TrDℓBDjEQ; j ≤ ℓ ≤ n

)
.

Define now the (n − j + 1) × (n − j + 1) matrix:

Ğ(j) =

(
1

n2 TrDℓBDmEQ
(
1 + 1

nTrDmEQ
)2

)n

ℓ,m=j

,
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and Ğ0,(j) which is egal to Ğ(j) exept for its first column equal to zero. With these notations,
Eq. (6.17), valid for for j ≤ ℓ ≤ n, can take the following matrix form:

χ(j) = Ğ0,(j)χ(j) + δ̆(j) + ε
(j)
3 .

We will heavily rely on the following:

lim sup
n

∣∣∣∣
∣∣∣∣
∣∣∣∣
(
I − G0,(j)

)−1
∣∣∣∣
∣∣∣∣
∣∣∣∣
∞

< ∞ .

which can be proved as in Lemma 5.2-(4) and Lemma 5.5. We drop superscript 0,(j) in the
equation below for the sake of readability.

χ = Ğχ+ δ̆ + ε3

⇔ χ = Gχ+ δ + ε3 + (Ğ − G)χ + (δ̆ − δ) ,

⇔ χ = (I − G)−1δ + (I − G)−1ε3 + (I − G)−1(Ğ − G)χ+ (I − G)−1(δ̆ − δ) ,

⇔ χ = x+ (I − G)−1ε3 + (I − G)−1(Ğ − G)χ + (I − G)−1(δ̆ − δ) (6.30)

The first component of the previous equation writes:

χ
(j)
j = x

(j)
j + [(I − G0,(j))−1ε3]1

+
[
(I − G0,(j))−1(Ğ0,(j) − G0,(j))χ+ (I − G0,(j))−1(δ̆ − δ)

]
1

,

△
= x

(j)
j + ε41,j + ε42,j .

Due to Lemma 5.2-(4) which applies to G0,(j) and to the fact that maxℓ,j≤n E|ε3,ℓj | ≤ Kn− 1
2 ,

we have:

E|ε41,j| ≤
n−j+1∑

m=1

[(I − G0,(j))−1]1,m E|ε3,ℓj | ≤
K√
n

.

The second error term ε42,j is the sum of the following terms:

ε42,j = [(I − G0,(j))−1(Ğ0,(j) − G0,(j))χ]1 + [(I − G0,(j))−1(δ̆ − δ)]1

Let us first prove that [(I−G0,(j))−1(Ğ0,(j)−G0,(j))χ]1 is dominated by a sequence indepen-

dent of j that converges to zero as n → ∞. The mere definition of χ
(j)
ℓ,n (see (6.16)) yields

‖χ(j)‖∞ ≤ (Nσ4
max)(nρ2)−1, where ‖ · ‖∞ stands for the ℓ∞-norm. Hence

|[(I − G0,(j))−1(Ğ0,(j) − G0,(j))χ]1|

≤
∣∣∣
∣∣∣
∣∣∣(I − G0,(j))−1

∣∣∣
∣∣∣
∣∣∣
∞

∣∣∣
∣∣∣
∣∣∣( ˘G0,(j) − G0,(j))T

∣∣∣
∣∣∣
∣∣∣
∞

‖χ‖∞ ≤ K
∣∣∣
∣∣∣
∣∣∣(Ğ0,(j) − G0,(j))T

∣∣∣
∣∣∣
∣∣∣
∞

.

Let us prove that
∣∣∣
∣∣∣
∣∣∣(Ğ0,(j) − G0,(j))T

∣∣∣
∣∣∣
∣∣∣
∞

−−−−→
n→∞

0 (6.31)
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uniformly in j. To this end, let us evaluate the (ℓ, m)-element of matrix Ğ0,(j) − G0,(j)

(m > j):

n|[Ğ0,(j) − G0,(j)]ℓm| =

∣∣∣∣
1
nTrDℓBDmEQ

(1 + 1
nTrDmEQ)2

−
1
nTrDℓDmT 2

(1 + 1
nTrDmT )2

∣∣∣∣

≤
∣∣∣∣(1 +

1

n
TrDmT )2

1

n
TrDℓBDmEQ − (1 +

1

n
TrDmEQ)2

1

n
TrDℓDmT 2

∣∣∣∣

≤
∣∣∣∣(1 +

1

n
TrDmT )2

1

n
TrDℓBDm(EQ − T )

∣∣∣∣

+

∣∣∣∣(1 +
1

n
TrDmT )2

1

n
TrDℓTDm(B − T )

∣∣∣∣

+

∣∣∣∣
(

(1 +
1

n
TrDmT )2 − (1 +

1

n
TrDmEQ)2

)
1

n
TrDℓDmT 2

∣∣∣∣ . (6.32)

The first term of the right hand side of (6.32) satisfies:
∣∣∣∣(1 +

1

n
TrDmT )2

1

n
TrDℓBDm(EQ − T )

∣∣∣∣ ≤
(

1 +
σ2

max

ρ

)2
1

n
TrU(EQ − T ) ,

where U is the N ×N diagonal matrix U = σ4
max ρ−1diag (sign (E[Q]ii − ti) , 1 ≤ i ≤ N). By

Lemma 6.3-(2a), the right hand side of this inequality converges to zero as n → ∞.

The second and third terms of the right hand side of (6.32) can be handled similarly with

the help of Lemma 6.3 and one can prove that elements of n(Ğ0,(j)−G0,(j)) are dominated by

a sequence independent of j that converges to zero. This implies that
∣∣∣
∣∣∣
∣∣∣(Ğ0,(j) − G0,(j))T

∣∣∣
∣∣∣
∣∣∣
∞

converges to zero uniformly in j and (6.31) is proved. As a consequence, [(I−G0,(j))−1(Ğ0,(j)−
G0,(j))χ]1 is dominated by a sequence independent of j that converges to zero. The other

term [(I − G0,(j))−1(δ̆ − δ)]1 in the expression of ε42,j is handled similarly. Eq. (6.18) is
proved. �

Proof of (6.19). We rewrite Equation (6.15) as Ej+1 (EjΓj)
2

= η1,j + κη2,j + ε2,j with

η1,j =
1

n2

1
(
1 + 1

nTrDjEQ
)2 TrDj (Ej+1Qj)Dj (Ej+1Qj) ,

η2,j =
1

n2
(
1 + 1

nTrDjEQ
)2

N∑

i=1

σ4
ij (Ej+1[Qj ]ii)

2
,

and we prove that
∑n

j=1 η1,j − Ṽn
P−→ 0 and

∑n
j=1 η2,j − Wn

P−→ 0 where Ṽn and Wn are
defined in Section 5. To prove the first assertion, we first notice that

TrDj(Ej+1Qj)Dj(Ej+1Qj) = Ej+1(TrDj(Ej+1Qj)DjQj) = Ej+1(TrDj(Ej+1Q)DjQ) + ε

with |ε| ≤ 2σ4
maxρ

−2 by Lemma 6.3-(3). Therefore,

η1,j =
Ej+1χ

(j)
j,n(

1 + 1
nTrDjEQ

)2 +
ε

(
1 + 1

nTrDjEQ
)2 .

It remains to control the difference
(
1 + 1

nTrDjEQ
)−2 −

(
1 + 1

nTrDjT
)−2

, to plug (6.18)

and one easily obtains
∑n

j=1 η1,j − Ṽn
P−→ 0.
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We now sketch the proof of
∑n

j=1 η2,j − Wn
P−→ 0. As in (6.2), [Qj ]ii satisfies [Qj ]ii =

−(z(1+ ξj
i Q̃

j
i ξ

j
i

∗
))−1 where ξj

i is the row ξi without element j, and Q̃j
i = (Y j

i

∗
Y j

i +ρIn−1)
−1

where Y j
i is matrix Y without row i and column j. Using this identity and Lemmas 6.2-(1)

and 6.3, we can show that [Qj ]ii is approximated by ti, which is key to prove
∑n

j=1 η2,j −
Wn

P−→ 0. �

7. Proof of Theorem 3.3

We first provide an expression of the bias that involves the Stieltjes transforms 1
N TrQ

and 1
N Tr T . By writing log det(YnY ∗

n + ρIN) = N log ρ+ log det( 1
ρYnY ∗

n + IN ) and by taking

the derivative of log det( 1
ρYnY ∗

n + IN ) with respect to ρ, we obtain

log det(YnY ∗
n + ρIN ) = N log ρ + N

∫ ∞

ρ

(
1

ω
− 1

N
TrQ(−ω)

)
dω .

Since 1
N TrQ(z) ∈ S(R+), we have 1

ω − 1
N TrQ(−ω) ≥ 0 for ω > 0. In fact, recall that

‖Q(−ω)‖ ≤ ω−1 by Proposition 2.2. Therefore, by Fubini’s Theorem,

E log det(YnY ∗
n + ρIN ) = N log ρ + N

∫ ∞

ρ

(
1

ω
− 1

N
TrEQ(−ω)

)
dω .

Similarly,

NVn(ρ) = N

∫
log(λ + ρ)πn(dλ) = N log ρ + N

∫ ∞

ρ

(
1

ω
− 1

N
TrT (−ω)

)
dω.

Hence the bias term is given by:

Bn(ρ)
△
= E log det(YnY ∗

n + ρIN ) − NVn(ρ) =

∫ ∞

ρ

Tr (T (−ω)− EQ(−ω)) dω . (7.1)

In Appendix B, we prove that:

Tr(T − Q) = Tr(T̃ − Q̃) . (7.2)

Therefore, we can also write the bias as:

Bn(ρ) =

∫ ∞

ρ

Tr
(
T̃ (−ω) − EQ̃(−ω)

)
dω . (7.3)

For technical reasons (and in order to rely on results of Section 5), we use representation
(7.3) of the bias instead of (7.1). The proof of Theorem 3.3 will rely on the study of the
asymptotic behaviour of the integrand in the right hand side of this equation.

As a by-product of Section 5, the existence and uniqueness of the solution of the system
of equations (3.1) is straightforward. Indeed, define the n × 1 vectors w and p as

w = (wj,n; 1 ≤ j ≤ n) ,

p =
(
pj,n; 1 ≤ j ≤ n

)
.

Then the system (3.1) can be written in a matrix form as

w = Aw + p . (7.4)

Since (I − A) is invertible for n large enough, this proves Theorem 3.3–(1).

The rest of the proof will be carried out into four steps:
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(1) We first introduce a perturbated version of the system (7.4). For the reader’s con-
venience, we recall the following notations:

ti =
1

ω
(
1 + 1

nTrD̃iT̃
) , t̃j =

1

ω
(
1 + 1

nTrDjT
) ,

ci =
1

ω
(
1 + 1

nTrD̃iEQ̃
) , c̃j =

1

ω
(
1 + 1

nTrDjEQ
) ,

bi =
1

ω
(
1 + 1

nTrD̃iC̃
) , b̃j =

1

ω
(
1 + 1

nTrDjC
) ,

where z is equal to −ω with ω ≥ 0. Write the integrand in (7.3) as

Tr
(
T̃ (−ω) − EQ̃(−ω)

)
=

1

n

n∑

j=1

ϕj(ω) with ϕj(ω)
△
= n(t̃j(−ω) − E[Q̃(−ω)]jj) . (7.5)

Let ψ(j)(ω)
△
= n(b̃j(−ω) − E[Q̃(−ω)]jj) and define the n × 1 vectors ϕ and ψ and

the n × n matrix Ă as

ϕ =
(
ϕj ; 1 ≤ j ≤ n

)
,

ψ =
(
ψ(j); 1 ≤ j ≤ n

)
,

Ă =

( 1
n2 TrDjDmCT

(1 + 1
nTrDjT )(1 + 1

nTrDjC)

)n

j,m=1

We first prove that

ϕ = Ăϕ+ψ . (7.6)

(2) We prove that

ψ(j) = κ ω2b̃j c̃j

(
ω

n

N∑

i=1

(
σ2

ijc
3
i

1

n

n∑

m=1

σ4
imE[Q̃i]

2
mm

)
− c̃j

n

N∑

i=1

σ4
ijE[Qj ]

2
ii

)
+ ε(j) , (7.7)

with |ε(j)| ≤ Kn−1/2 where K is a constant that does not depend on n nor on j
(but may depend on ω).

(3) Matrix Ă readily approximates A and vector ψ approximates p for large n by Step
2. Therefore, by inspecting Equations (7.4) and (7.6), one may expect ϕ to be close
to w. We prove here that

‖ϕ−w‖∞ −−−−−−−−−→
n→∞,N/n→c

0 . (7.8)

(4) Let βn(ω) = 1
n

∑n
j=1wj,n(ω). Eq. (7.8) yields 1

n

∑n
j=1 ϕj(ω)−βn(ω) → 0 . In order

to prove (3.5), it remains to integrate and to provide a Dominated Convergence
Theorem argument. To this end, we shall prove that:

|βn(ω)| ≤ K ′

ω3
(7.9)

for n large enough. This will establish (3.4). We will also prove that
∣∣∣∣∣∣
1

n

n∑

j=1

ϕj(ω)

∣∣∣∣∣∣
≤ K ′

ω2
(7.10)
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for ω ∈ [ρ, +∞), where K ′ does not to depend on n nor on ω. This will yield (3.5)
and the proof of Theorem 3.3 will be completed.

7.1. Proof of step 1: Equation (7.6). Recall that ψ(j) = n(b̃j − E[Q̃]jj). Using these
expressions, we have for 1 ≤ j ≤ n:

ϕj = n(t̃j − b̃j) +ψ(j) = nb̃j t̃j

(
b̃−1
j − t̃−1

j

)
+ ψ(j)

= ωb̃j t̃jTrDj (C − T ) + ψ(j)

= ωb̃j t̃j

N∑

i=1

σ2
ijciti

(
t−1
i − c−1

i

)
+ ψ(j)

=
ω2b̃j t̃j

n2

N∑

i=1

n∑

m=1

σ2
ijσ

2
imciti ϕm + ψ(j)

= ω2b̃j t̃j

n∑

m=1

1

n2
Tr(DjDmCT ) ϕm + ψ(j),

which yields Eq. (7.6).

7.2. Proof of step 2: Expression of ψ(j). We shall develop ψ(j) as

ψ(j) = ψ1 + ψ2 − ψ3 (7.11)

ψ1 = ψ4 + ε1 (7.12)

ψ2 = −ψ5 +ψ6 (7.13)

ψ5 = ψ7 + ε5 (7.14)

ψ6 = ψ8 + ε6 (7.15)

ψ3 = ψ9 + ε3 (7.16)

where the ψk’s and the εk’s will be introduced when required. We shall furthermore prove
that |εk| ≤ Kn−1/2 for k = 1, 3, 5, 6. This will yield

ψ(j) = ψ4 −ψ7 +ψ8 −ψ9 + ε(j) with |ε(j)| = |ε1 − ε3 − ε5 + ε6| ≤
K

n1/2
. (7.17)
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Let us begin with decomposition (7.11):

ψ(j) = nb̃jE

(
[Q̃]jj

(
[Q̃]−1

jj − b̃−1
j

))

(a)
= nωb̃jE

(
[Q̃]jj

(
y∗

j Qjyj −
1

n
TrDjC

))

(b)
= nωb̃j c̃jE

(
y∗

j Qjyj −
1

n
TrDjC

)

−nω2b̃j c̃jE

(
[Q̃]jj

(
y∗

j Qjyj −
1

n
TrDjEQ

)(
y∗

j Qjyj −
1

n
TrDjC

))

(c)
= ωb̃j c̃jTrDjE (Qj − Q) + ωb̃j c̃jTrDj (EQ − C)

−nω2b̃j c̃jE

(
[Q̃]jj

(
y∗

j Qjyj −
1

n
TrDjEQ

)(
y∗

j Qjyj −
1

n
TrDjC

))

△
= ψ1 +ψ2 −ψ3

where (a) follows from (6.2) and the definition of b̃j , (b) follows from identity (6.8), and (c)
follows from the following equality:

E

(
y∗

j Qjyj −
1

n
TrDjC

)
=

1

n
TrDj (EQj − C) =

1

n
TrDjE (Qj − Q) +

1

n
TrDj (EQ − C) .

Eq. (7.11) is established.

We now turn to the decomposition (7.12). Combining (6.1) and (6.2), we obtain Q =

Qj − ω[Q̃]jjQjyjy
∗
j Qj, hence ψ1 = ω2b̃j c̃jE

(
[Q̃]jjy

∗
j QjDjQjyj

)
. Using identity (6.8) and

the fact that E(y∗
j QjDjQjyj) = 1

nE(TrDjQjDjQj), we obtain:

ψ1 =
ω2

n
b̃j c̃

2
jE (TrDjQjDjQj)

−ω3b̃j c̃
2
jE

(
[Q̃]jj

(
y∗

j Qjyj −
1

n
TrDjEQ

)(
y∗

j QjDjQjyj

))

△
= ψ4 + ε1 .

We have:

|ε1| ≤
1

ω
E
(
y∗

j QjDjQjyj |ε11 + ε12 + ε13|
)

,

with ε11 = y∗
j Qjyj − 1

nTrDjQj, ε12 = 1
nTrDj (Qj − EQj), and ε13 = 1

nTrDjE (Qj − Q).

By Lemmas 6.2-(1), 6.3–(2c), and 6.3–(3), we have E|ε11|2 ≤ Kn−1, E|ε12|2 ≤ Kn−2, and
|ε13|2 ≤ Kn−2 respectively. By Cauchy-Schwarz inequality, we therefore have:

|ε1| ≤
K
(
E(y∗

j QjDjQjyj)
2
) 1

2

√
n

≤ K ′
√

n
,

and (7.12) is established.
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We now establish decomposition (7.13):

ψ2 = ωb̃j c̃jTrDj (EQ − C)

= ωb̃j c̃j

N∑

i=1

σ2
ijciE

(
[Q]ii

(
c−1
i − [Q]−1

ii

))

= −ω2b̃j c̃j

N∑

i=1

σ2
ijciE

(
[Q]ii

(
ξiQ̃iξ

∗
i − 1

n
TrD̃iEQ̃

))

(a)
= −ω2b̃j c̃j

N∑

i=1

σ2
ijc

2
i

(
E

(
ξiQ̃iξ

∗
i

)
− 1

n
TrD̃iEQ̃

)

+ ω3b̃j c̃j

N∑

i=1

σ2
ijc

2
i E

(
[Q]ii

(
ξiQ̃iξ

∗
i − 1

n
TrD̃iEQ̃

)2
)

△
= −ψ5 +ψ6

where (a) follows from (6.7). Equation (7.13) is established.

Let us now turn to decomposition (7.14). We haveψ5 =
ω2b̃j c̃j

n

∑N
i=1 σ2

ijc
2
i TrD̃iE

(
Q̃i − Q̃

)
.

By similar arguments as those used for ψ1, we have:

ψ5 =
ω3b̃j c̃j

n2

N∑

i=1

σ2
ijc

3
i E

(
TrD̃iQ̃iD̃iQ̃i

)

+
ω3b̃j c̃j

n2

N∑

i=1

σ2
ijc

2
i E([Q]ii − ci)TrD̃iQ̃iξ

∗
i ξiQ̃i

△
= ψ7 + ε5

where |ε5| ≤ Kn− 1
2 and (7.14) is established.

Turning to (7.15), we have

ψ6 = ω3b̃j c̃j

N∑

i=1

σ2
ijc

2
i E

(
[Q]ii

(
ξiQ̃iξ

∗
i − 1

n
TrD̃iEQ̃

)2
)

= ω3b̃j c̃j

N∑

i=1

σ2
ijc

3
i E

(
ξiQ̃iξ

∗
i − 1

n
TrD̃iEQ̃

)2

− ω4b̃j c̃j

N∑

i=1

σ2
ijc

3
i E

(
[Q]ii

(
ξiQ̃iξ

∗
i − 1

n
TrD̃iEQ̃

)3
)

△
= ψ′

6 + ε61 , (7.18)

using again (6.7). The term ε61 satisfies:

|ε61| ≤ 1

ω2

N∑

i=1

σ2
ijE |ε611,i + ε612,i + ε613,i|3

≤ 9

ω2

N∑

i=1

σ2
ij

(
E |ε611,i|3 + E |ε612,i|3 + |ε613,i|3

)
,
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where ε611,i = ξiQ̃iξ
∗
i − 1

nTrD̃iQ̃i, ε612,i = 1
nTrD̃i

(
Q̃i − EQ̃i

)
, and ε613,i = 1

nTrD̃iE

(
Q̃i − Q̃

)
.

By Lemma 6.2-(1), E |ε611,i|3 ≤ Kn−3/2. By Lemma 6.3–(2d), E |ε612,i|3 ≤
(
E |ε612,i|4

)3/4

≤
Kn−3/2. By Lemma 6.3–(3), |ε613,i|3 ≤ Kn−3, hence

|ε6,1| ≤
K√
n

.

We now handle the term ψ′
6 in (7.18). We have:

ψ′
6 = ω3b̃j c̃j

N∑

i=1

σ2
ijc

3
i E

(
ξiQ̃iξ

∗
i − 1

n
TrD̃iQ̃i + ε612,i + ε613,i

)2

= ω3b̃j c̃j

N∑

i=1

σ2
ijc

3
i E

(
ξiQ̃iξ

∗
i − 1

n
TrD̃iQ̃i

)2

+ ε62

△
= ψ8 + ε62 ,

where

ε62 = ω3b̃j c̃j

N∑

i=1

σ2
ijc

3
i

(
E (ε612,i + ε613,i)

2
+ 2E

((
ξiQ̃iξ

∗
i − 1

n
TrD̃iQ̃i

)
(ε612,i + ε613,i)

))
.

Using Lemmas 6.2-(1) and 6.3, it is easy to show that

|ε62| ≤
K√
n

.

Furthermore, the terms E ( )
2

in the expression of ψ8 has a more explicit form. Indeed,
applying Lemma 6.2-(2) yields:

ψ8 =
ω3b̃j c̃j

n2

N∑

i=1

σ2
ijc

3
i

(
E

(
TrD̃iQ̃iD̃iQ̃i

)
+ κ

n∑

m=1

σ4
imE

(
[Q̃i]

2
mm

))
.

Decomposition (7.15) is established with ε6 = ε61 + ε62.

It remains to give decomposition (7.16). Using (6.8), we have

ψ3 = nω2b̃j c̃jE

(
[Q̃]jj

(
y∗

j Qjyj −
1

n
TrDjEQ

)(
y∗

j Qjyj −
1

n
TrDjC

))

= nω2b̃j c̃
2
jE

((
y∗

j Qjyj −
1

n
TrDjEQ

)(
y∗

j Qjyj −
1

n
TrDjC

))

−nω3b̃j c̃
2
jE

(
[Q̃]jj

(
y∗

j Qjyj −
1

n
TrDjEQ

)2(
y∗

j Qjyj −
1

n
TrDjC

))

△
= ψ′

3 + ε31 .

The term ε31 satisfies

|ε31| ≤
n

ω
E

(∣∣∣∣y
∗
j Qjyj −

1

n
TrDjQj + ε311 + ε312

∣∣∣∣
2

×
∣∣∣∣y

∗
j Qjyj −

1

n
TrDjQj + ε311 + ε312 + ε313

∣∣∣∣
)
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with ε311 = 1
nTrDj(Qj − EQj), ε312 = 1

nTrDjE (Qj − Q), and ε313 = 1
nTrDj(EQ − C).

The terms ε311, ε312, and y∗
j Qjyj − 1

nTrDjQj can be handled by Lemmas 6.2-(1) and 6.3.

The term ε313 coincides with ψ2(nωb̃j c̃j)
−1. The derivations made on ψ2 above (decompo-

sitions (7.13–7.15)) show that |ψ2(ωb̃j c̃j)
−1| ≤ K therefore |ε313| ≤ Kn−1.

Using these results, we obtain after some standard manipulations:

|ε31| ≤
K√
n

.

The term ψ′
3 can be written as:

ψ′
3 = nω2b̃j c̃

2
jE

((
y∗

j Qjyj −
1

n
TrDjQj + ε311 + ε312

)

(
y∗

j Qjyj −
1

n
TrDjQj + ε311 + ε312 + ε313

))

= nω2b̃j c̃
2
jE

(
y∗

j Qjyj −
1

n
TrDjQj

)2

+ ε32

△
= ψ9 + ε32

with |ε32| ≤ Kn−1/2. Similarly to ψ8, we can develop ψ9 to obtain

ψ9 =
ω2b̃j c̃

2
j

n

(
E(TrDjQjDjQj) + κ

N∑

i=1

σ4
ijE
(
[Qj ]

2
ii

)
)

(7.19)

Decomposition (7.16) is established with ε3 = ε31 + ε32.

We now put the pieces together and provide Eq. (7.17) satisfied by ψ(j). We recall that

ψ4 =
ω2b̃j c̃

2
j

n
E (TrDjQjDjQj) ,

ψ7 =
ω3b̃j c̃j

n2

N∑

i=1

σ2
ijc

3
i E

(
TrD̃iQ̃iD̃iQ̃i

)
,

ψ8 =
ω3b̃j c̃j

n2

N∑

i=1

σ2
ijc

3
i

(
E

(
TrD̃iQ̃iD̃iQ̃i

)
+ κ

n∑

m=1

σ4
imE

(
[Q̃i]

2
mm

))
,

ψ9 =
ω2b̃j c̃

2
j

n

(
E(TrDjQjDjQj) + κ

N∑

i=1

σ4
ijE
(
[Qj ]

2
ii

)
)

.

When computing the right hand side of (7.17), all terms of the form ETrDjQjDjQj and

ETrD̃iQ̃iD̃iQ̃i cancel out and we end up with Equation (7.7). Step 2 is established.
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7.3. Proof of step 3: ‖ϕ−w‖∞ → 0. In order to prove (7.8), we need the following facts:
∣∣∣
∣∣∣
∣∣∣(Ă − A)T

∣∣∣
∣∣∣
∣∣∣
∞

−−−−→
n→∞

0, (7.20)

lim sup
n

∣∣∣∣∣∣(I − A)−1
∣∣∣∣∣∣
∞ < ∞, (7.21)

I − Ă is invertible for n large enough, (7.22)

lim sup
n

∣∣∣
∣∣∣
∣∣∣(I − Ă)−1

∣∣∣
∣∣∣
∣∣∣
∞

< ∞ . (7.23)

The proof of (7.20) is close to the proof of (6.31) above and is therefore omitted. The bound
(7.21) follows from Lemma 5.2–(3). We now prove (7.22) and (7.23). Recall that by Lemma
5.5, there exist two vectors un = (uℓ,n) ≻ 0 and vn = (vℓ,n) ≻ 0 such that un = Aun + vn,

supn ‖un‖∞ < ∞ and lim infn minℓ(vℓ,n) > 0. Matrix Ă satisfies the equation un = Ăun+ v̆n

with v̆n = (v̆ℓn) = vn + (A − Ă)un. Combining (7.20) with inequalities supn ‖un‖∞ < ∞
and lim infn(minℓ vℓn) > 0, we have lim infn(minℓ v̆ℓn) > 0. Therefore, Lemma 5.2 applies

to matrix Ă for n large enough which implies (7.22) and (7.23).

We are now in position to prove ‖ϕ − w‖∞ → 0. Working out Eq. (7.6) and (7.4), we
obtain:

ϕ = w + (I − A)−1(Ă − A)ϕ+ (I − A)−1(ψ − p),
hence

‖ϕ−w‖∞ ≤
∣∣∣∣∣∣(I − A)−1

∣∣∣∣∣∣
∞

∣∣∣
∣∣∣
∣∣∣(Ă − A)

∣∣∣
∣∣∣
∣∣∣
∞

‖ϕ‖∞ +
∣∣∣∣∣∣(I − A)−1

∣∣∣∣∣∣
∞ ‖ψ − p‖∞ .

Thanks to (7.22), we have ϕ = (I − Ă)−1ψ for n large enough. One can check from (7.7)
that supn ‖ψ‖∞ < ∞. Therefore, by (7.23), we have supn ‖ϕ‖∞ < ∞. Using (7.20) and

(7.21), we then have
∣∣∣∣∣∣(I − A)−1

∣∣∣∣∣∣
∞

∣∣∣
∣∣∣
∣∣∣(Ă − A)

∣∣∣
∣∣∣
∣∣∣
∞

‖ϕ‖∞ → 0.

It remains to prove that ‖ψ − p‖∞ → 0. In Step 3, it has been established that ψ is a
perturbated version of p as defined in (3.2) in the sense of Eq. (7.7). Using the arguments
developed in the course of the proof of (6.18), it is a matter of routine to check ‖ψ−p‖∞ → 0.
Details are omitted. Hence

∣∣∣∣∣∣(I − A)−1
∣∣∣∣∣∣
∞ ‖ψ − p‖∞ → 0.

Consequently, ‖ϕ−w‖∞ → 0 and Step 3 is proved.

7.4. Proof of step 4: Dominated Convergence. In this section, constant K ′ does not
depend on n neither on ω but its value is allowed to change from line to line. We first prove
(7.9). We have

|βn| ≤ ‖w‖∞ ≤
∣∣∣∣∣∣(I − A)−1

∣∣∣∣∣∣
∞ ‖p‖∞

by (7.4). By inspecting (3.2) one obtains ‖p‖∞ ≤ |κ|(N/n)(
σ6
max

ω4 +
σ4
max

ω3 ) ≤ K ′ω−3. We need

now to bound
∣∣∣∣∣∣(I − A)−1

∣∣∣∣∣∣
∞ in terms of ω ∈ [ρ,∞). Lemma 5.2–(3) yield:

∣∣∣∣∣∣(I − A)−1
∣∣∣∣∣∣
∞ ≤ maxℓ(uℓ,n)

minℓ(vℓ,n)
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where un = (uℓn) and vn = (vℓn) are the vectors given in the statement of Lemma 5.5. We
now inspect the expressions of uℓn and vℓn. Eq. (5.4) yields:

min
ℓ

(vℓ,n) ≥ 1

(ω + σmax)2
min

j

1

N
TrDj ,

and maxℓ(uℓ,n) ≤ (Nσ2
max)(nω2)−1 by (5.6). Gathering all these estimates, we obtain |βn| ≤

K ′ω−3. and Inequality (7.9) is proved.

We now prove (7.10). We have

| 1
n

n∑

j=1

ϕj | ≤ ‖ϕ‖∞ ≤
∣∣∣
∣∣∣
∣∣∣(I − Ă)−1

∣∣∣
∣∣∣
∣∣∣
∞

‖ψ‖∞ (7.24)

by (7.6) and (7.22). We know that the right hand side is bounded as n → ∞. However, not
much is known about the behaviour of the bound with respect to ω. Using Inequality (7.24)

and relying on the derivations that lead to (7.6–7.7), one can prove that
∣∣∣
∣∣∣
∣∣∣(I − Ă)−1

∣∣∣
∣∣∣
∣∣∣
∞

,

‖ψ‖∞, and therefore ‖ϕ‖∞ are bounded on the compact subsets of [ρ, +∞). Therefore,
in order to establish (7.10), it is sufficient to prove that ‖ϕ‖∞ is bounded by K ′ ω−2 near
infinity. To this end, we develop |ϕj(ω)| as follows:

|ϕj(ω)| = nt̃j

∣∣∣E
(
[Q̃]jj

(
[Q̃]−1

jj − t̃−1
j

))∣∣∣

= nωt̃j

∣∣∣∣E
(

[Q̃]jj

(
y∗

j Qjyj −
1

n
TrDjT

))∣∣∣∣

≤ ωt̃jE[Q̃]jj |TrDjE (Q − T )| + nωt̃j

∣∣∣∣E
(

[Q̃]jj

(
y∗

j Qjyj −
1

n
TrDjEQ

))∣∣∣∣
(a)

≤ ωt̃jE[Q̃]jj |TrDjE (Q − T )| + nωt̃j c̃j

∣∣∣∣E
(

y∗
j Qjyj −

1

n
TrDjEQ

)∣∣∣∣

+nω2t̃j c̃j

∣∣∣∣∣E
(

[Q̃]jj

(
y∗

j Qjyj −
1

n
TrDjEQ

)2
)∣∣∣∣∣

(b)

≤ ωt̃jE[Q̃]jj |TrDjE (Q − T )| + ωt̃j c̃j |E(TrDj(Qj − Q))|

+2nω2t̃j c̃jE

(
[Q̃]jj

(
y∗

j Qjyj −
1

n
TrDjEQj

)2
)

+2
ω2t̃j c̃j

n
E[Q̃]jj (TrDjE(Qj − Q))

2
,

where (a) follows from (6.8) and (b), from the fact that

(y∗
j Qjyj −

1

n
TrDjEQ)2 ≤ 2(y∗

j Qjyj −
1

n
TrDjEQj)

2 + 2(
1

n
TrDjE(Qj − Q))2.

Let α(ω) = n max1≤i≤N |ti−E[Q]ii|. Using Lemma 6.3–(3), we obtain from the last inequal-
ity

‖ϕ(ω)‖∞ ≤ σ2
max

ω
α(ω) +

σ2
max

ω2
+

2n

ω
E

(
y∗

j Qjyj −
1

n
TrDjEQj

)2

+
2σ4

max

nω3
.

As in (7.19), we have

E

(
y∗

j Qjyj −
1

n
TrDjEQj

)2

=
1

n2

(
E(TrDjQjDjQj) + κ

N∑

i=1

σ4
ijE[Qj ]

2
ii

)
≤ Nσ4

max(1 + |κ|)
n2ω2

.
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Therefore,

‖ϕ(ω)‖∞ ≤ σ2
max

ω
α(ω) +

K ′

ω2
(7.25)

for ω ∈ [ρ, +∞). A similar derivation yields α(ω) ≤ σ2
max

ω ‖ϕ(ω)‖∞ + K′

ω2 . Plugging this
inequality into (7.25), we obtain

(1 − σ4
max/ω2)‖ϕ(ω)‖∞ ≤ K ′

ω2
,

hence ‖ϕ(ω)‖∞ ≤ K ′ω−2 for ω large enough.

We have proved that ‖ϕ(ω)‖∞ is bounded on compact subsets of [ρ,∞), and furthermore,
that (7.10) is true for ω large enough. Therefore, (7.10) holds for every ω ∈ [ρ, +∞). Step 4
is proved, and so is Theorem 3.3.

Appendix A. Proof of Lemma 6.3

Proof of Lemma 6.3–(1). Straightforward.

Proof of Lemma 6.3-(2).

Proof of (2a). From [17, Lemmas 6.1 and 6.6], we get

1

n
TrU (Q(−ρ) − T (−ρ)) −−−−→

n→∞
0 a.s.

Now since ∣∣∣∣
1

n
TrU (Q(−ρ) − T (−ρ))

∣∣∣∣ ≤ ‖U‖ (‖Q(−ρ)‖ + ‖T (−ρ)‖) ≤ 2‖U‖
ρ

,

the Dominated Convergence Theorem yields the first part of (2a). The second part is proved
similarly. �

Proof of (2b). Recall from Theorem 2.3-(1) and from the mere definitions of T and B that
matrices T (z) and B(z) can be written as

T =



−zI +
1

n

n∑

j=1

1

1 + 1
nTrDjT

Dj




−1

and B =



−zI +
1

n

n∑

j=1

1

1 + 1
nTrDjEQ

Dj




−1

.

We therefore have
1

n
TrU(B(−ρ) − T (−ρ)) =

1

n
TrUBT (T−1 − B−1)

=
1

n2
Tr


UBT

n∑

j=1

1
nTrDj(EQ − T )

(1 + 1
nTrDjT )(1 + 1

nTrDjEQ)
Dj




=
1

n2

N∑

i=1

n∑

j=1

xn
ij ,

with xn
ij =

[U ]iibitiσ
2
ij

(1 + 1
nTrDjT )(1 + 1

nTrDjEQ)

1

n
TrDj(EQ − T ). It can be easily checked that

|xn
ij | ≤ 2 supn(‖U‖)σ4

max/ρ3. Furthermore, xn
ij →n 0 for every i, j by (2a). It remains
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to apply the Dominated Convergence Theorem to the integral with respect to Lebesgue
measure on [0, 1]2 of the staircase function fn(x, y) defined as fn(i/N, j/n) = xn

ij to deduce

that 1
nTrU(B − T ) → 0. This ends the proof of (2b). �

In the sequel, K is a constant whose value might change from line to line but which
remains independent of n.

Proof of (2c). We have

TrU (Q − EQ)
(a)
=

n∑

j=1

(Ej − Ej+1)TrUQ

(b)
=

n∑

j=1

(Ej − Ej+1)TrU (Q − Qj)

(c)
= −

n∑

j=1

(Ej − Ej+1)
y∗

j QjUQjyj

1 + y∗
j Qjyj

△
=

n∑

j=1

xj . (A.1)

where (a) follows from the fact that E1Tr UQ = TrUQ and En+1TrUQ = ETr UQ, (b)
follows from the fact that EjTr UQj = Ej+1TrUQj since Qj does not depend on yj and (c)
follows from (6.1) and from the fact that Tr Qjyjy

∗
j QjU = y∗

j QjUQjyj .

Now, one can easily check that
∑n

j=1 xj (= TrU(Q − EQ)) is the sum of a martingale differ-
ence sequence with respect to the increasing filtration Fn, . . . ,F1 since Ekxj = 0 for k > j.
Therefore,

E (TrU (Q − EQ))
2

=

n∑

j=1

Ex2
j .

Write xj = xj,1 + xj,2 where:

xj,1 = − (Ej − Ej+1)

(
y∗

j QjUQjyj

1 + 1
nTrDjQj

)
,

xj,2 = − (Ej − Ej+1)

(
y∗

j QjUQjyj

1 + y∗
j Qjyj

−
y∗

j QjUQjyj

1 + 1
nTrDjQj

)
.

Using the fact that yj and Fj+1 are independent, and the fact that Qj does not depend on
yj , one easily obtains:

Ej+1

(
y∗

j QjUQjyj

1 + 1
nTrDjQj

)
=

1

n
TrDjEj+1

(
QjUQj

1 + 1
nTrDjQj

)
.

Thus xj,1 and xj,2 write:

xj,1 = −y∗
j Ej+1

(
QjUQj

1 + 1
nTrDjQj

)
yj +

1

n
TrDjEj+1

(
QjUQj

1 + 1
nTrDjQj

)

xj,2 = (Ej − Ej+1)
y∗

j QjUQjyj

(1 + 1
nTrDjQj)(1 + y∗

j Qjyj)

(
y∗

j Qjyj −
1

n
TrDjQj

)

△
= (Ej − Ej+1)xj,3 .
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Since matrix ‖DjEj

(
QjUQj

1+ 1
n

TrDjQj

)
‖ ≤ K, Lemma 6.2-(1) in conjunction with Assumption

A-1 yield Ex2
1,j ≤ Kn−1. Furthermore, we have:

|xj,3| ≤
∣∣∣∣y

∗
j QjUQjyj

(
y∗

j Qjyj −
1

n
TrDjQj

)∣∣∣∣

since y∗
j Qjyj ≥ 0 and 1

nTrDjQj ≥ 0. Cauchy-Schwarz inequality yields:

Ex2
j,3 ≤

(
E(y∗

j QjUQjyj)
4
) 1

2

(
E

(
y∗

j Qjyj −
1

n
TrDjQj

)4
) 1

2

which in turn yields Ex2
j,3 < K

n since

E(y∗
j QjUQjyj)

4 ≤ K and E

(
y∗

j Qjyj −
1

n
TrDjQj

)4

≤ K

n2
, (A.2)

where the first inequality in (A.2) follows from 0 ≤ y∗
j QjUQjyj ≤ ‖QjUQj‖‖yj‖2 and from

Assumption A-1, and the second from Assumption A-1 and Lemma 6.2-(1).

We are now in position to conclude.

Ex2
j,2 = E ((Ej − Ej+1)xj,3)

2 ≤ 2E
(
(Ejxj,3)

2 + (Ej+1xj,3)
2
)

(a)

≤ 2E
(
Ejx

2
j,3 + Ej+1x

2
j,3

)
= 4Ex2

j,3,

where (a) follows from Jensen’s inequality. Now,

Ex2
j = E(xj,1 + xj,2)

2 ≤
(
(Ex2

j,1)
1
2 + (Ex2

j,2)
1
2

)2

≤ K

n

and E(TrU(Q − EQ))2 =
∑n

j=1 Ex2
j ≤ K. Inequality (2c) is proved. �

Proof of (2d). We rely again on the decomposition (A.1) and follow the lines of the compu-
tations in ([3], page 580):

TrU (Q − EQ) = −
n∑

j=1

(Ej − Ej+1)
y∗

j QjUQjyj

1 + y∗
j Qjyj

.

Thus,

E

(
1

N
TrU(Q − EQ)

)4

=
1

N4
E




n∑

j=1

(Ej − Ej+1)
y∗

j QjUQjyj

1 + y∗
j Qjyj




4

(a)

≤ K

N4
E




n∑

j=1

(
(Ej − Ej+1)

y∗
j QjUQjyj

1 + y∗
j Qjyj

)2



2

(b)

≤ K

N4
N

n∑

j=1

E

(
(Ej − Ej+1)

y∗
j QjUQjyj

1 + y∗
j Qjyj

)4

≤ K

N2
sup

j
E

(
(Ej − Ej+1)

y∗
j QjUQjyj

1 + y∗
j Qjyj

)4

,
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where (a) follows from Burkholder’s inequality and (b) from the convexity inequality (
∑n

i=1 ai)
2 ≤

n
∑n

i=1 a2
i . Recall now that y∗

j Qjyj ≥ 0 and ‖Qj(−ρ)‖ ≤ 1/ρ. Standard computations yield:

E

(
(Ej − Ej+1)

y∗
j QjUQjyj

1 + y∗
j Qjyj

)4

≤ KE
(
y∗

j QjUQjyj

)4 ≤ K‖U‖4

ρ8
E‖yj‖4

which is uniformly bounded by Assumptions A-1 and A-2. Therefore, (2d) is proved. �

Proof of Lemma 6.3–(3). Developing the difference Q − Qj with the help of (6.1), we
obtain:

|TrM(Q − Qj)| =

∣∣∣∣∣TrM

(
Qjyjy

∗
j Qj

1 + y∗
j Qjyj

)∣∣∣∣∣

=

∣∣y∗
j QjMQjyj

∣∣
1 + y∗

j Qjyj
≤ ‖M‖ ‖Qjyj‖2

1 + y∗
j Qjyj

.

Consider a spectral representation of Y jY j∗, i.e., Y jY j∗ =
∑N

i=1 λieie
∗
i . We have

‖Qjyj‖2 =

N∑

i=1

|e∗i yj |2

(λi + ρ)2
and y∗

j Qjyj =

N∑

i=1

|e∗i yj |2
λi + ρ

≥ ρ

N∑

i=1

|e∗i yj|2
(λi + ρ)2

,

hence the result. Inequality (3) is proved.

Appendix B. Proof of Formula (7.2)

Recalling that Q(z) = (Y Y ∗− zIN )−1 and Q̃(z) = (Y ∗Y − zIn)−1, it is easy to show that

Tr(Q)−Tr(Q̃) = (n−N)/z. We shall show now that Tr(T )−Tr(T̃ ) = (n− N)/z. Formula
(7.2) is obtained by combining these two equations.
Equations (2.2) in the statement of Lemma 2.4 can be rewritten as

ti +
ti
n

n∑

j=1

σ2
ij t̃j = −1

z
for 1 ≤ i ≤ N, t̃j +

t̃j
n

N∑

i=1

σ2
ijti = −1

z
for 1 ≤ j ≤ n.

By summing the first N equations over i and the next n equations over j and by eliminating

the term 1
n

∑N
i=1

∑n
j=1 σ2

ijti t̃j , we obtain
∑

i ti −
∑

j t̃j = (n − N)/z, which is the desired

result. Equation (7.2) is proved.
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[17] W. Hachem, P. Loubaton, and J. Najim. Deterministic equivalents for certain functionals of large random
matrices. Ann. Appl. Probab., 17(3):875–930, 2007.

[18] R. A. Horn and C. R. Johnson. Topics in matrix analysis. Cambridge University Press, Cambridge,
1994.

[19] K. Johansson. On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J., 91(1):151–
204, 1998.

[20] D. Jonsson. Some limit theorems for the eigenvalues of a sample covariance matrix. J. Multivariate
Anal., 12(1):1–38, 1982.

[21] A. Khorunzhy, B. Khoruzhenko, and L. Pastur. Asymptotic properties of large random matrices with
independent entries. J. Math. Phys., 37(10):5033–5060, 1996.

[22] A. L. Moustakas, S. H. Simon, and A. M. Sengupta. MIMO capacity through correlated channels in the
presence of correlated interferers and noise: a (not so) large N analysis. IEEE Trans. Inform. Theory,
49(10):2545–2561, 2003.

[23] A. M. Sengupta and P.P. Mitra. Capacity of multivariate channels with multiplicative noise:
I. random matrix techniques and large-n expansions for full transfer matrices. available at
http://arxiv.org/abs/physics/0010081, 2000.

[24] J. W. Silverstein. Strong convergence of the empirical distribution of eigenvalues of large-dimensional
random matrices. J. Multivariate Anal., 55(2):331–339, 1995.

[25] J. W. Silverstein and Z. D. Bai. On the empirical distribution of eigenvalues of a class of large-dimensional

random matrices. J. Multivariate Anal., 54(2):175–192, 1995.
[26] Ya. Sinai and A. Soshnikov. Central limit theorem for traces of large random symmetric matrices with

independent matrix elements. Bol. Soc. Brasil. Mat. (N.S.), 29(1):1–24, 1998.
[27] F. Smithies. Integral equations. Cambridge Tracts in Mathematics and Mathematical Physics, no. 49.

Cambridge University Press, New York, 1958.
[28] A. Soshnikov. The central limit theorem for local linear statistics in classical compact groups and related

combinatorial identities. Ann. Probab., 28(3):1353–1370, 2000.
[29] G. Taricco. On the capacity of separately-correlated MIMO Rician fading channels. In Proc. 49th Annual

IEEE Globecom Conference, 2006, San Francisco (CA), USA, November 2006.
[30] I.E. Telatar. Capacity of multi-antenna gaussian channel. European Transactions on Telecommunica-

tions, 1999.
[31] D. Tse and O. Zeitouni. Linear multiuser receivers in random environments. IEEE Trans. Inform.

Theory, 46(1):171–188, 2000.
[32] D. N. C. Tse and S. V. Hanly. Linear multiuser receivers: effective interference, effective bandwidth and

user capacity. IEEE Trans. Inform. Theory, 45(2):641–657, 1999.
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