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A well-balanced Runge–Kutta Discontinuous Galerkin method for
the Shallow-Water Equations with flooding and drying

A. Ern, S. Piperno∗ and K. Djadel

CERMICS, École des Ponts, ParisTech, 77455 Marne La Vallée cedex 2, France
ern@cermics.enpc.fr, serge.piperno@cermics.enpc.fr

SUMMARY

We build and analyze a Runge–Kutta Discontinuous Galerkin method to approximate the one- and
two-dimensional Shallow-Water Equations. We introduce a flux modification technique to derive a well-
balanced scheme preserving steady-states at rest with variable bathymetry and a slope modification
technique to deal satisfactorily with flooding and drying. Numerical results illustrating the performance
of the proposed scheme are presented. Copyright c© 2000 John Wiley & Sons, Ltd.

key words: Runge–Kutta Discontinuous Galerkin; Shallow-Water Equations; source terms; well-

balanced schemes; flooding and drying

1. Introduction

Free-surface water flows occur in many domains of practical importance such as coastal and
river engineering, dam break problems, or ocean modeling. In many cases, such flows can be
satisfactorily modeled by the so-called Shallow-Water Equations (SWE), which are derived by
considering the depth-averaged three-dimensional incompressible Navier–Stokes Equations,
assuming hydrostatic pressure distribution, and neglecting vertical acceleration and viscous
effects [1, 2]. From a mathematical viewpoint, the SWE are a set of nonlinear first-order
partial differential equations of hyperbolic type.

The discretization of the SWE has been the subject of extensive literature. Until recent
years, the most commonly chosen numerical methods were Finite Differences (FD), Continuous
Finite Elements (CFE) and Finite Volumes (FV). We refer, for instance, to [3] for FD, to
[4, 5, 6] for CFE and to [7, 8, 9, 10] for FV. The main motivation for using FV is that such
methods are especially tailored to discretize conservation laws possibly with shocks, usually
producing approximate solutions with local conservation properties. The main drawback of
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A WELL-BALANCED RKDG METHOD FOR THE SHALLOW-WATER EQUATIONS 1

FV is their low order of convergence, even in the case of smooth solutions. To avoid this
situation, one can enhance the order of the spatial approximation by using slope reconstruction
techniques like the MUSCL scheme (leading to limited orders of convergence on unstructured
meshes anyway). Another possibility consists of using higher order polynomials, leading to
so-called Discontinuous Galerkin (DG) methods. DG methods approximate the solution in
a finite element setting, but in contrast to CFE which use trial and test spaces spanned by
continuous piecewise polynomial functions, DG methods use trial and test spaces spanned by
piecewise polynomial functions without enforcing explicitly any continuity between adjacent
mesh cells. DG methods with polynomial order set to zero can be interpreted as FV schemes.

Since their introduction more than thirty years ago (see [11, 12] for pioneering works),
DG methods have experienced a vigorous development. On a given mesh and using a
fixed polynomial order, DG methods involve more degrees of freedom than CFE. However,
DG methods possess several attractive features, namely they are well-suited to hp-adaptive
procedures, they can be implemented on arbitrary meshes without enforcing geometric
conformity, and they are amenable to parallel computation owing in particular to the block-
diagonal structure of the mass matrix. Moreover, when approximating conservation laws, DG
methods lead to local conservation properties at the cell level, as in FV. We refer to [13, 14]
for a general review of DG methods.

Significant progress in the application of DG methods to the SWE has been achieved in the
last few years [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. However, two issues relevant in many
applications, namely preserving steady-states at rest with variable bathymetry and properly
handling flooding and drying, have not been addressed in previous work, with the exception
of [17] where a moving mesh was used to deal with dry areas in a one-dimensional setting;
the extension to two space dimensions does not seem to be straightforward. The main purpose
of this work is to design and analyze a discretization by DG methods of the SWE that can
satisfactorily handle the two issues above.

• A desirable feature of discretization schemes for the SWE involving bathymetric terms is
to preserve equilibrium states and especially steady-states at rest. However, this property
is not satisfied by the usual schemes because it requires a compatibility between the
numerical flux and the approximation of the source term. In the framework of FV, several
techniques have been proposed to satisfy this property, leading to so-called well-balanced
schemes ; see [7, 9, 10] where bathymetric terms are included in the flux calculation and
[8] where a so-called upwind discretization of the bathymetric term is proposed. In the
present work, we derive a flux modification technique for DG methods inspired from the
hydrostatic reconstruction developed for a kinetic scheme in [7].

• Many applications of the SWE involve flooding and drying. One major difficulty when
dealing with such processes is to guarantee that the discrete water depth remains
nonnegative. Besides their lack of physical meaning, negative values of the water depth
lead to difficulties in the computation of the numerical fluxes since the wave speed
involves the square root of the water depth. In the present work, we introduce a slope
modification technique based on the idea of threshold usually used in the framework of
FV. Moreover, we use the HLLE flux [26] in one space dimension and the HLLC [20] flux
in two space dimensions which, contrary to Roe’s flux for example, ensure a property of
nonnegativity for the approximate water depth [27].

This paper is organized as follows. In §2, the SWE and the main features of the Runge–
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2 A. ERN, S. PIPERNO, K. DJADEL

Kutta Discontinuous Galerkin (RKDG) scheme introduced in [20] to approximate the SWE
are restated. In §3, the flux modification technique yielding a well-balanced RKDG method is
analyzed. In §4, the slope modification technique to deal with flooding and drying is described.
In §5, numerical tests are presented to illustrate the performance of the proposed method.
Conclusions are reached in §6. For completeness, an appendix briefly describes the HLLE and
the HLLC fluxes.

2. Approximation of SWE by RKDG methods

This section restates the main features of the classical RKDG scheme introduced in [20] to
approximate the SWE. This scheme will serve as the basis for the new developments presented
in §3 and §4.

2.1. Governing Equations

Let the domain Ω be an open bounded subset of Rd, d ∈ {1, 2}, and let T > 0 be the
simulation time. Let g denote the gravitational acceleration and let b : Ω −→ R denote a
smooth function representing the bathymetry. Let (x1, . . . , xd) denote the spatial coordinates;
summation convention for repeated indices is used in the sequel. The SWE can be written as
follows:







∂W

∂t
+

∂Fi(W )

∂xi
= S(W, b) in Ω × ]0, T [ ,

Initial and Boundary conditions ,
(1)

where W := (ζ, q) : Ω× [0, T ] −→ R
m, m := d + 1, denotes the conservative variables, ζ being

the (scalar-valued) water depth and q the (Rd-valued) discharge of the flow with components
(q1, q2) in two space dimensions. Moreover, the source term S(W, b) and the flux functions
{Fi(W )}1≤i≤d are defined for d = 1 as

S(W, b) :=





0

−gζ
∂b

∂x1



 , F1(W ) :=







q

q2

ζ
+

g

2
ζ2






,

and for d = 2 as

S(W, b) :=













0

−gζ
∂b

∂x1

−gζ
∂b

∂x2













, F1(W ) :=













q1

q2
1

ζ
+

g

2
ζ2

q1q2

ζ













, F2(W ) :=













q2

q1q2

ζ
q2
2

ζ
+

g

2
ζ2













.

2.2. Space discretization and boundary conditions

Let Th be a shape-regular mesh composed of triangular elements. For simplicity, it is assumed
that Th covers Ω exactly, i.e., Ω is a polygonal domain in two space dimensions. Let h :=
maxK∈Th

hK , where hK is the diameter of the element K ∈ Th and let nK = (nK,1, . . . , nK,d)
t

be the unit outward normal of K. For K ∈ Th, a set σ ⊂ ∂K is said to be an interface (resp.,
a boundary face) of K if there is K ′ ∈ Th with K ′ 6= K such that σ = K ∩ K ′ (resp., if
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σ = K ∩ ∂Ω); Ei
h(K) (resp., E∂

h(K)) is then defined as the set of interfaces (resp., boundary
faces) of K. If Th does not possess hanging nodes, Ei

h(K) is simply the set of interior faces
of K. Set Eh(K) = Ei

h(K) ∪ E∂
h(K). For σ ∈ Ei

h(K), K ∈ Th, Kσ denotes the element of Th

sharing the interface σ with K, and for σ ∈ Eh(K), nK,σ denotes the unit outward normal
of K on σ and |σ| the (d − 1)-dimensional measure of σ. The space P

p(K), p ∈ N, K ∈ Th,
denotes the space of polynomial functions of d variables over K of total degree p at most. The
DG space is then defined as P

p
h := {v : Ω → R : v|K ∈ Pp(K), ∀K ∈ Th }. Note that a

matching condition at interfaces is not enforced on functions in P
p
h.

For all K ∈ Th, multiply (1) by vh ∈ [Pp(K)]m, integrate over K, and apply Green’s
formula. This yields the following (continuous-in-time) space approximation of (1) : Find
Wh := (ζh, qh) ∈ C1([0, T ], [Pp

h]m) such that ∀t ∈ ]0, T [, ∀K ∈ Th, ∀vh ∈ [Pp(K)]m,






∫

K

vh
∂Wh

∂t
+

∫

∂K

vh φK(Wh) −
∫

K

∂vh

∂xi
Fi(Wh) =

∫

K

vh S(Wh, b) ,

Initial condition ,
(2)

where φK(Wh) is the so-called numerical flux. The numerical flux is evaluated as follows:
∀K ∈ Th, ∀σ ∈ Eh(K), ∀x ∈ σ,

φK(Wh)(x) =







φ∗(Wh|K(x), Wh|Kσ
(x), nK,σ) if σ ∈ Ei

h(K) ,

φ∗(Wh|K(x), W ∂
h (x), nK,σ) if σ ∈ E∂

h(K) ,
(3)

where φ∗ : Rm × Rm × Rd −→ Rm is a numerical flux function independent of the mesh cell
under consideration and where W ∂

h (x) is a fictitious outer state that serves to enforce boundary
conditions weakly through the numerical fluxes (see below). The functional φ∗ has to verify
certain conditions such as conservativity, i.e.,

∀(X, Y, n) ∈ R
m × R

m × R
d , φ∗(X, Y, n) + φ∗(Y, X,−n) = 0 , (4)

and consistency, i.e.,

∀(X, n) ∈ R
m × R

d , φ∗(X, X, n) = Fi(X)ni . (5)

In this work, φ∗ is evaluated using the Harten–Lax–van Leer–Einfeldt (HLLE) flux in one
space dimension and the Harten–Lax–van Leer–Contact (HLLC) flux in two space dimensions.
The main features of these fluxes are briefly described in the appendix.

The actual expression for W ∂
h (x) depends on Wh|K(x) and on the flow regime where the

boundary conditions are enforced. For example, in the case of an inflow boundary face in one
space dimension, the speeds of the two Riemann invariants computed using Wh|K are given
by

λ± :=
qh|K
ζh|K

±
√

gζh|K .

Observe that λ+ > 0 at an inflow boundary. If λ− is also positive, the flow is said to be
supercritical and one sets W ∂

h = (ζ∂ , q∂), where ζ∂ and q∂ are prescribed values. If λ− is
negative, the flow is said to be subcritical and one usually imposes either ζ or q. More precisely,
the conservation of the outward Riemann invariant is written in the form

qh|K
ζh|K

− 2
√

gζh|K =
q∂

ζ∂
− 2
√

gζ∂ . (6)
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If the outer discharge q∂ is prescribed, then (6) permits to obtain an outer water depth ζ∂

using Newton iterations; if the outer water depth ζ∂ is prescribed, then (6) immediately yields
an outer discharge q∂ . For a thorough discussion of boundary conditions for SWE and fictitious
outer states, we refer to [28, 4].

To write (2) in vector form, a set of basis functions in [Pp
h]m must be selected. To exploit the

local character of DG methods, the basis functions have support localized at a single mesh cell.
On a given mesh cell, the local basis functions are Legendre polynomials in one space dimension
and a particular set of modal basis functions constructed using barycentric coordinates in two

space dimensions (see [29] for some properties of these modal basis functions). Let
−→
W h ∈ RN

denote the component vector of Wh with respect to the basis functions; here, N denotes the

total number of degrees of freedom, i.e., the dimension of [Pp
h]m (N = Mm (p+d)!

d!p! where M

denotes the number of mesh cells). Then, upon inverting the mass matrix, (2) can be recast
into the form

d
−→
W h

dt
= Hh(

−→
W h) , (7)

where Hh : RN → RN . Observe that the mass matrix is block diagonal and hence, easily
invertible.

2.3. Time discretization

The discretization of the time derivative in (7) is performed in an explicit way. Let (tk)k∈N be
a sequence of discrete times with t0 = 0. Let (∆t)k = tk+1 − tk be the (k + 1)-th time step. To

construct an approximation
−→
W k

h of
−→
W h at the discrete time tk, a Runge–Kutta (RK) scheme

of order q is used. Given an initial condition
−→
W 0

h, the scheme consists of the following steps:

For k ∈ N, set
−→
W k+1,0

h =
−→
W k

h, then for i ∈ {1, . . . , q}, compute the RK sub-iterates

−→
W k+1,i

h =
i−1
∑

l=0

cl
i
−→w l

hi , −→w l
hi =

−→
W k+1,l

h +
dl

i

cl
i

(∆t)kHh(
−→
W k+1,l

h ) , (8)

and finally set
−→
W k+1

h =
−→
W k+1,q

h . The coefficients cl
i and dl

i in (8) can be found in [13]. To
ensure an equal order of accuracy in space and time, a Runge–Kutta scheme of order (p + 1)
is used, i.e., q = p + 1.

The time step is determined adaptively by taking (∆t)k := min((∆t)∗, (∆t)k
cfl) where (∆t)∗

is a user-defined maximal time step and (∆t)k
cfl results from the following CFL condition [13]:

(∆t)k
cfl :=

1

2p + 1
min

K∈Th

inf
x∈∂K

ζk

h
(x)>0

hK
(

|q
k
h

ζk
h

·nK | +
√

gζk
h

)

(x)

. (9)

Here, W k
h = (ζk

h , qk
h) is the function in [Pp

h]m associated with the component vector
−→
W k

h.

2.4. Slope limiting

It is well-known that in the context of conservation laws, a shock can appear in finite time even
if the initial data are smooth. Moreover, high-order methods can yield spurious oscillations
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near a shock. To avoid this situation, slope limiting is necessary. Slope limiting consists of

replacing the evaluation of
−→
W k+1,i

h in (8) by

−→
W k+1,i

h = Λi

(

i−1
∑

l=0

cl
i
−→w l

hi

)

, −→w l
hi =

−→
W k+1,l

h +
dl

i

cl
i

(∆t)kHh(
−→
W k+1,l

h ) , (10)

noticing that the evaluation of −→w l
hi is kept unchanged [13]. Here, Λi : RN → RN ,

i ∈ {1, . . . , q}, are operators that firstly detect shocks and mark cells near shocks and then,
on the marked cells, restrict the polynomial order to p = 1 and reconstruct the slope of the
approximation using mean-preserving transformations. In [13], the same operator Λi ≡ Λ is
used at each RK sub-iterate. Here, this technique is used in one space dimension, but to reduce
computational costs in two space dimensions, Λi is the identity for i < q and Λq ≡ Λ, that is,
slope limiting is enforced only on the last RK sub-iterate. Furthermore, following the ideas of
[24], slope limiting is applied to the free surface height (ζ + b) rather than to the water depth
ζ. To detect shocks, the criterion proposed in [30] is used. For all K ∈ Th, define the subset
E−

h (K) of Eh(K) as the inflow interfaces or boundary faces of K, namely

E−
h (K) := { σ ∈ Eh(K) :

∫

σ

qh·nK,σ ≤ 0 } .

Moreover, setting for all K ∈ Th and for all σ ∈ Eh(K),

IK,σ :=

∣

∣

∣

∫

σ

(ζh|K − ζh|Kσ
)
∣

∣

∣

h
(p+1)/2
K |σ| |〈ζh〉K |

, IK :=
∑

σ∈E−

h
(K)

IK,σ

where 〈ζh〉K denotes the mean value of ζh over K, the criterion is to apply slope limiting on
K whenever IK ≥ 1.

3. A well-balanced RKDG scheme with flux modification

The preservation of equilibrium states is a desirable feature for schemes dealing with the
SWE. Among these states, we will consider in particular steady-states at rest. These states
are defined by the conditions ζ + b ≡ C (a constant) and q ≡ 0 over the domain. Failure to
preserve such states leads to so-called numerical waves ; see, e.g., [31] for an example in the
framework of FV and §5.2.1 for an example with DG methods. Approximation schemes that
avoid this situation are termed well-balanced schemes. Examples of well-balanced FV schemes
include those designed in [7, 8, 9, 10]. Unfortunately, the RKDG scheme defined in §2 is not
well-balanced. Indeed, well-balancing requires a compatibility between the numerical flux and
the discretization of the source term. The goal of this section is to design a well-balanced
RKDG scheme.

A first observation is that it is not possible to obtain ζh + b ≡ C simply because b 6∈ P
p
h.

Hence, we seek for the optimal ζh ∈ P
p
h in the least-squares sense, that is, we seek for ζh ∈ P

p
h

such that ζh + bh ≡ C where bh ∈ P
p
h is the L2-projection of b onto P

p
h. Recall that this

projection verifies
∫

K

b vh =

∫

K

bh vh , ∀vh ∈ P
p(K) , ∀K ∈ Th .
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The well-balanced RKDG scheme with slope limiting is obtained by modifying (2) as follows:
∫

K

vh
∂Wh

∂t
+

∫

∂K

vh φK(W �
h ) −

∫

K

∂vh

∂xi
Fi(Wh)

=

∫

K

vh S(Wh, bh) +

∫

∂K

vh δK(Wh, bh) .

(11)

Here, W �
h := (ζ�h, q�h) with for K ∈ Th,

ζ�h|K :=







max(0 , ζh|K − max(bh|Kσ
− bh|K , 0)) , σ ∈ Ei

h(K) ,

ζh|K , σ ∈ E∂
h(K) ,

while q�h := ζ�hqh/ζh, and where

δK(Wh, bh) :=

(

0

g
2 (ζ�h|2K − ζh|2K)nK

)

. (12)

The difference between (2) and (11) is on the one hand that in (11) the numerical flux is
evaluated using W �

h instead of Wh (still using (3)), and on the other hand that the source term
consists of a volume contribution

∫

K vh S(Wh, bh) (evaluated using the projected bathymetry
bh) and a surface contribution

∫

∂K vh δK(Wh, bh). In vector form, (11) can be recast into the
form

d
−→
W h

dt
= Hwb

h (
−→
W h) ,

where Hwb
h : RN → RN . The well-balanced RKDG scheme consists of replacing (10) by

−→
W k+1,i

h = Λi

(

i−1
∑

l=0

cl
i
−→w l

hi

)

, −→w l
hi =

−→
W k+1,l

h +
dl

i

cl
i

(∆t)kHwb
h (

−→
W k+1,l

h ) . (13)

The key property of the above scheme is given in the following

Proposition 1. The scheme (13) preserves steady-states at rest, i.e., for all k ∈ N,
(

ζk
h + bh ≡ C and qk

h ≡ 0
)

⇒
(

ζk+1
h + bh ≡ C and qk+1

h ≡ 0
)

,

where C denotes a fixed positive constant.

Proof. Let Wh = (ζh, qh) ∈ [Pp
h]m such that ζh + bh ≡ C and qh = 0 (the superscript k is

omitted for brevity). We set d = 2 for the following of the proof, the case d = 1 is treated in a
similar way. It is clear that it is sufficient to prove that for all K ∈ Th and for all vh ∈ [Pp(K)]m,

∫

∂K

vh φK(W �
h ) −

∫

K

∂vh

∂xi
Fi(Wh) =

∫

K

vh S(Wh, bh) +

∫

∂K

vh δK(Wh, bh) .

Since Wh corresponds to a steady-state at rest, it is readily verified that

• for all K ∈ Th and for all σ ∈ Ei
h(K), ζ�h is single-valued on σ and equal to

C − max(bh|K , bh|Kσ
);

• q�h = 0.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:0–0
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A WELL-BALANCED RKDG METHOD FOR THE SHALLOW-WATER EQUATIONS 7

Using the consistency of the flux function φ∗ (see (5)) then yields that

φK(W �
h ) =





0
g
2 (ζ�h|K)2nK,1
g
2 (ζ�h|K)2nK,2



 .

Moreover,

F1(W ) :=









0

g

2
ζ2
h

0









, F2(W ) :=









0

0

g

2
ζ2
h









, S(Wh, bh) :=













0

g

2

∂ζ2
h

∂x1
g

2

∂ζ2
h

∂x2













,

where we have used that ζh + bh ≡ C to simplify the expression for S(Wh, bh). Using (12) and
Green’s formula yields the desired result. �

Remark 1. The only property required on the numerical flux for the above result to hold is
consistency (but not conservativity).

It is important to assess the accuracy of the above flux modification technique. This
motivates the following

Proposition 2. Let Wh ∈ [Pp
h]m. Assume that for all K ∈ Th, ζh|K is positive and that ζh|K

and (qh/ζh)|K are uniformly bounded. Assume that the bathymetry is smooth enough. Then,
for all K ∈ Th, for all σ ∈ Ei

h(K), and for all x ∈ σ,

‖Wh(x) − W �
h (x)‖Rm + ‖δK(Wh, bh)‖Rm ≤ chp+1

K ,

where c is independent of Th and where ‖ · ‖Rm denotes any norm on Rm.

Proof. Since the bathymetry is smooth enough, classical approximation results imply that for
all K ∈ Th, for all σ ∈ Ei

h(K), and for all x ∈ σ,

|bh|K(x) − bh|Kσ
(x)| ≤ chp+1

K ,

whence the conclusion is readily inferred. �

Proposition 2 shows that the flux modification technique induces a perturbation of the
original RKDG scheme of order hp+1. Since the problem is nonlinear, it cannot be inferred
that the error induced by this perturbation is necessarily of the same order. Numerical results
reported in §5 confirm that the present flux modification technique preserves the high-order
accuracy of the RKDG method.

4. Slope modification for flooding and drying

When the problem involves flooding and drying, it is necessary to prevent the discrete water
depth from taking negative values. To this purpose, a procedure, similar in spirit to slope
limiting, is introduced. On each mesh cell where the minimum (computed over the integration
points) of ζh is lower than a threshold ε, the following steps are taken.

For p = 0, the procedure is similar to that used in FV, namely setting to zero ζh and qh.
For p ≥ 2, the discrete solution is first projected onto linears and then the procedure for p = 1
is applied elementwise as follows:

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:0–0
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8 A. ERN, S. PIPERNO, K. DJADEL

• If the average of ζh is negative, then ζh and qh are set to zero.

• If the average of ζh is nonnegative, this value is kept but the gradient of ζh is modified
in such a way that ζh vanishes at vertices with negative value. More specifically in two
space dimensions, let K be the reference triangle with vertices v0 := (0, 0), v1 := (1, 0)
and v2 := (0, 1). Introduce the nodal polynomial basis functions p0 := 1− x− y, p1 := x

and p2 := y. Let ζh ∈ P1(K) be such that ζh :=
∑2

j=0 ζj pj and assume that ζh has
negative values on K. Let 〈ζh〉K denote the mean of ζh over K. If ζh is negative at only
one vertex, say vi with i ∈ {0, 1, 2}, then

ζ ′h :=
〈ζh〉K

〈ζh〉K − ζi
(ζh − ζi) .

If ζh is negative at two vertices, say vi1 and vi2 with i1, i2 ∈ {0, 1, 2}, then

ζ ′h :=
〈ζh〉K
〈pi〉K

pi ,

where i ∈ {0, 1, 2} \ {i1, i2}. It is straightforward to verify that

〈ζ ′h〉K = 〈ζh〉K , (14)

∀x ∈ K, ζ ′h(x) ≥ 0. (15)

Finally, the discharge qh is modified by only setting its value to zero at those vertices
where ζh has been modified. Moreover, qh is also modified using a similar procedure
whenever the discrete velocity norm is larger than a prescribed upper bound for the
velocity in the flow. The overall transformation preserves mass because of (14) (as long
as the average of ζh is nonnegative), but not discharge.

The well-balanced RKDG scheme with slope modification consists of replacing (13) by

−→
W k+1,i

h = Λi

(

i−1
∑

l=0

cl
i
−→w l

hi

)

, −→w l
hi =

−→
W k+1,l

h +
dl

i

cl
i

(∆t)kHwb
h (Υ

−→
W k+1,l

h ) , (16)

where Υ : RN → RN is the mean-preserving and nonnegativity-enforcing transformation
defined above. Slope limiting is not applied at the same time as slope modification, since the
latter can activate artificially the former.

5. Numerical tests

Test cases presented in this section are regrouped into three subsections. In §5.1, we illustrate
the ability of the classical RKDG scheme described in §2 to approximate smooth solutions with
high accuracy and to capture sharply shocks for constant bathymetry. In §5.2, we illustrate
the fact that the well-balanced RKDG scheme designed in §3 performs equally well in terms
of accuracy and shock capturing when the bathymetry is variable. In §5.3, we assess the slope
modification technique designed in §4 to handle flooding and drying within the well-balanced
RKDG scheme. In the sequel, we set g = 9.81m/s2. When evaluating convergence rates below,
the parameter h representative of a given triangulation is evaluated as the maximal length of an
edge in the triangulation. Let us mention that the unstructured meshes considered henceforth
are quite regular and smooth (in general, the minimal length of an edge in the mesh is larger
than h/3).
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Figure 1. Test case with smooth solution: L2-error on the water depth for p ∈ {0, 1, 2, 3}.

5.1. Constant bathymetry

5.1.1. Smooth solutions Consider a one-dimensional domain Ω of length 10m and a final
simulation time of T = 0.5s. The initial datum is ζ0 = (1+0.2e−100(x−0.5)2)m and q0 = 0m2/s.
Since an analytical solution is not available, the error is calculated with respect to a reference
solution computed on an uniform mesh of 200 cells with polynomial degree p = 3. Figure 1
presents the L2-error on the water depth for various mesh sizes. In all cases, the convergence
rate is (p + 1) as expected.

5.1.2. Oblique hydraulic jump The aim of this test case is to study the performance of the
classical RKDG scheme in the case where the exact solution presents a shock. We consider the
standard test case of an oblique hydraulic jump on a flat bottom [32]. The definition of the
problem is illustrated in Figure 2: a uniform horizontal inflow (state (ζu, q1u, q2u)) is deflected
by an oblique wall with deflection angle α. The steady analytical solution presents an oblique
jump (angle β with the horizontal axis) separating the inflow zone from a constant downstream
state (ζd, q1d, q2d) with (q1u, q2d) = qd(cos(α), sin(α)). The Rankine–Hugoniot jump relations
yield:

q2
1u sin2 β = q2

d sin2(β − α) = gζuζd
ζu + ζd

2
, tan(α) =

(ζd − ζu) sin β

ζu sin2 β + ζd cos2 β
.

Imposing ζu = 1m, ζd = 1.5m and β = 30◦ yields the approximate values: α ≈ 8.9483◦,
q1u ≈ 8.5776m2/s, (q1d, q2d) ≈ (11.7941, 1.8571)m2/s. Furthermore, the initial condition is
ζ0 = 1m and q0 = (8.57, 0)m2/s. We compute the DG solution on unstructured meshes for
the degree of approximation p = 1. The initial and final approximations are represented in
Figure 3. For all the conserved variables, the convergence rate of the L2-error is 1

2 as expected
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Figure 2. Oblique hydraulic jump: problem setting.

owing to the presence of a shock and the use of unfitted meshes (i.e., the oblique shock crosses
some mesh cells).
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Figure 3. Oblique hydraulic jump: initial (left) and final (right) approximate water heights for p = 1.

5.2. Variable bathymetry

5.2.1. Steady-state at rest The preservation of steady-states at rest by the well-balanced
RKDG scheme can be illustrated on one-dimensional setting. The initial condition is ζ0 + b =
1m and q0 = (0, 0)m2/s with b(x) = (10e−x2

+ 15e−(x−2.5)2 + 10e−(x−5)2/2 + 6e−2(x−7.5)2 +

16e−(x−10)2)/20. Figure 4 presents the approximate solution at time T = 1s obtained by the
classical RKDG scheme and by the well-balanced RKDG scheme for p = 2 and an uniform
step size of h = 1m. The importance of numerical waves introduced by the classical scheme
and their elimination by the flux modification technique are clearly illustrated.
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Figure 4. Steady-state at rest: water height for the classical RKDG scheme (left) and for the well-
balanced RKDG scheme (right) for p = 2 at time T = 1s (bathymetry in bold line).
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Figure 5. Subcritical flow: problem setting (the leading and trailing edges of the bump are indicated
by a dashed line).

5.2.2. Subcritical flow To assess the order of accuracy of the scheme, we now consider a
classical test case of a subcritical flow over a bump [33]. The definition of the problem is
illustrated in Figure 5. The bathymetry is b(x, y) = max(0, 0.2− 0.05(x− 10)2) and the initial
condition ζ0 + b = 2m and q0 = (0, 0)m2/s. After a finite time (for this test, we set T = 600s),
the solution reaches a steady-state (see Figure 6). Using structured, fitted meshes in which
the lines of discontinuity of the slope of the bathymetry coincide with mesh cell interfaces,
the optimal order of convergence (p + 1) of the RKDG method is recovered. The errors in the
L2-norm on the water depth for p ∈ {0, 1, 2} are plotted in the left part of Figure 7. Using
unstructured, unfitted meshes, the optimal order of convergence (p + 1) of the RKDG method
is not preserved. The errors in the L2-norm on the water depth for p ∈ {0, 1, 2} are plotted in
the right part of Figure 7. The maximum order of convergence is 3

2 ; this can be explained by
the fact that the exact solution is continuous but not C1 inside some mesh elements.

5.2.3. Transcritical flow with shock We consider the same domain and bathymetry as in the
previous test case but the initial condition is ζ0 + b = 0.33m and q0 = (0, 0)m2/s. Moreover,
the inflow discharge and the outflow water depth are qin = (0.18, 0)m2/s and hout = 0.33m
[33]. The obtained steady-state (observed at time T = 100s) presents a stationary shock
(see Figure 8). The errors in the L2-norm on all the conservative variables (water depth and
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Figure 6. Subcritical flow: initial (left) and final (right) approximate water heights for p = 1
(structured, fitted meshes).
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Figure 7. Subcritical flow: L2-error on the water depth for p ∈ {0, 1, 2}: structured, fitted meshes (left)
and unstructured, unfitted meshes (right).

discharge) are illustrated in Figure 9 for p = 1. As for reconstructed FV methods [7], the
observed order of convergence is 1

2 .

5.3. Flooding and drying

5.3.1. Ritter solution [34] We now study the capacity of the slope modification technique to
treat flooding. The domain Ω is a 50m × 40m rectangle and the bottom is flat. The initial
discharge is q = (0, 0)m2/s and the initial water depth is set to zero for x > 20m and to ζ0 for
x < 20m. The analytical solution is self-similar, i.e., it depends only on ξ = x−20

t . It is given
by







if ξ < −
√

gζ0: ζ(x, t) = ζ0, q(x, t) = 0
else if ξ > 2

√
gζ0: ζ(x, t) = 0, q(x, t) = 0

else ζ(x, t) = 1
9g (ξ − 2

√
gζ0)

2, u(x, t) = 2
3 (ξ +

√
gζ0)
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Figure 8. Transcritical flow with shock: initial (left) and final (right) approximate water heights for
p = 1.
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Figure 9. Transcritical flow with shock: L2-errors on all the conservative variables (p = 1).

We have taken ζ0 such that gζ0 = 1m2/s2. The simulation time is T = 10s (such that the
rarefaction wave does not reach the boundary of the domain) and we consider unstructured
meshes (however, meshes are fitted to the discontinuity in the initial solution). The threshold
ε introduced in Section 4 for the slope modification technique is set to 10−6. The initial and
final approximate water depths are plotted for p = 1 in Figure 10. The test case is solved
starting with the analytical solution at time t = 2. Thus the solution is at least everywhere
continuous, but not continuously differentiable. The limiting process is not used since the
solution is smooth enough. The errors in the L2-norm on the water depth are presented in
Figure 11 for p ∈ {0, 1, 2}. The error on the water depth behaves like h0.8 for p = 0 (an
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Figure 11. Rarefaction wave: overall L2-error on the water depth for p ∈ {0, 1, 2}.

order of convergence between 1/2 and 1 is expected), and respectively like h1.3 and h1.6 for
p = 1 and p = 2 (since the solution is not smooth at the left end of the rarefaction wave, the
global accuracy should be limited to 3

2 ). It is interesting to notice that the error is localized
in the regions where the solution is not very smooth (near both ends of the rarefaction fan),
which means that the accuracy of the method in the present case is preserved far from relative
singularities. This is shown by Figure 12 which represents the L2-norm of the error on the
water depth in the region {x ∈ [15; 35]} at time t = 10s for p ∈ {0, 1, 2}. One finds numerically
that these errors behave respectively for p ∈ {0, 1, 2} like h0.8, h2.5, and h3.2.

5.3.2. Parabolic bowl The aim is to assess the capacity of the method to treat flooding and
drying. We consider a parabolic bowl (the bottom corresponds to a paraboloid of revolution,
i.e., b(x, y) = αr2 with r2 = x2 + y2 and α is a positive constant) for which the exact solution
has a periodic behavior and the free surface is an oscillating paraboloid of revolution. The

analytical solution (see [35] for more details) is such that ζ(r, t) is non-zero for r <
√

X+Y cos ωt
α(X2−Y 2)
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Figure 12. Rarefaction wave: local L2-error over {x ∈ [15; 35]} on the water depth for p ∈ {0, 1, 2}.

(with ω2 = 8gα, X and Y are constants such that X > 0 and |Y | < X), and

{

ζ(r, t) = 1
X+Y cos ωt + α(Y 2 − X2) r2

(X+Y cos ωt)2 ,

u(r, t) = − Y ω sin ωt
X+Y cos ωt (x

2 , y
2 )t.

(17)

The solution is periodic with a period τ = 2π
ω . The computational domain Ω is a square

of length L = 8000m centered at the origin. We set α = 1.6 10−7m−1, X = 1m−1, and
Y = −0.41884m−1. We use for this test case (with no relevant boundaries) a structured
triangular mesh. The threshold ε is set to 10−6. We observe that the scale of this test case is
close to realistic applications, the order of magnitude of the water depth being around 2m on
a domain of kilometric size.

The solution is illustrated at different times in Figure 13. It was obtained with p = 1 on a
triangular mesh obtained by cutting rectangles of a 50×50 Cartesian mesh. The relative error
in global mass conservation is less than 0.0002%, confirming that the average of ζh almost never
takes negative values. The L2-norm of the error on the water depth is presented on Figure 14.
Two different behaviors appear. During the first half period (t ∈ [0; τ/2]), the water spreads
and flooding occurs. For p = 0, p = 1, and p = 2, the orders of convergence are respectively
0.9, 1.4, and 1.5. These results are close to expected orders of convergence (respectively, 0.5,
1.5, and 1.5). However, for the second half period (t ∈ [τ/2; τ ]), the water flows back and
drying occurs. For p = 0, the order of convergence is close to 0.5, while for p = 1 and p = 2,
the orders of convergence are close to each other and vary from around 1.1 down to 0.5. This
means that the drying algorithm does not perform as well as expected. One can remark that
the flooding and drying algorithm plays the role of a limiter. In the flooding zones, it has to
limit numerical oscillations due to high order accuracy. However, in the drying zones, it has
to limit both numerical oscillations and the physical drying process.

These two different behaviors can be illustrated by computing numerically the actual radius
of the flooded zone during the computation. More precisely, we can compute (using the values
of the discrete solution at quadrature points) the following radii:
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Figure 13. Parabolic bowl: approximate water depth for p = 1 at times t = i τ

6
, (0 ≤ i ≤ 5).

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:0–0
Prepared using fldauth.cls



A WELL-BALANCED RKDG METHOD FOR THE SHALLOW-WATER EQUATIONS 17

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

-7 -6.5 -6 -5.5 -5 -4.5

lo
g(

|| 
 -

   
|| 

  )
 

h 
 L

2
 ζ

  ζ
 

log(1/h)

p=0
p=1
p=2

p=0

p=1

p=2

h

h

h

0.9

1.4

1.5

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

-7 -6.5 -6 -5.5 -5 -4.5

lo
g(

|| 
 -

   
|| 

  )
 

h 
 L

2
 ζ

  ζ
 

log(1/h)

p=0
p=1
p=2

p=0

p=1

p=2

h

h

h

0.5


1.1

0.5

Figure 14. Parabolic bowl: max
t≤ τ

2

(‖(ζh − ζ)(t, .)‖L2(Ω)) (left) and max
t≤τ

(‖(ζh − ζ)(t, .)‖L2(Ω)) (right) for

p ∈ {0, 1, 2}.

 2000

 2500

 3000

 3500

 4000

 0  200  400  600  800  1000  1200  1400  1600  1800

r(
t)

t

r(t)
r-(t) mu=3e-3
r-(t) mu=3e-4

 2000

 2500

 3000

 3500

 4000

 0  200  400  600  800  1000  1200  1400  1600  1800

r(
t)

t

r(t)
r+(t) mu=3e-3
r+(t) mu=3e-4
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• the exact radius of the flooded zone r(t) =
√

X+Y cos ωt
α(X2−Y 2) ;

• for any threshold µ, r−(t, µ) = min
{(x,y)/ζ(t,x,y)≤µ}

(
√

x2 + y2);

• for any threshold µ, r+(t, µ) = max
{(x,y)/ζ(t,x,y)>µ}

(
√

x2 + y2).

By definition, r−(t, µ) ≤ r+(t, µ) with equality for all µ if ζ is monotonically decreasing.
Discrepancies between r−(t, µ) and r+(t, µ) indicate that ζ oscillates around the threshold µ.
Furthermore, as µ → 0, r+(t, µ) and r−(t, µ) should be close to r(t). In the zone r < r−(t, µ),
the ground can be considered as flooded (since ζ(t, x, y) > µ). On the contrary, in the
zone r > r+(t, µ), the ground can be considered as dry (since ζ(t, x, y) < µ). The zone
r−(t, µ) ≤ r ≤ r+(t, µ) is where the ground is marginally flooded. The different curves for
µ ∈ {10−2.5, 10−3.5} are plotted on Figure 15 (polynomial order p = 1, triangular mesh
obtained by cutting rectangles of a 100×100 Cartesian mesh). The left part of Figure 15 shows
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that the flooded zone is quite accurately captured. The right part of the figure shows that the
dry zone is not accurately captured during the drying phase (areas with small ζ are actually
expanding during the computation for µ = 10−3.5). In particular, observing r+(t, µ = 10−3.5)
yields a possible explanation of accuracy loss in the drying phase of the computation: while
zones with ζ > 10−3.5 remain limited during the flooding phase, they spread (or at least do
not diminish) during the drying phase, where large areas with small ζ remain. Additional
investigations on that specific behavior are under way. Anyway, one should keep in mind that
these considerations are aimed at obtaining the sharpest possible asymptotic behavior for the
numerical method, while spurious water heights below one millimeter are not a concern in
practical simulations.

6. Conclusions

In this work, we have designed a well-balanced RKDG scheme for the shallow-water equations.
In the absence of drying processes, the scheme performs well on structured or unstructured,
fitted or unfitted meshes. As with classical CFE methods, the scheme delivers accurate
solutions with high-order convergence rates whenever the solution is smooth enough. At the
same time, the scheme can handle various nonsmooth wave structures (shocks, rarefaction
fans), as FV methods. For drying processes, the scheme behaves satisfactorily in the present
test case, since spurious oscillations where the water depth takes small values can be controlled
below one millimeter over a domain with kilometric scale.

Appendix. The HLLE and HLLC fluxes

Let K ∈ Th, let σ ∈ Ei
h(K) and let Kσ be the element of Th sharing the interface σ with K.

Let xσ be an integration point on σ. Let WK = (ζK , uKζK) and WKσ
= (ζKσ

, uKσ
ζKσ

) be the
two states on both sides of xσ . Recall that nK,σ denotes the unit outward normal of K on σ.

The HLLE flux is used in one space dimension. This numerical flux is based on the
approximation that the solution consists of three states, namely WK , Wσ and WKσ

, separated
by two waves of speeds c±σ . Letting vK = uK ·nK,σ and vKσ

= uKσ
·nK,σ, the wave speeds are

evaluated as
c+
σ := max(0, max(vKσ

+
√

gζKσ
, v∗σ +

√

gζ∗σ)),

c−σ := min(0, min(vK −
√

gζK , v∗σ −
√

gζ∗σ)),

where

ζ∗σ :=
ζK + ζKσ

2
, v∗σ :=

√
ζKvK +

√

ζKσ
vKσ√

ζK +
√

ζKσ

,

are the so-called Roe-averaged values. Then, the HLLE flux is evaluated as

φHLLE
∗ (WK , WKσ

, nK,σ) :=
1

2
(F1(WK) + F1(WKσ

))nK,σ +
1

2
Qσ(WK − WKσ

) ,

with

Qσ :=
c+
σ + c−σ

c+
σ − c−σ

(

0 1
−(v∗σ)2 + gζ∗σ 2v∗σ

)

− 2
c+
σ c−σ

c+
σ − c−σ

I2 ,
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where I2 is the identity matrix in R2,2.
In two space dimensions, the HLLC flux is preferred to the HLLE flux since the latter suffers

from difficulties in resolving contact discontinuities and tangential waves. The HLLC flux is
based on the approximation that the solution consists of four states, namely WK , W−

σ , W+
σ

and WKσ
, separated by three waves of speeds c±σ and cσ. The wave speeds are evaluated as

c−σ := min(vK −
√

gζK , vKσ
−
√

gζKσ
) ,

c+
σ := min(vK +

√

gζK , vKσ
+
√

gζKσ
) ,

cσ :=
1
2gζ2

K − 1
2gζ2

Kσ
+ ζKσ

vKσ
(c+

σ − vKσ
) − ζKvK(c−σ − vK)

ζKσ
(c+

σ − vKσ
) − ζK(c−σ − vK)

.

Then, the HLLC is evaluated as

φHLLC
∗ (WK , WKσ

, nK,σ) :=
1

2
(Fi(WK) + Fi(WKσ

))nK,σ,i

+
1

2

(

(|c−σ | − |cσ|)W−
σ + (|c+

σ | − |cσ |)W+
σ + |c−σ |WK + |c+

σ |WKσ

)

,

with
c−σ − cσ

c−σ − vK

W−
σ := WK +

(

0
ζK(cσ − vK)nK

)

,

and
c+
σ − cσ

c+
σ − vKσ

W+
σ := WKσ

+

(

0
ζKσ

(cσ − vKσ
)nK

)

.
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