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Abstract

We propose a proof of convergence of an adaptive method used in molecular dy-
namics to compute free energy profiles (see [7, 9, 13]). Mathematically, it amounts
to studying the long-time behavior of a stochastic process which satisfies a non-linear
stochastic differential equation, where the drift depends on conditional expectations
of some functionals of the process. We use entropy techniques to prove exponential
convergence to the stationary state.

1 Introduction

In Section 1.1, we introduce the physical context of this work, namely molecular
dynamics and the computation of free energy differences in the canonical statistical
ensemble. In Section 1.2, we introduce the adaptive dynamics we study and the main
results we prove are presented in Section 1.3.

1.1 Computations of free energy differences and metastability

Let us consider the Gibbs-Boltzmann measure

dµ(q) = Z−1 exp(−βV (q))dq, (1)

where q ∈ D, V : D → R, Z =
∫

D exp(−βV (q)) dq and D = {q, V (q) < ∞} is the
configuration space. In the applications we consider, q represents the position of N
particles so that, in the following, D is an open subset (possibly the whole) of R

n,
with n = 3N . All the results we prove are also satisfied if D is an open subset of T

n

(where T = R/Z denotes the one-dimensional torus). The function V is the energy
associated with the positions of the particles and β is proportional to the inverse of the
temperature. The probability measure µ represents the equilibrium measure sampled
by the particles in the canonical statistical ensemble. A typical dynamics that can be
used to sample this measure is

dQt = −∇V (Qt) dt+
√

2β−1dBt, (2)

where Bt is a n-dimensional standard Brownian motion. More generally, for any
smooth positive function γ : D → R

∗
+, the stochastic process Qt which satisfies

dQt = −∇(V − β−1 ln γ)(Qt)γ(Qt) dt+
√

2β−1γ(Qt)dBt (3)

samples the measure µ.
Let us introduce a so-called reaction coordinate ξ : D → M, with M = R or M =

T. For a given configuration q, ξ(q) represents a coarse-grained information, which is
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valuable from a physical point of view. For instance, ξ(q) may be a dihedral angle, for
example to characterize the conformation of a molecule, in which case M = T, or the
signed distance to an hypersurface of D (characterizing a transition state), for example
to measure the evolution of a chemical reaction, in which case M = R. The function
ξ is therefore related to some macroscopic information of the system. Usually, in (2),
the time-scale for the dynamics on ξ(Qt) is larger than the time-scale for the dynamics
on Qt (due to metastable states), so that ξ can also be understood as a function such
that ξ(Qt) is a slow variable compared to Qt.

In the following, we suppose that

[H1] ξ is a smooth function such that |∇ξ| > 0 on D.

Thus, the subsets Σz = {x ∈ D, ξ(x) = z} of D are smooth submanifolds of co-
dimension one which define a partition of D:

D =
⋃

z∈M
Σz and Σz ∩ Σz′ = ∅ for z 6= z′.

We denote by σΣz
the surface measure on Σz , i.e. the Lebesgue measure on Σz induced

by the Lebesgue measure in the ambient space D ⊃ Σz. The submanifold Σz naturally
has a (complete and locally compact) Riemannian structure induced by the Euclidean
structure of the ambient space D.

The image of the measure µ by ξ is exp(−βA(z)) dz
∫

M
exp(−βA(z)) dz

where A is the so-called free

energy defined by:
A(z) = −β−1 ln(ZΣz

) (4)

where

ZΣz
=

∫

Σz

|∇ξ|−1 exp(−βV )dσΣz
.

We assume henceforth that ξ and V are such that ZΣz
<∞. The free energy is actually

defined up to an additive constant, the quantity exp(−βA) being then defined up to
a multiplicative constant, which disappears in the normalization of the probability

measure exp(−βA(z))dz
∫

M
exp(−βA(z)) dz

. Many algorithms in molecular dynamics [5] aim to compute

the image of the measure µ by ξ, which amounts to compute free energy differences,
namely quantities of the form A(z) −A(z0). This is typically obtained by computing
(and then integrating) the derivative A′(z), called the mean force. Using the co-area
formula (see Appendix A), the following expression for A′(z) can be obtained (see [6],
or the proof of Lemma 7 below):

A′(z) = Z−1
Σz

∫

Σz

F |∇ξ|−1 exp(−βV )dσΣz
, (5)

where F is the so-called local mean force defined by

F =

(∇V · ∇ξ
|∇ξ|2 − β−1div

( ∇ξ
|∇ξ|2

))

. (6)

This can be rewritten in terms of conditional expectation as: For a random vari-
able X with law µ,

A′(z) = E

(

F (X)
∣

∣

∣ξ(X) = z
)

. (7)

In practice, free energy profiles are used for example to compare the likelihood of
various conformations of a molecule, or to compute the rate of a chemical reaction.
Free energy can also be useful to compute ensemble averages in the canonical ensemble
using the following formula (which is a conditioning formula): For any function φ :
D → R,

∫

D
φdµ =

∫

M

∫

Σz

φdµΣz
exp(−βA(z)) dz

∫

M
exp(−βA(z)) dz

, (8)
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where µΣz
is the probability measure µ conditioned to a fixed value z of the reaction

coordinate:
dµΣz

= Z−1
Σz

|∇ξ|−1 exp(−βV )dσΣz
. (9)

Notice that (5) also writes A′(z) =
∫

Σz
F dµΣz

. Equation (8) may be interesting to
compute averages in the canonical ensemble since, if the reaction coordinate is well
chosen, it is expected that the sampling of the conditioned probability measure µΣz

is
easier than the sampling of µ (the metastable features of the measure µ being mostly
in the direction of the reaction coordinate ξ). The sampling of µΣz

can be done
for example by projection of the gradient dynamics on Σz (see [6]). The quantity
∫

Σz
φdµΣz

can thus be evaluated by an efficient Monte Carlo procedure, and the

computation of
∫

D φdµ through (8) then only requires a one-dimensional integration,
and the computation of the free energy (up to an additive constant).

Due to the high dimensionality of the problem (the number of particlesN is usually
very large), methods to compute mean forces or free energy differences are Monte Carlo
methods. They typically rely on the simulation of a diffusion Markov process. The
most recent methods use non-homogeneous or non-linear Markov processes. Classical
examples are exponential reweighting of non-equilibrium paths (based upon the so-
called Jarzynski equality, see [11, 12]) or adaptive methods (see [7, 9, 10, 18]).

We are interested here in adaptive methods to compute free energy differences, and
more precisely Adaptive Biasing Force techniques (see [7, 9]). The principle of adaptive
methods is to modify the potential V during the simulation, in order to remove the
metastable features of the simple dynamics (2), while approximating the free energy A.
Many methods have been proposed and we refer to [13] for a unified presentation of
these techniques, as well as a discussion of efficient parallel implementations. The
aim of this paper is to propose a mathematical study of the Adaptive Biasing Force
method to give a rigorous formulation and proofs of the following statements (which
are the main arguments of practitioners of the field to advocate the use of adaptive
methods):

[S1] The adaptive biasing force technique helps to remove the metastable features of
the simple dynamics (2), and thus enables efficient exploration of the configura-
tion space.

[S2] With the adaptive biasing force technique, the free energy A is obtained in the
longtime limit, and the convergence is exponentially fast in time.

1.2 An Adaptive Biasing Force technique

The Adaptive Biasing Force (ABF) method was introduced in [7, 9] and is recast in a
general mathematical framework in [13]. We propose to study here one version of this
method, applied to the context of Brownian (or overdamped Langevin) dynamics1.

The ABF dynamics we propose to study is the following non-linear stochastic
differential equation:

dXt = −∇
(

V −At ◦ ξ +W ◦ ξ − β−1 ln(|∇ξ|−2)
)

(Xt) |∇ξ|−2(Xt) dt

+
√

2β−1|∇ξ|−1(Xt)dBt,
(10)

where W is an additional well-chosen potential that we will define below and At is the
“free energy observed at time t”. More precisely, the derivative of At with respect to
the reaction coordinate is defined as (compare with (7)): ∀z ∈ M,

A′
t(z) = E

(

F (Xt)
∣

∣

∣ξ(Xt) = z
)

, (11)

1Such methods can also be applied for other dynamics, like Langevin dynamics. We only consider
Brownian dynamics in this paper.
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where F is defined by (6). With a slight abuse of terminology, the function A′
t is

called the biasing force. Notice that here and in the following, the notation ′ denotes a
derivative with respect to the reaction coordinate values, while the notation ◦ denotes
the composition operator. Equation (11) defines At up to an additive (time-dependent)
constant, which does not modify (10).

Compared to the simple dynamics (2), three modifications have been made to
obtain (10)–(11):

1. First and foremost, the potential V has been changed to the biasing potential
V − At ◦ ξ. This is the bottom line of the adaptive strategy. The algorithm we
study here is prototypical of many adaptive methods used in molecular dynamics
(see [13]). In the original Adaptive Biasing Force technique as presented in [7, 9],
the conditional expectation (11) is actually “approximated” by some conditional
averages over one single trajectory. The dynamics we study here is not clearly
related with such a discretization, but rather with a discretization of (11) using
an interacting particle system, where many replicas of the system contribute to
the free energy profile (see [13]).

2. Second, a potential W ◦ ξ has been added. This is actually needed only in the
case when M is an unbounded domain (we recall that M is the domain where
the reaction coordinate lives). In theses cases, W is chosen so that the law
of ξ(Xt) converges exponentially fast to its longtime limit (more precisely, the
Fisher information associated with this law converges exponentially fast to zero,
see [H4] below for a more detailed statement). Besides, from a numerical point
of view, such a potential is sometimes used in practice in order to separately
sample some parts of the reaction coordinate space M (as in stratified sampling
strategies).

3. Third, some terms depending on |∇ξ| have been introduced. This modification
is made in order to obtain a simple diffusive behavior for the law of ξ(Xt) (see
Proposition 1 below). It is expected that the longtime convergence of A′

t towards
A′ still holds without this modification, by simply considering the gradient dy-
namics

dXt = −∇(V −At ◦ ξ +W ◦ ξ)(Xt) dt+
√

2β−1dBt, (12)

with the same definition (11) for A′
t. However, we are only able to prove a weaker

convergence result in this case. This is the matter of Sections 2.3 and 3.4. Notice
that if |∇ξ| is constant (for example if ξ is a length), a simple change of time
relates (12) with (10). Notice also that if we take At = W = 0 in (10), then Xt

samples the original Gibbs measure µ defined by (1) (see Equation (3) above).

Remark 1 (On the computation of A′
t(z)) From a practical point of view, with

the additional terms mentioned in item 3 above, it is possible to compute the biasing
force A′

t(z) without explicitly evaluating F since (by Itô’s calculus on Xt that satis-
fies (10), and assuming W = 0 for simplicity)

F (Xt) dt = dξ(Xt) +A′
t(ξ(Xt)) dt−

√

2β−1
∇ξ
|∇ξ| (Xt) · dBt. (13)

By a simple finite difference scheme, we thus have the following approximation

F (Xtn+1
) ≃ A′

tn(ξ(Xtn)) +
ξ(Xtn+1

) − ξ(Xtn) −
√

2β−1 ∇ξ
|∇ξ| (Xtn) · (Btn+1

−Btn)

∆t
.

1.3 A PDE formulation and presentation of the main result

We would like to emphasize that our arguments are partially formal: we assume that
we are given a process Xt and a function A′

t which satisfy (10)–(11), and such that
Xt has a smooth density ψ(t, ·) with respect to the Lebesgue measure on D. We
suppose that this density is sufficiently regular so that the computations are valid. In
particular, we assume that the potential V is such that either the stochastic process
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Xt lives in D and thus that its density ψ(t, ·) decays sufficiently fast on ∂D or the
stochastic process Xt has some reflecting behavior on ∂D and thus that its density
ψ(t, ·) has zero normal derivatives on ∂D. In both cases, no boundary terms appear
in the integrations by parts we perform to derive the entropy estimates. We refer
for example to [3] for an appropriate functional framework in which such entropy
estimates hold.

Since only the law of the process Xt at a fixed time t is used in (11), it is possible
to recast the dynamics in the following nonlinear partial differential equation (PDE)
on the density ψ(t, ·) of Xt:























∂tψ = div
(

|∇ξ|−2
(

∇(V − At ◦ ξ +W ◦ ξ)ψ + β−1∇ψ
))

,

A′
t(z) =

∫

Σz

F |∇ξ|−1ψ(t, ·)dσΣz

∫

Σz

|∇ξ|−1ψ(t, ·)dσΣz

,
(14)

where F is defined by (6). This is obtained by using the fact that if Xt has law
ψ(t, x) dx, then the law of ξ(Xt) is ψξ(t, z) dz with

ψξ(t, z) =

∫

Σz

|∇ξ|−1ψ(t, ·)dσΣz
, (15)

and the conditional law of Xt with respect to ξ(Xt) = z is µt,z defined by

dµt,z =
ψ(t, ·)|∇ξ|−1dσΣz

ψξ(t, z)
. (16)

The probability measure ψξ(t, z) dz is the image of the probability measure ψ(t, x) dx
by ξ. These expressions can be obtained using the co-area formula (see Appendix A).

Before presenting the results, we would like to motivate the introduction of this
dynamics by the following formal observation. If the potential At and the law of Xt

reach a stationary state, then, from the dynamics (10) on Xt (or from the partial
differential equation (14) satisfied by the distribution of Xt), we observe that this
stationary law is proportional to exp(−β(V (x) − A∞ ◦ ξ(x) + W ◦ ξ(x))) dx, where
A∞ denotes the stationary state for At (this requires a uniqueness result for the
law of Xt, which holds for example if |∇ξ| is uniformly bounded from below by a
positive constant). Then, from the definition (11) of the biasing force, we obtain that,
necessarily, A′

∞ = A′ (where A′ is the mean force defined by (5)). This proves the
uniqueness of the stationary state for this dynamics. We can thus expect that A′

t

converges to the mean force A′ in the longtime limit.
The interest of the dynamics (10)–(11) is actually twofold. First, as expected from

the formal argument above, in the longtime limit, A′
t converges to the mean force A′

defined by (5) (see Equation (24) below). Second, using the ABF method, the law
of ξ(Xt) has a simple diffusive behavior (see Equation (20) below). The metastable
feature of the simple dynamics (2) along ξ is thus corrected by the addition of the
adaptive potential At. The aim of this paper is to give a precise statement for these
two assertions, which are mathematical formalizations of the two main characteristics
[S1] and [S2] of adaptive techniques mentioned in Section 1.1. The proof of the long-
time convergence relies on entropy techniques, and requires appropriate assumptions
on the potentials V , W and the reaction coordinate ξ. We prove that under suitable
assumptions, the convergence of A′

t to A′ is exponentially fast, with a rate of con-
vergence limited, at the macroscopic level, by the rate of convergence of the law of
ξ(Xt) to its longtime limit, and, at the microscopic level, by the rate of convergence to
the equilibrium conditioned probability measures µΣz

, for all values z of the reaction
coordinate.

All these results are more precisely stated in Section 2, and the proofs are given in
Section 3. We would like to mention that the main arguments of the proof are given
in a very simple case in Section 3.1 and that we also present a result of convergence
for the dynamics (12)–(11) in Section 2.3.
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2 Precise statements of the results

In Section 2.1, we recall some well-known results on entropy and introduce the main
notation used in the following to state the convergence result. Section 2.2 is devoted
to the presentation of the convergence result for the dynamics (10)–(11). Finally, we
give in Section 2.3 a (weaker) convergence result for the dynamics (12)–(11).

2.1 Entropy and Fisher information

Let us consider ψ and A′
t which satisfy (14) and let introduce the long-time limit of

ψ, ψξ (defined by (15)) and µt,z (defined by (16)):

ψ∞ = (ZZξ)−1 exp(−β(V −A ◦ ξ +W ◦ ξ)),

ψξ∞(z) = (Zξ)−1 exp(−βW (z)),

dµ∞,z = dµΣz
= Z−1

Σz
exp(−βV )|∇ξ|−1dσΣz

,

where

Zξ =

∫

M
exp(−βW (z)) dz.

We recall that

ZΣz
=

∫

Σz

|∇ξ|−1 exp(−βV )dσΣz
, Z =

∫

D
exp(−βV (x)) dx.

Notice that
∫

D ψ∞ = 1, and that the probability measure ψξ∞(z) dz is the image of
the probability measure ψ∞(x) dx by ξ.

In order to state the results, we also need to introduce the following projection
operators. For any x ∈ D, we denote by

P (x) = Id − ∇ξ ⊗∇ξ
|∇ξ|2 (x)

the orthogonal projection operator onto the tangent space TxΣξ(x) to Σξ(x) at point x,
and by

Q(x) =
∇ξ ⊗∇ξ
|∇ξ|2 (x)

the orthogonal projection operator onto the normal space NxΣξ(x) to Σξ(x) at point x.
We denote by ⊗ the tensor product: For two vectors u, v ∈ D, u⊗ v is a n×n matrix
with components (u ⊗ v)i,j = uivj .

We measure the “distance” between ψ (respectively ψξ) and ψ∞ (respectively ψξ∞)
using the relative entropy H(ψ|ψ∞) (respectively H(ψξ|ψξ∞)), where, for any two
probability measures µ and ν such that µ is absolutely continuous with respect to ν
(this property being denoted µ≪ ν in the following),

H(µ|ν) =

∫

ln

(

dµ

dν

)

dµ.

We recall the Csiszar-Kullback inequality:

‖µ− ν‖TV ≤
√

2H(µ|ν) (17)

where ‖µ − ν‖TV = supf, ‖f‖L∞≤1{
∫

fd(µ − ν)} denotes the total variation norm of
the signed measure µ − ν. When µ and ν both have densities with respect to the
Lebesgue measure, ‖µ−ν‖TV is simply the L1 norm of the difference between the two
densities.

We denote the total entropy by

E(t) = H(ψ(t, ·)|ψ∞),
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the macroscopic entropy by

EM (t) = H(ψξ(t, ·)|ψξ∞),

the “local entropy” at a fixed value z of the reaction coordinate by

em(t, z) = H(µt,z |µ∞,z) =

∫

Σz

ln

(

ψ(t, ·)
ψξ(t, z)

/ ψ∞

ψξ∞(z)

)

ψ(t, ·)|∇ξ|−1dσΣz

ψξ(t, z)
,

and the microscopic entropy by

Em(t) =

∫

M
em(t, z)ψξ(t, z) dz.

It is straightforward to obtain the following result which can be seen as the extensivity
of the entropy:

Lemma 1 It holds
E(t) = EM (t) + Em(t).

Let us now introduce the Fisher information: For any two probability measures µ
and ν such that µ≪ ν,

I(µ|ν) =

∫
∣

∣

∣

∣

∇ ln

(

dµ

dν

)∣

∣

∣

∣

2

dµ. (18)

In the case ν is a probability measure on the (Riemannian) submanifold Σz, ∇ actually
denotes the gradient on Σz in (18), namely

∇Σz
= P∇. (19)

Therefore, for the conditional probability measures µt,z and µ∞,z, the Fisher informa-
tion writes

I(µt,z|µ∞,z) =

∫

Σz

∣

∣

∣

∣

∇Σz
ln

(

ψ(t, ·)
ψ∞

)∣

∣

∣

∣

2
ψ(t, ·)|∇ξ|−1dσΣz

ψξ(t, z)
.

Let us finally introduce another way to compare two probability measures, namely
the Wasserstein distance with quadratic cost: for two probability measures µ and ν
defined on a Riemannian manifold Σ,

W (µ, ν) =

√

inf
π∈Π(µ,ν)

∫

Σ×Σ

dΣ(x, y)2 dπ(x, y).

In this expression, dΣ denotes the geodesic distance on Σ: ∀x, y ∈ Σ,

dΣ(x, y) = inf







√

∫ 1

0

|ẇ(t)|2 dt
∣

∣

∣

∣

∣

w ∈ C1([0, 1],Σ), w(0) = x, w(1) = y







,

where Π(µ, ν) denotes the set of coupling probability measures, namely probability
measures on Σ × Σ such that their marginals are µ and ν. We need the following
definitions:

Definition 1 The probability measure ν is said to satisfy a logarithmic Sobolev in-
equality with constant ρ > 0 (in short: LSI(ρ)) if for all probability measures µ such
that µ≪ ν,

H(µ|ν) ≤ 1

2ρ
I(µ|ν).
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Definition 2 The probability measure ν is said to satisfy a Talagrand inequality with
constant ρ > 0 (in short: T(ρ)) if for all probability measures µ such that µ ≪ ν,

W (µ, ν) ≤
√

2

ρ
H(µ|ν).

In the latter definition, we implicitly assume that the probability measures have finite
moments of order 2. This will always be the case for all the probability measures we
consider. We will need the following important result (see [15, Theorem 1]).

Lemma 2 If ν satisfies LSI(ρ), then ν satisfies T(ρ).

For an introduction to logarithmic Sobolev inequalities, their properties and their
relation to longtime behavior of solutions to PDEs, we refer to [2, 3, 16].

2.2 Convergence of the adaptive dynamics (10)–(11)

We are now in position to state our main results. Concerning the dynamics on the
law of ξ(Xt), we have:

Proposition 1 (Equation satisfied by the marginal density ψξ) Let (ψ,A′
t) be

a smooth solution to (14) and let us assume [H1]. Then ψξ satisfies the following equa-
tion:

∂tψ
ξ = ∂z

(

W ′ψξ + β−1∂zψ
ξ
)

on M. (20)

Remark 2 Notice that even if ψξ satisfies a closed PDE, ξ(Xt) does not satisfy a
closed SDE (see Equation (13) above).

The fundamental assumptions we need to prove longtime convergence are the fol-
lowing (we recall that the local mean force F is defined by (6)):

[H2]

{

V and ξ are sufficiently differentiable functions such that
‖∇ξ‖L∞ ≤ m <∞ and ‖∇Σz

F‖L∞ ≤M <∞,

[H3]

{

V and ξ are such that ∃ρ > 0, for all z ∈ M,
the conditional measure µ∞,z satisfies LSI(ρ).

In Assumption [H2], the requirement on F can be seen as a boundedness condi-
tion on the coupling between the conditional measures µ∞,z and the corresponding
marginal ψξ∞, since it involves the mixed derivatives (along the tangential space and
the normal space of the submanifold Σz) P∇(Q∇V ) (see [14] and Remark 11 below).

Assumption [H3] ensures that if, for a fixed value z of the reaction coordinate,
the conditioned probability measure µ∞,z were to be sampled by a simple constrained
gradient dynamics (see [6]), the convergence to equilibrium would be exponential with
rate ρ. We refer to ρ as the microscopic rate of convergence in the sequel.

We refer to Section 3.1 for an explicit framework where [H2] and [H3] are satisfied,
and to Remark 3 below for alternative assumptions on V and ξ.

Let us now introduce the assumption we need on W .

[H4] W is such that ∃I0 > 0, r > 0, ∀t ≥ 0, I(ψξ(t, ·)|ψξ∞) ≤ I0 exp(−2β−1 r t).

Assumption [H4] is indeed an assumption on W because ψξ satisfies the PDE (20)
where only W appears. Assumption [H4] ensures that the law of ξ(Xt) converges to
equilibrium exponentially fast with rate r, which we refer to as the macroscopic rate
of convergence in the sequel.

We will see below (see [H4’]) some sufficient explicit conditions on W for [H4] to
be satisfied.
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Theorem 1 (Exponential convergence of the entropy to zero) Let us assume
[H1], [H2], [H3] and [H4]. Then the microscopic entropy Em satisfies:

√

Em(t) ≤ C exp(−λt) (21)

where C = 2 max
(

√

Em(0), M
β−1|ρm−2−r|

√

I0
2ρ

)

and

λ = β−1 min(ρm−2, r). (22)

In the special case ρm−2 = r, Em satisfies
√

Em(t) ≤
(

√

Em(0) +M
√

I0
2ρ t
)

exp(−β−1r t).

This implies that the total entropy E and thus ‖ψ(t, ·) − ψ∞‖L1(D) both converge
exponentially fast to zero with rate λ.

We thus obtain that the biasing force A′
t converges to the mean force A′ in the

following sense: ∀t ≥ 0,

∫

M
|A′
t −A′|2(z)ψξ(t, z) dz ≤ 2M2

ρ
Em(t). (23)

Notice that the fact that E and ‖ψ(t, ·) − ψ∞‖L1(D) converge exponentially fast to
zero with rate λ is an immediate consequence of (21), [H4], Lemma 1 and the Csiszar-
Kullback inequality (17).

We will actually consider the two following cases for which [H4] is satisfied:

[H4’]











If M = T, then W = 0.
If M = R, then W is a potential such that W ′′ is bounded from below

and there exists r > 0 such that exp(−βW )
∫

M
exp(−βW )

satisfies LSI(r).

Notice that in the case M = R, the assumptions stated in [H4’] on W are satisfied
for an α-convex potential (namely if W ′′ ≥ α for a positive α), and then it is possible
to choose r = α in [H4] (see Lemma 13 below). We refer to Remark 4 below for
alternative assumptions on W .

Corollary 1 (Convergence of the biasing force) If [H4’] is satisfied and ψξ sat-
isfies (20) then [H4] holds.

More precisely, if M = T and W = 0, then [H4] is satisfied with I0 = I(ψξ(0, ·)|ψξ∞)

and r = 4π2. If M = R, W ′′ is bounded from below and exp(−βW )
∫

M
exp(−βW )

satisfies LSI(r),

then [H4] is satisfied with r = r − ε for any ε ∈ (0, r).
Let us now assume [H1], [H2], [H3] and [H4’]. From (23), we deduce that for all

compact K ⊂ M, ∃C, t∗ > 0, ∀t ≥ t∗,
∫

K

|A′
t −A′|(z)ψξ∞(z) dz ≤ C exp(−λt), (24)

where λ is the rate of convergence defined by (22) in Theorem 1.

These results therefore show that A′
t converges exponentially fast to A′ (in

L1(ψξ∞(z) dz)-norm) at a rate λ = β−1 min(ρm−2, r). The limitations on the rate
λ are related to the rate of convergence r at the macroscopic level, for the equa-
tion (20) satisfied by ψξ, and the rate of convergence at the microscopic level, which
depends on the constant ρ of the logarithmic Sobolev inequalities satisfied by the con-
ditional measures µ∞,z . This constant of course depends on the choice of the reaction
coordinate. In our framework, we could state that a “good reaction coordinate” is
such that ρ is as large as possible.

The proof of these results is given in Sections 3.1, 3.2 and 3.3 below.

Remark 3 (Other possible assumptions on V and ξ) We would like to mention
other possible assumptions on V and ξ than [H2]–[H3] for which the results of Theo-
rem 1 still hold.
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• First, in [H2], it is possible to change the assumption ‖∇Σz
F‖L∞ ≤M <∞ to

‖F‖L∞ ≤M <∞.

Indeed, this simply changes the estimate (35) in Lemma 10 below to the following

|A′
t(z) −A′(z)| ≤ ‖F‖L∞ ‖µt,z − µ∞,z‖TV ,

≤M
√

2H(µt,z|µ∞,z),

by the Csiszar-Kullback inequality (17). The rest of the proof remains exactly
the same.

• Second, it is possible to obtain a similar result of convergence under slightly dif-
ferent assumptions than [H2]–[H3] by introducing another Riemannian structure
on the submanifolds Σz. This is made precise in Appendix B (see assumptions
[H2’]–[H3’]).

Remark 4 (Other possible assumptions on W ) From Lemma 12 and 13 below
(used to prove Corollary 1), it will become clear that [H4] is actually satisfied with
W = 0 as soon as M is a bounded domain. If M is an unbounded domain, then a
potential W with properties such as those stated in [H4’] is needed. We discuss in this
remark other properties on W to satisfy [H4] than those proposed in [H4’], in the case
M = R (or M is an unbounded domain).

In this case, it is actually also possible to satisfy [H4] by choosing W such that the
dynamics is confined in a domain

⋃

z∈N Σz, where N is a bounded subset of M. This
can be done by using a sufficiently confining potential W and adapting Lemma 13 be-
low, or by adding reflexion terms to restrict ξ to N (which loosely speaking corresponds
to take W zero on N and infinite on M\N ) and adapting Lemma 12 below.

Let us make precise this latter case. Suppose for example we are interested in
the values of A′(z) for z ∈ N = (0, 1). The dynamics is confined in the domain
O =

⋃

0<z<1 Σz. The ABF dynamics is



































∂tψ = div
(

|∇ξ|−2
(

∇(V −At ◦ ξ)ψ + β−1∇ψ
)

)

, on O,
(

∇(V −At ◦ ξ)ψ + β−1∇ψ
)

· ∇ξ = 0, on Σ0 ∪ Σ1,

A′
t(z) =

∫

Σz

F |∇ξ|−1ψ(t, ·)dσΣz

∫

Σz

|∇ξ|−1ψ(t, ·)dσΣz

, for z ∈ (0, 1),

where F is defined by (6). From the point of view of the stochastic process Xt,
the boundary condition translates to a normal reflexion on the two submanifolds Σ0

and Σ1. Moreover, it can be checked (using Lemma 7) that the boundary condition
on ψ translates to a zero Neumann boundary condition on ψξ: ∂zψ

ξ(0) = ∂zψ
ξ(1) = 0.

A proof similar to that of Lemma 12 then shows that I(ψξ|ψξ∞) converges exponen-
tially fast to 0, so that [H4] holds. The arguments we use to prove Theorem 1 and
Corollary 1 then show that ‖A′

t −A′‖L2(0,1) goes to 0 exponentially fast.

Remark 5 (Vectorial reaction coordinate) In this work, we assume that the re-
action coordinate ξ has values in T or R. The dynamics (10)–(11) and the results
of convergence presented in this section can be straightforwardly extended to the case
when ξ = (ξ1, . . . , ξm) has values in T

m or R
m, with 2 ≤ m < n, under the orthogo-

nality condition:
∀i 6= j, ∇ξi · ∇ξj = 0. (25)

The generalization of this dynamics to non orthogonal reaction coordinates is unclear.
In this case, it is possible to resort to metadynamics (see Remark 6 below). Alterna-
tively, the dynamics (12)–(11) (and the result of convergence of Section 2.3 for this
dynamics) can straightforwardly be generalized to a vectorial reaction coordinate.
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Remark 6 (Metadynamics) The adaptive biasing force technique can also be used
in the context of metadynamics [10, 4, 13]. The principle of metadynamics is to
introduce an additional variable z with dimension the dimension of ξ (say z ∈ R

m,
with 1 ≤ m < n), and an extended potential Vζ(q, z) = V (q) + ζ

2 |z − ξ(q)|2. The
reaction coordinate is then chosen to be ξmeta(q, z) = z so that the associated free
energy is

Aζ(z) = −β−1 ln

∫

D
exp(−βVζ(q, z)) dq,

which converges to A(z) when ζ goes to infinity. In our framework, the ABF method
applied to this extended system writes:

{

dXt = (−∇V (Xt) + ζ(Zt − ξ(Xt))∇ξ(Xt)) dt+
√

2β−1dBt,

dZt = ζ
(

ξ(Xt) − E(ξ(Xt)|Zt)
)

dt+
√

2β−1dBt,

where Bt is a m-dimensional Brownian motion, independent of Bt. Notice that by
construction, the orthogonality condition (25) is satisfied by ξmeta, so that the conver-
gence results of this section apply to these kinds of models.

Remark 7 (On the initial condition) If ψξ(0, ·) is zero at some points or is not
sufficiently smooth, then A′

0 may be not well defined or I(ψξ(0, ·)|ψξ∞) may be infinite
(which is in contradiction with [H4]). But since we show that ψξ satisfies a simple
diffusion equation (see Proposition 1), these difficulties disappear as soon as t > 0.
Therefore, up to considering the problem for t ≥ t∗ > 0, we can suppose that ψξ(0, ·) >
0.

Remark 8 (On the choice of the entropy) In the case of linear Fokker Planck
equations, it is well known that one can obtain exponential convergence to equilibrium

by considering various entropies of the form
∫

h
(

dµ
dν

)

dµ, where h is typically a strictly

convex function such that h(1) = 0 (see [3] for more assumptions required on h). For
example, the classical choice h(x) = 1

2 (x − 1)2 is linked to Poincaré type inequalities
and leads to L2-convergence, while the function h(x) = x ln x−x+1 we have used here
to build the entropy is linked to logarithmic Sobolev inequalities and leads to L1 lnL1-
convergence. However, for the study of the non-linear Fokker Planck equation (14), it
seems that the choice h(x) = x lnx − x + 1 is necessary to derive the estimates, for
example to have the extensivity property of Lemma 1.

Remark 9 (Smoother evolution in time of A′
t) In practice, it may be useful to

update the adaptive potential A′
t in a smoother way in time, for example by replac-

ing (11) by

dA′
t(z) =

1

τ

(

E

(

F (Xt)
∣

∣

∣ξ(Xt) = z
)

−A′
t(z)

)

dt,

where F is defined by (6) and τ > 0 denotes a characteristic time (possibly depending
on (t, z)), to be fixed. This amounts to replace A′

t by κτ ∗ A′
t in (10), where κτ is an

exponential convolution kernel. Formally, we here consider the limit case τ = 0. To
prove the convergence of A′

t towards A′ for τ 6= 0 is an open problem.

Remark 10 (Enhancing the macroscopic rate of convergence) Let us consider
the case M = R. For an α-convex potential W , Corollary 1 states that A′

t converges
towards A′ exponentially fast, with a rate λ = β−1 min(ρm−2, α). This may seem
surprising since for large enough α, the rate of convergence is no more limited by α.
However, it is typically expected that the constant I0 in assumption [H4] increases
with growing α, which means that the constant C increases in the convergence esti-
mate (21). Moreover, in practice, if α is very large, ψξ∞ is very peaked and some
parts of M are poorly sampled, so that the variance of the result is large in these
areas (which can not be seen in our convergence result). Actually, a good method to
enhance the rate of convergence at the macroscopic level while keeping a good sampling
and thus low variance, is to use a particle systems with many replicas and a selection
mechanism. We refer to [13] for more details.
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2.3 A convergence result for the adaptive dynamics (12)–(11)

In this section, we present a weaker convergence result for another adaptive over-
damped Langevin dynamics, namely (12)–(11). For simplicity, we only consider the
case

M = T and W = 0,

but the results can be extended to the case M = R with a suitable W 6= 0, as in
Section 2.2 (see [H4] and [H4’]). One interest of this dynamics and this result of
convergence is that they can be straightforwardly extended to the case of a multi-
dimensional reaction coordinate (see Remark 5 above). For the sake of conciseness,
we do not provide the details of the result in this case which follows exactly the same
lines (see [6] and Appendix A for formulas in the case of a multi-dimensional reaction
coordinate). Let us recall the dynamics (12)–(11) we consider here:

dXt = −∇
(

V −At ◦ ξ
)

(Xt) dt+
√

2β−1dBt, (26)

with the same definition as before for At: ∀z ∈ T,

A′
t(z) = E

(

F (Xt)
∣

∣

∣ξ(Xt) = z
)

, (27)

where F is defined by (6). The associated non-linear Fokker Planck equation is now:























∂tψ = div
(

∇(V −At ◦ ξ)ψ + β−1∇ψ
)

,

A′
t(z) =

∫

Σz

F |∇ξ|−1ψ(t, ·)dσΣz

∫

Σz

|∇ξ|−1ψ(t, ·)dσΣz

.
(28)

The main difference with the dynamics (10)–(11) considered in Theorem 1 is that
the marginal distribution ψξ does not satisfy a closed partial differential equation.
Therefore, we do not know a priori that the Fisher information I(ψξ|ψξ∞) converges
to 0. The strategy here is to directly estimate the derivative of the total entropy E.
We obtain a convergence result under two additional assumptions (see [H5]–[H6]).

Theorem 2 (Longtime convergence for the dynamics (12)–(11)) Let (ψ,A′
t)

be a smooth solution to (28) and let us assume [H1], [H2], [H3]. Moreover, we suppose

[H5] V and ξ are such that ∃R > 0, ψ∞ satisfies LSI(R), (29)

and

[H6]
mMβ

2
√
ρ
< 1.

Then the total entropy E satisfies:

√

E(t) ≤
√

E(0) exp(−λt)

where λ = β−1
(

−1 + mMβ
2
√
ρ

)

R is positive using [H6]. In particular, as in Theorem 1,

the biasing force A′
t converges exponentially fast to the mean force A′.

The proof of this result is given in Section 3.4 below.

Remark 11 (On assumption [H5]) In [14, Theorem 2], it is shown that if µ =
exp(−H(x1, x2))dx1dx2 is a probability measure on a product space X = X1 × X2

(where Xi are Euclidean spaces), if the conditional probabilities µ(dx2|x1) satisfy
LSI(ρ2) (with ρ2 independent of x1) and the marginal µ(dx1) satisfies LSI(ρ1), then µ
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satisfies LSI(ρ) provided the coupling between the two directions is bounded: ∃κ1,2 > 0,
∀(x1, x2) ∈ X1 ×X2,

∣

∣∂2
x1,x2

H(x1, x2)
∣

∣ ≤ κ1,2.

Thus, in the simple framework of Section 3.1 for example, where the configuration
space is T×R and the reaction coordinate is ξ(x, y) = x, the fact that ψ∞ satisfies a LSI
(assumption [H5]) can be deduced from the fact that the conditioned distributions µ∞,z

satisfy a LSI (which is [H3]), the marginal ψξ∞ satisfy a LSI (which is related to [H4])
and the coupling is bounded (which is [H2]). Thus [H5] is not needed as an additional
assumption compared to the framework of Theorem 1. The generalization of this result
to the case when X is not a product does not seem to be straightforward.

3 Proofs

One remark to simplify the presentation of the proofs is that we can suppose β = 1
up to the following change of variable: t̃ = β−1t, ψ̃(t̃, x) = ψ(t, x), Ṽ (x) = βV (x) and
W̃ (x) = βW (x). Therefore, we suppose in the following that

β = 1. (30)

3.1 Proof of Proposition 1 and Theorem 1 in a simple case

In this section, we propose to prove Proposition 1 and Theorem 1 in the simple case
n = 2, ξ(x, y) = x (so that we use in this section the notation x instead of z for the
reaction coordinate variable) and the configuration space is D = T ×R (which means
that all the data are periodic with respect to the first coordinate x). In this case, we
thus have ξ ∈ T (M = T) so that we choose W = 0 (see [H4’]). Notice also that the
local mean force F is simply given by F = ∂xV (see (6)). Our aim is to introduce the
main arguments in this simple case before presenting the general proof in Section 3.2.

In this simple setting, the system (14) writes (recall β = 1):















∂tψ = div (∇V ψ + ∇ψ) − ∂x(A
′
tψ),

A′
t(x) =

∫

R

∂xV (x, y)ψ(t, x, y)dy

ψξ(t, x)
,

(31)

where ψξ(t, x) =
∫

R
ψ(t, x, y)dy. Notice that in this case ψξ∞ ≡ 1.

It can be checked that the assumptions [H2] and [H3] are satisfied in this context
for a potential V of the following form:

V (x, y) = V0(x, y) + V1(x, y)

where infT×R ∂y,yV0 > 0, ‖V1‖L∞ < ∞, ‖∂x,y(V0 + V1)‖L∞ < ∞. The potential V is
thus a bounded perturbation of an α-convex potential, with a bounded mixed deriva-
tive ∂x,yV . Then, assumptions [H2]–[H3] are satisfied with m = 1, M = ‖∂x,yV ‖L∞

and ρ = (infT×R ∂y,yV0) exp(−osc V1), where osc V1 = sup
T×R

V1− infT×R V1 (see [2]).
Proposition 1 is simply obtained by integration of (31) with respect to y ∈ R:

Lemma 3 The density ψξ satisfies the following equation on T:

∂tψ
ξ = ∂x,xψ

ξ. (32)

As stated in Corollary 1, this result already yields the exponential convergence to
zero of the macroscopic Fisher information I(ψξ|ψξ∞) (this is the matter of Lemma 12
below), and thus [H4] is indeed satisfied with I0 = I(ψξ(0, ·)|ψξ∞) and r = 4π2.

A fundamental lemma needed in the sequel is
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Lemma 4 The difference between the biasing force A′
t and the mean force A′ can be

expressed in term of the densities as

A′
t − A′ =

∫

R

∂x ln

(

ψ

ψ∞

)

ψ

ψξ
dy − ∂x ln

(

ψξ

ψξ∞

)

.

Proof : This is a simple computation (using the fact that ψξ∞ ≡ 1):

∫

R

∂x ln

(

ψ

ψ∞

)

ψ

ψξ
dy − ∂x ln

(

ψξ

ψξ∞

)

=

∫

R

∂x lnψ
ψ

ψξ
dy −

∫

R

∂x lnψ∞
ψ

ψξ
dy − ∂x lnψξ,

=

∫

R

∂xψ

ψξ
dy +

∫

R

∂x(V −A)
ψ

ψξ
dy − ∂x lnψξ,

= A′
t −A′.

♦
We will also use the following two estimates:

Lemma 5 Let us assume [H2]–[H3]. Then, for all t ≥ 0, for all x ∈ T,

|A′
t(x) −A′(x)| ≤ ‖∂x,yV ‖L∞

√

2

ρ
em(t, x).

Proof : For any coupling measure π ∈ Π(µt,x, µ∞,x), it holds:

|A′
t(x) −A′(x)| =

∣

∣

∣

∣

∫

R×R

(∂xV (x, y) − ∂xV (x, y′))π(dy, dy′)

∣

∣

∣

∣

,

≤ ‖∂x,yV ‖L∞

∫

R×R

|y − y′|π(dy, dy′),

≤ ‖∂x,yV ‖L∞

√

∫

R×R

|y − y′|2π(dy, dy′).

Taking now the infimum over all π ∈ Π(µt,x, µ∞,x) and using [H3] together with
Lemma 2, we obtain

|A′
t(x) −A′(x)| ≤ ‖∂x,yV ‖L∞W (µt,x, µ∞,x) ≤ ‖∂x,yV ‖L∞

√

2

ρ
H(µt,x|µ∞,x),

which concludes the proof. ♦

Lemma 6 Let us assume [H3]. Then for all t ≥ 0,

Em(t) ≤ 1

2ρ

∫

T×R

∣

∣

∣

∣

∂y ln

(

ψ

ψ∞

)∣

∣

∣

∣

2

ψ.

Proof : Using [H3], it holds:

Em =

∫

T

emψ
ξ dx,

≤
∫

T

1

2ρ

∫

R

∣

∣

∣

∣

∂y ln

(

ψ

ψξ

/ψ∞

ψξ∞

)∣

∣

∣

∣

2
ψ

ψξ
dy ψξ dx,

which yields the result since ψξ/ψξ∞ does not depend on y. ♦
We are now in position to prove the exponential convergence of Em(t) to zero

stated in Theorem 1 (see Equation (21)).
Equation (31) on ψ can be rewritten as:

∂tψ = div (ψ∞∇(ψ/ψ∞)) + ∂x((A
′ −A′

t)ψ).
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Notice that the derivative dE
dt can be obtained by multiplying this equation by ln

(

ψ
ψ∞

)

and integrating over T×R. Thus, one obtains after some integrations by parts, using
a Cauchy-Schwarz inequality (to prove that (33) is non positive) and Lemma 4 (used
twice):

dEm
dt

=
dE

dt
− dEM

dt
,

= −
∫

T

∫

R

∣

∣

∣

∣

∇ ln

(

ψ

ψ∞

)∣

∣

∣

∣

2

ψ +

∫

T

∫

R

(A′
t −A′)∂x ln

(

ψ

ψ∞

)

ψ +

∫

T

∣

∣

∣

∣

∂x ln

(

ψξ

ψξ∞

)∣

∣

∣

∣

2

ψξ,

= −
∫

T

∫

R

∣

∣

∣

∣

∂y ln

(

ψ

ψ∞

)∣

∣

∣

∣

2

ψ

−
∫

T

∫

R

∣

∣

∣

∣

∂x ln

(

ψ

ψ∞

)∣

∣

∣

∣

2

ψ +

∫

T

(∫

R

∂x ln

(

ψ

ψ∞

)

ψ dy

)2
1

ψξ
dx (33)

−
∫

T

∫

R

∂x ln

(

ψξ

ψξ∞

)

∂x ln

(

ψ

ψ∞

)

ψ +

∫

T

∣

∣

∣

∣

∂x ln

(

ψξ

ψξ∞

)∣

∣

∣

∣

2

ψξ,

≤ −
∫

T

∫

R

∣

∣

∣

∣

∂y ln

(

ψ

ψ∞

)∣

∣

∣

∣

2

ψ −
∫

T

∂x ln

(

ψξ

ψξ∞

)

ψξ(A′
t −A′).

We now use Lemmas 5 and 6:

dEm
dt

≤ −2ρEm +

√

∫

T

|A′
t − A′|2 ψξ

√

∫

T

∣

∣

∣

∣

∂x ln

(

ψξ

ψξ∞

)∣

∣

∣

∣

2

ψξ,

≤ −2ρEm + ‖∂x,yV ‖L∞

√

2

ρ
Em

√

I(ψξ|ψξ∞).

Using [H4], we thus have:

d
√
Em
dt

≤ −ρ
√

Em + ‖∂x,yV ‖L∞

√

I0
2ρ

exp(−rt),

from which we deduce (21).
Equation (23) is then easily obtained using Lemma 5.

3.2 Proof of Proposition 1 and Theorem 1 in the general case

We now present the proof of Proposition 1 and Theorem 1 in the more general setting
of Section 2.2. The proof follows the same lines as in the simple case presented in
Section 3.1, but with additional difficulties related to the geometry of the submani-
folds Σz.

We need the following result

Lemma 7 The derivative of ψξ with respect to the reaction coordinate value reads:

∂zψ
ξ(t, z) =

∫

Σz

(∇ξ · ∇ψ(t, ·)
|∇ξ|2 + div

( ∇ξ
|∇ξ|2

)

ψ(t, ·)
)

|∇ξ|−1dσΣz
.

Proof : For any smooth test function g : M → R, we obtain (using the co-area
formula (39) and an integration by parts):
∫

M
ψξ(t, z)g′(z) dz =

∫

D
ψ(t, x)g′ ◦ ξ(x) dx,

=

∫

D
ψ(t, x)∇(g ◦ ξ) · ∇ξ|∇ξ|−2(x) dx,

= −
∫

D
div

(

ψ(t, ·)∇ξ
|∇ξ|2

)

g ◦ ξ dx,

= −
∫

M
g(z)

∫

Σz

(∇ξ · ∇ψ(t, ·)
|∇ξ|2 + div

( ∇ξ
|∇ξ|2

)

ψ(t, ·)
)

|∇ξ|−1dσΣz
dz,
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which yields the result. ♦
Using this lemma, it can be shown that ψξ satisfies a simple diffusion equation, which
is Proposition 1.

Lemma 8 The density ψξ satisfies the following diffusion equation on M:

∂tψ
ξ = ∂z

(

W ′ψξ + ∂zψ
ξ
)

. (34)

Proof : For any smooth test function g : M → R, we have (using the co-area
formula (39), (14), an integration by parts and finally Lemma 7):

d

dt

∫

M
ψξ(t, ·)g dz =

d

dt

∫

D
ψ(t, ·)g ◦ ξ dx,

=

∫

D
div

(

|∇ξ|−2 (∇(V −At ◦ ξ +W ◦ ξ)ψ + ∇ψ)
)

g ◦ ξ dx,

= −
∫

D
|∇ξ|−2 (∇(V −At ◦ ξ +W ◦ ξ)ψ + ∇ψ) · ∇ξ g′ ◦ ξ dx,

= −
∫

D
|∇ξ|−2 (∇V · ∇ξψ + ∇ψ · ∇ξ) g′ ◦ ξ dx

+

∫

D
A′
t ◦ ξg′ ◦ ξψ dx−

∫

D
W ′ ◦ ξg′ ◦ ξψ dx,

= −
∫

M

∫

Σz

|∇ξ|−3 (∇V · ∇ξψ + ∇ψ · ∇ξ) dσΣz
g′(z) dz

+

∫

M
A′
t(z)g

′(z)ψξ(z) dz −
∫

M
W ′(z)g′(z)ψξ(z) dz,

= −
∫

M

∫

Σz

(

|∇ξ|−3∇ψ · ∇ξ + div (∇ξ|∇ξ|−2)|∇ξ|−1ψ
)

dσΣz
g′(z) dz

−
∫

M
W ′(z)ψξ(z)g′(z) dz,

= −
∫

M

(

∂zψ
ξ(t, z) +W ′(z)ψξ(z)

)

g′(z) dz,

which is a weak formulation of (34). ♦
As stated in Corollary 1, this result already yields the exponential convergence

to zero of the macroscopic Fisher information I(ψξ|ψξ∞) under adequate assumption
on W (this is the matter of [H4’] and Lemma 13 below). We suppose in the following
that [H4] is indeed satisfied.

The equivalent of Lemma 4 writes

Lemma 9 The difference between the biasing force A′
t and the mean force A′ can be

expressed in term of the densities as

A′
t(z) −A′(z) =

∫

Σz

∇ξ
|∇ξ| · ∇ ln

(

ψ

ψ∞

)

ψ

ψξ
|∇ξ|−2 dσΣz

− ∂z ln

(

ψξ

ψξ∞

)

.

16



Proof : Using Lemma 7 and the definition of A′
t, it holds:

∫

Σz

∇ξ
|∇ξ| · ∇ ln

(

ψ

ψ∞

)

ψ

ψξ
|∇ξ|−2 dσΣz

− ∂z ln

(

ψξ

ψξ∞

)

=

∫

Σz

∇ξ
|∇ξ| · ∇ lnψ

ψ

ψξ
|∇ξ|−2 dσΣz

−
∫

Σz

∇ξ
|∇ξ| · ∇ lnψ∞

ψ

ψξ
|∇ξ|−2 dσΣz

− ∂z lnψξ + ∂z lnψξ∞,

=
1

ψξ

∫

Σz

∇ξ · ∇ψ
|∇ξ| |∇ξ|−2 dσΣz

+

∫

Σz

∇ξ
|∇ξ| · ∇ (V −A ◦ ξ +W ◦ ξ) ψ

ψξ
|∇ξ|−2 dσΣz

− ∂z lnψξ −W ′(z),

=
∂zψ

ξ

ψξ
− 1

ψξ

∫

Σz

div

( ∇ξ
|∇ξ|2

)

|∇ξ|−1ψ dσΣz
+

∫

Σz

∇ξ · ∇V
|∇ξ|3

ψ

ψξ
dσΣz

−A′(z) − ∂z lnψξ,

= A′
t(z) −A′(z).

♦
The equivalent of Lemmas 5 and 6 write:

Lemma 10 Let us assume [H2]–[H3]. Then for all t ≥ 0, for all z ∈ M,

|A′
t(z) −A′(z)| ≤M

√

2

ρ
em(t, z).

Proof : For any coupling measure π ∈ Π(µt,z , µ∞,z) defined on Σz × Σz, it holds:

|A′
t(z) −A′(z)| =

∣

∣

∣

∣

∫

Σz×Σz

(F (x) − F (x′))π(dx, dx′)

∣

∣

∣

∣

,

≤ ‖∇Σz
F‖L∞

√

∫

Σz×Σz

dΣz
(x, x′)2π(dx, dx′).

Taking now the infimum over all π ∈ Π(µt,z, µ∞,z) and using [H2]–[H3] together with
Lemma 2, we thus obtain

|A′
t(z) −A′(z)| ≤MW (µt,z, µ∞,z) ≤M

√

2

ρ
H(µt,z|µ∞,z), (35)

which concludes the proof. ♦

Lemma 11 Let us assume [H3]. Then for all t ≥ 0,

Em(t) ≤ 1

2ρ

∫

D

∣

∣

∣

∣

∇Σz
ln

(

ψ(t, ·)
ψ∞

)∣

∣

∣

∣

2

ψ.

Proof : Using [H3], it follows:

Em =

∫

M
emψ

ξ dz,

≤
∫

M

1

2ρ

∫

Σz

∣

∣

∣

∣

∇Σz
ln

(

ψ(t, ·)
ψ∞

)∣

∣

∣

∣

2
ψ(t, ·)|∇ξ|−1dσΣz

ψξ(t, z)
ψξ dz,

which yields the result, using the co-area formula (39). ♦
We are now in position to prove the exponential convergence of Em(t) to zero

stated in Theorem 1 (see Equation (21)). Equation (14) on ψ can be rewritten as:

∂tψ = div (|∇ξ|−2ψ∞∇(ψ/ψ∞)) + div (|∇ξ|−2∇ ((A−At) ◦ ξ) ψ).
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Notice that the derivative dE
dt can be obtained by multiplying this equation by ln

(

ψ
ψ∞

)

and integrating over D. Thus, one obtains after some integrations by parts, using the
co-area formula (39) and Lemma 9:

dEm
dt

=
dE

dt
− dEM

dt
,

= −
∫

D

∣

∣

∣

∣

∇ ln

(

ψ

ψ∞

)∣

∣

∣

∣

2

|∇ξ|−2ψ +

∫

D
(A′

t − A′) ◦ ξ∇ξ · ∇ ln

(

ψ

ψ∞

)

|∇ξ|−2ψ

+

∫

M

∣

∣

∣

∣

∂z ln

(

ψξ

ψξ∞

)∣

∣

∣

∣

2

ψξ,

= −
∫

D

∣

∣

∣

∣

∇Σz
ln

(

ψ

ψ∞

)∣

∣

∣

∣

2

|∇ξ|−2ψ −
∫

D

( ∇ξ
|∇ξ| · ∇ ln

(

ψ

ψ∞

))2

|∇ξ|−2ψ

+

∫

M
(A′

t −A′)(z)
∫

Σz

∇ξ
|∇ξ| · ∇ ln

(

ψ

ψ∞

)

|∇ξ|−2ψdσΣz
dz

+

∫

M

∣

∣

∣

∣

∂z ln

(

ψξ

ψξ∞

)∣

∣

∣

∣

2

ψξ,

= −
∫

D

∣

∣

∣

∣

∇Σz
ln

(

ψ

ψ∞

)∣

∣

∣

∣

2

|∇ξ|−2ψ −
∫

D

( ∇ξ
|∇ξ| · ∇ ln

(

ψ

ψ∞

))2

|∇ξ|−2ψ

+

∫

M

(∫

Σz

∇ξ
|∇ξ| · ∇ ln

(

ψ

ψ∞

)

|∇ξ|−2ψdσΣz

)2

(ψξ)−1dz

−
∫

M

∫

Σz

∇ξ
|∇ξ| · ∇ ln

(

ψ

ψ∞

)

|∇ξ|−2ψdσΣz
∂z ln

(

ψξ

ψξ∞

)

dz

+

∫

M

∣

∣

∣

∣

∂z ln

(

ψξ

ψξ∞

)∣

∣

∣

∣

2

ψξ.

Using the Cauchy-Schwarz inequality:

(

∫

Σz

∇ξ
|∇ξ| · ∇ ln

(

ψ

ψ∞

)

|∇ξ|−1 |∇ξ|−1ψdσΣz

ψξ(z)

)2

≤
∫

Σz

( ∇ξ
|∇ξ| · ∇ ln

(

ψ

ψ∞

)

|∇ξ|−1

)2 |∇ξ|−1ψdσΣz

ψξ(z)

and Lemma 9 again, we thus obtain

dEm
dt

≤ −
∫

D

∣

∣

∣

∣

∇Σz
ln

(

ψ

ψ∞

)∣

∣

∣

∣

2

|∇ξ|−2ψ −
∫

M
∂z ln

(

ψξ

ψξ∞

)

ψξ(A′
t −A′).

We now use [H2], Lemmas 10 and 11:

dEm
dt

≤ −2ρm−2Em +

√

∫

M
|A′
t −A′|2 ψξ

√

∫

M

∣

∣

∣

∣

∂z ln

(

ψξ

ψξ∞

)∣

∣

∣

∣

2

ψξ,

≤ −2ρm−2Em +M

√

2

ρ
Em

√

I(ψξ|ψξ∞).

Using [H4], we thus have:

d
√
Em
dt

≤ −ρm−2
√

Em +M

√

I0
2ρ

exp(−rt),

from which we deduce (21).
Equation (23) is then easily obtained using Lemma 10.
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3.3 Proof of Corollary 1

3.3.1 Convergence of the macroscopic Fisher information

Let us first show that in both cases considered in [H4’], the exponential conver-
gence [H4] of the macroscopic Fisher information indeed holds.

Let us first consider the case M = T and W = 0. We know from (20) that ψξ

satisfies ∂tψ
ξ = ∂z,zψ

ξ on T, and we would like to show exponential convergence of
the Fisher information I(ψξ(t, ·)|ψξ∞).

Lemma 12 (Convergence of the Fisher information when M = T and W = 0)
Let φ be a function defined for t ≥ 0 and x ∈ T which satisfies

∂tφ = ∂x,xφ on T

and such that
∫

T
φ(0, ·) = 1, φ(0, ·) is non negative, and I(φ(0, ·)|φ∞) < ∞, where

φ∞ ≡ 1 is the longtime limit of φ. Then, ∀t ≥ 0,

I(φ(t, ·)|φ∞) ≤ I(φ(0, ·)|φ∞) exp(−8π2t).

Proof : Let us denote u =
√
φ. We notice that I(φ|φ∞) =

∫

T
|∂x lnφ|2φ = 4

∫

T
|∂xu|2.

Moreover, we have from (32)

∂tu = ∂x,xu+
(∂xu)

2

u
.

Therefore,

d

dt

∫

T

(∂xu)
2 = 2

∫

T

∂x,x,xu ∂xu+ 2

∫

T

∂x

(

(∂xu)
2

u

)

∂xu,

= −2

∫

T

(∂x,xu)
2 − 2

∫

T

(∂xu)
2

u
∂x,xu,

= −2

∫

T

(∂x,xu)
2 − 2

∫

T

∂x((∂xu)
3)

3u
,

= −2

∫

T

(∂x,xu)
2 − 2

3

∫

T

(∂xu)
4

u2
,

≤ −8π2

∫

T

(∂xu)
2,

where we have used the Poincaré-Wirtinger inequality on T, applied to ∂xu: For any
function f ∈ H1(T),

∫

T

(

f −
∫

T

f

)2

≤ 1

4π2

∫

T

(∂xf)2.

♦
Let us now consider the case M = R and W 6= 0 which is such that W ′′ is

bounded from below and exp(−βW )
∫

M
exp(−βW )

satisfies a logarithmic Sobolev inequality (as

stated in [H4’]). We know from (20) that ψξ satisfies ∂tψ
ξ = ∂z

(

W ′ψξ + ∂zψ
ξ
)

on R, and we would like to show exponential convergence of the Fisher informa-
tion I(ψξ(t, ·)|ψξ∞).

Lemma 13 (Convergence of the Fisher information when M = R and W 6= 0)
Let φ be a function defined for t ≥ 0 and x ∈ R which satisfies

∂tφ = ∂x (W ′φ+ ∂xφ) on R,

and such that
∫

R
φ(0, ·) = 1, φ(0, ·) is non negative, and I(φ(0, ·)|φ∞) < ∞, where

φ∞ ≡ exp(−W )
∫

R
exp(−W )

is the longtime limit of φ. Let us assume that W ′′ is bounded from
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below by a constant α and φ∞ satisfies LSI(r), with r > 0. We can suppose without
loss of generality that

r ≥ α.

Then there exists I0 > 0 and r > 0 such that ∀t ≥ 0,

I(φ(t, ·)|φ∞) ≤ I0 exp(−2rt).

More precisely, when α = r > 0, it is possible to take I0 = I(φ(0, ·)|φ∞) and r = α.
When α < r, for any ε ∈ (0, r), it is possible to choose r = r − ε for a well-chosen
constant I0 > 0.

Proof : The fact that r ≥ α is clear since either α ≤ 0, or α > 0 in which case it is
well-known that φ∞ satisfies LSI(α) (see for example [2]), so that one can choose at
least r = α.

Let us recall the expression for the entropy H(φ(t, ·)|φ∞) =
∫

R
ln(φ/φ∞)φ and the

Fisher information I(φ(t, ·)|φ∞) =
∫

R
|∂x ln(φ/φ∞)|2φ. Since φ∞ satisfies LSI(r), we

have

H(φ(t, ·)|φ∞) ≤ 1

2r
I(φ(t, ·)|φ∞).

Moreover, by standard computations (see for example [3]), we have

d

dt
H(φ(t, ·)|φ∞) = −I(φ(t, ·)|φ∞)

and

d

dt
I(φ(t, ·)|φ∞) = −2

∫

R

φ

φ∞

∣

∣

∣

∣

∂x,x ln

(

φ

φ∞

)∣

∣

∣

∣

2

φ∞ − 2

∫

R

φ

φ∞

∣

∣

∣

∣

∂x ln

(

φ

φ∞

)∣

∣

∣

∣

2

W ′′φ∞.

(36)
If α = r, we thus obtain from (36) that d

dtI(φ(t, ·)|φ∞) ≤ −2αI(φ(t, ·)|φ∞) which
concludes the proof in this case.

Let us now suppose that α < r. The technique of proof we propose is taken
from [17]. For any λ > 0, we have

d

dt
(H(φ(t, ·)|φ∞) + λI(φ(t, ·)|φ∞))

= −
∫

R

φ

φ∞

∣

∣

∣

∣

∂x ln

(

φ

φ∞

)∣

∣

∣

∣

2

φ∞ − 2λ

∫

R

φ

φ∞

∣

∣

∣

∣

∂x,x ln

(

φ

φ∞

)∣

∣

∣

∣

2

φ∞

− 2λ

∫

R

φ

φ∞

∣

∣

∣

∣

∂x ln

(

φ

φ∞

)∣

∣

∣

∣

2

W ′′φ∞,

≤ −
∫

R

(1 + 2λW ′′)
φ

φ∞

∣

∣

∣

∣

∂x ln

(

φ

φ∞

)∣

∣

∣

∣

2

φ∞,

≤ −(1 + 2λ inf W ′′)I(φ(t, ·)|φ∞),

≤ − 1 + 2αλ

λ+ 1/(2r)
(H(φ(t, ·)|φ∞) + λI(φ(t, ·)|φ∞)) .

We thus obtain that, for any λ > 0,

H(φ(t, ·)|φ∞)+λI(φ(t, ·)|φ∞) ≤
(

H(φ(0, ·)|φ∞)+λI(φ(0, ·)|φ∞)
)

exp

(

− 1 + 2αλ

λ+ 1/(2r)
t

)

,

and therefore

I(φ(t, ·)|φ∞) ≤
(

1

λ
H(φ(0, ·)|φ∞) + I(φ(0, ·)|φ∞)

)

exp

(

− 1 + 2αλ

λ+ 1/(2r)
t

)

.

Since 1+2αλ
λ+1/(2r) goes to 2r when λ goes to 0, for any ε ∈ (0, r), one can find a λ > 0

such that 1+2αλ
λ+1/(2r) = 2(r − ε), which concludes the proof. ♦
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3.3.2 Convergence of the biasing force

Let us now prove the convergence result (24) for the biasing force.
In the case M = T (and thus W = 0), we can prove the convergence of ‖A′

t −
A′‖L2(T) to zero in the following sense (which implies (24), using (21)): for any ε ∈
(0, 1), ∀t ≥ tε,

‖A′
t −A′‖2

L2(T) ≤
2

1 − ε

M2

ρ
Em(t), (37)

where tε = min

(

0, (4π2)−1 ln

(

ε−1

√

∫

T

(∂zψξ(0, ·))2
))

. This is obtained using the

fact that
∫

T
(∂xψ

ξ(t, ·))2 ≤
∫

T
(∂xψ

ξ(0, ·))2 exp(−8π2t) (the proof of this estimate is
similar to the one of Lemma 12) and the fact that for any function f ∈ H1(T),

∥

∥

∥

∥

f −
∫

T

f

∥

∥

∥

∥

2

L∞

≤
∫

T

(∂xf)2,

applied to f = ψξ. Thus we have
∥

∥ψξ − 1
∥

∥

2

L∞
≤
∫

T
(∂xψ

ξ(0, ·))2 exp(−8π2t) which

implies that for t ≥ tε, ψ
ξ(t, ·) ≥ 1 − ε which yields (37) from (23).

Let us now prove (24) in the case M = R, under assumption [H4’] on W . Let us
introduce a compact K ⊂ M. Since L∞(K) ⊂ H1(K) (with continuous injection),
there exists c > 0 such that
∥

∥

∥

∥

ψξ

ψξ∞
− 1

∥

∥

∥

∥

L∞(K)

≤ c

(

∥

∥

∥

∥

ψξ

ψξ∞
− 1

∥

∥

∥

∥

L2(K)

+

∥

∥

∥

∥

∂z

(

ψξ

ψξ∞
− 1

)∥

∥

∥

∥

L2(K)

)

,

≤ c

infK

√

ψξ∞





√

∫

R

(

ψξ

ψξ∞
− 1

)2

ψξ∞ +

√

∫

R

(

∂z

(

ψξ

ψξ∞
− 1

))2

ψξ∞



 .

Thus, for any ε ∈ (0, r), there exists C > 0 such that
∥

∥

∥

∥

ψξ

ψξ∞
− 1

∥

∥

∥

∥

L∞(K)

≤ C exp(−rt),

with r = r − ε. This inequality is obtained from the fact that since ψξ∞ satisfies
LSI(r), then ψξ∞ also satisfies a Poincaré inequality with the same constant r (see
for example [2]), and a proof similar to that of Lemma 13 for the convergence of the

Fisher information

∫

R

(

∂z

(

ψξ

ψξ∞
− 1

))2

ψξ∞ associated with the Poincaré inequality.

Now, we write
∫

K

|A′
t −A′|ψξ∞ =

∫

K

|A′
t −A′|ψξ −

∫

K

|A′
t −A′|

(

ψξ

ψξ∞
− 1

)

ψξ∞,

≤
∫

R

|A′
t −A′|2ψξ + C exp(−rt)

∫

K

|A′
t −A′|ψξ∞.

Thus, for t sufficiently large,
∫

K |A′
t−A′|ψξ∞ is bounded from above by some constant

times
∫

R
|A′
t −A′|2ψξ, which yields (24) (using (23) and (21)).

3.4 Proof of Theorem 2

Let us now prove Theorem 2. We still assume, up to a change of variable, that β = 1.
We have:

dE

dt
= −

∫

D

∣

∣

∣

∣

∇ ln

(

ψ

ψ∞

)∣

∣

∣

∣

2

ψ +

∫

D
(A′

t −A′) ◦ ξ∇ξ · ∇ ln

(

ψ

ψ∞

)

ψ,

≤ −
∫

D

∣

∣

∣

∣

∇ ln

(

ψ

ψ∞

)∣

∣

∣

∣

2

ψ +

√

∫

M
|A′
t −A′|2ψξ

√

∫

D

∣

∣

∣

∣

∇ξ · ∇ ln

(

ψ

ψ∞

)∣

∣

∣

∣

2

ψ.
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Since, by Lemmas 10 and 11,

∫

M
|A′
t −A′|2ψξ ≤ M2

ρ

∫

D

∣

∣

∣

∣

∇Σz
ln

(

ψ

ψ∞

)∣

∣

∣

∣

2

ψ,

we thus obtain

dE

dt
≤ −

∫

D

∣

∣

∣

∣

∇ ln

(

ψ

ψ∞

)∣

∣

∣

∣

2

ψ +
Mm√
ρ

√

∫

D

∣

∣

∣

∣

∇Σz
ln

(

ψ

ψ∞

)∣

∣

∣

∣

2

ψ

√

∫

D

∣

∣

∣

∣

∇ξ
|∇ξ| · ∇ ln

(

ψ

ψ∞

)∣

∣

∣

∣

2

ψ

≤
(

−1 +
Mm

2
√
ρ

)∫

D

∣

∣

∣

∣

∇ ln

(

ψ

ψ∞

)∣

∣

∣

∣

2

ψ,

where we have used the fact that, for any function f : D → R, |∇f |2 = |∇Σz
f |2 +

∣

∣

∣

∇ξ
|∇ξ| · ∇f

∣

∣

∣

2

. The logarithmic Sobolev inequality with respect to ψ∞ (see [H5]) con-

cludes the proof.

A The co-area formula

The aim of this section is to state the co-area formula for a function ξ : D → R
p,

(where 1 ≤ p < n) such that rank(∇ξ) = p. Classical proofs for the co-area formula
can be found in the books [1, 8]. These proofs are however quite involved since they
assume only Lipschitz-regularity for ξ. The proof is simpler in the case of a smooth ξ:
it can be done by an adequate parameterization and a simple change of variables.

Lemma 14 (co-area formula) For any smooth function φ : R
n → R,

∫

Rn

φ(x)
√

detG(x)dx =

∫

Rp

∫

Σz

φdσΣz
dz, (38)

where G is a p × p matrix with Gi,j = ∇ξi · ∇ξj. In the case p = 1, Equation (38)
reads:

∫

Rn

φ(x)|∇ξ|(x)dx =

∫

R

∫

Σz

φdσΣz
dz, (39)

Remark 12 This formula shows that if the random variable X has law ψ(x) dx in R
n,

then ξ(X) has law
∫

Σz

ψ (detG)−1/2 dσΣz
dz,

and the law of X conditioned to a fixed value z of ξ(X) is

dµz =
ψ (detG)−1/2 dσΣz

∫

Σz
ψ (detG)−1/2 dσΣz

.

Indeed, for any bounded functions f and g,

E(f(ξ(X))g(X)) =

∫

Rn

f(ξ(x))g(x)ψ(x) dx,

=

∫

Rp

∫

Σz

f ◦ ξ g ψ (detG)−1/2dσΣz
dz,

=

∫

Rp

f(z)

∫

Σz
g ψ (detG)−1/2dσΣz

∫

Σz
ψ (detG)−1/2dσΣz

∫

Σz

ψ (detG)−1/2dσΣz
dz.

The measure (detG)−1/2dσΣz
is sometimes denoted by δξ(x)−z in the literature.
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B Another possible set of assumptions for the con-

vergence of the adaptive dynamics (10)–(11)

It is also possible to state a result similar to Theorem 1 for the dynamics (10)–(11)
under slightly different assumptions than [H2] and [H3] by introducing another Rie-
mannian structure on Σz (see [15]) than that induced by the scalar product of the am-
bient space D. Let us introduce the following scalar product: ∀x ∈ Σz, ∀u, v ∈ TxΣz,

〈u, v〉Σz
= u · v|∇ξ|2(x), (40)

where · denotes as before the scalar product of the ambient space D, and the associated
norm: ∀x ∈ Σz, ∀u ∈ TxΣz,

|u|2Σz
= 〈u, u〉Σz

= |u|2|∇ξ|2(x).

Accordingly, the definition of the surface gradient is modified as follows2 (compare
with (19)): For f : D → R,

∇Σz
f = |∇ξ|−2P∇f. (41)

In particular, we have |∇Σz
f |Σz

= |∇ξ|−1|P∇f |.
In this case, the Fisher information between the conditioned measures µt,z and

µ∞,z is (see [15]):

I(µt,z|µ∞,z) =

∫

Σz

∣

∣

∣

∣

∇Σz
ln

(

ψ(t, ·)
ψ∞

)∣

∣

∣

∣

2

Σz

ψ(t, ·)|∇ξ|−1dσΣz

ψξ(t, z)
,

=

∫

Σz

∣

∣

∣

∣

P∇ ln

(

ψ(t, ·)
ψ∞

)∣

∣

∣

∣

2

|∇ξ|−2ψ(t, ·)|∇ξ|−1dσΣz

ψξ(t, z)
,

and the assumption [H3] is stated in terms of this new Fisher information:

[H3’]







V and ξ are such that ∃ρ > 0, for all z ∈ M,
the conditional measure µ∞,z satisfies LSI(ρ),

Σz being endowed with the Riemannian structure (40).

Using this Fisher information, Lemma 11 writes:

Em(t) ≤ 1

2ρ

∫

D

∣

∣

∣

∣

P∇ ln

(

ψ(t, ·)
ψ∞

)∣

∣

∣

∣

2

|∇ξ|−2ψ.

The definition for the Wasserstein distance is now stated using the geodesic dis-
tance dΣz

: ∀x, y ∈ Σz,

dΣz
(x, y) = inf







√

∫ 1

0

|ẇ(t)|2Σz
dt

∣

∣

∣

∣

∣

w ∈ C1([0, 1],Σz), w(0) = x, w(1) = y







.

Thus, the estimate of Lemma 10 is changed to:

|A′
t(z) −A′(z)| =

∣

∣

∣

∣

∫

Σz×Σz

(F (x) − F (x′))π(dx, dx′)

∣

∣

∣

∣

,

≤
∥

∥|∇ξ|−1 |P∇F |
∥

∥

L∞

√

∫

Σz×Σz

dΣz
(x, x′)2π(dx, dx′),

2With a slight abuse of notation, we still use the same notation ∇Σz to denote the surface gradient,
or I(µt,z|µ∞,z) to denote the Fisher information, or dΣz to denote the geodesic distance, or ρ to denote
the microscopic rate of convergence, while these are not the same as in the rest of the paper, since the
Riemannian structure has been changed.
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where F is defined by (6). Notice that

|∇ξ|−1 |P∇F | = |∇Σz
F |Σz

.

Thus, assumption [H2] is modified as:

[H2’]

{

V and ξ are sufficiently differentiable functions such that
∥

∥|∇Σz
F |Σz

∥

∥

L∞
≤M <∞.

The rest of the proof remains the same, and exponential convergence is thus obtained,
assumptions [H2] and [H3] being respectively replaced by [H2’] and [H3’]. With this
set of assumptions, the rate of convergence is λ = β−1 min(ρ, r).

Acknowledgements : This work is supported by the ANR INGEMOL of the
French Ministry of Research. TL would like to thank Ch. Chipot who initiated this
work by a question about the ABF method. Part of this work was completed during
a summer school of the GDR CHANT. We would like to thank F. Castella for the
organization of this school. We would like to thank C. Villani for pointing out [17] to
prove Lemma 13.

References

[1] L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free
discontinuity problems. Oxford science publications, 2000.
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