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émanant des établissements d’enseignement et de
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Abstrat: We disuss the statistis of spikes trains for di�erent types of integrate-and-�reneurons and di�erent types of synapti noise models. In ontrast with the usual approahesin neurosiene, mainly based on statistial physis methods suh as the Fokker-Plankequation or the mean-�eld theory, we hose the point of the view of the stohasti alulustheory to haraterize neurons in noisy environments. We present four stohasti alulustehniques that an be used to �nd the probability distributions attahed to the spikestrains. We illustrate the power of these tehniques for four types of widely used neuronmodels. Despite the fat that these tehniques are mathematially intriate we believe thatthey an be useful for answering questions in neurosiene that naturally arise from thevariability of neuronal ativity. For eah tehnique we indiate its range of appliation andits limitations.Key-words: neuron models, stohasti proesses, spikes trains statistis, �rst hitting time
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Statistiques de trains de spikes: le point de vue du alulstohastiqueRésumé : Nous nous intéressons aux statistiques de trains de spikes pour di�érents types deneurons intègre-et-tire et di�érents types de modèles de bruit synaptique. A la di�érene desapprohes lassiques en neurosienes, prinipalement basées sur des méthodes de physiquestatistique telles que l'équation de Fokker-Plank ou la théorie du hamp moyen, nous hoi-sissons le point de vue de la théorie du alul stohastique pour haratériser les neuronesdans des environnements bruités. Nous présentons quatre méthodes de alul stohastiquequi peuvent être utilisées pour haratériser la distribution de probabilité des trains despikes. Nous illustrons la puissane de es tehniques pour quatre types de modèles de neu-rones ouramment utilisés. Bien que es tehniques soient mathématiquement omplexes,nous royons qu'elles peuvent être utiles pour répondre aux questions de neurosiene quise posent naturellement quand on s'intéresse à la variabilité de l'ativité neuronale. Pourhaune des tehniques proposées, nous indiquons son domaine d'appliation et ses limites.Mots-lés : modèles de neurones, proessus stohastiques, temps de spikes, premier tempsd'atteinte



Stohasti approah of spike trains 3IntrodutionDuring the past thirty years, modelling and understanding the e�ets of noise in ortialneurons has been a entral and di�ult endeavor in neurosiene. Many approahes havebeen used in order to haraterize the spikes trains, most of them borrowed form statistialphysis. At the level of the ell, the e�ets of noise have been studied �rst by Knight [33℄who introdued and studied the �rst noisy integrate-and-�re neuron model. His work hasbeen generalized by Gerstner [26℄. Brunel used the Fokker-Plank equation to haraterizethe e�et of noise at the level of the ell [12, 11℄ and of the network [10, 9℄. Samuelidesand his olleagues used the mean�eld and large deviations framework to haraterize largesets of randomly onneted neurons driven by noise [56℄. In the present paper we adoptthe point of view of the theory of stohasti alulus in an attempt to haraterize thestohasti properties of neuron models and the statistis of the spikes trains they generate.We illustrate these tehniques with four types of widely used neuron models.The tehniques are mathematially quite intriate. Nevertheless, we believe that theyan be useful for answering questions in neurosiene that naturally arise from the variabilityof neuronal ativity. For instane, they an give aess to the probability distribution ofthe spikes trains, while other methods only give partial informations on this distribution.Moreover, the use of stohasti alulus methods enables us to get rid of suh tehnialhypotheses as the stationarity of the proess, the sparsity of the networks or the time salesapproximations, whih are generally required. For eah tehnique presented we indiate itsrange of appliability and its limitations.In the �rst setion, we disuss the origin of the variability in ortial neurons and theirmathematial modelling, and justify the use of the Brownian motion. In the seond setion,we present di�erent lassial mathematial models, whih di�er in their intrinsi dynamis orin the noise models used. The third setion is dediated to the presentation of four importantstohasti methods for omputing spikes trains statistis, and to their appliation to thedi�erent types of neurons presented in the seond setion. A large appendix summarizesbrie�y the main mathematial notions that are needed in order for the paper to be self-onsistent for readers whose stohasti alulus is a bit rusty.1 Noise in neurons: soures and modelsIn vivo reordings of neuronal ativity are haraterized by their high variability. Di�erentstudies of the spikes trains of individual neurons indiate that the �ring patterns seem to berandom. The origin of the irregularity in the eletrial ativity of ortial neurons in vivohas been widely studied and has reeived no satisfatory answer so far. Nevertheless it isommonly admitted that a) part of this variability an be onsidered as noise [60, 58℄, andb) that a large part of the noise experiened by a ortial neuron is due to the intensive andrandom exitation of synapti sites.We desribe some of the biologial evidene that supports these statements and proposemathematial models of the synapti noise.
RR n° 6224



4 Touboul, Faugeras1.1 Soures of variabilityIt is generally agreed that a large part of the noise experiened by a ortial neuron is dueto the intensive and random exitation of synapti sites.It has been observed from in vivo reordings of ortial neurons, in awake [15℄ andanesthetized animals [18℄ that a spontaneous ativity exists and that the related spike proessan be onsidered as Poisson. This Poisson model of independent synapti inputs, or ratherits di�usion limit approximation, is the model we use here.The origin of irregularities is still poorly known. Gerstner and Kistler in [26℄ disussthis question at length. They obtain an interesting lassi�ation, and show that we andistinguish between intrinsi noise soures that generates stohasti behavior at the levelof the neuronal dynamis and extrinsi soures arising from network e�ets and synaptitransmission. We brie�y summarize the main points:� A permanent noise soure is the thermal noise linked with disrete nature of ele-tri harge arriers. Flutuations linked with this phenomenon are however of minorimportane ompared to other noise soures in neurons.� The �nite number of ion hannels is another noise soure.Most of the ion hannelhave only two states: they are open or losed. The eletrial ondutivity of a pathof membrane is proportional to the number of open ion hannels. The ondutivitytherefore �utuates and so does the potential1� Noise is also due to signal transmission and network e�ets (extrinsi noise): synap-ti transmission failures, randomness of exitatory and inhibitory onnetions, forinstane, and global networks e�ets (see for instane [10℄) where random exita-tory/inhibitory onnetivity an produe highly irregular spikes trains even in theabsene of noise.In term of neuron models we onentrate on several lasses of integrate-and-�re spikingneuron models beause they bring together a relative mathematial simpliity and a greatpower of expression. In this �eld, Knight [33℄, pioneered the study of the e�et of noisewith a simpli�ed model in whih the threshold was drawn randomly after eah spike. Ger-stner [26℄ extended these results and studied both slow noise models, in whih either thethreshold or the reset is drawn randomly after eah spike, and fast esape rate noise models.In the ontext of synhrony in neuronal networks, Abbott et al [1℄ studied a phase noisemodel. However, none of these models an represent in a realisti way the synapti noise asexperiened by ortial neurons.We onentrate on the e�et of synapti urrents. Synapti urrents an be desribedby a simple system of ordinary di�erential equations (see for instane [17℄). We study theimpat of noise originating from realisti synapti models on the dynamis of the �ringprobability of a spiking neuron.1There exists models taking into aount the �nite number of ion hannel, and that they an reproduethe observed variability in some ases(see for instane [16℄)
INRIA



Stohasti approah of spike trains 5Beause of spae onstrains we only explore two levels of omplexity for the synaptiurrents, 1) instantaneous (desribed by delta funtion) synapti urrents, and 2) synaptiurrents desribed by an instantaneous jump followed by an exponential deay. The dy-namis of the �ring probability of a neuron reeiving a bombardment of spikes through suhsynapti urrents is studied in the framework of the di�usion approximation (in the neu-ronal ontext, see [66℄). This approximation is justi�ed when a large number of spikes arrivethrough synapses that are weak ompared to the magnitude of the �ring threshold, whih isthe relevant situation in the ortex. In the di�usion approximation, the random omponentin the synapti urrents an be treated as a Brownian motion in the ase of instantaneoussynapses. On the other hand, when synapses have a �nite temporal response, as in the morerealisti models, synapti noise has a �nite orrelation time and thus beomes �olored�noise. Thanks to the di�usion approximation, the dynamis of the �ring probability an bestudied in the framework of the stohasti alulus theory (see for instane [31℄).1.2 Synapti noise modelingMany mathematial desriptions of the synapti urrent Isyn have been proposed (see Des-texhe et al [17℄ or [26℄). We onsider two types of inreasingly omplex synapti urrentmodels:(i). Instantaneous synapses: if we neglet the synapti integration, onsidering that thesynapti time onstants are small with respet to the membrane interation, the post-synapti input an be desribed by a Brownian motion, whih is the di�usion approx-imation of a resaled sum of Poisson proesses. For this we assume that the synaptiinputs are spikes arriving atN synapses i ∈ {1, . . . , N}, eah with a synapti e�ieny
ωi, at the spikes times tki . The input synapti urrent an be written:

dIsynt =
N
∑

i=1

ωi

∑

k

δ(t− tki )
def
=

N
∑

i=1

ωidSi(t), (1.1)where the Si(t)s are point proesses representing the spikes trains arriving in eahsynapse.Neurons are onneted to thousand of neurons (in general, N ≈ 103 − 104). If weassume that the synapti input spikes times follow a probability law with mean µi andvariane σ2
i (for instane Poisson proesses, σ2

i = µi) and are pairwise independent2,
Isyn is the sum of N independent Poisson proesses, of mean ωiµi and of variane2The independene hypothesis is a key hypothesis and is quite di�ult to justify biologially. Nevertheless,the same result would hold under very tehnial and strong onditions on the deorrelation of the proess.It is a very intriate theory and we will not deal with it here.
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6 Touboul, Faugeras
ω2

i µi. We assume that the ωis are suh that there exist µ, σ in (0,∞) suh that3:






∑N
i=1 ωiµi −→

N→∞
µ

∑N
i=1 ω

2
i µi −→

N→∞
σ2By Donsker's theorem [5℄

N
∑

i=1

ωi

(

Si(t) − µit
)

L−→ σWt (1.2)where (Wt)t≥0 is a standard Brownian motion (see Appendix A.1 for a de�nition), andthe symbol L−→ indiates that the proess on the lefthand side onverges in law to theproess on the righthand side when N → ∞.The di�usion approximation onsists in approximating the synapti jump proess (1.1)by the ontinuous proess:
Isynt = µt+ σWt (1.3)(ii). Exponentially deaying synapti urrent: beause the postsynapti interation has a�nite integration time, say τs, the following equation arises naturally

τsdI
syn
t = −Isynt dt+

N
∑

i=1

ωi

∑

k

δ(t− tki ) (1.4)Note that we have assumed that τs was the same for all synapses and negleted therise time of the synapti urrent. The seond assumption is justi�ed on the groundthat the rise time of a synapse is typially very short ompared to the relaxation time.A di�usion approximation similar to the one in the previous paragraph yields thefollowing di�usion approximation of the synapti noise with exponential deay:
τsdI

syn
t = (−Isynt + µ) dt+ σdWt (1.5)2 Neuron ModelsIn this paper, a neuron model is de�ned by (i) a membrane potential dynamis and (ii)a synapti dynamis. The neuron emits a spike when its membrane potential reahes a,possibly time-varying, threshold funtion θ(t). We are interested in haraterizing the se-quene {ti}, i = 1, · · · , ti > 0, ti+1 > ti when the neuron emits spikes. We present four3In general this ondition an be ahieved by a resaling and a hange of time applied to the proessINRIA



Stohasti approah of spike trains 7simple models of spiking neurons submitted to noisy synapti input, disuss their biologialrelevane and perform a basi stohasti analysis of the spikes times. In detail, a neuronmodel is de�ned by an equation:
τmdVt = f(t, Vt) dt+ Ie(t) dt+ dIsyn(Vt, t) (2.1)where f(t, v) governs the free membrane potential dynamis, Ie(t) is the injeted or externalurrent and the deterministi term of synapti integration, and Isynt represents the noisysynapti inputs due to bakground synapti ativity.In the following setions, we review di�erent models of neuronal dynamis in whih thesynapti urrent an be desribed by one of the models disussed in setion 1.2.2.1 Model I: The noisy leaky integrate-and-�re model with instan-taneous synapti urrentThe simplest model we onsider is the integrate and �re where the membrane potential Vfollows the following stohasti di�erential equation:
{

τmdVt = (Vrest − Vt + Ie(t)) dt+ σdWt

V0 = 0
(2.2)where τm is the time onstant of the membrane, Vrest the rest potential and Wt a Brownianproess representing the synapti input. This equation is the Ornstein-Uhlenbek equation.The neuron emits a spike eah time its membrane potential reahes a threshold θ or athreshold funtion θ(t). When a spike is emitted, the membrane potential is reinitialized tothe initial value, e.g. 0.This is the simplest ontinuous noisy spiking model. The leaky integrate-and-�re neuronwas �rst introdued by Lapique [37℄ in a disussion on membrane polarizability. It idealizesthe neuron as a apaitor in parallel with a resistor and driven by a urrent Ie (see e.g. [26℄).The noisy integrate-and-�re neuron with instantaneous synapti urrent (2.2) has re-ently reeived a lot of attention to investigate the nature of the neural ode [42, 65, 13, 57℄.As shown in setion 1.2, equation (1.3), it an be seen as the di�usion approximation ofStein's model [25, 61℄ where the synapti inputs are onsidered as Poisson proesses.It is one of the few neuronal models for whih analytial alulations an be performed.Indeed, equation (2.2) an be solved in a losed form:

Vt = Vrest(1 − e
− t

τm ) + 1
τm

∫ t

0 e
s−t
τm Ie(s) ds+ σ

τm

∫ t

0 e
s−t
τm dWs (2.3)The stohasti proess Vt is Gauss-Markov. It is the sum of a deterministi part and theprodut of e−t/τm with the random proess ∫ t

0 e
s/τmdWs de�ned by a stohasti integral (seeappendix A.1). Thanks to a hange of time sale through the Dubins-Shwarz' theorem A.6it an be turned into a Brownian motion. It is easy to show that it is a entered Gauss-Markov proess with ovariane funtion ρ(t) = τm

2

(

e
2 t

τm − 1
). This funtion is used in theRR n° 6224



8 Touboul, Faugerasappliation of the Dubins-Shwarz' theorem to hange the time sale to obtain a Brownianmotion: ∫ t

0
es/τmdWs

L
= Wρ(t).The spiking ondition of this neuron, Vt = θ(t), an be written in term of this simplerstohasti proess:

∫ t

0

e
s

τm dWs = Wρ(t) =

τm

σ

[

(θ(t) − Vrest) e
t

τm + Vrest − 1
τm

∫ t

0
se

s
τm Ie(s) ds

]

def
= a(t) (2.4)In order to ful�ll our program we are thus naturally led to study the �rst hitting time ofthe Brownian motion Wρ(t) to the urved boundary a(t).2.2 Model II: The noisy leaky integrate-and-�re model with expo-nentially deaying synapti urrentWe modify the model of setion 2.1 to inlude an exponentially deaying synapti urrentas desribed in setion 1.2, equation (1.5):

{

τmdVt = (Vrest − Vt)dt+ Ie(t)dt + Isynt dt
τsdI

syn
t = −Isynt dt+ σdWtThis model is a more preise desription of the synapti urrent and is still simple enoughto be analyzed mathematially. Nevertheless, its analytial study is quite hallenging andonly a few results are available.We integrate this system of two stohasti di�erential equations as follows. The �rstequation yields

Vt = Vrest(1 − e
− t

τm ) + 1
τm

∫ t

0
e

s−t
τm Ie(s) ds+ 1

τm

∫ t

0
e

s−t
τm Isyns ds,and the seond equation an be integrated as

Isynt = Isyn0 e
− t

τs +
σ

τs

∫ t

0

e
s−t
τs dWs,where Isyn0 is a given random variable.We de�ne 1

α = 1
τm

− 1
τs
. Replaing in the �rst equation Isynt by its value in the seondequation we obtain

Vt = Vrest(1 − e
− t

τm ) + 1
τm

∫ t

0
e

s−t
τm Ie(s) ds+

Isyn0

1 − τm

τs

(e
− t

τs − e
− t

τm ) +
σ

τmτs
e
− t

τm

∫ t

0

e
s
α

(∫ s

0

e
u
τs dWu

)

ds

INRIA



Stohasti approah of spike trains 9The membrane potential is the sum of a deterministi proess and a funtion of the non-Markov Gaussian di�erentiable proess4 Xt de�ned by:
Xt =

∫ t

0

es/α

(∫ s

0

eu/τsdWu

)

ds (2.5)The spiking ondition an be written:
Xt = −ατs

σ
Isyn0 (e

t
α − 1) +

τmτs
σ

[

(θ − Vrest) e
t

τm + Vrest −
1

τm

∫ t

0

e
s

τm Ie(s) ds

]

. (2.6)Studying the spikes sequene of the LIF model with exponentially deaying synapti urrentsamounts to studying the �rst hitting time of the proess Xt de�ned by (2.5) to a ontinuousdeterministi boundary.With no signi�ant analytial omplexity we deal with a slightly more general proess,whih we all the double integral proess (DIP), de�ned by:
Xt :=

∫ t

0

g(s)Msds =

∫ t

0

g(s)

(∫ s

0

f(u)dWu

)

ds (2.7)for some real measurable funtions f and g.We already noted that the proess Xt was non Markovian. We show in appendix Cthat the two-dimensional proess (Xt,Mt) is a Gaussian Markov proess, and furthermore,onditionally to Ms, that the inrements (Xt −Xs,Mt −Ms) are independent of the σ-�eld
Fs (see appendix A.1 for the de�nitions of these terms).For a given t, the random variable Yt := (Xt,Mt) is a Gaussian two-dimensional variableof parameters:







E(Yt) = (0, 0)E[Y T
t · Yt] =

(

ρX(t) C(X,M)(t)
C(X,M)(t) ρM (t)

) (2.8)where the funtions ρX(t), C(X,M)(t) and ρM (t) are de�ned by:










ρM (t) :=
∫ t

0
f(s)2ds

ρX(t) := 2
∫ t

0
g(s)

(∫ s

0
g(u)ρM (u)du

)

ds

C(X,M)(t) :=
∫ t

0
g(s)ρM (s)ds

(2.9)It an be heked that the Markov proess (Yt)t transition measure (see Appendix A.2 fora de�nition) has a Gaussian density w.r.t. Lebesgue's measure ds:
N
((

xs +ms

∫ t

s g(u)du
ms

)

, C̃(s, t)

) (2.10)4The proof that Xt is non-Markov is given in Appendix C.RR n° 6224



10 Touboul, Faugeraswhere the orrelation matrix C̃(s, t) reads:
C̃(s, t) =

(

2
∫ t

s g(u)
(∫ u

s g(v)
∫ v

s f(w)2 dw dv
)

du
∫ t

s g(u)
(∫ u

s f(v)2dv
)

du
∫ t

s g(u)
(∫ u

s f(v)2dv
)

du
∫ t

s f(u)2du

) (2.11)We now de�ne the simplest non trivial double integral proess, whih turns out to be ofgreat interest for the study of the spike train statistis of the present model of neuron: theIntegrated Wiener Proess (IWP) where the funtions f and g are identially equal to 1:
Xt

def
=

∫ t

0

Ws ds (2.12)The transition measure of the proess (Xt,Wt) an be written:P[Xt+s ∈ du,Wt+s ∈ dv
∣

∣Xs = x,Ws = y
]

def
= pt(u v; x, y)du dv =

√
3

πt2
exp

[

− 6

t3
(u − x− ty)2 +

6

t2
(u − x− ty)(v − y) − 2

t
(v − y)2

]

du dv (2.13)2.3 Model III: The noisy nonlinear integrate-and-�re neuron withinstantaneous synapti urrentThe models studied so far are linear and annot be used to model nonlinear behaviors ofneurons. For instane, it is known that many neuron models suh as the INa,P , IK urrentmodels or the Hodgkin-Huxley model present an Andronov-Hopf bifuration. To model thebehavior of suh neurons in the viinity of these bifurations, Izhikevih in [30℄ proposed thefollowing one-dimensional model:
{

dVt = (V 2
t + Ie(t))dt+ σdWt

V0 = Vreset (2.14)together with the spiking ondition:
V (t−) ≥ θ ⇒ V (t) = Vreset and a spike is emitted.Note that in the analytial model it an be useful to take θ = ∞ and in this ase, theproblem is an explosion time problem and not a boundary rossing problem. Other types ofnonlinearities an generate other possibly interesting bifurations. This is an area of urrentresearh.This model has been studied analytially for onstant inputs. The nonlinear stohastidi�erential equation is quite intriate to analyze in general. We review some of its mainproperties. First, without spiking mehanism, the proess blows up almost surely in �niteINRIA



Stohasti approah of spike trains 11time, hene the neuron will �re almost surely in �nite time. Seondly, there exists a weaksolution up to the explosion time but the law of the proess is unknown apart from the fatthat is not Gaussian. Its transition density is unknown so far. Usual approahes like theFokker-Plank equation (see appendix A.2) fail in �nding this law as we show next.If the external urrent is onstant, the in�nitesimal generator of the proess (2.14) isde�ned by L := 1
2σ

2∂2
x + (x2 + Ie)∂x (see appendix A.2). Its transition probability density

p(t, x, y) is formally solution of the Fokker-Plank equation:
∂p

∂t
(t, x, y) = L∗p(t, x, y) (2.15)

=
1

2
σ2∂2

yp(t, x, y) − ∂y

[

(y2 + Ie)p(t, x, y)
]

. (2.16)A formal solution is provided by Heun's trion�uent funtion ht (see [54℄ and Maple10®doumentation).The solution an be written p(t, x, y) = f1(x)f2(t) where:


















f1(x) = α1 ht

(

−
(

3
2

)2/3 c1

σ2/3 ,−3, Ie 3
√

12
σ4/3 ,− 3

√

2
3σ2 x

)

+β1 e
− 2x(3 Ie+x2)

3σ2 ht

(

−
(

3
2

)2/3 c1

σ2/3 , 3,
Ie 3√12
σ4/3 , 1/3 3

√

2
3σ2

)

f2(t) = α2 e
c1
2τ t

α1, β1, β2 and c1 are real onstants. Unfortunately Heun's trion�uent funtion is avery fast-diverging funtion whih is not integrable on R. Hene the funtion p(t, x, y) =
f1(x)f2(t) is not a transition probability density: there is no solution of the Fokker-Plankequation for this proess.2.4 Model IV: Nonlinear integrate-and-�re models with deayingsynapti urrentThe previous model is a speial ase in a larger lass of nonlinear models de�ned by the twoequations

{

τmdVt = (f(Vt) + Ie(t))dt+ Isyn(t)dt
dIsyn(t) = −Isyn(t)dt+ σdWt

(2.17)together with the spiking ondition:
V (t−) ≥ θ ⇒ V (t) = Vreset and a spike is emitted.

f is a non-linear funtion, for instane a quadrati funtion f(v) = v2 ([30℄, ontains anexponential funtion f(v) = ev − v ([8℄), or a quarti funtion f(v) = v4 ([63℄).As expeted from the previous disussion very little an be obtained analytially, sine themodel ombines the di�ulties of the last two models: as in the LIF model with exponentiallydeaying synapti urrent of setion 2.2, the membrane potential is non Markovian and, asin the quadrati IF model, it blows up in �nite time almost surely.RR n° 6224



12 Touboul, Faugeras3 Stohasti approah for the statisti of spike trainsIn this setion we haraterize the spikes trains statistis of the four types of neurons de�nedin the �rst part of this paper.We have seen that the problem was equivalent to the �rst hitting time problem, alsoalled the �rst passage time, for stohasti proesses (see equations (2.4) and (2.6)). Theinformation we would like to obtain is the probability density funtion of the spikes times,whih ontain all the information on the statistis of the spikes trains (mean, variane, higherorder moments, when they exist).First passage time problems for one-dimensional di�usion proesses through time-dependentboundary have reeived a lot of attention over the last three deades. Unfortunately, theevaluation of the �rst passage time pdf through a onstant or time dependent boundary is ingeneral an arduous task whih has still not reeived a satisfatory solution. Analyti resultsare sare and fragmentary, even if losed form solutions exist for some very partiular ases.One is led either to the study of the asymptoti behavior of this funtion and of its moments(see e.g. [46, 47℄), or to setting up of ad-ho numerial proedures yielding approximateevaluations of �rst passage time distributions. Suh proedures an be lassi�ed as follows:(i) those that are based on probabilisti approahes (see e.g. [51, 20, 14, 52, 21, 44℄), and(ii) purely numerial methods, suh as the widely used Monte-Carlo method whih applieswithout any restrition, but whose results are generally too oarse (for numerial methods,see e.g. [32, 27, 3, 23℄).In two or higher dimensions, the problem is even more omplex and results an hardly befound. For the simplest two dimensional proess, the Integrated Wiener Proess (IWP) de-�ned in (2.12), people like MKean [43℄ Goldman [28℄, Lahal [34, 35, 36℄ solved the problemfor a onstant boundary with stohasti alulus methods. Lefebvre used the Kolmogorov(Fokker-Plank) equation to �nd in some speial ases losed-form solutions [40℄. General-izations of these formulas to other boundaries and other kinds of proesses are simply notavailable. We have reently proposed a formula for approximating these hitting times forgeneral Double Integral Proesses (DIP) and general boundaries [64℄.We fous on analytial or partially analytial methods. The main goal is to ompute theprobability distribution of the spikes times. When this is not possible one an be satis�edto obtain some statistis of the spikes trains, suh as the mean �ring rate [12, 24, 11℄. Thisan be ahieved in some ases by approximating the Kolmogorov equation.Table 1 shows in its left olumn the four methods we emphasize in this paper togetherwith their possible use for solving the problem for the neuron models presented in setion2. The letter �Y� indiates that the method an be applied to solve the problem, the letter�N� that it annot. Question marks �?� are used for open problems that have no knownsolution, the main issue being that we do not have a losed form of the transition probabilityof the stohasti proess representing the membrane potential. The bold fae indiates theproblems we provide solutions for in this paper, inluding negative results. The star, �*�, isused if the result is new, to our knowledge.
INRIA



Stohasti approah of spike trains 13I II III IVVolterra Y N∗ ? ?setion 3.1.2 setion 3.1.3Feynman-Ka Y ? N∗ ?setion 3.2.1 setion 3.2.2Durbin Y∗ N N Nsetion 3.3Touboul-Faugeras Y∗ Y∗ ? ?setion 3.4Table 1: Analytial and semi-analytial methods whih an be applied to �nd spike statistisfor di�erent models. The symbols used in the table are explained in the text.3.1 The Volterra MethodThis method onsists in �nding a Volterra integral equation satis�ed by the probabilitydensity funtion p of the �rst hitting time τ of a stohasti proess (Xt)t≥0 to a urvedboundary. It has been applied by Plesser to the leaky integrate-and-�re neuron in [49℄ to�nd the pdf of the �rst hitting time of a leaky IF neuron driven by a general input urrent.In this setion we �rst desribe the method and generalize Plesser's result to the problemof an IF neuron modeled as a ontinuous one dimensional Gauss-Markov proess (Xt)t≥0where the spiking ondition is given by a smooth urved boundary denoted by a(t). Wethen apply this to the models I and II.3.1.1 Gauss-Markov proessesBy Doob's theorem [19℄, we know that there exist a Brownian motion W , a non-zero realfuntion g and a non-dereasing real funtion h suh that :
∀t ≥ 0 Xt = g(t)Wh(t),and hene the transition probability density funtion q(t, x|s, y) of this proess an be writtenusing that of the standard Brownian motion (see appendix A.1):

q(t, x|s, y) =
1

√

2π(h(t) − h(s))
exp






−

(

x
g(t) −

y
g(s)

)2

2(h(t) − h(s))






(3.1)The smoothness of the funtions h and g determines that of the ovariane funtion of theproess. Indeed we have, for s ≤ t:E[XtXs

]

= g(t)g(s)h(s)
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14 Touboul, Faugeras

Figure 1: Priniple of the Volterra's method: onditioning the transition probability densityby the loation of the �rst hitting time s of the urve θ.We assume that this autoorrelation funtion is ontinuously di�erentiable with respet to sand t, whih is the ase for most of the proesses enountered in pratie. Let x0 < a(0) thestarting point at t = 0 of the proess (Xt). By the strong Markov property (see AppendixA.1 for the de�nition) of Xt, onditioning on the �rst hitting time s of the proess to a (see�gure 1), we an write:
q(t, a(t)|0, x0) =

∫ t

0

P(t, a(t), τ ∈ ds|0, x0)

=

∫ t

0

q(t, a(t)|s, a(s))p(s)ds

=

∫ t

0

1
√

2π(h(t) − h(s))
exp






−

(

a(t)
g(t)

− a(s)
g(s)

)2

2(h(t)−h(s))






p(s) ds (3.2)This equation is a weakly singular Volterra equation of the �rst kind. Indeed, it has a squareroot singularity at s = t sine we have:















h(t) − h(s) ∼
s→t

h′(t)(t− s)
(

a(t)
g(t) −

a(s)
g(s)

)2

2(h(t) − h(s))
∼

s→t

[

a
g

]′
(t)

h′(t)
(t− s)
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Stohasti approah of spike trains 15Hene the Volterra equation an be solved: we have existene and uniqueness of a solution(see e.g. [41℄) whih is neessarily the pdf we are looking for.Di�erent algorithms an be used to numerially solve this problem. They are reviewedfor instane in Linz' book [41℄. We have used in our for simulations a two points blok-by-blok method whih amounts to solving a linear system. This method appears to beomputationally very e�ient and rather robust.Other Volterra equations have been proposed, for instane in [14℄ or [44℄. The equationproposed in [44℄ is a seond-kind Volterra equation whih an be dedued straightforwardlyfrom (3.2). The formula proposed by Buonoore in [14℄ is slightly di�erent, and has theadvantage of removing the singularity of the kernel in the Volterra equation. The authorproposes a simple algorithm to solve this equation.Note that this approah an be applied to any other kind of neuron model whih hasa Markovian membrane potential dynamis. Nevertheless the main di�ulty is to �nd thetransition probability density of the underlying proess and to hek if the singularity ofits transition kernel is integrable or not. For instane the transition probability density ofthe quadrati integrate-and-�re neuron is not known and the Fokker-Plank's theorem A.12annot be applied (see setion 2.3).3.1.2 LIF neuron with instantaneous synapti urrentsThe previous method applies diretly to the LIF neuron with instantaneous synapti on-dutanes (model I) sine we have seen in setion 2.1 that the membrane potential of suh aneuron is governed by a Gauss-Markov proess (an Ornstein-Uhlenbek proess). Considerthe Gauss-Markov proess
Ut :=

∫ t

0

e
s−t
τm dWs.it has the ovariane funtion:E(UtUs) =

τm
2
e−(t+s)

(

e
2s
τm − 1

)

0 ≤ s ≤ tWith the notations of the last setion, we have:
{

g(t) = e−t

h(t) = τm

2

(

e
2t

τm − 1
)The assoiated Volterra kernel is weakly singular, hene the method desribed in the lastsetion applies diretly.Indeed, aording to equation (2.3), the membrane potential of suh a neuron an bewritten:

Vt = Vrest(1 − e
− t

τm ) + 1
τm

∫ t

0 e
s−t
τm Ie(s) ds+ σ

τm
Utand hene the spiking ondition reads:

Ut = a(t)
def
=

τm
σ

{

θ(t) − Vrest(1 − e
− t

τm ) − 1
τm

∫ t

0 e
s−t
τm Ie(s) ds

}
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16 Touboul, Faugeraswhere θ(t) is a time varying threshold.The blok-by-blok algorithm of [41℄ for omputing the solution of a weakly singularVolterra equation an be applied to ompute the probability distribution of the spikes forany input urrent and any (autonomous) threshold funtion. This method is very general andonverges very fast towards the expeted solution. The mid-point approximation an also beused, and its preision is O(
√
k) where k is the mesh step used for the integral approximation.Nevertheless the observed onvergene order is higher. For the blok-by-blok method, thepreision of the algorithm annot be omputed easily sine the kernel is neither Lipshitz nordi�erentiable. Nevertheless, it is ommonly aepted that it has a higher preision than themid-point method. Those two quadrature methods amounts solving a linear system, whihan be implemented in a very e�ient way. On a an Intel®Core 2 CPU 6700 2.66GHz, ittakes less than 0.02 seonds for around for a time step of 0.01 on the interval [0, 5].Figure 2 shows some examples of the pdfs assoiated to various inputs. When the varianeis high the law of the �rst hitting time of the LIF neuron onverges to that of the standardBrownian motion. In the small variane ase, the behavior of the �rst hitting time dependson the existene of a spike in the deterministi ase (σ = 0). When there is no deterministispike, a interesting phenomenon appears: the probability distribution of the spike is verydi�use over R and vanishes slowly, see �gure 3.3.1.3 Exponentially deaying synapti urrentsThe problem beomes more di�ult for two-dimensional proesses suh as the ones arisingwith the linear or nonlinear neuron models with exponentially deaying synapti urrents.In this setion we derive the equation satis�ed by the probability density of the �rst hittingtime for the LIF model with exponentially deaying synapti urrents, model II, show thatthis equation is not well-posed and that lassial methods for solving integral equations fail.The main di�ulty is that the stohasti term Xt de�ned in (2.5) of the membranepotential Vt of the neuron is non-Markovian, but the pair (Xt, I

syn
t )t≥0 is. As usual wedenote by τ the �rst hitting time of the proess Xt to a urved boundary a(t). We prove in[64℄ that the pair (τ, Isynτ ) has a density p with respet to Lebesgue's measure:

p(t, x; 0, x0, y0) dt dx = P(τ ∈ dt, Isynτ ∈ dx
∣

∣

∣V0 = x0, I
syn
0 = y0

)We use an adapted version of the Markov argument of setion 3.1.1 to obtain the followingintegral equation:P(Xt ≥ a(t)
∣

∣X0 = x0, I
syn
0 = I0

)

=
∫ t

0

∫RP(Xt ≥ a(t)
∣

∣Xs = a(s), Isyns = y
)

p(s, y; 0, x0, I0)ds dy (3.3)This equation is a Fredholm integral equation with respet to y and a Volterra equation oftype I with respet to s. The kernel, notedK(t, z; s, y), is equal toP (Xt ≥ a(t)
∣

∣Xs = a(s), Isyns = y
).
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Figure 2: In�uene of the variane of the noise on the statistis of spike train when aspike is emitted in the deterministi ase: the pdf of the �rst hitting time ranges from aDira distribution loated at the deterministi spike time in the small variane ase, to thedistribution of the Brownian motion �rst hitting time in the large variane ase.
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Stohasti approah of spike trains 19The term on the lefthand side of the equation, noted g(t, z), is equal toP (Xt ≥ a(t)
∣

∣X0 = x0, I
syn
0 = I0

).With these notations, equation (3.3) an be rewritten as
g(t, z) =

∫ t

0

∫

R

K(t, z; s, y)p(s, y; 0, x0, I0)dy ds (3.4)Expressions for g and K an be dedued from the law of the underlying two-dimensionalproess and the results of setion 2.2. The proess Xt is a Gaussian proess of mean x0 +
I0
∫ t

0 g(u)du of variane ρX(t) given by (2.9).Sine g an be written:
g(t, z) = P(Xt ≥ a(t)

∣

∣X0 = x0, Isyn(0) = I0

)

=

1

2

(erf(a(t) − x0 − I0τs(e
t/τs − 1)

√

2πρX(t)

)

− 1

)it is regular for all values of (t, z).The kernel K an be written:
K(t, z; s, y) := P(Xt ≥ a(t)

∣

∣Xs = a(s), Isyn(s) = y
)

=
1

2π
√

D(s, t)
exp

(

−1

2
(X(t, y) − µ(s, t, z))TC(s, t)−1(X(t, y) − µ(s, t, z))

)

,where






























D(s, t) = det(C(s, t))

µ(s, t, z) =

(

a(s) + z
∫ t

s g(u) du

z

)

X(t, y) =

(

a(t)

y

)

,and C(s, t) is the ross-orrelation matrix (2.8).The general theory for �nding solutions to suh an integral equation relies on the reg-ularity and integrability of g and K and on the redution to an integral equation of theseond type. The redution to the seond type an be ahieved formally by taking the par-tial derivative of both sides of (3.4) with respet to the variable t. Reordering the termsthis yields
gt(t, z) −

∫

R

K(t, z; t, y)p(t, y; 0, x0, I0)dy =

∫ t

0

∫

R

Kt(t, z; s, y)p(s, y; 0, x0, I0)dy ds
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20 Touboul, FaugerasBeause K(t, z; t, y) = δ(y − z) (δ is the Dira delta funtion), this an be rewritten as
gt(t, z) − p(t, z; 0, x0, I0) =

∫ t

0

∫

R

Kt(t, z; s, y)p(s, y; 0, x0, I0)dy dsA Taylor expansion at s = t shows that Kt is singular of order (t− s)−3 and hene does notsatisfy the integrability onditions that are neessary for this equation to be well-posed.3.2 The Feynman-Ka's MethodWe apply this tehnique to models I and III.3.2.1 Leaky Integrate-and-�re neuron with onstant external urrent and in-stantaneous synapti urrentsWe onsider a leaky integrate-and-�re neuron with onstant urrent input Ie and instan-taneous synapti white noise urrent. Let W := (Wt)t≥0 be a standard Brownian motion.Thanks to a hange of origin of Vt in equation (2.2), the assoiated membrane potential pro-ess is an Ornstein-Ulhenbek (OU) proess V := (Vt)t≥0 with parameter λ ∈ R, solutionof the linear SDE:
{

dVt = −λVtdt+ dWt

V0 = x ∈ R (3.5)The proess Vt is a di�usion proess with in�nitesimal generator denoted by L, given by(see appendix A):
Lf(x) =

1

2

∂2f

∂x2
(x) − λx

∂f

∂x
(x), x ∈ R (3.6)This equation is entral to the theory of Hermite's funtions, see appendix B. The propertiesof the �rst hitting time of the OU proess have been widely studied. For instane, in [2℄,the authors give three representations of the probability density of these proesses, and in[52℄ we �nd an expliit expression of the moments of those hitting times.Let a ∈ R be a given �xed real number and denote by τa the �rst passage time of theproess Vt to the onstant a.The Laplae transform of τa an be omputed as follows [59, 7℄.Proposition 3.1. For x < a the Laplae transform of τa is given byEx

[

e−ατa
]

=
H−α/λ(−x

√
λ)

H−α/λ(−a
√
λ)

=
eλx2/2D−α/λ(−x

√
2λ)

eλa2/2D−α/λ(−a
√
λ)

(3.7)where Hν stands for the Hermite funtion and D−α/λ for the paraboli ylinder funtionsrespetively (see Lebedev [39, hapter 10 ℄ for a detailed study of these funtions).
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Stohasti approah of spike trains 21Proof. We use the hitting time haraterization given by the Feynman-Ka equations, ob-tained in setion 2.4. The Laplae transform of the �rst passage time is given by theoremA.9 as the unique solution of the boundary value problem:










Lu(x) = αu(x), for x < a
u(a) = 1
lim

x→−∞
u(x) = 0

(3.8)The theory of paraboli equations applies sine the oe�ients of the di�usion operator Lare C∞. This is a singular value problem sine the interval is not bounded. Neverthelessone an prove that the solution an be written (see theorem A.10):Ex

[

e−ατa
]

=
ψα(x)

ψα(a)where ψα(·) is, up to some multipliative onstant, the unique inreasing positive solutionof the equation Lu = αu whih is, up to a hange of variable, the equation for the Hermite'sfuntions, see appendix B. The two fundamental solutions of this linear di�erential equationsare H−α/λ(x
√
λ) and H−α/λ(−x

√
λ). The funtion ψα is up to a positive onstant the onethat is inreasing. With the series expansion of the Hermite's funtions, see equation (B.2),it is lear that ψα(x) = H−α/λ(−x
√
λ). This proves the �rst equality in (3.7). The seondequality relies on the relation between Hν and Dν .From this haraterization, we an ompute all the moments of the law of τa by di�erentiatingthe Laplae transform at 0. This provides the �rst three moments whih are used later tovalidate some of our numerial tehniques, see [52℄ for a proof of this:Theorem 3.2. Let us de�ne α := µ

σ and β := σ
θ
√

τ
and the three following funtions:

Φ1(z) :=
1

2

∞
∑

n=1

(

2

β

)n
1

n!
Γ(
n

2
)(z − α)n

Φ2(z) :=
1

2

∞
∑

n=1

(

2

β

)n
1

n!
Γ(
n

2
)
(

Ψ(
n

2
) − Ψ(1)

)

(z − α)n

Φ1(z) :=
3

8

∞
∑

n=1

(

2

β

)n
1

n!
Γ(
n

2
)(z − α)nρ(3)

nwhere Γ is the gamma funtion, Ψ(z) = Γ′(z)
Γ(z) is the digamma funtion, and

ρ(3)
n =

(

Ψ(
n

2
) − Ψ(1)

)

2 +
(

Ψ′(
n

2
) − Ψ′(1)

)
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22 Touboul, FaugerasIf τθ is the hitting time of an OU proess starting at 0 to the barrier θ, we have:E[τθ] = τ(Φ1(1) − Φ1(0))E[τ2
θ ] = τ2(2Φ1(1)2 − Φ2(1) − 2Φ1(1)Φ1(0) + Φ2(0))E[τ3
θ ] = τ3

{

6Φ1(1)3 − 6Φ1(1)Φ2(1) + Φ3(1)

−6(Φ1(1)2 − 3Φ2(1))Φ1(0) + 3Φ1(1)Φ2(0) − Φ3(0)
}3.2.2 Quadrati Integrate-and-�re neuronThe Feynman-Ka method relies heavily on the very strong assumption that there exists asolution satisfying the limit ondition lim

x→−∞
u(x) = 0. This assumption is in e�et satis-�ed only in very few ases. Furthermore, this method an only be applied to autonomoussystems, and hene annot be applied to neuron models with deterministi time-dependentsynapti inputs. For instane we show here that it annot be applied to the one-dimensionalquadrati integrate-and-�re neuron de�ned in setion 2.3, even in the simple ase of a on-stant external urrent.Assume that the membrane potential of the neuron satis�es the stohasti di�erentialequation:

dXt = f(Xt)dt+ σdWtThe in�nitesimal operator of the assoiated semigroup L is givenby:
Lh(x) =

1

2
σ2 d

2h

dx2
(x) + f(x)

dhdx (x), x ∈ R (3.9)Let uλ be the Laplae transform of the �rst hitting time τa to a onstant a:
uλ(x) = E(e−λτa

∣

∣

∣
X0 = x

)

uλ is a solution, when it exists, of the Feynman-Ka di�erential equation (A.11), whih inthe ase of the quadrati integrate-and-�re neuron an be written:














1
2σ

2 d2 uλ(x)
dx2 + (x2 + Ie)

duλ(x)dx − λuλ(x) = 0

uλ(a) = 1

uλ(x) −→
x→−∞

0

(3.10)This ordinary di�erential equation is a trion�uent Heun equation with boundary onditions(see e.g. [54, Prop.1.3.6℄ and Maple ®doumentation). As in setion 2.3 we denote by htthe trion�uent Heun funtion. We have
INRIA



Stohasti approah of spike trains 23
uλ(x) = αht

(

−32/3λ
3
√
a
, 3,

b 3
√

3

a2/3
,−1/3

32/3x
3
√
a

)

+

βht

(

−32/3λ
3
√
a
,−3,

b 3
√

3

a2/3
, 1/3

32/3x
3
√
a

)

e−1/3
x(3 b+x2)

a (3.11)It an be veri�ed again that the trion�uent Heun funtion ht(α, 3, β, x) diverges very fastwhen |x| → ∞. Hene there is no solution to the boundary problem (3.10).3.3 Durbin's MethodThe problem of the �rst hitting time of the Brownian motion to a (onvex or onave)boundary has also been studied by Durbin [20, 21℄ who uses an integral equation like the onearising in Volterra's method. This equation haraterizes the probability density funtionof the �rst hitting time of the proess. He uses this integral equation to dedue a seriesapproximation of the pdf and proves onvergene when the urve is onave or onvex.This result is summarized in theTheorem 3.3 (Durbin). Let (Wt)t≥0 be a standard Brownian motion and a(·) be a ontin-uously di�erentiable boundary funtion suh that a(0) > 0.The �rst-passage density p(t) of
Wt to a(t) is solution of the following integral equation

q0(t) = p(t) +

∫ t

0

p(r)

(

a(t) − a(s)

t− s
− a′(t)

)

f(t|s) ds,whih an be written as
p(t) =

k
∑

j=1

(−1)j−1qj(t) + rk(t),where
qj(t) =

∫ t

0

qj−1(s)

(

a(t) − a(s)

t− s
− a′(t)

)

f(t|s) ds j ≥ 1.

a′(t) is the derivative of a(t) and q0 is given by
q0(t) =

(

a(t)

t
− a′(t)

)

f0(t),where f0(t) is the density of Wt on the boundary, i.e.
f0(t) =

1√
2πt

e−
a(t)2

2t ,
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24 Touboul, Faugerasand f(t|s) is the joint density of Ws and Wt −Ws on the boundary, i.e.
f(t|s) = f0(s)

1
√

2π(t− s)
e−

(a(t)−a(s))2

2(t−s)The remainder rk(t) goes to 0 if a(t) is onvex or onave.This theorem is quite restritive: the proess must be a Brownian motion, the boundarymust be onvex or onave, and there is no estimation of the onvergene of the approxima-tion. Nevertheless we have been able in our simulations to ompare the results of Durbin'smethod applied to non-onvex or non-onave boundaries and the expansion seems to on-verge, see �gure 5. Unfortunately these �ndings are only experimental.3.3.1 LIF neuron with instantaneous synapti urrents and onstant externalinput urrentIn the ase of the LIF neuron with instantaneous synapti urrents and a onstant deter-ministi external input urrent, the membrane potential is the realization of an Ornstein-Uhlenbek (OU) proess, and the threshold funtion a(t) is onvex. Hene the hypothesesof Durbin's theorem are satis�ed, and Durbin's expansion onverges to the law of the �rsthitting time. A omparison of the values of the �rst three moments omputed from the pdfof the hitting time obtained from Durbin's theorem, Volterra's equation and by Monte-Carlosimulation with the analytial values of theorem 3.2 (obtained by trunating the series Φi) isshown in table 2. This table shows that the theoretial values an be losely approximatedmethod E[T ] E[T 2
] E[T 3

]theoretial values 1.9319289 7.1356162 40.0830265Durbin, 30 terms, 1.9292822 7.1269290 39.8541918
Tmax = 1036,step = 10−2Monte-Carlo, 1.932180 7.139402 40.079556
106 realizations,step = 10−4Volterra, step = 0.02 1.9319291 7.1356167 40.0830298Table 2: Values of the �rst 3 moments of the OU proess and the empirial values, for theparameters: θ = σ = 2, Vrest = τm = 1, Ie = 0, see equation (2.2)if su�iently many terms are taken into aount in Durbin's series expansion. We see thatVolterra's method is the most aurate. It is also omputationally the most e�ient.
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Stohasti approah of spike trains 253.3.2 LIF neuron with instantaneous synapti urrents and periodi externalinput urrentWhen Ie(t) = sin(2πft) the hypotheses of theorem 3.3 are not satis�ed. Table 3 shows thevalues of the integral of the estimated pdf for various times of integration and various ordersof trunation of the series. The parameters are the same as in the previous example and
f = 1. It seems to indiate that a very good approximation of the pdf an be obtained withonly 5 terms in the series [22℄.We have also notied that Durbin's series onverged very quikly, even if the assoiatedboundary was neither onvex nor onave. Figure 4 shows the shape of the pdf of the �rstpassage time and the �rst four terms in the series approximation. The total omputationtime is 8 seonds on a 2GHz omputer for 800 sample points.
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2 4 6 8 10 12 14 16 18 20Figure 4: Four terms of the series approximation of the pdf when Ie(t) = sin(2πt) and theresulting pdf (the horizontal sale is in units of ρ, see text).time-terms 3 5 7 9
103 0.86 0.88 0.88 0.88
105 0.86 0.97 0.96 0.96
107 0.82 1.00 0.98 0.98
109 0.88 0.97 1.00 0.99Table 3: Values of the integral of the estimated pdf for Ie = sin(2πt).
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26 Touboul, FaugerasHene Durbin's method seems to onverge even for non-onvex boundaries. Nevertheless,to apply Durbin's expansion, one has to use the exponential time-hange ρ(t) = τm

2

(

e
2

t
τm −

1
). Hene evaluations are done on an exponential sale whih is very ine�ient.In Figure 5 we ompare three of the methods available for the LIF neuron: Durbin'smethod, Volterra's method and a Monte-Carlo simulation. We see that the simulation timeis very high for both Monte-Carlo and Durbin's methods (around 10s for both, the Monte-Carlo simulation runs 106 sample paths and Durbin's method 800 sample points and 9 termsof the series). Volterra's method is very e�ient and for 104 sample points, takes less than

0.02s. We also see from the enlargement in the �gure that the Monte-Carlo simulation doesnot have the expeted regularity even at this level of preision.
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Simulations of the LIF neuron with periodic inputs
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Figure 5: Graphial omparison with Monte-Carlo simulation and Durbin's simulations3.4 Touboul-Faugeras MethodWe present a new semi-analytial method for �nding the probability density funtion ofspikes of a LIF neuron with exponentially deaying synapti ondutanes. This methodis based on new results for the integrated Wiener proess (IWP) introdued in setion 2.2and a new method of approximation of hitting times, inspired by very reent works on theBrownian motion hitting times. It has the following features:(i). It generalizes the results obtained in the lassial literature for the IWP to a largelass of boundaries.
INRIA



Stohasti approah of spike trains 27(ii). It builds a pieewise approximation of the general boundary whih is in the lass of(i) in eah bin of the mesh.(iii). It guarantees that the �rst hitting time of the proess to the approximated boundaryonverges to the �rst hitting time of the proess to the general boundary (and quanti�esthis onvergene).(iv). It extends these results to a general Double Integral Proess (DIP).For the Brownian motion, Wang and Potzelberger [67℄ build a pieewise a�ne approx-imation of the boundary and �nd an approximate expression for its �rst hitting time to aurved boundary. Later Novikov et al [48℄ found an expression for the onvergene of thistehnique. These results have been generalized to a wider lass of proesses, with sharpererror bounds but it is still a very ative researh subjet [50, 6, 68℄. Touboul and Faugeras[64℄ proposed a general approximation formula solving the problem of the statistis of spiketrains for LIF neurons with exponentially deaying synapti urrents.3.4.1 Approximating the �rst hitting time of the IWP to a general boundaryOne of the main di�ulties omes from the fat that the proess is non-Markov, implyingthat we have to refer to the underlying Wiener proess.Lahal in [34℄ studies this problem in the ase where the boundary is a onstant. Tomake things more lear we de�ne the proess Ut = (Xt +x+ty,Wt +y) whereWt a standardBrownian motion and Xt is the assoiated IWP. We denote by
τa := inf

{

t > 0 ; Xt + x+ ty = a
}the �rst passage time at a of the �rst omponent of the two-dimensional Markov proess

Ut. The work of Lahal [34℄ follows the work of MKean [43℄ who omputed the joint lawof the proess (τa,Wτa) in the ase x = a, and that of Goldman [28℄. MKean's density anbe written:P[τa ∈ dt ; |Wτa | ∈ dz
∣

∣U0 = (a, y)
]

def
= P(a, y) (τa ∈ dt; |Wτa | ∈ dz)

=
3z

π
√

2t2
e−(2/t)(y2−|y|z+z2)

(

∫ 4|y|z/t

0

e−3θ/2 dθ√
πθ

)1[0,+∞)(z)dzdt (3.12)Lahal [34℄ extended this result and gave the joint distribution of the pair (τa,Wτa) inall ases. The quite omplex formula reads:P(x,y) [τa ∈ dt ; Wτa ∈ dz] = |z|
[

pt(x, y; a, z)−
∫ t

0

∫ +∞

0

P(0,−|z|) (τ0 ∈ ds; Wτ0 ∈ dµ) pt−s(x, y; a,−εµ)
]1A(z)dzdt (3.13)
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28 Touboul, Faugeraswhere A = [0,∞) if x < a and A = (−∞, 0] if x > a, ε = sign(a − x), P(0,−|z|) is given byMKean's formula (3.12), and pt is de�ned by equation (2.13). We denote this density by
lax,y(t, z).Starting from there, the authors study in [64℄ the �rst hitting time problem of the IWPto a ubi boundary and �nd a losed form expression of its pdf using Girsanov's theoremA.7. We indiate in the sequel the main results without proofs, the mathematial aspetsbeing very tehnial.Theorem 3.4. Let τC be the �rst hitting time of the standard IWP to the urve

C(t) = a+ b(t− s) +
α

2
(t− s)2 +

β

6
(t− s)3, t ≥ sUnder the referene probability P, the law of the random variable (τC ,WτC ) satis�es theequation:Ps,(x,y)(τC ∈ dt,WτC ∈ dz) = dα,β(s, x, y − b; t, C(t), z)

×Ps,(x,y−b)(τa ∈ dt,Wτa − b+ α(τa − s) +
β

2
(τa − s)2 ∈ dz) (3.14)where we noted:

dα,β(s, x, y; t, u, v) = exp
(

− 1

6
β2(t3 − s3) − 1

2
αβ(t2 − s2) − 1

2
α2(t− s)

− (α + tβ)v + (α+ sβ)y + β(u− x)
) (3.15)and P(τa ∈ dt,Wτa ∈ dz) is given by Lahal's formula (3.13).We remind the reader of the notationPs,(x,y) used to indiate the probability law deduedfrom P by onditioning with respet to the event {(Xs,Ws) = (x, y)} Hene we obtain aboundary with four free parameters. From this formula, we dedue an approximation formulafor the �rst hitting time of the IWP to a general boundary.3.4.2 Approximating the �rst hitting time of the DIP to a general boundaryHaving solved the problem for the IWP lays the ground for its solution for a general DoubleIntegral Proess (DIP) to a general boundary f as follows.The key observation, [64℄, is that the study of the �rst hitting times of a general DIP Xtis equivalent to the study of the simpler proess:

Yt =

∫ t

0

g(s)Ws ds, (3.16)where g(·) is a ontinuously di�erentiable funtion and Wt a standard Brownian motion.Let π be a partition of the interval [0, T ]: INRIA



Stohasti approah of spike trains 29
(π) := {0 = t0 < t1 < t2 < . . . < tN = T }We denote by gπ the pieewise onstant approximation of g:

gπ(t) =
N−1
∑

i=0

g(ti)1[ti,ti+1)(t) (3.17)and by Y π the assoiated proess:
Y π

t =

∫ t

0

gπ(s)Ws ds. (3.18)We also denote by fπ a ubi spline approximation of the boundary funtion f on thepartition (π). The next proposition haraterizes the onvergene of the proess Y π
tProposition 3.5. The proess Y π

t onverges almost surely to the proess Yt. Furthermore,there exists a real positive proess Zt suh that:
sup

0≤s≤t
|Y π

s − Ys| ≤ δ(π) Zt (3.19)With some tehnial alulations and the use of this proposition, we an prove thefollowing approximation theorem:Theorem 3.6. The �rst rossing time τπ of the proess Y π and the urve fπ tends in lawto the �rst hitting time τf of the proess Y to the urve f (see Fig.6).In the IWP ase we an quantify the onvergene as expressed in theTheorem 3.7. The �rst hitting time of the IWP to the urve (fπ(t)) before T > 0 onvergesin law to the �rst hitting time of the IWP to the urve f before T .Furthermore, if f is four times ontinuously di�erentiable, the onvergene of this ap-proximation is of order 4. More preisely, if P (t, g) denotes the probability:
P (t, g) = P(Xt ≥ g(t) for some t ∈ [0, T ]

)

,for a real funtion g, there exists a onstant C(f) depending on the funtion f suh that wehave:
|P (t, fπ) − P (t, f)| ≤ C(f) δ(π)4 (3.20)A losed-form expression for the law of τπ is given in the following
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30 Touboul, Faugeras
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Figure 6: Approximation priniple: the general DIP proess is approximated and the bound-ary is approximated by its ubi spline interpolation
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Stohasti approah of spike trains 31Theorem 3.8. Let g be a Liphitz ontinuous real funtion, T > 0 and π a partition of theinterval [0, T ]
0 =: t0 < t1 < . . . < tp := TLet f be a ontinuously di�erentiable funtion. The �rst hitting time τπ of the approximatedproess Y π de�ned by (3.18) to a ubi spline approximation fπ of f on the partition πsatis�es the equation:P(τπ ≥ T |U0) =

∫ (2p) p
∏

k=1

{

ptk−tk−1

(xk − xk−1

g(tk−1)
, yk − yk−1; 0, 0

)

−
∫ tk

tk−1

∫R
ptk−s

(xk − fπ(s)

g(tk−1)
, yk − ys; 0, 0

)Ps,(0,ys)(τ(fπ−xk−1)/g(tk−1) ∈ ds, Ws ∈ dys)

}

dxkdyk(3.21)where P(τfπ ∈ ds, Ws ∈ dys) is given by equation (3.14).The expressions in theorem 3.8 involve integrals omputed over R2p if there are p pointsin the mesh. These have no losed-form expression. The numerial omputation of theseintegrals an be quite intriate and ine�ient, and this introdues another approximationbesides that in theorem 3.6. The priniple of the numerial approximation we use is toexpress these integrals as expetations with respet to some probability measure and touse a Monte-Carlo algorithm to ompute this probability measure. The auray of thisapproximation an be assessed through standard proedures for Monte Carlo simulations[45, 53℄. This idea leads to the followingCorollary 3.9 (of theorem 3.8). Let g be a Liphitz ontinuous real funtion, T > 0 and πa partition of the interval [0, T ]

0 =: t0 < t1 < . . . < tp := TLet f be a ontinuously di�erentiable funtion. The �rst hitting time τπ of the approximatedproess Y π de�ned by (3.18) to a ubi spline approximation fπ of f on the partition π anbe omputed as the expetation:P(τπ ≥ T
∣

∣

∣
U0

)

= E[hg,π
p (Xt1 ,Wt1 , . . . , Xtp ,Wtp)

∣

∣

∣
U0

] (3.22)where the funtion hg,π
p is de�ned by:

hg,π
p (x1, . . . , xp) =

p
∏

k=1

{

ptk−tk−1

(

xk−xk−1

g(tk−1) , yk − yk−1; 0, 0
)

ptk−tk−1
(xk, yk, xk−1, yk−1)

−
∫ tk

tk−1

∫R
ptk−s

(

xk−fπ(s)
g(tk−1) , yk − ys; 0, 0

)

ptk−tk−1
(xk, yk, xk−1, yk−1)

Ps,(0,ys)(τ(fπ−xk−1)/g(tk−1) ∈ ds, Ws ∈ dys)

} (3.23)
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32 Touboul, Faugeraswhere P(τfπ ∈ ds, Ws ∈ dys) is given by equation (3.14).The problem is now stated in terms of the expetation of a funtion of the Gaussianrandom vetor (X0,W0, Xt1 ,Wt1 , . . . , Xtp ,Wtp). This vetor is Gaussian of mean 0 andovariane matrix de�ned by bloks by the expression:
K(t1, . . . , tp) =







1

3
|tj − ti|3

1

2
|tj − ti|2

1

2
|tj − ti|2 |tj − ti|







(i,j)∈{0...p}

(3.24)The Monte-Carlo algorithm we use to ompute the expeted probability is the following:(i). Compute the square root K(t1, . . . , tp)
1/2 of the ovariane matrix (3.24) (using forinstane a Cholesky deomposition)(ii). Generate an i.i.d. sample u = (u1, u2, . . . , u2p)

T from the normal standard distribution
N (0, 1).(iii). Compute the transformation x = K(t1, . . . , tp)

1/2 · u(iv). Calulate hg,π
p (x)(v). Repeat steps (ii)-(iv) N times and alulate the frequeny

PN =
1

N

∑realizationshg,π
p (x)The probability P(τ ≥ T ) is then estimated by PN . The standard error of this estimatoris given by :

E(N) =

√

∑

realizations

[

hg,π
p (x) − PN

]2

N(N − 1)
(3.25)ConlusionIn this paper we studied four di�erent types of neuron models from the point of view ofthe stohasti alulus. We showed that haraterizing the spikes times of a neuron wasequivalent to solving a �rst hitting time problem for a stohasti proess to a given ontinuousurve. We then presented four methods whih an be applied to solve suh problems. One ofthem, the Feynman-Ka method, is very restritive, sine it an only be applied to stationaryboundaries (this is also the ase of the Fokker-Plank equation formalism). The three othermethods provide a unique solution and a way to ompute this probability distribution.Durbin's method and Volterra's method are ompared in the ase of the LIF neuron withinstantaneous synapti urrents. The last method presented is a new method wih enablesINRIA



Stohasti approah of spike trains 33us to ompute the distribution of the spikes times for the LIF neuron with exponentiallydeaying synapti ondutanes. In this ase, the only available and partial result is Brunel'swho omputed the stationary �ring rate of this neuron model [12℄. Nevertheless for thenonlinear models of types III and IV the stohasti alulus methods still fail to providethe omplete statistial information about the spikes and one has to resort to the Fokker-Plank approximate formalism. We hope to be able to report new �ndings for these twoases in the near future and, despite these partially negative results, onsider that theapproah developed in this paper has enabled us to solve di�ult open problems and hasgreat potentials for appliations to neurosiene.A A rash ourse on Probabilities and Stohasti Calu-lusWe reall some of the basi de�nitions and results on stohasti proesses. The aim ofthis setion is not to be omplete but to serve as a quik referene for readers with littlebakground in stohasti alulus. Most of the proofs are omitted. The interested readeran �nd details in the extensive literature on the subjet and follow the reading suggestionsgiven within eah setion.A.1 Probability BasisThis setion heavily relies on Karatzas and Shreve's book [31℄ and on leture notes by Jean-François Le Gall [38℄, where the interested reader an �nd all the theoretial material. Weassume that the reader is familiar with elementary measure theory [55℄.Probability theory is a branh of mathematis onerned with the analysis of randomphenomena. The randomness is aptured by the introdution of a measurable spae (Ω,F),alled the sample spae, on whih probability measures an be plaed. Elements of Ω aredenoted in general by ω. Subsets of Ω are alled events. F is a σ-algebra of subsets of Ω.De�nition A.1. A probability measure P on (Ω,F) is a positive measure suh thatP(Ω) = 1. (Ω,F ,P) is alled a probability spae.De�nition A.2. A random variable is a measurable funtion from Ω to a measurable set
(X,X ) alled the state spae.De�nition A.3. A stohasti proess is a olletion of random variables X = {Xt, t ∈ T}on (Ω,F) taking values in a state spae (X,X ). The set T is alled the time set. In thepresent paper, T is simply R+ and is referred to as the time of the proess. The statespae onsidered is the d-dimensional Eulidian spae equiped with the σ-�elds of Borel sets
(Rd,B(Rd)).RR n° 6224



34 Touboul, FaugerasThe temporal feature of a stohasti proess suggests a �ow of time, in whih at everymoment t ≥ 0 we an talk about the past, present and future of the proess. To quantifythe information �ow of the proess, we an equip the sample spae (Ω,F) with a �ltration,i.e. a nondereasing family {Ft; t ≥ 0} of sub-σ-�elds of F :
∀s ≤ t; Fs ⊂ Ft ⊂ F .Given a stohasti proess, the simplest hoie of �ltration is that generated by the proessitself, i.e.,
FX

t := σ(Xs; 0 ≤ s ≤ t),the smallest σ-�eld with respet to whih Xs is measurable for every s ∈ [0, t].We interpret A ∈ FX
t to mean that by time t, an observer of X knows wether or not Ahas oured. Hene Ft an be seen as the aumulated information up to time t.A stohasti proess X is said adapted to a �ltration (Ft)t≥0 i� for all t ≥ 0 the randomvariable Xt is Ft-measurable.A stohasti proess X is said to be right-ontinuous (resp. left-ontinuous) i� almostevery sample path is right- (resp. left- ) ontinous.De�nition A.4 (Brownian Motion/Wiener proess). A standard one dimensional Brownianmotion (also alled a Wiener proess) is a ontinuous adapted proess W = {Wt, Ft t ≥ 0}de�ned on some probability spae (Ω,F ,P), with the properties that:(i). W0 = 0 a.s.(ii). for all 0 ≤ s ≤ t the inrementWt−Ws is independent of Fs and is normally distributedwith mean 0 and variane t− s.Let us now imagine that we are interested in the ourene of a ertain phenomenon (e.g.a spike modeled as a threshold rossing of a given proess in the present paper). We are thusfored to pay a partiular attention to the random instant τ(ω) at whih the phenomenonmanifests at the �rst time. Interesting models should be suh that the event {ω; τ(ω) ≤ t}is part of the information aumulated by that time. Random variables τ satifying thisproperty are alled stopping times :

∀t ≥ 0; {τ ≤ t} ∈ FtExample. For instane, the �rst hitting time of a ontinuous stohasti proess X to a givendeterministi boundary g de�ned by:
τ := inf{t ≥ 0; Xt = g(t)}is is a stopping time with respet to the natural �ltration of X . Indeed, the event {τ ≤ t}is the same as {∃s ∈ [0, t]Xs ≥ f(s)}. From the ontinuity property, this last set is equal to

{∃s ∈ [0, t]∩Q, Xs ≥ f(s)} whih is a outable union of sets of FX
t and hene is ontainedin FX

t . INRIA



Stohasti approah of spike trains 35De�nition A.5 (Conditional Expetation). Let Y be a L1 random variable of (Ω,F ,P)and let G be a sub-σ-�eld of F . There exists a unique element E(Y |G) of L1(Ω,G,P) alledonditionnal expetation of Y knowing G, suh that for all X bounded and G-measurable:E(XY ) = E(E(Y |G)X)A proess {Xt,Ft, t ≥ 0} is alled a submartingale (resp supermartingale, martingale )if for every 0 ≤ s < t < ∞ we have P-almost surely E(Xt|Fs) ≥ Xs (resp E(Xt|Fs) ≤ Xs,E(Xt|Fs) = Xs).Theorem A.1 (Optional Sampling Theorem). Let {Xt, Ft, t ≥ 0} be a right-ontinuoussubmartingale, S and T be two stopping times almost surely bounded (i.e. P(T < ∞) = 1and P(S < ∞) = 1). Let XT be the random variable de�ned by XT (ω) = XT (ω)(ω). Let
FS := {A ∈ F ; A ∩ {T ≤ t} ∈ Ft}. Assume that S ≤ T amost surely. Then we have:E(XT |FS) ≥ XS a.s. P.De�nition A.6. Let X be a stohasti proess on a probability spae (Ω,F ,P). Let
(Ft)t≥0 be the natural �ltration of the proess X . The proess X is a Markov proess i�
∀t ≤ t1 ≤ . . . ≤ tn <∞, for all Γ1, . . . ,Γn ∈ X ,P(Xt1 ∈ Γ1, . . . , Xtn ∈ Γn

∣

∣

∣Ft

)

= P(Xt1 ∈ Γ1, . . . , Xtn ∈ Γn

∣

∣

∣σ(Xt)
)

.It is strongly Markovian if for all T stopping time for the (Ft)t, for all η1, . . . ηn positiverandom variable Fτ -measurable, we have:P(Xτ+η1 ∈ Γ1, . . . , Xτ+ηn ∈ Γn

∣

∣

∣Fτ

)

= P(Xτ+η1 ∈ Γ1, . . . , Xτ+ηn ∈ Γn

∣

∣

∣σ(Xτ )
)

.Proposition A.2. The Brownian motion is strongly MarkovianDe�nition A.7. A proess (Mt, t ≥ 0) is a ontinuous loal martingale i� it is a ontinuousadapted proess suh that there exists an inreasing sequene of stopping times (Tn)n∈Nsuh that Tn →n→∞ ∞ and that for eah n ∈ N (Mt∧Tn −M0)t is a uniformly integrablemartingale.Theorem A.3. Let M be a loal martingale. There exists a unique non-dereasing pro-ess 〈M〉t suh that (M2
t − 〈M〉t)t≥0 is a ontinuous loal martingale. For M and Ntwo ontinuous loal martingales, there exists a unique �nite variation proess suh that

(MtNt − 〈M,N〉t)t is a loal martingale. Moreover, the appliation (M,N) 7→ 〈M,N〉 isbilinear symetrial.Theorem A.4 (Stohasti Integral). Let M be a ontinuous loal martingale and H ameasurable proess suh that for all t > 0, ∫ t

0
H2

sd〈M〉s < ∞ (the set of suh proesses isdenoted by L2lo(M)).
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36 Touboul, FaugerasThere exists a unique ontinuous loal martingale H ·M starting from 0 suh that for allloal martingale N we have:
〈H ·M,N〉 = H · 〈M,N〉This martingale is denoted (H ·M)t =:

∫ t

0 HsdMs and is alled the stohasti integral of
H with respet to the loal martingale M .Moreover, we have for all t > 0 and 0 =: tn0 < tn1 < . . . < tnpn

:= t sequene of nestedmesh whose step tends to 0, we have in the sense of probability:
∫ t

0

HsdMs = lim
n→∞

pn
∑

i=1

Htn
i−1

(Xtn
i
−Xtn

i−1
)Theorem A.5 (It� formula). Let X = (X1, . . . , Xn) be n ontinuous semi-martingales and

F : Rn 7→ R a C2 map. Then we have:
F (Xt) = F (X0) +

n
∑

j=1

∫ t

0

∂F

∂xj
(Xs)dX

j
s +

1

2

n
∑

j=1

n
∑

k=1

∫ t

0

∂2F

∂xj∂xk
(Xs)d〈Xj , Xk〉sTheoremA.6 (Dubins-Shwarz). LetM be a ontinuous loal martingale suh that 〈M〉∞ =

∞ a.s. Then there exists a Brownian motion B suh that
Mt = B〈M〉tTheorem A.7 (Girsanov). Assume that Q ∼ P on F . Let Dt = dQ

dP ∣∣∣t and L be theunique loal martingale suh that D = exp(L − 1
2 〈L〉). Then for all M P-loal martingaleontinuous, the proess M − 〈M,L〉 is a Q-loal martingale ontinuous.In partiular if M is a P-Brownian motion, then M − 〈M,L〉 is a Q-Brownian motion.De�nition A.8 (Stohasti Di�erential Equation). Let B be a d-dimensional Brownianmotion, σ : R+ × Rd 7→ Rd×m and b : R+ × Rd 7→ Rd two measurable loally boundedfuntions. The Stohasti Di�erential Equation (SDE) assoiated to σ and b is de�ned by:

dXt = σ(t,Xt) dBt + b(t,Xt) dtThis expression is a notation and means:
Xt = X0 +

∫ t

0

σ(s,Xs) dBs +

∫ t

0

b(s,Xs) dsUnder suitable onditions on the oe�ients σ and b (for instane if both are ontinuousand (loally) Lipshitz), we have existene and (pathwise) uniqueness of a solution. In theLipshitz ase, then the solution is strongly Markovian.
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Stohasti approah of spike trains 37A.2 Stohasti proesses and Partial Di�erential EquationsThe aim of this setion is to show the link between some funtionals of a di�usion proess
X and PDEs. For more details on di�usion proesses we refer to the exellent book of Bass[4℄. Interested readers are also refered to [29, 62℄. The di�usion proess studied here satis�esthe equation:

dXt = b(Xt)dt+ σ(Xt)dBt (A.1)where B := ((B
(i)
t )t≥0)i=1,...,d is a d-dimensionnal Brownian motion. This proess (X) isalled a multi-dimensional di�usion proess.We assume that b and σ are bounded and at least C1. We de�ne L to be the di�usionoperator assoiated to the di�usion proess (A.1)

Lf(x) :=
1

2

d
∑

i,j=1

aij(x)
∂2

∂xi∂xj
f(x) + (b(x) · ∇)f(x) (A.2)where a(x) = (aij(x))i,j ∈ Md is the symmetrial matrix de�ned by a(x) = σ(x)σT (x).Let us now de�ne a real funtion q, alled potential, in referene with Shrödinger'stheory.We onsider the operator, alled Shrödinger's operator, de�ned by:

Gu(x) := Lu(x) + q(x)u(x) (A.3)We have theTheorem A.8. Let D be a smooth bounded domain, q a C2 funtion on D̄, f a ontinuousfuntion on ∂D. Let τD be the �rst hitting time of the border ∂D of D by the proess X :
τD := inf{t > 0;Xt ∈ ∂D} = inf{t > 0;Xt ∈ ∂D}Let u be the solution of the PDE equation with Dirihlet ondition :

{

Lu(x) + q(x)u(x) = 0 ∀x ∈ D
u(x) = f(x) ∀x ∈ ∂D

(A.4)If q is suh that : Ex

[

e
R τD
0 q+(Xs)ds

]

<∞ (A.5)where q+(x) := max(q(x), 0), then u, solution of (A.4), an be written:
u(x) = Ex

[

f(XτD)e
R τD
0 q(Xs)ds

] (A.6)
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38 Touboul, FaugerasWe provide the proof of this theorem beause it is simple and beause it is a good exampleof the use of the notions we introdued in setion A.1.Proof. Let Yt :=
∫ t

0 q(Xs)ds and onsider the stohasti proess eYtu(Xt). It�'s formulagives the following expression for this proess:
eYtu(Xt) = u(X0) +

∫ t

0

eYsu(Xs)dYs +Mt +

∫ t

0

eYsLu(Xs)ds

= u(X0) +Mt +

∫ t

0

eYs(Lu(Xs) + q(Xs)u(Xs))ds

= u(X0) +Mt +

∫ t

0

eYsGu(Xs)ds (A.7)(A.8)where Mt denotes an assoiated loal martingale:
Mt =

d
∑

i=1

∫ t

0

eYsbi(Xs)
∂u

∂xi
(Xs)dsLet us stop the proess under onsideration at the stopping time τD. Let Sn := inf{t; dist(Xt, ∂D) <

1/n}. We learly have Sn ր
n→∞

τD. Then sine u ∈ C2(D̄) we have the property that Mt∧Snis a martingale for all n ∈ N. Let us take the expetation and apply the optimal stoppingtheorem to (A.7). Stopping the proess at time Sn ensures us that Gu(Xs) is 0 beause Xsis always inside the domain D. We then have
eYt∧Snu(Xt∧Sn) = u(X0) +Mt∧Sn , and taking the expetationEx

[

eYt∧Snu(Xt∧Sn)
]

= u(x)Finally, letting n→ ∞ and using Lebesgue's theorem (the funtion u is bounded inside thedomain D and the hypothesis (A.5) ensures us to have a L1 bound) we get :Ex

[

eYt∧τDu(Xt∧τD)
]

= u(x) ∀t > 0We an onlude letting t→ ∞, sine the expetation onverges by Lebesgue's theorem.There is also an interesting onnetion between the Laplae transform and the di�usionoperator assoiated to a one-dimensional di�usion proess. Let X = (Xt; t > 0) be aone-dimensional di�usion proess given by the equation :
dXt = b(Xt)dt+ σ(Xt)dBt (A.9)
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Stohasti approah of spike trains 39where B = (Bt)t≥0 is a standard one-dimensional Brownian motion.Let τa(X) be the �rst passage-time of X to the �xed barrier a and let uλ(x) be theLaplae transform of τa(X) onditionally on the fat that X0 = x.
τa(X) := inf{t > 0;Xt = a}

uλ(x) := Ex

[

e−λτa(X)
]

, λ ≥ 0 (A.10)TheoremA.9. Assume that x < a. The Laplae transform uλ(x) is solution of the followingPDE together with limit onditions :










Luλ(x) − λuλ(x) = 0
uλ(a) = 1
lim

x→−∞
uλ(x) = 0

(A.11)Remark 1. The ase x > a an be treated in the same way with only a few hanges asstated in the beginning of the setion.Theorem A.10. The Laplae transform of the hitting time of a di�usion with generator Lan be written: Ex

[

e−λτa(X)
]

=
Ψλ(x)

Ψλ(a)
(A.12)where Ψλ(·) is proportional to the unique inreasing positive solution of

LΨλ = λΨλ(i.e. the eigenfuntion of the di�usion operator L assoiated to the eigenvalue λ).Let us now onsider setion a one-dimensional di�usion proess X = (Xt; t > 0) givenby the equation :
Xt = b(Xt)dt+ σ(Xt)dBt (A.13)where B = (Bt)t≥0 is a standard one-dimensional Brownian motion.Let a(t) be the boundary, and τa(X) the �rst passage time of X to the boundary.We denote uλ(x) be the Laplae transform of τa(X) onditionally on the fat thatX0 = x.

τa(X) := inf{t > 0;Xt = a(t)}

uλ(x) := Ex

[

e−λτa(X)
]

, λ ≥ 0 (A.14)
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40 Touboul, FaugerasTheorem A.11. Assume that x < a(0). Then the Laplae transform uλ(x) = vλ(0, x)where vλ(t, x) is solution of the following PDE together with limit onditions :










∂tvλ(t, x) + Lvλ(t, x) − λvλ(t, x) = 0
vλ(t, a(t)) = 1
lim

x→−∞
vλ(t, x) = 0

(A.15)Proof. The proof of the neessary ondition, i.e. assuming that a regular solution (C1,2),the proof is very similar to the one of theorem A.9.To prove this theorem we only have to use It�'s formula to the (assumed) C1,2 funtion
e−λtv(t,Xt). The loal martingale will be a real martingale (it is neessary to bound theproess X also to get a martingale, as we did in the last proof), and the optimal stoppingtheorem will apply and we will eventually get:Ex

[

e−λτa(X)
]

= vλ(0, x)In the present paper we also use several times the Fokker-Plank partial di�erentialequation. This equation whih governs the transition probability density of a given proessan be dedued straightforwardly form the previous theory.Theorem A.12 (Fokker-Plank equation). Let X be a di�usion proess solution of thestohasti di�erential equation:
dXt = b(Xt) dt+ σ(Xt) dWt. (A.16)Under suitable onditions on b and σ, the proess X is uniquely de�ned by (A.16), stronglyMarkovian with stationnaty inrements. Its transition funtion is:

P (t, x,Γ) := P(Xt+s ∈ Γ
∣

∣

∣
Xs = x

)We assume that this probability has a density with respet to Lebesgue's measure P (t, x,Γ) =
∫

Γ p(t, x, y) dy and that this density satis�es regularity onditions on ∂p
∂t , ∂p

∂xi and ∂2p
∂xi∂xj . Inthis ase, the transition density probability is the fundamental solution (Green's funtion) ofthe equation:

∂p(t, x, y)

∂t
=

1

2

∑

i,j

ad
i,j=1(x)

∂2p(t, x, y)

∂xi∂xj
+

d
∑

j=1

bj(x)
∂p(t, x, y)

∂xj
. (A.17)i.e. ∂p(t,x,y)

∂t = Lxp(t, x, y). This equation is alled forward Kolmogorov equation.
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Stohasti approah of spike trains 41Under regularity onditions on ∂p
∂t , ∂p

∂yi and ∂2p
∂yi∂yj , the transition probability densityis the fundamental solution (Green's funtion) of the bakward Kolmogorov equation, orFokker-Plank equation:

∂p

∂t
=

1

2

d
∑

i,j=1

∂2ai, j(y)p(t, x, y)

∂yi∂yj
−

d
∑

j=1

∂bi(y)p(t, x, y)

∂yi
(A.18)or:

∂p(t, x, y)

∂t
= L∗

yp(t, x, y).B Hermite's funtionThe speial funtions used in previous setions are realled below and we refer to [39℄ formost of the results and proofs.De�nition B.1. The Hermite funtion Hν is de�ned by :
Hν(z)

def
=

2νΓ(1
2 )

Γ(1−ν
2 )

φ

(

−ν
2
,
1

2
; z2

)

+
2ν+ 1

2 Γ(− 1
2 )

Γ(−ν
2 )

zφ

(

1 − ν

2
,
3

2
; z2

) (B.1)where φ denotes the on�uent hypergeometri funtion (or Kummer's funtion of the �rstkind) and Γ the gamma funtion.
φ(a, b; z)

def
= 1 +

a

b
z +

a(a+ 1)

b(b+ 1)

z2

2!
+
a(a+ 1)(a+ 2)

b(b+ 1)(b + 2)

z3

3!
+ . . .

def
=

∞
∑

k=0

(a)k

(b)k

zk

k!Proposition B.1. Hermite funtion satis�es the following relations :i. The Hermite funtion has the following series representation :
Hν(z) =

1

2Γ(−ν)

∞
∑

m=0

(−1)m

m!
Γ

(

m− ν

2

)

(2z)m, |z| <∞ (B.2)ii. The following reurrene relations hold :
∂Hν(z)

∂z
= 2νHν−1(z) (B.3)

Hν+1(z) = 2zHν(z) − 2νHν−1(z) (B.4)
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42 Touboul, Faugerasiii. Hν(z) and Hν(−z) are fundamental solutions of the ordinary so alled Hermite equa-tion :
f ′′(z) − 2zf ′(x) + 2νf = 0 (B.5)Proof. The series expansion of i. omes from the de�nition of the φ funtion.The reurrene relations of ii. ome from the fundamental relation on Γ : Γ(1+z) = zΓ(z)and the series expansion (B.2) : on one hand we have

∂Hν(z)

∂z
=

1

2Γ(−ν)

∞
∑

m=1

(−1)m

m!
Γ

(

m− ν

2

)

2m(2z)m−1

=
−2

2Γ(−ν)
∞
∑

m=0

(−1)m

m!
Γ

(

m+ 1 − ν

2

)

(2z)m hanging m to m+ 1On the other hand,
2νHν−1(z) =

2ν

2Γ(1 − ν)

∞
∑

m=0

(−1)m

m!
Γ

(

m− ν + 1

2

)

(2z)mAnd onlude with the relation Γ(1 − ν) = −νΓ(−ν).The seond reurrene relation omes also from those two relations. To hek this relationwe ompare the oe�ient of the power of 2z of the series expansion of the two sides of (B.4)and play with the fundamental relation of Γ.Finally, the ordinary di�erential equation (B.5) is no more than (B.4), writing Hν−1 and
Hν−2 in terms of derivatives of Hν using (B.3).C Some alulationsProposition C.1. The two-dimensionnal proess (Xt,Mt) is a Gaussian Markov proess.Proof. First of all, note that if FX

t (resp. FM
t ) de�nes the anonial �ltration assoiated tothe proess X (resp. M) then it is lear that ∀t ≥ 0, FX

t ⊂ FM
t .It is also lear that M is a martingale, and satis�es the Markov property. Let s ≤ t. Wehave:

Xt =

∫ t

0

g(u)Mudu

=

∫ s

0

g(u)Mudu +

∫ t

s

g(u)Mudu
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Xt = Xs +

∫ t

s

g(u)(Mu −Ms)du+Ms

∫ t

s

g(u)du (C.1)Conditionnaly to Ms, the proess ∫ t

s
g(u)(Mu −Ms)du is independant of FM

s so the lawof Xt knowing (Xs,Ms) is independant of the �ltration F (X,M)
t and so doesM , so eventuallythe ouple (X,M) is Markov.The pair is learly a Gaussian proess sine its two omponents are. Indeed, M isGaussian as the limit of the Riemann sums of Brownian inrements, whih are Gaussian,and X is also the limit of Riemann sums of a Gaussian proess, namelyM , with the weightsgiven by g.Remark 2. In the proof of proposition C.1, we also proved that onditionally to Ms, theinrement (Xt −Xs,Mt −Ms) are independent of the σ-�eld Fs. The proof also shows that
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