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Stochastic Programming with Probability Constraints

Laetitia Andrieu∗, Guy Cohen†, Felisa J. Vázquez-Abad‡

July 31, 2007

Abstract

In this work we study optimization problems subject to a failure constraint. This con-
straint is expressed in terms of a condition that causes failure, representing a physical or
technical breakdown. We formulate the problem in terms of a probability constraint, where
the level of “confidence” is a modelling parameter and has the interpretation that the prob-
ability of failure should not exceed that level. Application of the stochastic Arrow-Hurwicz
algorithm poses two difficulties: one is structural and arises from the lack of convexity of the
probability constraint, and the other is the estimation of the gradient of the probability con-
straint. We develop two gradient estimators with decreasing bias via a convolution method
and a finite difference technique, respectively, and we provide a full analysis of convergence
of the algorithms. Convergence results are used to tune the parameters of the numerical
algorithms in order to achieve best convergence rates, and numerical results are included via
an example of application in finance.

Keywords. Probability constraints, stochastic programming, stochastic gradient algorithm,
stochastic approximation

1 Introduction

1.1 Constrained Optimization in a Stochastic Setting

Optimization Theory provides a convenient approach to formulate and solve problems involving
conflicting objectives, which is generally the challenge present in decision making situations. The
main idea is to aggregate as many objectives as possible into a single objective function, which
may be straightforward when those objectives are amenable to an expression into a common
unit, say, a currency unit as dollar or euro. In this objective aggregation, weights are allocated to
each term in order to reflect preferences or priorities. However, there might be other objectives
that can hardly be expressed in a unit commensurable with the previous ones (examples to come
hereafter). In such a case, it is better to introduce those other objectives through constraints,
that is, each such objective should not exceed a prescribed level. The constraint levels are set a
priori, as are the weights for the different terms in the cost function.

Duality Theory provides the tools to evaluate the sensitivity of the optimal solution (cost)
to those prescribed constraint levels. In mathematical terms, let u be the decision variable in
a Hilbert space U , J : U → R the cost function, and Θ : U → Rd the constraint function. We
consider problems of the type:

min
u∈Uad

J(u) s.t. Θ(u) ≤ α , (1)
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where Uad is an “admissible” or “feasible” closed convex subset of U and inequalities in the
constraints involving Θ are understood componentwise. Introduce the multiplier λ (in Rd

+) and
the Lagrangian

L(u, λ) = J(u) + 〈λ,Θ(u) − α〉 , (2)

where 〈·, ·〉 denotes the scalar product. Kuhn-Tucker optimality conditions characterize an
optimal multiplier λ♯ which can be interpreted as the sensitivity of the optimal cost function
J(u♯) (where u♯ denotes the solution of problem (1)) with respect to α (up to a change of sign).

When random factors affect the outcomes of a decision, a classical approach is to assume that
the probability distribution of those factors is known and to appeal to stochastic optimization.
Call ξ the corresponding random variable, then the objective function is usually expressed in
terms of an expectation of some cost function of the form J(u) = E

(
j(u, ξ)

)
.

In the stochastic situation, modelling choices for aggregation of objectives, weights and con-
straints are similar to the deterministic case. However a new question also arises regarding
constraints, namely, constraints can be formulated in various ways: “almost surely”, “in expec-
tation”, “in probability”, etc.

The first possibility (“almost sure” constraints) means that certain quantities θ(u, ξ) depend-
ing on decision variables and affected by random factors should satisfy equality or inequality
for “almost all” values of those random factors (according to their probability distributions).
This is in particular the case of constraints which express “laws of nature” which are part of
the mathematical model of the system under consideration. However, regarding objectives or
“wishes”, such strict constraints are generally inappropriate from the economic or simply realis-
tic point of view. Suppose for example that a pressure should not exceed a certain level beyond
which death will almost surely happen. First of all, observe that it is hard to aggregate such an
objective (actually, that to stay alive) with other more economic objectives which aim at saving
money. Second, under the constraint that the pressure “almost never” exceeds the dangerous
level, the operation can be extremely costly if not simply impossible. That is, some risk must
be accepted for the operation to be economically viable.

The second possibility (constraints “in expectation”) means that, given a decision, the ex-
pected value Θ(u) = E

(
θ(u, ξ)

)
of a critical quantity (a pressure in our example) should not

exceed a certain level. Such a formulation is generally mathematically attractive, but it is diffi-
cult to understand how much risk is involved in choosing such or such prescribed level. Indeed,
given a decision u, the pressure (to keep on with our example) becomes a random variable θ(u, ξ)
with a certain distribution (which is affected by the chosen decision), and the only thing one ask
is that the first moment (the expectation) of this random variable stay below a prescribed level,
but with no direct control on how much of the probability mass will lie beyond that prescribed
level.

The third possibility advocated to (constraints “in probability” or “probabilistic constraints”)
means that one accepts that the critical quantity (the pressure, say) remains under the prescribed
level not “almost always” as earlier, but with a certain probability whose value must be chosen.
In mathematical terms, one now considers the problem

min
u∈Uad

E
(
j(u, ξ)

)
s.t. P

(
θ(u, ξ) ≤ α

)
≥ π . (3)

This chosen probability value π exactly reflects the risk one is ready to assume (in contrast with
the previous approach of constraints in expectation). As discussed earlier, duality should then
help in evaluating the sensitivity of the optimal cost function with respect to this accepted, but
arbitrarily fixed, level of risk.
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1.2 Quantitative vs. Qualitative Risk Measures

We now motivate the interest of probability constraints in contrast with other measures of
risk. Before choosing a risk measure, it is very important to know which type of failure we are
interested in: quantitative failure or qualitative failure. For example, a power supply company
would minimize its cost under the constraint of supplying the demand. If that demand cannot
be fully supplied, it matters to know which percentage of it will not be covered and during which
amount of time. This is what we mean by “quantitative failure”: introducing a penalty for the
total amount of demand not supplied directly into the cost function, or choosing to constrain a
quantity which accounts for the amount of supply failure is appropriate in that situation. On
the contrary, when simply going beyond a certain threshold causes death, it not does matter to
know by which amount that threshold has been exceeded — this is what we mean by “qualitative
failure” — but it does matter to know the likelihood of going beyond that critical threshold.
Probability constraints are particularly adapted to this latter situation.

In fact, because of the mathematical difficulties raised by probability constraints, these con-
straints must be exclusively used in the case of qualitative failure problems. For quantitative
failure problems, there are other risk measures with better mathematical properties (e.g. con-
vexity), like Conditional Value-at-Risk (CVaR) for instance. Introduced in [13], CVaR is one
of the most popular risk measure in finance. CVaR is the average of a random variable for
the worst scenarios. Denote by αu(π) the quantile function of the distribution of θ(u, ·) with
confidence level π (also called Value-at-Risk). Then, CVaR, denoted by φπ(u), is defined by

φπ(u) = E
(
θ(u, ξ) | θ(u, ξ) ≥ αu(π)

)
.

The risk constraint will be then φπ(u) ≤ α, where α represents the accepted level of risk, and π
is fixed a priori.

Notice that the critical threshold α in the probability constraint is generally provided by
technical considerations, whereas π characterizes the level of risk one is ready to accept. That
is, the decision maker may bargain about the constraint level π but not on that threshold α
which is a technical data. With the CVaR approach, this α disappears from the formulation
and we believe that this is a weakness of this approach. Moreover, in the case of “qualitative
failure”, there is no meaning in averaging values of θ beyond a threshold which is supposed to
be fatal.

1.3 About this Paper

Problem (3) is the class of problems considered in this paper. Its advantage is again the fact that
the meaning of constraints in terms of risk assumed is of immediate perception. Its drawback is
its mathematical difficulty.

In this paper, we discuss an approach relying upon Lagrangian duality and stochastic gradient
to solve (3). The use of stochastic gradient is based on the reformulation of constraints in
probability as constraints in expectation, using an indicator function. As usual with stochastic
gradient, we assume that the functions involved in the problem (here, j and θ) are known
explicitly but that the probability law governing the “noise” ξ is not, or that the computation
of expectations of the variables involved is out of reach or too costly. It is rather assumed that
an external mechanism delivers samples of ξ which are used in the iterative algorithm.

Writing the probability as an expectation opens the possibility of using stochastic gradient
algorithms, but it also raises the difficulty of handling a discontinuous function, namely the
indicator function. We will discuss various ways of overcoming that difficulty.

The rest of the paper is organized as follows. In §2, we present the analysis of the problem,
and our resolution strategy, a stochastic Arrow-Hurwicz algorithm. In §3, we describe two
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structural difficulties of stochastic programming under probability constraint. To implement
a stochastic Arrow-Hurwicz algorithm, we need to handle the probability function gradient.
In §4, the question we are interested in is therefore: how to compute stochastic estimates of
the probability function gradient? In order to answer this question, we propose two methods
that allow to obtain biased stochastic gradient estimates, namely Approximation by Convolution
(AC) ad Finite Differences (FD). We defer to a forthcoming paper to propose techniques based
on integration by parts ideas and providing unbiased (or consistent) estimates, and to compare
them with the biased estimates studied hereafter.

We consider a very basic portfolio optimization problem under a probability constraint and
use this example throughout the rest of the paper to illustrate and compare the AC and FD
techniques. Section 5 is devoted to the convergence analysis of the proposed methods. Finally,
§6 reports numerical experiments with the Arrow-Hurwicz algorithm.

2 Analysis of the Problem

2.1 Review of Main Difficulties

Probability constraints provide a straightforward risk formulation with an immediate intuitive
interpretation. But at the same time, it is well known that such constraints raise important
mathematical difficulties, such as the lack of convexity or connectedness of the feasible subset.
Indeed, even if θ is a convex function of u for almost all values ξ, the constraint in (3) may not
define a convex feasible subset in U (which can even be not connected, if not empty). Those
convexity or connectedness (or emptiness) properties depend of course on the properties of θ as
a function of its two arguments u and ξ, on the probability distribution of the random variable
ξ, on the level α of constraint required and on the level π of probability required. One may refer
to [9] for a discussion on those convexity properties, and to [8] for connectedness properties.

In [9], the authors prove that if θ(·, ·) is jointly convex in (u, ξ) and the probability measure
is quasi-concave, then the feasible subset of (3) is convex. But those assumptions seem to us to
be rather strong in practice, notably the joint convexity property. Indeed, there are numerous
situations in which the decision variable multiplies the random variable, as in the portfolio
problem presented in §3, or in a quite other domain, when one wants to model the breakdown
of an actuator, in which case the random variable must be able to kill the action the decision
variable. In all those situations, the joint convexity property is not realistic.

2.2 Mathematical Approach for Programming under Probability Constraint

Before explaining our resolution strategy, we review some basic results on the stochastic Arrow-
Hurwciz algorithm [1, 5]. First of all, starting with the deterministic constrained optimization
problem (1) and assuming that there exists a saddle point of the Lagrangian (2) over Uad ×Rd

+,
the (deterministic) Arrow-Hurwicz algorithm consists in performing successive minimization and
maximization steps to search for this saddle point:

uk+1 = ΠUad

(
uk − εk

(
∇uJ(uk) + ∇uΘ(uk)λk

))
, (4a)

λk+1 = Π+

(
λk + ρk

(
Θ(uk+1) − α

))
, (4b)

where ΠUad is the projection onto Uad and Π+ is the projection onto the cone Rd
+.
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2.2.1 Stochastic Arrow-Hurwicz Algorithm

The stochastic Arrow-Hurwicz algorithm is typically used to solve a stochastic optimization
problem with constraint in expectation:

min
u∈Uad

E
(
j(u, ξ)

)
s.t. E

(
θ(u, ξ)

)
≤ α , (5)

where the calculation of expectations is basically difficult if not impossible. The stochastic
algorithm overcomes this difficulty by simultaneously approximating the saddle point and the
expectations by a Monte-Carlo like technique. It is in fact a combination of the idea of the
Monte-Carlo method with the iterative procedure of gradient methods in optimization.

We do assume that a saddle point (u♯, λ♯) over Uad×Rd
+ exists for the Lagrangian associated

with problem (5) (hence u♯ is a solution of (5)). Observe that this Lagrangian L (2) is equal to the
expectation of ℓ(u, λ, ·) = j(u, ·)+〈λ, θ(u, ·)−α〉. We use unbiased estimates of the gradients of L
in u and λ obtained with the corresponding gradients of ℓ evaluated at independent drawings ξk

of ξ supposed to follow the probability law of ξ. More specifically, at stage k of the algorithm,
uk and λk being the current estimates of the solution,

1. we draw an independent sample (according to the law P of ξ), or we observe a new
independent sample ξk+1,

2. we compute the stochastic gradients ∇uj(u
k, ξk+1) and ∇uθ(u

k, ξk+1),

3. we update uk+1 and λk+1 as follows:

uk+1 = ΠUad

(
uk − εk

(
∇uj(u

k, ξk+1) + ∇uθ(u
k, ξk+1)λk

))
, (6a)

λk+1 = Π+

(
λk + ρk

(
θ(uk+1, ξk+1) − α

))
. (6b)

Under essentially measurability and convexity assumptions, assuming that the Lagrangian of
the problem admits a saddle point, and with

∑

k∈N

εk = +∞ ,
∑

k∈N

(εk)2 < +∞ (and the same for ρk) ,

it is shown in [6] that this algorithm converges in the sense that primal {uk}k∈N and dual {λk}k∈N

sequences are bounded a.s. and that {uk}k∈N a.s. weakly converges to some solution u♯ of (5).

2.2.2 Mathematical Approach: Strategy and Difficulties

From now on, we assume that the critical or risky event is defined by a single (scalar) inequality,
that is, θ is R-valued. Let IR+ denote the indicator function of the positive half-line. The
principle of our resolution strategy is first to replace the probability constraint by a constraint
in expectation

−P (u) ≤ −π , (7)

where P (u) = P
(
θ(u, ξ) ≤ α

)
and this probability is evaluated as an expectation:

P
(
θ(u, ξ) ≤ α

)
= E

(
IR+

(
α− θ(u, ξ)

))
, (8)

then resort to duality, and lastly resort to the stochastic Arrow-Hurwicz algorithm. Observe
that w.r.t. the general formulation (1), Θ is now −P and the constraint level α is now −π.

There are major difficulties with probability constraints.
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• First of all, as we recalled in §2.1, convexity is not preserved. Therefore, existence of a
saddle point of the Lagrangian is not granted; in this case, we should resort to augmented
Lagrangian techniques to increase the chance that a saddle point does exist. However,
this raises new problems because the nonlinearities involved in the augmented Lagrangian
formula cannot be combined straightforwardly with expectation to yield obvious stochastic
gradient algorithms. This issue of using augmented instead of ordinary Lagrangians goes
beyond the scope of this paper and is not considered here.

• We rather address here another difficulty: to replace a probability constraint by a con-
straint in expectation, we need to handle the indicator function (see (8)); but this indicator
function involves a discontinuity which may, nevertheless, be smoothed by the expectation
operation; however, the stochastic Arrow-Hurwicz algorithm is based on the consideration
of a unique sample drawn at each iteration; obtaining a stochastic gradient is therefore
not trivial. As it will be shown later on, we propose two ways of overcoming this diffi-
culty: Approximation by Convolution (AC) and Finite Differences (FD). Both approaches
will lead us to consider algorithms such as (6) in which either a smooth approximation
θ̂ of function θ will be used in both equations (6a) and (6b), or an approximation of its
gradient will be used in (6a), leading to a stochastic Arrow-Hurwicz algorithm with biased
stochastic estimates of the Lagrangian gradients.

3 Structural Difficulties of Programming under Probability Con-
straint

In this section, we focus on two structural difficulties of optimization problem with probability
constraints. The first one is related to the non convexity of probability constraint: we show
what are the consequences of this non convexity on the stochastic Arrow-Hurwicz algorithm.
The second one concerns the behavior of the probability constraint multiplier in some particular
cases.

3.1 The Non Convexity of Probability Constraint

Consider the following optimization problem

min
u∈R

1

2
(u− 1)2 s.t. P(u ≤ ξ) ≥ π , (9)

where ξ is a normal random variable with mean value −2 and standard deviation 0.1.
In order to point out the first difficulty, we study the qualitative behavior of the underlying

deterministic problem, namely that in which the probability constraint is expressed with help
of the cumulative distribution function F of ξ: indeed, P(u ≤ ξ) = 1 − F (u) and therefore, the
constraint in (9) can be replaced by

1 − F (u) ≥ π (10)

without of course altering the corresponding Kuhn-Tucker multiplier.
The Lagrangian of problem (9), with constraint written as in (10), is

L(u, λ) =
1

2
(u− 1)2 + λ

(
F (u) − 1 + π

)
;

and, the Kuhn-Tucker necessary conditions of optimality allow for the calculation of the solution
which is, for example with π = 0.7,

u♯ = −2.05244 and λ♯ = 0.877913 .
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As expected, u♯ takes the maximal possible value to satisfy the constraint, that is, the (1−π)-th
percentile of the distribution: F (−2.05244) = 0.3, so the constraint is active, and saturated.

Figure 1 represents the Lagrangian surface in the (u, λ) domain. For λ = 0, we recognize

u

λ

–2

–1
0

2

0

2

4

1

0

2

4
solution

Figure 1: Lagrangian surface

the convex shape of the cost function only. For larger values of λ, the nonconvex form of F (·)
shows up more and more, which explains the two valleys.

We insist on the following two points. First, our approach in this paper is based on stochas-
tic estimates of the gradients of the Lagrangian, not on their exact computation, which we
assume impossible. Naturally, we cannot expect the stochastic algorithm to behave better than
its underlying average driving vector field, which we will study directly. Second, with some
probability distributions there is a way to manipulate the constraints in order to preserve con-
vexity. In particular with normal distributions, the map ln(1−F (·)) is concave [12], which leads
to a convex formulation of the constraint. If we seem to overlook this remark in the following
treatment, this is because the difficulty we try to point out in this very simple case is a fortiori
likely to occur in more general situations when the above clever manipulations are no longer
possible: recall that we do not assume knowledge of the distribution of θ(u, ξ).

Let us now consider the ODE associated with the Arrow-Hurwicz algorithm,

u̇ = −L′
u(u, λ) = −J ′(u) − λF ′(u) , (11a)

λ̇ = L′
λ(u, λ) = F (u) − 1 + π . (11b)

At u♯ = 1, the unconstrained optimal solution, one has that J ′(u♯) = 0 and F ′(u♯) = 1.47 × 10−195,
because u♯ happens to be in the tail of the distribution. Therefore, even for very large values of
λ, L′

u(u♯, λ) remains very close to 0; in other words, if the (continuous) algorithm (11) is started
at (or close to) (u♯, λ), for practically any λ, u will stay at u♯! At the same time, if u♯ doesn’t
satisfy the constraint, one has that F (u♯) > 1 − π. It follows that L′

λ(u♯, λ) > 0: λ increases
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almost indefinitely! This is better illustrated by the vector field of the ODE, shown in Figure 2.

Figure 2: Vector field of the ODE

The white zone corresponds to the basin of attraction of the optimal solution. In the grey
zone, the algorithm is driven more or less indefinitely towards large values of λ in a valley
corresponding to the unconstrained solution u♯ = 1.

This example shows that even a deterministic algorithm may, if started on the “wrong” side,
wander away from the actual optimal solution. Stochastic versions of the algorithm are expected
to behave erratically, and even if the current values of (uk, λk) are in the basin of attraction
of the Kuhn-Tucker point, random observations may take the algorithm to other regions away
from the optimal solution.

3.2 Degeneracy of the Probability Constraint Multiplier

Let us now consider the following portfolio optimization problem. This very simple problem
allows us to point up another structural difficulty of probability constraint. This example will
also be used in the remainder of this paper to illustrate our various approaches.

We borrow a capital which we have to pay off at the end of the period with an interest rate l.
We can invest a proportion u of this capital at the fixed rate b, invest a proportion v at the
random rate ξ, and finally consume the available remainder, which brings a satisfaction measured
by a concave nondecreasing function f . We assume of course that E(ξ) > l, in other words,
risk is rewarding. We try to maximize the sum of the satisfaction provided by consumption and
by the expected final capital. We also want to be in a position to pay off the capital and the
interests at the end of the period, with a probability of a least p. In this case, the optimization
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problem can be stated as follows:

max
u,v

E
(
f(1 − u− v) + (1 + b)u+ (1 + ξ)v

)

s.t. u ≥ 0 , v ≥ 0 , u+ v ≤ 1 ,

P
(
(1 + b)u+ (1 + ξ)v ≥ 1 + l

)
≥ π .

Let

l = 0.15, b = 0.2, f(x) = −x2/2 + 2x ,

F (ξ) =





0 if ξ < ξ̄ − σ ,
1
16

(
3
( ξ−ξ̄

σ

)5
− 10

( ξ−ξ̄
σ

)3
+ 15

( ξ−ξ̄
σ

)
+ 8
)

if ξ < ξ̄ + σ ,

1 otherwise ,

(12)

where F is the distribution function. For numerical experiments, we set ξ̄ = 0.4 and σ = 3. To
identify this problem with (3), consider the equivalent minimization problem with cost function

j(u, v, ξ) = −f(1 − u− v) − (1 + b)u− (1 + ξ) v .

Let also
P (u, v) = P

(
(1 + b)u+ (1 + ξ) v ≥ 1 + l

)
. (13)

This problem is now formulated as

min
u≥0,v≥0

E
(
j(u, v, ξ)

)
s.t. u+ v ≤ 1, −P (u, v) ≤ −π

with Lagrangian

L(u, v;λ1, λ2) = E
(
j(u, v, ξ)

)
+ λ1(u+ v − 1) + λ2(π − P (u, v)) .

Figure 3 represents the optimal cost as a function of probability level π. We observe that

0.1 0.2 0.3 0.4 0.5 0.6 0.7

-1.55

-1.45

-1.4

-1.35

-1.3

-1.25

Figure 3: Optimal cost

this function is not convex. In fact, it is convex for probability levels below 0.57. For probability
levels close to 0.57, the risk of not being in a position to pay off the capital and the interests is
important; the investment in the risky asset v decreases to zero, whereas simultaneously, that
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in the secure asset u increases. The optimal cost, which was until then a convex function of the
required probability level, becomes concave. Above 0.65, v is zero, u is equal to (1+ l)/(1+ b) =
0.95833 in order to satisfy the probability constraint, and the optimal cost becomes constant.

This example shows another structural difficulty of optimization under a probability con-
straint, namely the degeneracy of the probability constraint multiplier. Indeed, for π small
enough, the secure asset, u is zero at optimum. For π large enough, the risky asset, v, is zero at
optimum. In the latter case, the event

{
(1 + b)u+ (1 + ξ)v ≥ 1 + l

}
can only have probability

0 or 1. That is to say, at v = 0 and u = (1 + l)/(1 + b) = 0.95833, the function (13) exhibits a
discontinuity (see Figure 4).

0.9

0.92

0.94

0.96

0.98

1

0.02

0.04

0.06

0.08

0.1

0

0.25

0.5

0.75

1

0.92

0.94

0.96

0.98

1

0.02

0.04

0.06

0.08

v

u

Figure 4: Graph of the probability function for (u, v) ∈ [0.9, 1] × [0, 0.1]

When π is large and v♯ = 0, the probability (13) can only take values 0 or 1 (depending
on the value of u), that is, this probability is strictly larger than the required level π when
the constraint is met. Clearly the constraint is not “saturated”, because there is no equality,
and consequently the corresponding multiplier is zero; small changes in π will not affect the
solution. However, the constraint is “active”, that is, the solution (u♯, v♯) of the problem with
the probability constraint is different from the solution (u∗, v∗) without it.

In the remainder, in order to guarantee existence of a saddle point of the Lagrangian, we con-
sider only probability levels below 0.57 (otherwise, one should resort to augmented Lagrangian
techniques, but, as it has been said earlier, this issue goes beyond the scope of this paper). For
example, for a probability level of 0.24, the primal-dual optimal solution is

u♯ = 0 , v♯ = 0.50407 , λ♯
1 = 0 , λ♯

2 = 0.08815 . (14)
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4 Stochastic Estimates of Probability Function Gradient

As it was mentioned at §2.2.2, in order to use a stochastic Arrow-Hurwicz algorithm, we need to
handle the probability function gradient, that is, to obtain a stochastic estimate of the gradient
of (see (8))

P (u) = E

(
IR+

(
α− θ(u, ξ)

))
. (15)

It is well known that this gradient is difficult to compute; we may refer to [14] for a discussion
of this topic. Recall that in our case, replacing the probability constraint by a constraint in
expectation raises the difficulty of handling an indicator function, which is a discontinuous
function. One way of dealing with this problem is to appeal to a technique based on convolution
to derive a smooth approximation of this discontinuous function. Alternatively, we can obtain
a stochastic estimate of the gradient of this function, based on a single sample drawing of ξ, by
appealing to a finite difference technique, and we rely upon the multiplication of such drawings
along the iterative algorithm to smooth out this crude estimate.

4.1 Approximation by Convolution Method (AC)

4.1.1 General Theory

The basic principle of this approach is to smooth out the indicator function appearing in (15) so
that differentiation underneath expectation becomes possible. Consider a smooth function h :
R → R with the following properties : h as a unique maximum at x = 0,

∀x, h(x) ≥ 0; h(x) = h(−x);

∫ +∞

−∞

h(x) dx = 1 . (16)

We will give a few examples of such functions later on and will consider only functions with
finite support although this is not absolutely necessary. With any other function φ : R → R,
and r a small positive number, the convolution

φr(x) =
1

r

∫ ∞

−∞

φ(y)h
(x− y

r

)
dy ,

can be viewed as an approximation of φ since h(·/r)/r approximates the Dirac function (in the
sense of convergence of distributions) at 0 when r tends to zero. The function φr is differentiable
with

φ′r(x) =
1

r2

∫ ∞

−∞

φ(y)h′
(x− y

r

)
dy .

This technique is widely known as the “mollifier” technique [7]. We now apply it to IR+ :
recall (15) and define

Pr(u) =
1

r
E

(∫ +∞

−∞

IR+(y)h
(α− θ(u, ξ) − y

r

)
dy

)

=
1

r
E

(∫ +∞

0
h
(y − α+ θ(u, ξ)

r

)
dy

)

(here, we have used the fact that h is an even function)

= E
(
pr(u, ξ)

)
(17)
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with

pr(u, ξ) =
1

r

∫ +∞

0
h
(y − α+ θ(u, ξ)

r

)
dy . (18)

Then

(pr)
′
u(u, ξ) =

1

r2
θ′u(u, ξ)

∫ +∞

0
h′
(y − α+ θ(u, ξ)

r

)
dy

= −
1

r
h
(θ(u, ξ) − α

r

)
θ′u(u, ξ) , (19)

and clearly

P ′
r(u) = E

(
(pr)

′
u(u, ξ)

)
. (20)

Therefore, for any sample ξ, (19) can be considered as a stochastic estimate of P ′(u), albeit a
biased one; however, this bias vanishes when r approaches 0. In what follows, we evaluate the
bias and the variance of this estimate as a function of r.

Remark 1. In the same way, according to (17), (18) can be considered a biased estimate of
P (u) whereas

p(u, ξ) = IR+

(
α− θ(u, ξ)

)
(21)

is an unbiased one. In Equation (6b) of the iterative algorithm, we may either use the unbiased
estimate or the biased one, consistently with that used in (6a) for Θ′. The latter option has
the advantage of preserving the specific geometry of vector fields of Arrow-Hurwicz algorithms
(with some symmetry, or skew-symmetry, properties, according to the point of view). The former
option may seem preferable as long as it avoids seemingly unnecessary bias or approximation.
Both options will be tested later on in §6. Therefore, the next theorem deals with both the
estimates (18) and (19) in order to cover all variants.

Theorem 2. The random variable (or vector) ξ is supposed to admit a density q(ξ). For the
random variable Xu(·) = θ(u, ·) depending on the parameter u, we assume that the induced
probability law also admits a density denoted qXu(x) and that this density is at least twice con-
tinuously differentiable with L1 first and second order derivatives. Then, for any sample drawing
ξ following the probability density q, the expression (18) provides a biased estimate of P (u) with
a bias in O(r2) and a variance in O(1).

For the pair of random variables (or vectors)
(
Xu(·), Yu(·)

)
=
(
θ(u, ·), θ′u(u, ·)

)
depending

on the parameter u, we assume that the induced joint probability law admits a density denoted
qXuYu(x, y) and that this density is at least twice continuously differentiable in x with integrable
L1 first and second order derivatives. Then, for any sample drawing ξ following the probability
density q, the expression (19) provides a biased estimate of P ′(u) with a bias in O(r2) and a
variance in O(1/r).

Proof. Consider first (17)–(18). With the induced probability law for the random variable Xu,
one has that

Pr(u) =
1

r

∫ +∞

−∞

∫ +∞

0
h
(y − α+ x

r

)
qXu(x) dy dx .

Using Fubini theorem and the change of variable z = (y − α+ x)/r in the integral in x yields

Pr(u) =

∫ +∞

0

∫ +∞

−∞

h(z) qXu(rz − y + α) dz dy .

12



With the smoothness assumptions on qXu , the Taylor expansion of this term for r near 0 yields

Pr(u) =

∫ +∞

0

∫ +∞

−∞

h(z)
(
qXu(α− y) + rz q′Xu

(α− y) +
r2z2

2
q′′Xu

(α− y) + O(r3)z3
)
dz dy

=

∫ +∞

0
qXu(α− y) dy +

r2

2
σ2

h

∫ +∞

0
q′′Xu

(α− y) dy + O(r3)

by using (16) on the one hand and by introducing

σ2
h =

∫ +∞

−∞

z2 h(z) dz (22)

on the other hand. The term of order 0 in r can be written as
∫ α

−∞

qXu(t) dt

and, as such, is recognized to be equal to P(Xu ≤ α), that is, P (u). Therefore, Pr(u) differs
from P (u) by an O(r2) term (proportional to σ2

h).

As for the variance of the estimate (18), it is equal to the second order moment E

((
pr(u, ξ)

)2)

from which the square of E
(
pr(u, ξ)

)
must be subtracted. The latter is close to

(
P (u)2

)
up to

a term of order O(r2). Therefore we concentrate on the second order moment which can be
written, according to (18),

E

((
pr(u, ξ)

)2)
=

1

r2
E

((∫ +∞

0
h
(y − α+ θ(u, ξ)

r

)
dy
)2
)

=
1

r2

∫ +∞

−∞

( ∫ +∞

0
h
(y − α+ x

r

)
dy
)2
qXu(x) dx

=

∫ +∞

−∞

( ∫ +∞

x−α
r

h(z) dz
)2
qXu(x) dx

using the change of variable z = (y − α+ x)/r in the integral in y,

≤

∫ +∞

−∞

( ∫ +∞

−∞

h(z) dz
)2
qXu(x) dx

since h(·) ≥ 0,

= 1

according to (16) (last equality) and the fact that qXu is a probability density.
The proof regarding the bias of P ′

r(u) w.r.t. P ′(u) may follow one of the following two paths:
either a similar result is proved for the derivative of a function whenever the function itself is
approximated by another function up to an O(r2) term; or, with (19)–(20), we perform similar
calculations to those we have just performed with (17)–(18). Let us sketch this second path.
Considering (19)–(20) and the pair

(
Xu(·), Yu(·)

)
, we have that

P ′
r(u) = −

1

r

∫ ∫
h
(x− α

r

)
y qXuYu(x, y) dx dy

13



(remember y may be a vector of the same dimension as u and dy should be understood ade-
quately). From here, we proceed as previously with the change of variable z = (x− α)/r which
yields

P ′
r(u) = −

∫ ∫
h(z) y qXuYu(rz + α, y) dz dy .

Then, a Taylor expansion of qXuYu w.r.t. its first argument for r near 0 yields, for the same
reasons as previously,

P ′
r(u) = −

∫
y qXuYu(α, y) dy +

r2

2
σ2

h

∫
∂2qXuYu(α, y)

∂x2
y dy + O(r3) . (23)

Assuming that the first term in the right-hand side above is equal to P ′(u) (see Claim 3 here-
after), we obtain again that P ′

r(u) differs by an O(r2) term.

The variance is equal to the second order moment E

((
p′r(u, ξ)

)2)
from which we must

subtract
(
E
(
p′r(u, ξ)

))2
. The latter is close to

(
P (u)

)2
up to O(r2). As for the former, we

have that

E

((
p′r(u, ξ)

)2)
=

1

r2

∫
h2
(θ(u, ξ) − α

r

)(
θ′u(u, ξ)

)2
q(ξ) dξ

=
1

r2

∫ ∫
h2
(x− α

r

)
y2qXuYu(x, y) dx dy

=
1

r

∫ ∫
h2(z) y2qXuYu(rz + α, y) dz dy .

From here, we proceed as earlier with a Taylor expansion for r close to 0, and it should be clear
that the above expression is of order 1/r with a coefficient which can be bounded by a term
proportional to the square of the L2 norm of h. The same consideration is still valid for the
variance itself.

Claim 3. The first term in the right-hand side of (23) is equal to P ′(u). We sketch the proof
of this fact here. For any smooth function f : R → R, consider

F (u) = E

(
f
(
θ(u, ξ)

))
=

∫
f
(
θ(u, ξ)

)
q(ξ) dξ =

∫
f(x) qXu(x) dx .

Then,

F ′(u) =

∫
f ′
(
θ(u, ξ)

)
θ′u(u, ξ) q(ξ) dξ =

∫ ∫
f ′(x) y qXuYu(x, y) dx dy .

Integrating by parts in the integral in x, one gets

F ′(u) = −

∫ ∫
f(x) y

∂qXuYu

∂x
(x, y) dx dy .

If f is not smooth enough for this calculation to be immediately justified, one can consider a
sequence of smooth approximations converging to f in order to establish this formula. Let us
now use it for f(·) = IR+(α− ·). Then F (u) = P (u) and

P ′(u) = −

∫
y

∫
IR+(α− x)

∂qXuYu

∂x
(x, y) dx dy

= −

∫
y

∫ α

−∞

∂qXuYu

∂x
(x, y) dx dy

= −

∫
y qXuYu(α, y) dy ,

which is exactly the expected result.
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Remark 4. As a side remark, observe that

qXu(α) =

∫
qXuYu(α, y) dy ,

and that
qXuYu(α, y)/qXu(α) = qYu(y | Xu = α) ,

that is, the conditional density of Yu knowing that Xu = α. Therefore, the first term in the
right-hand side of (23) can be written as −E

(
Yu | Xu = α

)
× qXu(α). We conclude that

P ′(u) = −qθ(u,·)(α) × E
(
θ′u(u, ·) | θ(u, ·) = α

)
.

Remark 5. Observe that, although we started with the idea of a smooth function h, the
expression (19) of the estimate and the analysis in the proof of Theorem 2 does not involve
more than the function h itself (not its derivatives), so that we may as well consider non smooth
functions (and even discontinuous functions at the ends of its support).

In conclusion, the variance of the stochastic estimate (19) blows up like A/r as r goes to 0
(where A can be bounded from above by something proportional to the square of the L2 norm of
h), that of (18) remains of order O(1), whereas the square of the bias of both estimates goes to
0 as B2r4 (where B is proportional to σ2

h — see (22)). If the estimate of P ′(u) is rather based on
the average of N expressions as (19) for N independent drawings of ξ, the variance will blow up
as A/(Nr) whereas the square of the bias will still behave as B2r4. Therefore, the best trade-off
between variance and bias is realized by that r which minimizes the mean square error (MQE;
this is the sum of the variance and of the square of the bias) equal to A/(Nr)+B2r4: the “best”

r is thus
(
A/(4B2N)

)1/5
. This yields a MQE estimated to (5A4/5B2/5)/(4N)4/5. Therefore, in

the choice of function h, it is meaningful to pay attention to the quantity σ
4/5
h ‖h‖

8/5
L2 . Remember

B is proportional to σ2
h and A is proportional to ‖h‖2

L2 .
The bias of the AC estimate goes to 0 with r: this parameter r allows for a trade-off

between mean and variance which should be adapted to the number of samples available (as
just discussed) or visited in one run in the context of an iterative algorithm, as discussed later
on in §5.3.

4.1.2 Practical Aspects and Application to Example of §3.2

Define

I(x) =

{
1 if − 1 ≤ x ≤ 1,

0 otherwise.

Table 1 proposes 6 functions with bounded supports that can play the role of function h (see

(16)) and compares them from the point of view of their constants σ
4/5
h ‖h‖

8/5
L2 (last column), the

relevance of which has just been explained. The column h(0) is provided to help identifying the
functions with their graphs displayed in Figure 5.

We observe that the fourth function, namely h(x) = 3(1 − x2)I(x)/4 is the one to retain
because it offers the smallest value in the last column of the table. We now apply the technique
to the example of §3.2 again. The estimates for P ′

u(u, v) and P ′
v(u, v) based on this technique

and on a given sample ξ read as follows:

(pr)
′
u(u, v, ξ) =

1 + b

r
h
( (1 + α) − (1 + b)u− (1 + ξ)v

r

)
; (24a)

(pr)
′
v(u, v, ξ) =

1 + ξ

r
h
( (1 + α) − (1 + b)u− (1 + ξ)v

r

)
. (24b)
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h h(0) σ2
h ‖h‖2

L2 σ
4/5
h ‖h‖

8/5
L2

I(x) 0.5000 0.3333 0.5000 0.3701

(1 − |x|)I(x) 1.000 0.1667 0.6667 0.3531

π cos(πx/2)I(x)/4 0.7854 0.1894 0.6169 0.3492

3(1 − x2)I(x)/4 0.7500 0.2000 0.6000 0.3491

15(1 − x2)2I(x)/16 0.9375 0.1429 0.7143 0.3508

35(1 − x2)3I(x)/32 1.0938 0.1111 0.8159 0.3529

Table 1: Various h functions

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

Figure 5: Several possible h functions

This MQE will be compared with that obtained by the next approach, namely finite differences.
We performed some exact computations of bias and variance with the help of Mathematica

for those estimates evaluated at the optimal solution (see (14)) and with h equal to the fourth
function in Table 1. We have found:

E(pr)
′
u(u♯, v♯, ·) = 0.62 − 0.096r2 + 0.012r4 ,

Var(pr)
′
u(u♯, v♯, ·) = 0.45/r − 0.39 − 0.05r + O(r2) ,

E(pr)
′
v(u

♯, v♯, ·) = 1.18 − 0.36r2 + 0.06r4 ,

Var(pr)
′
v(u

♯, v♯, ·) = 1.62/r − 1.39 − 0.35r + O(r2) .

If the estimates are based on the average over N samples, the MQE of the AC estimates are
obtained by considering Var(r)/N + (E(r))2 − (E(0))2. In those expressions, we consider the
terms in 1/Nr and r4 only in order to tune r as a function of N . This computation is done for
the sum of the MQE’s related to the two components of p′r (that is, for the mean square norm
of the vector estimate error — we denote it MQE(r,N)). This yields r = 1.30N−1/5. Finally,
we plug this value of r into MQE(r,N) to get the following function of N (again, calculations
are exact, up to Mathematica accuracy, even if results are displayed in a truncated form):

1.98

N4/5
−

1.78

N
+ O(N−6/5) . (25)
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4.2 Finite Differences (FD)

4.2.1 General Theory

The idea here is simply to evaluate the derivative w.r.t. each component uj of the expression
inside expectation in (15) by the variation of this quantity, caused by, and divided by, the
symmetric variation (uj + c)− (uj − c) = 2c for a sample ξ. We denote 1j the vector of the same
dimension as u with a 1 in the j-th component and 0 elsewhere. The FD stochastic estimate of
P ′

uj
is

∇̃c
uj
p(u, ξ) =

IR+

(
α− θ(u+ c1j, ξ)

)
− IR+

(
α− θ(u− c1j, ξ)

)

2c
. (26)

It is wise to use the same sample ξ for the evaluation at u + c and u − c in order to reduce
variance. A symmetric difference around u is also recommended. We notice that [11] includes
FD under a.s. continuity assumptions, which is not our case here, because the indicator functions
are discontinuous.

The following theorem provides the analysis of bias and variance of this estimate w.r.t. the
parameter c.

Theorem 6. If P (see (15)) is three times continuously differentiable with bounded derivatives,
the expression (26) provides a biased estimate of P ′

uj
with a bias in O(c2). If

(H1) θ(·, ξ) is differentiable with derivatives bounded uniformly in ξ;

(H2) the probability measure of ξ has a density;

(H3) θ(u, ·) is twice differentiable and, for all u, and for every solution ξ̂ of θ(u, ξ) = α, we
have that θ′ξ(u, ξ̂) 6= 0;

then the variance of estimate (26) is in O(c−1).
If (H1) and (H2) still hold true but (H3) is replaced by

(H4) θ(u, ·) is three times differentiable and, whenever θ(u, ξ̂) = α for some ξ̂, and θ′ξ(u, ξ̂) = 0,

we have that θ′′ξ2(u, ξ̂) 6= 0;

then the variance of estimate (26) is in O(c−3/2).
Finally, under no particular assumptions on g, the best bound for the variance is in O(c−2).

Proof. With the smoothness assumption on P , one has that

E∇̃c
uj
p(u, ·) − P ′

uj
(u) =

P (u+ c1j) − P (u− c1j) − 2c P ′
uj

(u)

2c

=
c2

6
P ′′′

u3
j
(u) + O(c3) ,

which proves the claim on the bias.
To evaluate the variance of (26), we study its second order moment which differs from the

variance by
(
P ′

uj
(u)
)2

up to terms in O(c2) as we have just seen. Consider

E

(
∇̃c

uj
p(u, ξ)

)2
= E

(
IR+

(
α− θ(u+ c1j, ξ)

)
− IR+

(
α− θ(u− c1j, ξ)

)

2c

)2

=
1

4c2

(
P
(
{θ(u+ c1j, ξ) ≤ α} ∩ {θ(u− c1j , ξ) > α}

)

+ P
(
{θ(u+ c1j , ξ) > α} ∩ {θ(u− c1j , ξ) ≤ α}

))
,
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those two events being of course disjoint.
Using the mean value theorem (or Taylor representation) for the function θ(·, ξ) ∈ C1,

we have that θ(u + c1j, ξ) = θ(u, ξ) + cθ′uj

(
v+(ξ), ξ

)
, and similarly θ(u − c1j, ξ) = θ(u, ξ) −

cθ′uj

(
v−(ξ), ξ

)
. Therefore,

E

(
∇̃c

uj
p(u, ξ)

)2
=

1

4c2

(
P

(
{α+ cθ′uj

(
v−(ξ), ξ

)
< θ(u, ξ) ≤ α− cθ′uj

(
v+(ξ), ξ

)
}
)

+ P

(
{α− cθ′uj

(
v+(ξ), ξ

)
< θ(u, ξ) ≤ α+ cθ′uj

(
v−(ξ), ξ

)
}
))

, (27)

Thanks to (H1), we can bound each of the above two probabilities by

P
(
{θ(u, ξ) ∈ (α−Kc,α+Kc]}

)
, (28)

where K is the uniform bound on θ′uj
.

Our goal is now to evaluate the behavior of this probability when c is approaching 0. Let m
be the dimension of ξ; g is supposed to be R-valued. Consider any solution ξ̂ of

θ(u, ξ) = α . (29)

The case when no such solution exists for some u will be discussed later on at Remark 7. If
θ′ξ(u, ξ̂) 6= 0 as assumed in (H3), then the manifold of solutions of (29) is locally of dimension
less than or equal to m − 1. The set of ξ’s involved in the event in (28) is locally a set with
a “backbone” given by this manifold around ξ̂, and a “thickness” which is proved to be of
order O(c). Indeed, with a Taylor expansion of θ(u, ·) around ξ̂, we get

θ(u, ξ̂ + y) = α+
〈
θ′ξ(u, ξ̂), y

〉
+ O(‖y‖2) .

In this expression, we need only consider y’s which are (asymptotically as c goes to 0) parallel
to the gradient θ′ξ(u, ξ̂) (that is, the component in the kernel of the linear form defined by this
gradient is useless). It should now be obvious that to match variations of g around α which are
of order c, we need only consider y’s which are also of order c in norm. If this holds true for
any ξ̂ in the manifold of solutions of (29), then the probability (28) is of order O(c) and the
second order moment (27) of our estimate (and consequently the variance too) is bounded by
an O(c−1).

If (H3) does not hold but (H4) does, then the same reasoning can be repeated (for a
Taylor expansion of the next order) with y’s which are now orthogonal to the kernel of the
Hessian θ′′ξ2(u, ξ̂) (this component is non zero thanks to (H4)) and it should be clear that to

compensate for variations of g of order c, we now need y’s which are of order O(c1/2) in norm.
This also gives the order of the probability (28) and then, the bound on the variance is in
O(c−3/2).

We could continue like that by removing assumption (H4) but introducing an assump-
tion (H5), and so on and so forth. Ultimately, with no particular assumptions, (28) is of order
O(1) and the variance is of order O(c−2).

Remark 7. Suppose that for some u, there exists no solutions to (29). Then, since g is assumed
to be at least continuous in ξ, this means that for all ξ, θ(u, ξ) is always either strictly less or
strictly greater than α, in which cases P (u) (see (15)) assumes either the value 1 or 0 (which
are extreme values for P ).

18



If θ(u, ·) can be bounded away from α, then the probability (28) will be 0 for c small
enough. This is the good case for the variance of the estimate. But θ(u, ·) may also approach
α asymptotically, and, with heavy tails for the density q of ξ, it is not possible to give a better
bound for (28) than O(1). Here is an example. Let θ(u, ξ) = u − e−ξ (u and ξ are both
scalar). Consider the probability P(θ(0, ξ)) ∈ [−c, c] for c small, that is, P(ξ ≥ − ln c). Assume
the density q(ξ) has a positive support and that it is equal to a(1 + ξ)−(1+a) IR+(ξ) with a an
arbitrary small positive number. Then P(ξ ≥ − ln c) = (1 − ln c)−a. For c positive and below e,
(1− ln c)−1 ≥ c, hence this probability is larger than ca. Since a is positive and arbitrarily small,
we cannot clearly make this case enter the case of better bounds obtained with assumptions
(H3) or (H4).

4.2.2 Application to the Example and Comparison with the AC Method

We have used (26) (for the two components of the gradient, that in u and that in v) to our
example and evaluated, once again with the help of Mathematica, the mean and variance of
those estimates at the optimal solution (14). The results are as follows:

E∇̃c
up(u

♯, v♯, ·) = 0.62 − 0.23c2 + 0.06c4 + O(c7) ,

Var∇̃c
up(u

♯, v♯, ·) =
0.31

c
− 0.39 − 0.12c + O(c2) ,

E∇̃c
vp(u

♯, v♯, ·) = 1.18 − 1.49c2 − 42.25c4 − 199.41c6 + O(c7) ,

Var∇̃c
vp(u

♯, v♯, ·) =
0.59

c
− 0.39 − 0.74c + O(c2) .

Following the same procedure as for the AC estimate, the MQE for the gradient vector estimate
based on N independent samples is obtained by Var(c)/N+(E(c))2−(E(0))2; in this expression,
the dominant terms in 1/Nc and in c4 only are retained to tune c as a function of N . This yields
c = 0.63N−1/5 and an optimal MQE equal to:

1.79

N4/5
−

1.78

N
+ O(N−6/5) . (30)

Compared with (25) which was obtained with the AC estimate, this is asymptotically slightly
better. However, a more careful inspection with complete expressions of the MQEs shows that
this conclusion becomes true only for N above about 11000. Hence one may say that the AC
and the FD methods yield approximately the same performances.

5 Convergence Analysis

5.1 Stochastic Algorithms

Consider algorithm (6). With Θ(u) = E
(
θ(u, ξ)

)
and J(u) = Ej(u, ξ), an equilibrium point

(u♯, λ♯) of this algorithm solves the system of Kuhn-Tucker optimality conditions of problem (1):
for all positive ε and ρ,

u♯ = ΠUad

(
u♯ − ε

(
∇uJ(u♯) + ∇uΘ(u♯)λ♯

))
, (31a)

λ♯ = Π+

(
λ♯ + ρ

(
Θ(u♯) − α

))
. (31b)

We will write algorithm (6) (with ρk proportional to εk) more compactly: we set x = (u, λ) and
write

xk+1 = Π(xk − εk ψk) , (32)
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where Π stands for the projection operation on Uad × Rd
+ and ψk is driven by an underlying

process of i.i.d. drawings ξk+1, independent of {xi}i≤k. Let Fk be the filtration generated by
{xk, {ξi}i≤k} so that ψk and xk+1 are Fk+1 measurable.

With the stochastic estimates produced by the AC and FD techniques considered so far
in this paper, we obtained biased estimates of ∇uΘ (and the bias sometimes also affects the
estimate of Θ itself), with a bias going to 0 as k → +∞. We will denote Ψ(xk) the correct value
of the vector field at xk, namely

∇J(u) + ∇Θ(u)λ , (33a)

α− Θ(u) , (33b)

that with which an equilibrium point satisfies (see (31)):

x♯ = Π
(
x♯ − εΨ(x♯)

)
(34)

for all positive ε.
Define the martingale difference ∆Mk, the bias Bk and the variance V k of {ψk} by:

∆Mk = ψk − E(ψk | Fk) , (35a)

Bk = E(ψk | Fk) − Ψ(xk) , (35b)

V k = E‖ψk − E(ψk | Fk)‖2 . (35c)

We will use references [10] and [11] in which convergence results and convergence rates of algo-
rithm (32) are provided. Essentially, if the nonlinear projection operation at the r.h.s. of (32) is
missing, under conditions on the quantities (35) in connection with the step size εk that we will
recall below, the trajectory produced by (32) behaves a.s. as that of the deterministic ODE:

ẋ = −Ψ(x) . (36a)

In the presence of the projection onto a closed convex set, the differential equation is more
complex to write since it involves another process z in which z takes values in the orthogonal
cone C(x) to the convex set at the current point x (hence this process effectively appears only
at the border of the convex set). The ODE now reads

ẋ = −Ψ(x) − z , z ∈ C(x) . (36b)

The role of z is to maintain x in the convex set, as it is the case for xk produced by (32). It is
defined as the “minimum force” which achieves this goal.

5.2 Convergence

In this subsection, we recall the conditions which ensure that the stochastic Arrow-Hurwicz
algorithm will behave as its ODE (36) and we refer to the previous subsection to deduce that
primal iterates uk will converge, at least locally, towards the solution u♯ (assumed unique) of the
constrained optimization problem. We then apply those results to the case of biased gradient
estimates provided by AC and FD methods to derive a policy on how to tune the parameters r
(see (19)) and c (see (26)) as functions of the iteration index k in order to satisfy the convergence
conditions.
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Lemma 8. Consider the iteration (32) and assume that

∑

k

εk = +∞ , (37a)

∑

k

εk‖Bk‖ <∞ a.s., (37b)

∑

k

(εk)2 Vk <∞ . (37c)

Then, a.s., xk has the same asymptotic behavior as the solution of (36).

This result follows from [10, Chap. 5].

Proposition 9. Consider the case when the estimate (19) (and possibly (18) too) is (are) used
in the stochastic algorithm (6) (with ρk proportional to εk) with the following choices of the
stepsize εk and of the “mollifier” parameter rk:

εk = k−γ , rk = k−β/2 , (38)

for β and γ positive. Then the conditions of Lemma 8 are satisfied if

γ ≤ 1, β + γ > 1, 2γ − β/2 > 1 . (39)

Proof. The first condition (39) is required by (37a). Theorem 2 states that the bias Bk of AC
estimates is in O

(
(rk)2

)
= O

(
k−β

)
, hence εk‖Bk‖ = O

(
k−(β+γ)

)
; therefore (37b) is satisfied

under the second condition (39). As for the variance V k, it is in O
(
(rk)−1

)
= O

(
kβ/2

)
which

yields (εk)2 V k = O
(
kβ/2−2γ

)
; thus (37c) is satisfied under the third condition (39).

Proposition 10. Consider the case when the estimate (26) is used in (6a) (with ρk in (6b)
proportional to εk) with the following choices of the stepsize εk and of the FD parameter ck:

εk = k−γ , ck = k−β/2 , (40)

for β and γ positive. Then the conditions of Lemma 8 are satisfied if, in addition of assumptions
(H1) and (H2) of Theorem 6, one has that

γ ≤ 1, β + γ > 1,





2γ − β/2 > 1 if (H3) is satisfied in Theorem 6,

2γ − 3β/4 > 1 if (H4) is satisfied in Theorem 6,

2γ − β > 1 otherwise.

(41)

The proof follows the same pattern as previously using the evaluations of Theorem 6, the
only changes concerning V k.

5.3 Convergence Rate

Let β and δ be the integers such that:

Bk = O(k−β), V k = O(k−δ) . (42)

Reference [11] provides a comprehensive analysis of the convergence rates of algorithms of type
(32) under the following assumption: close to its unique equilibrium point x♯ (supposed to lie in
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the interior of the convex set onto which Π is the projection), function Ψ admits the following
representation:

Ψ(x) = A(x− x♯) + O(‖x− x♯‖2) , (43)

where A is a matrix with eigenvalues µ satisfying

µ = min
(
Re(µ)

)
>

{
0 if γ < 1,

max
(
β, (1 + δ)/2

)
if γ = 1.

(44)

Then, a direct application of Theorem 3.1 in [11] gives the asymptotic mean square error (MSE)
as a function of the algorithm parameters γ, β, δ and it states that:

E(xk − x♯)2 = O(k−κ), κ = min(2β, γ + δ). (45)

Some comments are in order here regarding the application of this result to our situation.
First, the authors of [11] state than when x♯ lies on the boundary of the feasible convex set, other
techniques (e.g. large deviations) are required to establish convergence rates. In our case, we
expect that the probability constraint is active at the optimum, hence the optimal dual variable
should be strictly positive. In the example of §3.2, we also have positivity constraints on primal
variables and that on u (the first primal component) is active at the optimum (see (14)). But it
is felt that the projection is rather helpful in accelerating convergence for this component (see
numerical results in the next section). We may consider that, asymptotically, uk is “frozen” at 0
and does not participate to the dynamics of the algorithm ultimately.

Second, condition (44) may not be satisfied. We will come back on this point in the next
subsection. Nevertheless, we used the results of [11] as guidelines for the choice of parameters β
and γ to drive the primal solution to its equilibrium in the most efficient way.

That said, in order to achieve the fastest convergence rate, one should seek to maximize κ
in (45) over the feasible set defined by (39) or (41) and the expression of δ as a function of β.
For the case of AC estimates, δ = −β/2, the minimum of 2β and γ − β/2 is obtained when
those two functions are equal, which yields β = 2γ/5 and a value of 4γ/5; because of the first
condition (39), the maximal possible value is obtained with γ = 1, which yields β = 2/5 and
κ = 4/5, and we check that this pair (β, γ) satisfies all conditions in (39). Observe that our
heuristic reasoning at the end of §4.1.1 and §4.1.2 in order to tune the parameter r when N
i.i.d. samples are available (here N is the iteration index k) yields the same results (see (25) in
particular).

For the case of FD estimates, under assumption (H3) of Theorem 6, the calculations and
conclusions are the same. Under assumption (H4), δ = −3β/4 and the optimal values are
β = 4/11, γ = 1, κ = 8/11 which is of course worse than the previous case. Finally, in the worst
case for FD, we get β = 1/3, γ = 1, κ = 2/3.

The following result is a direct application of [11, Th. 4.1 and 4.2]. This CLT gives additional
information on the asymptotic behavior of the iterates of (32).

Theorem 11. Consider algorithm (32) with assumptions (43), (42) and εk = 1/k (that is,
γ = 1 in (38) or (40)). Let

Xk = kκ/2(xk − x♯) ,

with κ as in (45). If 2β ≥ 1 + δ, then as k → ∞, Xk − kκ/2−βHbB̄ converges in distribution
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towards a normal distribution of mean 0 and covariance Σ where:

B̄ = lim
k→∞

kβBk ,

Hb = A− βI ,

H = A−
(
(1 + δ)/2

)
I ,

R = lim
k→∞

kδ E(∆Mk(∆Mk)⊤ | Fk) ,

ΣH +H⊤Σ = R ,

where ⊤ denotes transposition.

Remark 12. From the definition of Hb above and the appearance of A −
(
(1 + δ)/2

)
I in the

definition of Σ, it is apparent that the strong stability condition (44) (case γ = 1) ensures that
both these matrices are positive definite, so that Σ is well defined. Indeed, with our choices, Hb

and H are equal.

5.4 The Case of Arrow-Hurwicz Algorithms

We know discuss the properties of matrix A in the situation of Arrow-Hurwicz algorithms. This
matrix has been introduced in (43) in general, and the operator Ψ is defined by (33) in our case.
Thus, A is the linearized version of that Ψ at the equilibrium point x♯, that is,

A =

(
∂2L(u♯,λ♯)

∂u2

∂2L(u♯,λ♯)
∂u ∂λ

−∂2L(u♯,λ♯)
∂λ ∂u −∂2L(u♯,λ♯)

∂λ2

)
=

(
J ′′(u♯) +

(
λ♯
)⊤

Θ′′(u♯)
(
Θ′(u♯)

)⊤
−Θ′(u♯) 0

)
(46)

However, among the constraints Θ, only those saturated (that is, satisfied with equality) at the
equilibrium point should be taken into account together with their corresponding multipliers
(that is, the non saturated constraints are virtually absent asymptotically).

Under the assumptions that the gradients of saturated constraints are linearly independent
(or, otherwise stated, the operator in the upper right-hand corner of the matrix is injective),
and that the Hessian of the Lagrangian (that is, the operator in the upper left-hand corner) is
positive definite, it can easily be proved that the real part of the eigenvalues of A are positive
(see [2, proof of Proposition 4.4.2]). This is condition (44) in the case γ < 1. When γ = 1,
condition (44) is stronger and will be discussed shortly in the case of our example. Observe that
if we assume that the only saturated dualized constraint is the probability constraint (which is
the case in our example), then we should assume that the gradient of this probability function
at the equilibrium is not zero.

Going back to example of §3.2, matrix A (restricted to the variables (u, v, λ2)) is equal to



0.944 1.002 −0.621
1.002 1.211 −1.181
0.621 1.181 0




with eigenvalues 0.974 ± 0.753 i and 0.207. As predicted, the real parts are positive but the
smallest one is equal to 0.207 which is not greater than 2/5. Thus, condition (44) (case γ = 1)
is not satisfied (with β = (1 + δ)/2 = 2/5). However, in the same way as we ignored multipliers
corresponding to non saturated constraints because they are stuck to 0 asymptotically, we may
consider that the part u of primal variables is “out of the game” ultimately because u is stuck to 0
(the constraint u ≥ 0 is saturated) at the end of the transient part of the algorithm (remember
that the ODE (36a) is to be replaced by the more complex dynamics (36b) when following
boundaries of the admissible domain). Therefore, we consider a reduced matrix A by keeping
only the 2×2 lower right-hand block (corresponding to the pair (v, λ2)). The eigenvalues of this
reduced matrix are 0.605 ± 1.014 i and now condition (44) is satisfied even for the case γ = 1.
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6 Numerical Results

Algorithm (6) has been used to solve the example of §3.2 with the AC and FD estimates.

uk+1 = ΠUad

(
uk − εk

(
∇uj(u

k, ξk+1) − ∇̂uP (uk, ξk+1)λk
))
, (47a)

λk+1 = Π+

(
λk + ρk

(
π − P̂ (uk+1, ξk+1)

))
. (47b)

More precisely, for the AC method, ∇̂uP (u, ξ) should be interpreted as the gradient esti-
mate (19), applied to the example (see (24)); P̂ (u, ξ) is either p(u, ξ) as in (21) or the biased
estimate given by (18) (see Remark 1). We tested both versions numerically and there was no
significant difference. The estimate (18) was retained for the rest of experiments. Of course,
parameter rk is adjusted according to the rule rk = ak−1/5 where a is a positive constant to be
tuned.

For the FD method, ∇̂uP (u, ξ) is given by (26), applied to the example. Again, parameter ck

is adjusted as ck = bk−1/5 where b is a positive constant to be tuned. For P̂ (u, ξ), we used (21).
Numerical experiments are performed according to the following protocol:

• all runs of the algorithms start from the same initial conditions:

u0 = 0.2, v0 = 0.8, λ0
1 = 0.5, λ0

2 = 0.3 .

Recall that the solution is given by (14) and all results will be expressed in terms of
differences with those optimal values (hence the equilibrium point for all variables is at 0).

• For AC and FD, 100 runs of the algorithms are performed using the same 100 sequences of
pseudo-random numbers to generate Monte Carlo samples of ξ according to the distribution
of this variable.

• 5000 thousands iterations are performed for each run.

• For AC and FD, averages of the differences xk−x♯ are computed over the 100 runs together
with their standard deviations. What will be shown on the plots are the trajectories of the
“average ± standard deviation” of those quantities as functions of the iteration index k.

• The parameters a, b, d, e, f, g appearing in the following rules:

rk =
a

k1/5
, ck =

b

k1/5
, εk =

d

e+ k
, ρk =

f

g + k
,

are tuned by some trials to try to obtain the “best” results for both methods.

Figure 6 shows the plots for the four variables and for the AC (continuous line) and DF (dotted
line) methods. Again what is displayed is the “average ± standard deviation” over 100 runs.
Results obtained on this example are very close (with maybe a slight advantage to FD in the
earliest iterations) with both methods. This confirm the estimation of variance and bias made
with Mathematica around the optimum for the estimates obtained with the two methods.

7 Conclusions

This paper discussed the problem of stochastic optimization under probability constraints and
in particular methods for solving them numerically. Although there exist other ways of tak-
ing care of risk considerations in decision problems under uncertainty, we discussed the fact
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Figure 6: Average ± standard deviation for AC (solid line) and FD (dotted line) algorithms

(§1.2) that probability constraints are sometimes the most straightforward way of expressing
and quantifying risk in some circumstances.

Unfortunately, as shown by the discussion and examples in §3, probability constraints may be
the source of several pathologies, and the loss of convexity is the most frequent one. Nevertheless,
one must address the problem of numerical resolution with approaches which may fail in the
worst cases but which may also succeed to solve nontrivial problems. Our strategy is based on
duality and stochastic gradient algorithms. Duality, and the use of stochastic Arrow-Hurwicz
algorithms, require the existence of a saddle point of the Lagrangian, which is not granted for
the reasons advocated above. The use of augmented Lagrangians would certainly increase the
chance of existence of saddle points but, in combination with stochastic algorithms, it raises new
difficulties (namely, the operator of mathematical expectation would appear inside a nonlinear
function). This new topic will be addressed in a forthcoming paper.

Apart from this problem of saddle point existence, the search of this saddle point by stochastic
gradient algorithms is made possible by expressing the probability constraint as an expectation
involving a discontinuous function. In this paper, we proposed two ways to overcome this
difficulty, and we studied the convergence and convergence rate of the resulting algorithms.
The two methods provide biased stochastic estimates of the constraint gradient. Although
their implementation on a simple example showed a similar behavior, the theoretical results
reveal that in more general situations, the “mollifier” (or “Approximation by Convolution” —
AC) method should be of more general use and robustness then the “Finite Difference” (FD)
method. We defer to a forthcoming paper to propose other estimation techniques providing
unbiased estimates and based on techniques of integration by parts.

Still, the surface of this difficult field of numerical resolution of probability constrained
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stochastic optimization problems has been just scratched here, and several directions remain
open for future investigations. For example, we have considered here only events (whose prob-
ability is constrained) which are described only by a scalar constraint and the case of events
described by multidimensional constraints may raise new questions (although the techniques
discussed in the present paper seem ready for an extension to this case).
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