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An unconditionally stable

discontinuous Galerkin method

for solving the 2D time-domain Maxwell equations

on unstructured triangular meshes
Adrien Catella, Victorita Dolean and Stéphane Lanteri

Abstract—Numerical methods for solving the time-domain
Maxwell equations often rely on cartesian meshes and are
variants of the finite difference time-domain (FDTD) method
due to Yee [1]. In the recent years, there has been an increasing
interest in discontinuous Galerkin time-domain (DGTD) methods
dealing with unstructured meshes since the latter are particularly
well adapted to the discretization of geometrical details that char-
acterize applications of practical relevance. However, similarly
to Yee’s finite difference time-domain method, existing DGTD
methods generally rely on explicit time integration schemes
and are therefore constrained by a stability condition that can
be very restrictive on locally refined unstructured meshes. An
implicit time integration scheme is a possible strategy to overcome
this limitation. The present study aims at investigating such an
implicit DGTD method for solving the 2D time-domain Maxwell
equations on non-uniform triangular meshes.

Index Terms—time-domain Maxwell’s equations, discontinuous
Galerkin method, implicit time integration, local refinement,
unstructured mesh.

I. INTRODUCTION

IN the numerical treatment of the time-domain Maxwell

equations, finite difference time-domain (FDTD) methods

based on Yee’s scheme [1] are still prominent because of

their simplicity (a time explicit method defined on cartesian

meshes) and their non-dissipative nature (they hold an energy

conservation property which is an important ingredient in the

numerical simulation of unsteady wave propagation problems).

Unfortunately, when dealing with complex geometries, the

FDTD method is not always the best choice since a local

refinement of the grid, albeit possible through a subgrid-

ding technique [2], has an adverse effect on accuracy and

efficiency. In particular, local refinement can translate in a

very restrictive time step in order to preserve the stability

of the explicit leap-frog scheme used for time integration

in the FDTD method. Finite element time-domain (FETD)

methods based on unstructured meshes can easily deal with

complex geometries however they induce heavy computations

or require accurate and efficient lumping of mass matrices [3].
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Finite volume time-domain (FVTD) methods on unstructured

meshes also appeared as an alternative to FDTD methods,

but they suffer from numerical diffusion resulting from the

use of upwind schemes [4], and their extension to high-

order accuracy is a tedious task. Discontinuous Galerkin time-

domain (DGTD) methods can handle unstructured meshes

and deal with discontinuous coefficients and solutions [5].

They can be seen as generalizations of the FVTD methods,

where the finite element approximation is piecewise constant

inside elements. The different achievements of the FVTD

methods are now being extended in the context of DGTD

methods which enjoy a renewed favor nowadays and are used

in a wide variety of applications [6] as people rediscover the

abilities of these methods to handle complicated geometries,

media and meshes, to achieve a high order of accuracy by

simply choosing suitable basis functions, to allow long-range

time integrations and, last but not least, to remain highly

parallelizable. However, DGTD methods suffer from the same

limitation concerning the allowable time step on locally re-

fined unstructured meshes. In this study, we investigate the

applicability of an implicit time integration strategy in order

to overcome the stability constraint which characterize explicit

DGTD methods in the context of the numerical resolution

of two-dimensional Maxwell’s equations on locally refined

unstructured triangular meshes.

II. IMPLICIT DGTD METHOD

The starting point of this study is the explicit DGTD method

presented in [5] for solving the time-domain Maxwell equa-

tions on simplicial meshes. Beside a standard discontinuous

Galerkin formulation, this method is based on two basic

ingredients: a centered approximation for the calculation of

numerical fluxes at inter-element boundaries, and an explicit

leap-frog time integration scheme. The implicit DGTD method

proposed here differs from its explicit counterpart in the time

integration scheme which is now chosen to be a Crank-

Nicolson scheme. We consider the two-dimensional Maxwell

equations in the TMz polarization on a bounded domain

Ω ⊂ R
2:
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with boundary conditions n×E = 0 on Γm and n×E−
zn× (H ×n) = n×Einc − zn× (H inc ×n) on Γa where

Γa

⋃

Γm = ∂Ω, being z =
√

µ/ε the impedance. We assume

a partition Th of Ω into a set of triangles Ti and we seek for

approximate solutions to (1) in the finite dimensional space

Vp(Th) := {v ∈ L2(Ω) : v|Ti
∈ Pp(Ti) , ∀Ti ∈ Th}, where

Pp(Ti) denotes the space of nodal polynomials {ϕij}
d
j=1 of

total degree at most p on the element Ti. The space Vp(Th)
has the dimension d, the local number of degrees of freedom.

Note that a function vp
h ∈ Vp(Th) is discontinuous across

element interfaces. For two distinct triangles Ti and Tk in

Th, the intersection Ti ∩ Tk is an (oriented) edge aik which

we will call interface, with oriented normal vector ~nik. For

the boundary interfaces, the index k corresponds to a fictitious

element outside the domain. Finally, we denote by Vi the set of

indices of the elements neighboring Ti. The DGTD-Pp method

at the heart of this study is based on a Crank-Nicolson time

scheme and totally centered numerical fluxes at the interface

between elements. Decomposing Hx, Hy and Ez on element

Ti according to:

Hx(., tn) =

d
∑

j=1

Hn
xij

ϕij , Ez(., t
n) =

d
∑

j=1

En
zij

ϕij ,

where x ∈ {x, y}. Using the notations E
n
zi

=
(En

zi1
, . . . , En

zid
)t and H

n
xi

= (Hn
xi1

, . . . , Hn
xid

)t, the implicit

DGTD-Pp method writes:
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being Mi the local mass (symmetric positive definite) matrix,

and K
x

i the (skew-symmetric) stiffness matrix. The vector

quantities F
n+ 1

2

xik
and G

n+ 1

2

xik
are defined as:

F
n+ 1

2

xik
= S

x

ikE
n+ 1

2

zk , G
n+ 1

2

xik
= S

x

ikH
n+ 1

2

xk
,

where S
x

ik is the d × d interface matrix on aik which verifies
t
S
x

ik = −S
x

ki (if aik is an internal interface) and t
S
x

ik = S
x

ik

(if aik is a boundary interface). Moreover:
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n
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2
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2
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H
n
xk

+ H
n+1
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2
.

In [7], we prove that the resulting implicit DGTD-Pp

method is non-dissipative (if Γa = ∅) and unconditionally

stable. This method requires the resolution of a sparse linear

system at each time step but, for non-dispersive materials,

the coefficient of this system are time independent, a feature

that can be taken into account to minimize the additional

computational overheadand. Thus, we have adopted here a

multifrontal sparse matrix direct solver [8]. The sparse matrix

characterizing the implicit DGTD-Pp method has a block

structure where the size of a block is 3np × 3np, np being

the number of degrees of freedom associated to a nodal

polynomial basis of the space Pp i.e np = ((p+1)(p+2))/2.

This matrix is factored once for all before the time stepping

loop. Then, each linear system inversion amounts to a forward

and a backward solve using the triangular L and U factors.

III. NUMERICAL RESULTS

The numerical results presented here aim at comparing the

explicit leap-frog based DGTD-Pp method and the implicit

Crank-Nicolson based DGTD-Pp method. Simulations are

performed on a personal workstation equipped with an AMD

Opteron 2 GHz processor.

A. Eigenmode in a metallic cavity

The first test case that we consider is the propagation of an

eigenmode in a unitary square cavity with perfectly conducting

(PEC) walls. This test case allows a direct comparison with an

exact solution. Here, it will also be used to demonstrate both

the limitations in terms of accurarcy of the implicit DGTD-Pp

method if the underlying mesh is uniform (or quasi-uniform)

and the potential gains in CPU times that one can expect in

the case of a non-uniform mesh. For this purpose, we make

use of two triangular meshes:

• a uniform mesh consisting of 1681 vertices and 3200

triangles. The non-dimensioned time step corresponding

to CFL-P0=1 is (∆t)u = 0.017678 m (the physical time

step is defined by (∆t)u = (∆t)u/3.108 m/s). For the

interpolation orders p ≥ 1, the time step actually used

is CFL-Pp × (∆t)u where CFL-Pp is the CFL number

associated to the DGTD-Pp method.

• a non-uniform mesh consisting of 1400 vertices and 2742

triangles. The ratio between the largest and smallest edges

of this mesh is 178. In this case, the minimum and

maximum values of the time step are respectively given

by (∆t)m = 0.000434 m and (∆t)M = 0.070617 m. The

time step used in the simulations is CFL-Pp × (∆t)m.

For the explicit DGTD-Pp method, CFL-Pp ≤ 1 and the

actual value is dictated by stability issues while CFL-Pp can

be set to an arbitrarily large value for the implicit DGTD-

Pp method but is constrained in practice by accuracy issues.

Here, we only report on results obtained using the explicite and

implicit DGTD-P1 methods. On Fig. 1 we have represented

the time evolutions of the L2 error between the numerical

and exact solutions. CPU times are given in Tab. I. Two main

remarks can be made:

• although the implicit DGTD-Pp method is uncondition-

ally stable, the CFL (and thus the time step) must be

selected in order to ensure that the resulting solution is

not altered by an increased level of dispersion error.

• as expected, the overhead introduced by the resolution

of a linear system at each time step is minimized for

large values of the CFL. Then the goal is to find a good

compromise between the accuracy of the calculation and

the required computational effort.



PAPER SESSION PA6-19. FULL PAPER ID 1140. 3

 1e-04

 0.001

 0.01

 0.1

 0  5e-09  1e-08  1.5e-08  2e-08  2.5e-08  3e-08  3.5e-08  4e-08  4.5e-08  5e-08

Explicit DGTD-P1 - CFL=0.3
Implicit DGTD-P1 - CFL=1.0
Implicit DGTD-P1 - CFL=1.5

 1e-04

 0.001

 0.01

 0  5e-09  1e-08  1.5e-08  2e-08  2.5e-08  3e-08  3.5e-08  4e-08  4.5e-08  5e-08

Explicit DGTD-P1 - CFL=0.3
Implicit DGTD-P1 - CFL=12.0
Implicit DGTD-P1 - CFL=24.0

Fig. 1. Eigenmode in a PEC cavity. Time evolution of the L2 error.
Comparison between explicit and implicit DGTD-P1 methods. Uniform mesh
(top) and non-uniform mesh (bottom).

TABLE I
EIGENMODE IN A PEC CAVITY: CPU TIMES.

Uniform triangular mesh

Time integration Method CFL-Pp CPU time

Explicit DGTD-P1 0.3 15 sec

Implicit - 1.0 44 sec

- - 1.5 30 sec
Non-uniform triangular mesh

Time integration Method CFL-Pp CPU time

Explicit DGTD-P1 0.3 443 sec

Implicit - 12.0 133 sec

- - 24.0 67 sec

B. Scattering of a plane wave by a square

The second test case that we consider is the scattering of

a plane wave by a perfectly conducting square of side length

c = 0.25 m. The farfield boundary Γa where the first order

Silver-Müler absorbing condition is applied is defined as a

square of side length c = 1.0 m. We make use of a non-

uniform mesh consisting of 6018 vertices and 10792 triangles

(see Fig. 2). The ratio between the largest and smallest edges

is 357. In this case, the minimum and maximum values of the

time step are respectively given by (∆t)m = 0.000286 m and

(∆t)M = 0.098589 m. As previously, the time step used in

the simulations is CFL-Pp × (∆t)m. Simulations have been

conducted for three frequencies of the incident plane wave,

F=300 MHz, F=600 MHz and F=900 MHz and have been

carried out for then periods. A discrete Fourier transform is

applied to the field components during the last period.

Results are shown on Fig. 3 and 4 in terms of the x-

wise 1D distribution for y = 0.25 m of the discrete Fourier

transform (DFT) of Ez and for two frequencies (F=600 MHz

and F=900 MHz). For each configuration, we show the distri-

bution of DFT(Ez) for the time explicit calculation which is

considered here as the reference solution, and two distributions

of DFT(Ez) corresponding to time implicit calculations using

respectively the maximum allowable CFL yielding a solution

that fit the reference one, and a larger CFL yielding a less

accurate solution. Computing times are summarized in Tab. II.

These results call for two main remarks:

• as expected, the maximum allowable CFL value decreases

when the frequency of the incident plane wave increases.

Not surprisingly, despite the fact that the implicit DGTD-

Pp method is unconditionally stable, the maximum allow-

able CFL value is deduced from physical considerations.

• as a result, for a given interpolation order, the gain in

CPU time i.e the ratio of CPU time of the explicit DGTD-

Pp calculation to the CPU time of the implicit DGTD-

Pp calculation, decreases when the frequency increases.

For instance, for p = 2 this ratio ranges from 7.5 for

F=300 MHz to 3.0 for F=900 MHz. However, for a given

frequency, this gain increases with the interpolation order:

for F=900 MHz, this ratio is respectively equal to 3.0 for

p = 2 and 5.5 for p = 3.
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Fig. 2. Scattering of a plane wave by a PEC square: triangular mesh

TABLE II
SCATTERING OF A PLANE WAVE BY A PEC SQUARE: CPU TIMES.

Frequency Time integration Method CFL-Pp CPU time

300 MHz Explicit DGTD-P1 0.3 1602 sec

- Implicit - 15.0 370 sec

- Explicit DGTD-P2 0.2 5677 sec

- Implicit - 15.0 762 sec

600 MHz Explicit DGTD-P1 0.3 758 sec

- Implicit - 7.0 383 sec

- Explicit DGTD-P2 0.2 3074 sec

- Implicit - 7.0 767 sec

900 MHz Explicit DGTD-P2 0.2 2191 sec

- Implicit - 5.0 746 sec

- Explicit DGTD-P3 0.1 8771 sec

- Implicit - 5.0 1591 sec
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IV. CONCLUSION AND FUTURE WORKS

We have studied here an implicit DGTD-Pp method for

solving the time-domain Maxwell equations on triangular

meshes. The method is non-dissipative, second order accurate

in time an p-th order accurate in space. As usual with time

implicit schemes, this method requires the resolution of a

sparse linear system at each time step. In the present case, the

coefficients of the matrix are constant in time. Taking into ac-

count this feature in the linear system solution strategy is a key

ingredient for obtaining a computationally efficient method.

For two-dimensional problems, a direct solver based on a LU

factorization such as the one adopted in this study is generally

considered as the optimal strategy, at least from the computing

time point of view. Promising results have been obtained for

time-domain electromagnetic wave propagation problems on

locally refined unstructured meshes. Concerning future works,

our main objective will be to adapt the implicit DGTD-Pp

method proposed here to the case of the three-dimensional

time-domain Maxwell equations. In this context, it is clear that

a global direct solver such as the multifrontal method adopted

in this study will not be an acceptable option due to the

large memory capacity required for the simulation of realistic

three-dimensional problems, especially if the computational

domain is discretized using unstructured tetrahedral meshes.

In this context, parallel computing will be a mandatory path

and although MUMPS [8] is a parallel sparse matrix solver,

we plan to consider a Schwarz type domain decomposition

method [9] as a mean to build an hybrid iterative/direct solver,

and still benefit from the fact that the sparse matrix associated

to a sub-domain problem can be factored once for all before

the time stepping loop.
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Fig. 3. Scattering of a plane wave by a PEC square, F=600 MHz. 1D
distribution of DFT(Ez), y = 0.75 m. DGTD-P1 method (top) and DGTD-
P2 method (bottom).
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Fig. 4. Scattering of a plane wave by a PEC square, F=900 MHz. 1D
distribution of DFT(Ez), y = 0.75 m. DGTD-P2 method (top) and DGTD-
P3 method (bottom).


