
Cortical mapping by Laplace-Cauchy transmission using

a boundary element method.

Maureen Clerc, Jan Kybic

To cite this version:

Maureen Clerc, Jan Kybic. Cortical mapping by Laplace-Cauchy transmission using a
boundary element method.. Inverse Problems, IOP Publishing, 2007, 23 (6), pp.2589-2601.
<10.1088/0266-5611/23/6/020>. <inria-00180229>

HAL Id: inria-00180229

https://hal.inria.fr/inria-00180229

Submitted on 25 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00180229


Cortical mapping by Laplace-Cauchy transmission

using a boundary element method.

Maureen Clerc1 and Jan Kybic2

1 Odyssée Project-Team

INRIA, ENPC, ENS Ulm, France
2Center for Machine Perception,

Czech Technical University, Prague, Czech Republic



Cortical mapping by Laplace-Cauchy transmission. 2

Abstract. The Laplace-Cauchy problem of propagating Dirichlet and Neumann

data from a portion to the rest of the boundary is an ill-posed inverse problem.

Many regularizing algorithms have been recently proposed, in order to stabilize the

solution with respect to noisy or incomplete data. Our main application is in electro-

encephalography (EEG) where potential measurements available at part of the scalp

are used to reconstruct the potential and the current on the inner skull surface.

This problem, known as cortical mapping, and other applications — in fields such

as nondestructive testing, or biomedical engineering — require to solve the problem

in realistic, three-dimensional geometry. The goal of this article is to present a new

boundary element based method for solving the Laplace-Cauchy problem in three

dimensions, in a multilayer geometry. We validate the method experimentally on

simulated data.

1. Introduction

The transmission of Cauchy data for the Laplace problem consists in estimating

a function V , harmonic within a domain D, from the values of V and its normal

derivative ∂nV on the boundary ∂D. This ill-posed problem has numerous applications

in engineering, whether mechanical, electrical or biomedical. Examples include

functional brain imaging [4], crack or inclusion identification [5], heat conduction [8],

corrosion identification [17].

The Holmgren theorem guarantees uniqueness of the Cauchy continuation problem,

if the data is perfectly known on a dense subset of the boundary. This is however

never the case in practice, and causes instability. Many methods have been proposed

to regularize the Cauchy problem, among which an energy-minimizing approach [2],

methods using quasi-reversibility [18],[11], and methods alternating Dirichlet and

Neumann problems, with regularizing properties [19],[7],[3]. The present work is based

on a boundary element discretization, and uses a Tikhonov-type regularization.

Electroencephalographic data (EEG) measured on the scalp suffer from a smoothing

effect of the skull, which acts as a spatial low-pass filter. Surface Laplacian methods are

often used to sharpen the data, but they do not take into account the 3D head geometry

of the particular subject [23]. Cortical mapping methods are therefore needed, that aim

to reconstruct electric field inside the brain from the surface measurements, taking

advantage of the physical model for a specific subject.

Our approach is similar to a boundary element method proposed for the Cauchy

problem in EEG [16]. However, the present method is based on a mixed formulation,

involving both the potential and its normal derivative. The mixed formulation

significantly improves the precision and robustness of the forward EEG problem

(calculating the electric potential from known sources inside the brain) [20] and should

therefore also improve the accuracy and robustness of the inverse problem, cortical

mapping. Another distinguishing feature of our method is the use of the harmonic

lift [12] to convert the constrained problem into an easy to solve, unconstrained one.
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We present the mixed boundary element approach in Section 2, and show that the

solution must belong to the kernel N (H) of a linear operator H. In Section 3, the

solution is sought as the minimizer within N (H) of a Tikhonov-like term, involving

a norm of the difference between the measured data and the simulations, as well as

regularizing terms. In Section 4, we apply the method to a cortical mapping problem,

on simulated three-dimensional EEG data.

2. A mixed boundary element formulation

2.1. Geometrical setting, and notation

Our Cauchy transmission is defined in the context of electrostatics, where the electric

potential in a conducting volume D is related to an electrical source g by a Poisson

equation

∇ · (σ∇V ) = g.

The 3D geometrical setting is depicted as a cross-section in Figure 1. The domain

D is composed of a collection of open subdomains Ωi such that D = ∪N+1
i=1 Ωi. Each

subdomain Ωi represents a volume of homogeneous conductivity σi. The volumes Ωi are

nested inside one another, and we denote the interfaces between neighboring conductors

by Si = Ωi ∩ Ωi+1. By extension, ∂D is denoted S0 (see Figure 1).

This model can be extended to more general geometrical settings, in which volumes

of constant conductivity are not nested [21] at the expense of notational simplicity.

Our geometrical setting is suited to EEG, where measurements are made on scalp

electrodes, and electrical activity is confined within the brain. In Section 4, numerical

experiments are conducted on a three-layer model.

The support of the source term g is restricted to the innermost domain ΩN+1. In

other Ωi, the potential V satisfies a homogeneous Laplace equation,

∆V = 0 in Ωi, for i = 1, . . . , N (1)

with jump conditions,

[V ]i = 0 , (2)

[σ∂nV ]i = 0 for i = 1, . . . , N − 1. (3)

The jump of a function f across surface Si is denoted [f ]Si
= f−

Si
− f+

Si
, with the inner

and outer limits f−, f+ defined as:

f±
Si

(r) = lim
α→0±

f(r + αn), for r on Si,

relative to the orientation of a normal vector n (see Figure 1). If f is continuous across

Si, its restriction to Si is denoted fSi
.

The exterior of D is considered to be non-conductive (σ0 = 0), hence the boundary

condition ∂nV = 0 is imposed on ∂D. The goal of the multilayer Cauchy transmission

problem is to compute VSi
= V and pSi

= p = σ∂nV on all interfaces Si, i = 0, . . . , n

from a set of discrete measurements of V on the boundary S0.
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Figure 1. The domain D is modeled as a set of nested regions Ω1, . . . ,ΩN+1 with

constant conductivities σ1, . . . , σN+1, separated by interfaces S1, . . . , SN . Arrows

indicate the outward normal directions n.

2.2. Integral representation theorem

Given a bounded domain Ω in R
3 with regular boundary ∂Ω, we can define four classical

boundary integral operators [22]: the double-layer operator D

(Df)(r) =

∫

∂Ω

∂n
′G(r − r′)f(r′) ds(r′)

where n′ represents the surface normal at r′ and G(r) = 1
4π‖r‖

is the Green function for

the Laplace equation, such that −∆G = δ0; the transpose D∗ of D in L2(∂Ω)

(D∗f)(r) =

∫

∂Ω

∂nG(r − r′)f(r′) ds(r′) ,

the single-layer operator S

(Sf)(r) =

∫

∂Ω

G(r − r′)f(r′) ds(r′) ,

and the higher-order operator N

(Nf)(r) =

∫

∂Ω

∂2
n,n′G(r − r′)f(r′) ds(r′) .

To avoid inherent ambiguity of the potential u at infinity, a decay condition H is

introduced:










lim
r→∞

r |u(r)| < ∞

lim
r→∞

r
∂u

∂r
(r) = 0
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where r = ‖r‖, and ∂u
∂r

(r) denotes the partial derivative of u in the radial direction.

The classical fundamental representation theorem [22] shows that a harmonic

function u in a domain is completely determined by its value and derivative on

a boundary. More specifically:

Theorem 1 (Representation Theorem) Let u be a harmonic function in R
3\∂Ω

satisfying the decay condition H. Then on ∂Ω,

−∂nu± = ±
[∂nu]∂Ω

2
+ N[u]∂Ω − D

∗[∂nu]∂Ω

u± = ∓
[u]∂Ω

2
− D[u]∂Ω + S[∂nu]∂Ω (4)

2.3. Succession of Harmonic Problems

To find a solution V of (1),(2),(3), we apply the representation theorem in each

subdomain Ωi to obtain a set of coupled boundary integral equations involving VSi

and pSi
= (σ∂nV )Si

. The method has been presented in [20] for the forward problem of

electroencephalography.

The following proposition provides 2N constraints satisfied by the variables VS0
, pS0

,

. . ., VSN
, pSN

. We introduce a notation Di,j, Si,j, Ni,j for the restrictions of operators

D, S, N; for example Di,j acts on a function defined on Sj, and produces a function

defined on Si.

Proposition 1 Considering the geometrical setting of Figure 1, let V satisfy

∇ · (σ∇V ) = 0 in R
3\ΩN+1. Then the restrictions of V and σ∂nV to Si, i = 0, . . . , N ,

denoted VSi
and pSi

, satisfy the following set of coupled boundary integral equations: for

i = 1, . . . , N ,

Di,i−1VSi−1
− 2 Di,iVSi

+ Di,i+1VSi+1
−

1

σi

Si,i−1pSi−1
+

(

1

σi

+
1

σi+1

)

Si,ipSi
−

1

σi+1

Si,i+1pSi+1
= 0 , (5)

σiNi,i−1VSi−1
− (σi + σi+1)Ni,iVSi

+ σi+1Ni,i+1VSi+1
−

D
∗
i,i−1pSi−1

+ 2 D
∗
i,ipSi

− D
∗
i,i+1pSi+1

= 0 . (6)

Proof Consider a set of harmonic functions {ui; i = 1, . . . , N} in R
3\∂Ωi, such that

ui =

{

V in Ωi

0 in R
3\Ωi

.

Applying the integral representation theorem (4) to ui inside Ωi

(ui)
+
Si

= −
[ui]∂Ωi

2
− D∂Ωi

[ui]∂Ωi
+ S∂Ωi

[∂nui]∂Ωi
. (7)

Since the boundary ∂Ωi is composed of two non-connected surfaces Si ∪ Si−1, operators and

functions defined on ∂Ωi can be decomposed as:

D∂Ωi
f∂Ωi

= Di,ifSi
+ Di,i−1fSi−1

+ Di−1,ifSi
+ Di−1,i−1fSi−1

.
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The flow, p = σ∂nV is a continuous quantity across each interface Si, satisfying‡

[ui]Si
= −VSi

[∂nui]Si
= −(∂nV )Si

= −pSi
/σi,

[ui]Si−1
= VSi−1

[∂nui]Si−1
= (∂nV )Si−1

= pSi−1
/σi .

Inserting these relations into (7) yields

VSi

2
+ Di,i−1VSi−1

− Di,iVSi
− Si,i−1

pSi−1

σi
+ Si,i

pSi

σi
= 0 . (8)

The integral representation theorem (4) is then applied to ui+1 on surface Si

(ui+1)
−
Si

=
[ui+1]Si

2
− D∂Ωi+1

[ui+1]∂Ωi+1
+ S∂Ωi+1

[∂nui+1]∂Ωi+1

which, after similar manipulations, becomes

VSi

2
+ Di,iVSi

− Di,i+1VSi+1
− Si,i

pSi

σi+1
+ Si,i+1

pSi+1

σi+1
= 0 . (9)

The desired result (5) is obtained by subtracting (8) and (9). The same treatment, applied to

the second equation of the integral representation theorem, yields (6).

�

2.4. Discretization

The boundary integral formulation is “mixed” because it involves two types of variables:

a potential V , and its flux p = σ∂nV . The system of boundary integral equations is

discretized using a Galerkin method, with P1 (piecewise linear) surface elements for

the potential and P0 (piecewise constant) surface elements for the flux [10]. Details on

discretization can be found in the article presenting the symmetric Boundary Element

method for EEG [20].

We group all the discretized variables into a single vector X, which hence represents

the collection of potentials and fluxes over all interfaces, in their P1/P0 discretization:

X = (VN ; pN ; VN−1; pN−1; . . . V0)
T

Discretizing equations (5) and (6) for i = 0 to N − 1, we obtain a linear system:

H X = 0 . (10)

For a three-layer model (N = 2), we have

X = (V2; p2; V1; p1; V0)
T

and H X = 0 takes the form







σ2N12 −D∗
12 (σ1 + σ2)N11 2D∗

11 σ1N10

−D12
1
σ2

S12 2D11 −
(

1
σ1

+ 1
σ2

)

S11 −D10

0 0 σ1N01 −D∗
01 −σ1N11





















V2

p2

V1

p1

V0















=







0

0

0






.

We will consider this three-layer model in the numerical examples in Section 4.

‡ with the orientation convention of Figure 1
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3. Regularization of the transmission problem

The discrete Cauchy transmission problem amounts to recovering the vector

X = (VN ; pN ; VN−1; pN−1; . . . ; V0)
T (11)

from the values of the potential at sensor positions on the outer surface. This notoriously

ill-posed problem is subject to many sources of numerical instability: (1) the number of

measurements is much smaller than the number of unknowns describing the electric field,

(2) the measurements are not acquired over the whole boundary, but on a set of sensors,

whose positions are not accurately known, (3) the measurements are subject to noise,

and (4) the conductivity model is only an approximation of the physical reality. We

present in this section a Tikhonov-type method, in which a cost function is minimized,

composed of a measurement term and a regularization term. The originality of our

approach is to impose the harmonic constraint in a hard manner.

The potential must satisfy ∆V = 0 in each domain Ωi, i = 1, . . . , n, with continuity

conditions for V (2) and for p = σ∂nV (3). Section 2 has shown that this harmonic

constraint is represented by the linear system H X = 0. This is called “harmonic lift”

in [12].

A way to impose that H X = 0 is to require that X be of the form X = PN (H) Y ,

where PN (H) is the orthogonal projector onto the null-space of H. The projector PN (H)

is computed from H by singular value decomposition [14], as detailed in Algorithm 1.

Algorithm 1 NullSpaceProjector(S0, S1, . . .SN , σ1, . . . ,σN)

Inputs: meshes of surfaces S0, S1, . . .SN , conductivities σ1, . . . , σN

Assemble H, matrix of dimensions NL × NC

Perform Singular Value Decomposition of H:

H = U S W ′

Return PN (H) submatrix of W composed of its NC − NL last columns

We introduce an interpolation matrix M transforming the potential values on

the mesh nodes to the linearly interpolated values at sensor coordinates. The actual

boundary measurements are denoted by m. To account for measurement noise and

uncertainty on sensor positions, instead of requiring that MX = m hold exactly, we

minimize the residual term

M(X) = ‖MX − m‖2.

The ill-posedness of the Cauchy problem is addressed by incorporating

a regularization term to the cost function to be minimized. Since our solution is

discretized on a set of surfaces, we chose to control a norm of its surface gradient, which

is the projection of the gradient on the tangent plane to the surface. Regularization

using a gradient norm is a common practice in image restoration. As detailed in [1], for
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a potential V discretized with P1 elements, the L2 norm of the surface gradient of V

can be approximated as the sum of three terms, corresponding to orthogonal directions

in R
3:

SV (X) = ‖G1X‖2 + ‖G2X‖2 + ‖G3X‖2.

Likewise, a norm of the surface variations of the flux is introduced, imposing a

smoothness constraint on p, under the form

Sp(X) = ‖J1X‖2 + ‖J2X‖2 + ‖J3X‖2.

The regularity constraint is thus composed of the sum
∑3

i=1 αV ‖G
iX‖2+αp‖J

iX‖2,

where αV and αp are regularization parameters to be determined (see below). For

notational convenience, the regularization term is denoted globally as

∑

i

‖RiX‖2 .

In summary, we propose to solve the Laplace-Cauchy problem by minimizing

‖MX − m‖2 +
∑

‖RiX‖2 (12)

under the constraint HX = 0. As explained above, we consider X to be an orthogonal

projection of Y to the null space of H

X = PN (H)Y , (13)

which allows us to cast the problem as an unconstrained minimization. Denoting

M̃ = MPN (H) and R̃i = RiPN (H), we minimize

‖M̃Y − m‖2 +
∑

‖R̃iY ‖2 . (14)

A solution Ŷ of (14) must satisfy

[

M̃T M̃ +
∑

R̃T
i R̃i

]

Ŷ = M̃T m .

A unique least-squares solution of the above equation is obtained using the

pseudoinverse, and a minimizer X of (12) then results from the projection X̂ = PN (H)Ŷ .

From X̂ the potential and the flux of each surface can be extracted using (11). The

different steps of this Laplace-Cauchy method are outlined in Algorithm 2.

The choice of regularization parameters αV and αp is done using the L-curve

method [14]. For a single-parameter minimization problem, the L-curve shows the

log of the smoothing term versus the log of the residual term for all values of the

regularization parameter. The curve displays a sharp corner (a maximum curvature

point), corresponding to a recommended value of the regularization parameter. In

our case, we iteratively apply the L-curve method to determine the two regularization

parameters αV and αp by keeping one of them fixed and optimizing the other one in an

alternating manner. Another option would be to use an L-surface [6], a generalization

of the L-curve for multiple parameters.
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Algorithm 2 Laplace-Cauchy

Inputs: meshes of surfaces S0, S1, . . . SN , conductivities σ1, . . . , σN

sensor positions x, measurements m

regularization parameters αV , αp

PN (H) = NullSpaceProjector(S0, S1, . . . SN , σ1, . . . , σN);

M = SensorInterpolation(S0, x)

M̃ = M PN (H)

for i = 0 to N do

(G1
i , G

2
i , G

3
i ) = P1SurfaceGradient(Si)

(J1
i , J2

i , J3
i ) = P0SurfaceGradient(Si)

for j = 1 to 3 do

G̃j
i = Gj

i PN (H)

J̃ j
i = J j

i PN (H)

end for

end for

Find pseudoinverse solution Ŷ of

[

M̃T M̃ +
N

∑

i=0

3
∑

j=1

αV (G̃j
i )

T G̃j
i + αp(J̃

j
i )

T J̃ j
i

]

Ŷ = M̃T m

X̂ = PN (H) Ŷ

Return V0, V1, . . . , VN and p1, . . . , pN extracted from X̂

4. Numerical Experiments

We show the performance of our method on the cortical mapping problem. We have

generated several sets of simulated datasets based on a simplified, spherical model, as

well as on a realistic anatomy. The datasets are chosen so that comparison with previous

published results is possible. We have calculated the electric potential and flux using

a forward method [20] from known sources and added a Gaussian noise to the simulated

scalp electrode measurements. Finally, we have estimated the cortex potential and flux

from the scalp measurements using the Laplace-Cauchy method presented in Section 3

and we have evaluated the reconstruction error.

4.1. EEG model

Nested volumes of homogeneous conductivity are commonly used for EEG

modelling. The number of nested volumes varies among models, from three (brain -

skull - scalp) or four (brain - cerebrospinal fluid - skull - scalp), up to eleven for the

most complex [15]. The possible anisotropy of the conductivities is not addressed here,

nor is the estimation of the conductivity values. In our experiments, we used two
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(a) spherical model (b) realistic model

Figure 2. The outer scalp surface (meshed) and the outer skull surface (on which

a potential field has been mapped) for the two types of models considered in the

simulations.

different three-layer models, whose outer two layers are represented in Figure 2:

(i) a spherical model, with three spheres of radii (0.87, 0.92, 1) and conductivities

(1, 1/80, 1), representing the brain, the skull and the scalp surfaces, triangulated

using 642 vertices (1280 triangles) per sphere; a set of 128 electrodes was positioned

on the upper hemisphere;

(ii) a realistic head model obtained by segmenting a Magnetic Resonance Image (MRI)

into three regions (brain, skull and scalp) to which standard conductivity values

were assigned (1, 1/80, 1, respectively). The scalp, skull and brain surfaces were

triangulated using 616, 510, and 510 vertices, respectively; two sets of electrodes,

with 64 or 128 sensors, were positioned on the upper scalp surface.

For the spherical head model, we used three source configurations corresponding to the

numerical experiments of He et al. [9]:

(i) a single tangential dipole with eccentricity of 0.65, at an angle π/6 with respect to

z-axis;

(ii) two tangential dipoles with eccentricity of 0.65, each of which is at an angle π/7

with respect to z-axis;

(iii) one dipole at (0.15, 0, 1.65) pointing to +x direction and two dipoles located at

(0,±0.4, 0.5) pointing in +z direction.

For the realistic head model, a source configuration composed of two dipoles was

designed to mimick Evoked Auditory Activity, i.e. two dipoles symmetrically placed in

each hemisphere, close to the auditory cortices. The resulting scalp potential, displayed

in Figure 4 (upper left), ressembles that of a single, centrally located dipole, as well as

the potential on the skull (same figure, left picture on the second line). Only on the
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surface of the cortex does the map appear bi-focal (Figure 4, third line), illustrating the

inherent difficulty of the Cauchy problem.

4.2. Cortical mapping results

The results of the numerical experiments are presented in Tables 1 and 2 and in Figures 3

and 4. Since the experiments were synthetic, we had ground truth data to which

reconstructions could be compared. In the sequel we refer to the ground truth simulated

data as “true” data.

The relative error RE for the potential on a given surface is measured by:

‖Vrec − Vtrue‖2

‖Vtrue‖2

=

(
∑

i∈vertices (Vrec(i) − Vtrue(i))
2)1/2

(
∑

i∈vertices (Vtrue(i))
2)1/2

, (15)

and the relative error for the flux on a given surface is measured by:

‖prec − ptrue‖2

‖ptrue‖2

=

(

∑

j∈triangles (prec(j) − ptrue(j))
2
)1/2

(

∑

j∈triangles (ptrue(j))
2
)1/2

. (16)

To measure the topographical similarity between the reconstructed and true fields, we

use the correlation coefficient (CC); for the potential, the CC is

〈Vrec, Vtrue〉

‖Vrec‖2 ‖Vtrue‖2

=

∑

i∈vertices Vrec(i) · Vtrue(i)

‖Vrec‖2 ‖Vtrue‖2

, (17)

and the CC for the flux is given by

〈prec, ptrue〉

‖prec‖2 ‖ptrue‖2

=

∑

j∈triangles prec(j) · ptrue(j)

‖prec‖2 ‖ptrue‖2

, (18)

The REs and CCs on the scalp, skull and cortex surfaces are reported in Tables 1

and 2. The values corresponding to the flux on the scalp are not reported since our

model assumes the flux to vanish (see Section 2.1). Notice that the addition of noise (as

a percentage of the standard deviation of the scalp measurements), does not degrade

the results for the spherical head model as much as for the realistic head model. The

potential reconstruction is more accurate on the scalp and skull surfaces than on the

cortex: inaccuracies are amplified with the crossing of layers.

To appreciate the quality of the results, one must bear in mind the very few data

terms available (64 or 128) compared to the number of reconstructed terms (4486 for

the spherical model, and 3668 for the realistic model).

Figures 3 and 4 present the true and reconstructed solutions, for the spherical head

model and source model 2 (Figure 3) and for the realistic head model with auditory

source model (Figure 4). This makes it possible to appreciate the topography of the

fields and of their reconstructions: visually, the reconstructed fields and the true fields

are spatially quite close. This is in particular evident in the realistic case, Figure 4,

where two focussed patches of electrical activity have correctly been estimated on the

cortex, although on the scalp only one local maximum was present. One can also note

the quality of the scalp potential reconstruction, even in the presence of noise.
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Head model Source Noise Vscalp Vskull Vcortex pskull pcortex

spherical (128 electrodes) 1 0% 0.0493 0.0935 0.4250 0.3909 0.4767

10% 0.0712 0.0973 0.5020 0.4261 0.4937

20% 0.1319 0.1880 0.6957 0.5701 0.5838

spherical (128 electrodes) 2 0% 0.0291 0.0332 0.4521 0.3184 0.4069

10% 0.0655 0.0770 0.5392 0.3950 0.4497

20% 0.1194 0.1526 0.7562 0.5841 0.5723

spherical (128 electrodes) 3 0% 0.0479 0.0896 0.4878 0.4922 0.5672

10% 0.0685 0.1022 0.5594 0.5269 0.5841

20% 0.1228 0.1642 0.7444 0.6550 0.6638

realistic (64 electrodes) auditory 0% 0.0416 0.1406 0.5026 0.4188 0.5226

5% 0.0664 0.1630 0.6149 0.5222 0.5890

realistic (128 electrodes) auditory 0% 0.0238 0.0580 0.4858 0.3466 0.4788

5% 0.0404 0.0694 0.6009 0.4333 0.5245

Table 1. Relative errors, on each surface, measured by (15) and (16), for each head

and source model described in the text.

Head model Source Noise Vscalp Vskull Vcortex pskull pcortex

spherical (128 electrodes) 1 0% 0.9988 0.9956 0.9055 0.9240 0.8846

10% 0.9975 0.9943 0.8705 0.9049 0.8725

20% 0.9915 0.9800 0.7886 0.8329 0.8153

spherical (128 electrodes) 2 0% 0.9996 0.9995 0.8927 0.9511 0.9170

10% 0.9979 0.9970 0.8443 0.9182 0.8936

20% 0.9929 0.9882 0.7266 0.8287 0.8263

spherical (128 electrodes) 3 0% 0.9989 0.9960 0.8882 0.8739 0.8260

10% 0.9978 0.9947 0.8309 0.8501 0.8121

20% 0.9926 0.9866 0.7043 0.7684 0.7530

realistic (64 electrodes) auditory 0% 0.9993 0.9901 0.8650 0.9081 0.8530

5% 0.9980 0.9849 0.7958 0.8594 0.8109

realistic (128 electrodes) auditory 0% 0.9997 0.9983 0.8750 0.9390 0.8807

5% 0.9992 0.9972 0.8047 0.9014 0.8515

Table 2. Correlation coefficients, on each surface, measured by (17) and (18), for each

head and source model described in the text.

5. Discussion

We have proposed a new Tikhonov-based boundary element solution for the Cauchy

transmission problem. The boundary element method is based on a mixed formulation,

involving both the potential and the flux. We have applied it in the field of

encephalography, where it offers a “cortical mapping” solution involving both the

potential and the normal current, which no previous method had achieved in this field.

It promises to be very useful as a preprocessing step before applying inverse source
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(a) true solution (b) solution with 0% noise (c) solution with 20 % noise

Figure 3. Spherical head model and source model 2: 3D rendering of the potential

on the scalp (top line), the potential on the cortex (middle line) and the flux on the

cortex (bottom line). Each of the surfaces is discretized with 642 vertices and 1280

triangles, and 128 electrodes are placed on the scalp

localization procedures such as described in [4] or in [5], which require transmission of

Cauchy data up to the cortical surface. According to simulations [13], the precision of

the cortical mapping is sufficient for source localization via rational approximation.
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Figure 4. Realistic head model and auditory source model: 3D rendering of the

potential and the flux on the scalp and on the cortex. The head is viewed from above,

with the nose pointing downwards.
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