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Benôıt Siri,1 Hugues Berry,1, ∗ Bruno Cessac,2, 3, 4 Bruno Delord,5 and Mathias Quoy6

1Team Alchemy,

INRIA,

Parc Club Orsay Université,
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Abstract

We present a mathematical analysis of the effects of Hebbian learning in random

recurrent neural networks, with a generic Hebbian learning rule including passive

forgetting and different time scales for neuronal activity and learning dynamics.

Previous numerical works have reported that Hebbian learning drives the system

from chaos to a steady state through a sequence of bifurcations. Here, we interpret

these results mathematically and show that these effects, involving a complex cou-

pling between neuronal dynamics and synaptic graph structure, can be analyzed

using Jacobian matrices, which introduce both a structural and a dynamical point

of view on the neural network evolution. Furthermore, we show that the sensitiv-

ity to a learned pattern is maximal when the largest Lyapunov exponent is close

to 0. We discuss how neural networks may take advantage of this regime of high

functional interest.

∗Corresponding author, hugues.berry@inria.fr
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I. INTRODUCTION

The mathematical study of the effects of synaptic plasticity (or more generally learning)

in neural networks is a difficult task because the dynamics of the neurons depends on the

synaptic weights network, that itself evolves non trivially under the influence of neuron dy-

namics. Understanding this mutual coupling (and its effects on the computational efficiency

of the neural network) is a key problem in computational neuroscience and necessitates new

analytical approaches.

In recent years, the related field of dynamical systems interacting on complex networks has

attracted vast interest. Most studies have focused on the influence of network structure on

the global dynamics (for a review, see (Boccaletti et al., 2006)). In particular, much effort

has been devoted to the relationships between node synchronization and the classical sta-

tistical quantifiers of complex networks (degree distribution, average clustering index, mean

shortest path, motifs, modularity...) (Grinstein and Linsker, 2005; Lago-Fernández et al.,

200; Nishikawa et al., 2003). The core idea was that the impact of network topology on

global dynamics might be prominent, so that these structural statistics may be good indi-

cators of global dynamics. This assumption proved however largely wrong and some of the

related studies yielded contradictory results (Hong et al., 2002; Nishikawa et al., 2003). Ac-

tually, synchronization properties cannot be systematically deduced from topology statistics

but may be inferred from the spectrum of the network (Atay et al., 2006). Most of these

studies have considered diffusive coupling between the nodes (Hasegawa, 2005). In this case,

the adjacency matrix has real nonnegative eigenvalues, and global properties, such as sta-

bility of the synchronized states (Barahona and Pecora, 2002) can easily be inferred from

its spectral properties (see also (Atay. et al., 2006; Volchenkov and Blanchard, 2007) and

(Chung, 1997) for a review on mathematically rigorous results). Unfortunately, the coupling

between neurons (synaptic weights) in neural networks is rarely diffusive, the corresponding

matrix is not symmetric and may contain positive and negative elements. In addition, the

synaptic graph structure of a neural network is usually not fixed but evolves with time,

which adds another level of complexity. Hence, these results are not directly applicable to

neural networks.

Discrete-time random recurrent neural networks (RRNNs) are known to display a rich vari-

ety of dynamical behaviors, including fixed points, limit cycle oscillations, quasi periodicity
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and deterministic chaos (Doyon et al., 1993). The effect of hebbian learning in RRNN,

including pattern retrieval properties, has been explored numerically by Daucé and some

of us (Dauce et al., 1998). It was observed that Hebbian learning leads to a systematic

reduction of the dynamics complexity (transition from chaos to fixed point by an inverse

quasi-periodicity route). This property has been exploited for pattern retrieval. After a suit-

able learning phase the presentation of a learned pattern induces a bifurcation (e.g. from

chaos to a simpler attractor such as a limit cycle). This effect is inherited via learning (it

does not exist before learning), is robust to a small amount of noise, and selective (it does

not occur for drastically different patterns). These effects were however neither analyzed

nor really understood in (Dauce et al., 1998). This work was extended to sequence learning

and expoited on a robotic platform in (Daucé et al., 2002).

More recently, Echo State Networks (ESN) (Jaeger and Haas, 2004) have been developed,

where, as in our case, the network acts as a reservoir of resonant frequencies. However,

learning only affects output links in ESN networks, while the weights within the reservoir

are kept constant. Tsuda’s chaotic itinerancy is an alternative way for linking different at-

tractors with different inputs (Tsuda, 2001). In this model, weights are initially fixed in a

Hopfield-like manner (and are thus symmetric) and a chaotic dynamics successively explores

the different fixed point attractors. In this scheme, each input constitutes an different initial

condition that leads to one attractor of the same dynamical system, whereas in (Dauce et al.,

1998), each (time-constant) input leads to a different dynamical system.

In the current state of the art, there is a relatively large number of models, observations

and applications of Hebbian learning effects in neural networks, but considerably less math-

ematical results. Mathematical analysis is however necessary to classify the many variants

of Hebbian learning rules according to the effects they produce. The present paper is one

step further towards this aim. Using methods from dynamical systems theory, we analyze

the effects of a generic version of Hebbian learning proposed in (Hoppensteadt and Izhike-

vich, 1997) on the neural network model numerically studied in (Dauce et al., 1998) with

spontaneous (i.e. before learning) chaotic dynamics.

We essentially classify the effects into three families:

(i) Topological: the structure of the synaptic weight network evolves, implying prominent

(e.g. cooperative) effects on the dynamics.

(ii) Dynamical: the dynamical complexity (measured e.g. by the maximal Lyapunov ex-
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ponent or the Kolmogorov-Sinai entropy) reduces during Hebbian learning. This effect is

mathematically analyzed and interpreted. Especially, we provide a rigorous upper bound

on the maximal Lyapunov exponent and identify two major causes for this reduction: the

decay of the norm of the synaptic weight matrix and the saturation of neurons.

(iii) Functional: Focusing on the network response to a learned pattern, we show that there

is a learning stage at which the response is maximal, in the sense that it generates a drastic

change of the neuronal dynamics (i.e. a bifurcation). This stage precisely corresponds to

vanishing of the maximal Lyapunov exponent.

Some of these results may appear neither “new” nor “surprising” for the neural networks

community. For example, (ii) and (iii) have already been reported in (Dauce et al., 1998).

However, the results were mainly numerical while the present paper proposes a mathemat-

ical framework and formal tools to analyze them. Moreover, a direct consequence of (iii)

is that the response of the neural network to a learned pattern is maximal at the “edge of

chaos” (where the maximal Lyapunov exponent vanishes).

The claim that the neural network response is maximal close to a bifurcation is common in

the neural network community (Langton, 1990). Similarly, (Hoppensteadt and Izhikevich,

1997) already pointed out the necessity for some neurons to lie close to a bifurcation point

in order to have relevant computational capacities. As a matter of fact, an analysis of the

effects of a Hopfield-Hebb rule was performed in this book with neurons close to codimension

one fixed-point bifurcations.

We go a step further in the present paper and show that a similar conclusion holds for a neu-

ral network in a chaotic regime. Conceptually, the analysis of (Hoppensteadt and Izhikevich,

1997) could be extended to chaotic systems 1 (Cessac and Samuelides, 2007). However, the

analytic treatment of the chaotic case is really challenging. Hence, bifurcation analysis of

fixed points (or periodic orbits) uses a linear analysis via Jacobian matrices, which is usually

1 A cornerstone of the analysis in (Hoppensteadt and Izhikevich, 1997) is the use of Hartman-Grobman

theorem, and its consequence, namely that neural networks have non trivial properties only if some

neurons are close to a bifurcation point. In some sense, this analysis can be extended to uniformly

hyperbolic dynamical systems, a small subset of chaotic systems (though it has never been done). In

addition, it is absolutely not guaranteed that chaotic RRNNs are uniformly hyperbolic, since one does not

control the spectrum of the Jacobian matrices. The main difficulty is to characterize this spectrum on the

ω-limit set (and not in the whole phase space). As a matter of fact, we do not know of any mathematical

result with regard to this aspect.
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considered non-applicable to chaotic systems where nonlinear effects and initial conditions

sensitivity are prominent. Nevertheless, recent results by Ruelle (Ruelle, 1999) on linear

response theory, formally extended to chaotic neural networks (Cessac and Sepulchre, 2006,

2007), show that a linear analysis is indeed possible if one uses an average of the Jacobian

matrix along its chaotic trajectory. The associated linear response operator provides a deep

insight into the links between topology and dynamics in chaotic neural networks. Inciden-

tally, it shows that the relevant matrix is not the weight matrix (as would be expected), but

the linear response matrix, which reduces, in the present context, to the ergodic average of

the Jacobian matrix along its trajectory 2.

Though the main results in this paper are mathematical, we also use some numerical simu-

lations. They were necessary because mathematical results are obtained using a limit where

time goes to infinity, which is not operational in numerical situations. Moreover, the central

rigorous results we obtain provide upper bounds, whose quality had to be checked numeri-

cally.

The paper is organized as follows. We first present the model and the generic framework

for neuronal dynamics and learning rules in section II. The following sections are devoted

to the analysis of the model. In section III, we present analytical results explaining the evo-

lution of dynamics during learning using mathematical tools from dynamical systems and

graph theory. These analytical results are confirmed by extensive numerical simulations.

Section IV focuses on functional effects related to network sensitivity to the learned pattern.

We finally discuss our results in the last section (V).

II. GENERAL FRAMEWORK

A. Model description

We consider firing-rate recurrent neural networks with N point neurons and discrete-

time dynamics, where learning may occur on a different (slower) time scale than neuron

dynamics. Synaptic weights are thus constant for τ ≥ 1 consecutive dynamics steps, which

defines a “learning epoch”. The weights are then updated and a new learning epoch begins.

2 This result, which may a posteriori appear obvious to readers familiar with dynamical systems theory is

in fact highly non trivial and requires Ruelle’s linear response theory to be properly justified.
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We denote by t the update index of neuron states (neuron dynamics) inside a learning

epoch, while T indicates the update index of synaptic weights (learning dynamics). Call

x
(T )
i (t) ∈ [0, 1] the mean firing rate of neuron i, at time t within the learning epoch T .

Set x(T )(t) =
[

x
(T )
i (t)

]N

i=1
∈ [0, 1]N . Denote by F the function F : IRN → IRN such that

Fi(x) = f(xi) where f is a sigmoidal transfer function (e.g. f(x) = (1 + tanh(gx)/ 2)). Let

W(T ) be the matrix of synaptic weights at the T -th learning epoch. Then the discrete time

neuron dynamics writes:

x(T )(t + 1) = F
[

u(T )(t)
]

= F
[

W(T )x(T )(t) + ξ
]

, (1)

u(T )(t) is called “the local field (or the synaptic potential), at neuron time t and learning

epoch T”. The output gain g tunes the nonlinearity of the function and mimics the reactiv-

ity of the neuron. The vector ξ = (ξi)
N
i=1 is the “pattern” to be learned. The initial weight

matrix W(1) is randomly and independently sampled from a Gaussian law with mean 0 and

variance 1/N . Hence, the synaptic weights matrix W(T ) =
(

W
(T )
ij

)N

i,j=1
typically contains

positive (excitation), negative (inhibition) or null (no synapse) elements and is asymmetric

(W
(T )
ij 6= W

(T )
ji ).

The network can display different dynamical regimes (chaos, (quasi-) periodicity, fixed

point), depending on these parameters (Dauce et al., 1998). In the present study, the

parameters were set so that the spontaneous dynamics (i.e. the network dynamics at T = 1

) was chaotic. At the end of every learning epoch, the neuron dynamics indices are reset,

and x
(T+1)
i (0) = x

(T )
i (τ), ∀i.

The learning rules we study conform to Hebb’s postulate (Hebb, 1948). Specifically, we

define the following generic formulation (Hoppensteadt and Izhikevich, 1997):

W(T+1) = λW(T ) +
α

N
Γ(T ) (2)

where α is the learning rate and Γ(T ) a Hebbian function (see below). The first term in the

right-hand side (RHS) member accounts for passive forgetting, i.e. λ ∈ [0, 1] is the forgetting

rate. If λ < 1 and Γij = 0 (i.e. both pre- and postsynaptic neurons are silent, see below), eq.

(2) leads to an exponential decay of the synaptic weights (hence passive forgetting), with a

characteristic rate 1
| log(λ)|

(see discussion, section V). Note that there is no forgetting when

λ = 1. The second term in the RHS member generically accounts for activity-dependent

plasticity, i.e. the effects of the pre- and postsynaptic neuron firing rates. We focus here on
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learning rules where this term depends on the history of activities3, i.e.

Γ
(T )
ij = h(x̃

(T )
i , x̃

(T )
j ) (3)

where x̃
(T )
i =

{

x
(T )
i (t)

}τ

t=1
is the trajectory of neuron i firing rate. In the present paper, as

a simple example, we shall associate to the history of neuron i rate an activity index m
(T )
i :

m
(T )
i =

1

τ

τ
∑

t=1

(x
(T )
i (t) − di) (4)

where di ∈ [0, 1] is a threshold and h is a function of m
(T )
i and m

(T )
j .

The neuron is considered active during learning epoch T whenever m
(T )
i > 0, and silent

otherwise. di does not need to be explicitly defined in the mathematical study. In numerical

simulations however, we set it to 0.50, ∀i. Definition (4) actually encompasses several

cases. If τ = 1, weight changes depend only on the instantaneous firing rates, while if

τ ≫ 1, weight changes depend on the mean value of the firing rate, averaged over a time

window of duration τ in the learning epoch. In many aspects the former case can be

considered as plasticity, while the latter may be related to meta-plasticity (Abraham and

Bear, 1996). In this paper, we set τ → ∞ for the mathematical analysis. We chose a value of

τ = 104 in numerical simulations, which corresponds to the time scale ratio between neuronal

dynamics (ms) and synaptic plasticity (10 s) (see (Delord et al., 2007)). Importantly, note

that other values of τ (including τ = 1) have been tested in simulations and did not lead to

any qualitative change in the network behavior, although some integration lag effects were

observed for very small values. Therefore, the exact value of τ has no impact on the major

conclusions of the present paper.

The explicit definition of the function h in eq.(3) is constrained by Hebb’s postulate for

plasticity. This postulate is somewhat loosely defined, so that many implementations are

possible in our framework. Our choice is guided by the following points (Hoppensteadt and

Izhikevich, 1997):

3 As a matter of fact, note that Γ
(T )
ij is a function of the trajectories x̃

(T )
i , x̃

(T )
j , which depend on W(T ),

which in turn depends on Γ
(T−1)
ij ... Hence, the set of synaptic weights at time T + 1 and the dynamics of

the corresponding neurons are functions of the whole history of the system. In this respect, we address

a very untypical and complex type of dynamical systems where the flow at time t is a function of the

past trajectory and not only a function of the previous state. (In the context of stochastic processes, such

systems are called “chains with complete connections” by opposition to (generalized) Markov processes).

This induces rich properties such as a wide learning-induced variability in the network response to a given

stimulus, with the same set of initial synaptic weights, simply by changing the initial conditions.
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1. h > 0 whenever post-synaptic (i) and pre-synaptic (j) neurons are active, as in long-

term potentiation (LTP).

2. h < 0 whenever i is inactive and j is active, corresponding to homosynaptic long-term

depression (LTD).

3. h = 0 whenever j is inactive. This point is often considered as a corollary to Hebb’s

rule (Hoppensteadt and Izhikevich, 1997). Moreover, it renders the learning rule asym-

metric and excludes the possibility that dynamics changes induced by learning could

be due to weight symmetrization. This hypothesis however formally excludes het-

erosynaptic LTD (Bear and Abraham, 1996), which would correspond to h < 0 for i

active and j inactive. However, most of the results presented herein remain valid in

the presence of heterosynaptic LTD (see section V for a discussion).

Although these settings are sufficient for mathematical analysis, h has to be more precisely

defined for numerical simulations. Hence, for the simulations, we set an explicit implemen-

tation of Γ(T ) such that :

W(T+1) = λW(T ) +
α

N
m(T )

[

m(T )H(m(T ))
]+

(5)

where m(T ) =
[

m
(T )
i

]N

i=1
, H(x) is the Heaviside function, H(m(T )) =

[

H(m
(T )
i )
]N

i=1
,

m(T )H(m(T )) is the vector of components m
(T )
i H(m

(T )
i ) and + denotes the transpose. Fi-

nally, in the simulations, we forbid weights to change their sign, and self-connections W
(T )
ii

stay to 0 (note however that these settings do not influence qualitatively the results pre-

sented here).

For the purpose of the present paper, the exact value of this input pattern ξ is not very im-

portant, as soon as its maximal amplitude remains small with respect to the neuron maximal

firing rate. Here, we used ξi = 0.010 sin (2πi/N) cos (8πi/N) , ∀i = 1 . . .N in all numerical

simulations. The main rationale for this choice is that this pattern is easily identified by eyes

when the ξis are plotted against i, which is particularly helpful when interpreting alignment

results, such as in fig. 3.

Equations (1) & (5) define a dynamical system where two distinct processes (neuron dy-

namics and synaptic network evolution) interact with distinct time scales. This results in a

complex interwoven evolution where neuronal dynamics depends on the synaptic structure
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and synapses evolve according to neuron activity. On general grounds, this process has a

memory that is a priori infinite and the state of the neural network depends on the past

history.

B. Analysis tools

One possible approach to topology and dynamics interactions in neural networks consists

in searching structural cues in the synaptic weight matrix that may be informative of specific

dynamical regimes. The weight matrix is expected to carry information about the functional

network. However, it can be easily shown that the synaptic weight matrix is not sufficient

to analyze the relationship between topology and dynamics in neural networks such as (1).

A standard procedure for the analysis of nonlinear dynamical systems starts with a linear

analysis. This holds e.g. for stability and bifurcation analysis but also for the computation

of indicators such as Lyapunov exponents. The key object for this analysis is the Jacobian

matrix. In our case, it writes:

DFx = Λ(u)W, (6)

with:

Λij(u) = f ′(ui)δij . (7)

Interestingly enough, the Jacobian matrix generates a graph structure that can be inter-

preted in causal terms (see Appendix F for more details). Applying a small perturbation δj

to xj , the induced variation on xi is given, to the linear order, by f ′(ui)Wijδj . Therefore,

the induced effect, on neuron i, of a small variation in the state of neuron j is not only

proportional to the synaptic weight Wij, it also depends on the state of neuron i via f ′. For

example, if |ui| is very large (neuron “saturation”), f ′ is very close to 0 and the perturbation

on any xj has no effect on xi.

From this very simple argument we come to the conclusion that the Jacobian matrix displays

more information than the synaptic weight matrix:

1. The “causal” graph induced by the Jacobian matrix leads to the notion of cooperative

systems, introduced by Hirsch in (Hirsch, 1989) and widely studied in the field of

genetic networks (Gouzé, 1998; Thomas, 1981). This notion is also useful in the

present context (see appendix F).
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2. The Jacobian matrix allows to perform local bifurcation analysis. In our case, this

provides information about the effect of pattern presentation before and after learning

(section IV).

3. The Jacobian matrix allows to define Lyapunov exponents, which are used to measure

the degree of chaos in a dynamical system.

4. The Jacobian matrix allows to define the notion of linear response in chaotic systems

(Cessac and Sepulchre, 2006, 2007; Ruelle, 1999), which extends the notion of causal

graph to nonlinear systems with chaotic dynamics (see in section IV).

III. DYNAMICAL VIEWPOINT

As explained in the introduction and reported in (Dauce et al., 1998), Hebbian learning

rules can lead to reduction of the dynamics complexity from chaos to quasiperiodic attractor,

limit cycle and fixed point, due to the mutual coupling between weights evolution and neuron

dynamics. The aim of this section is to provide a theoretical interpretation of this reduction

of complexity for a more general class of Hebbian learning rules than those considered in

(Dauce et al., 1998).

A. Entropy reduction.

1. Evolution of the weight matrix.

From eq. (2) it is easy to show by recurrence that:

W(T+1) = λTW(1) +
α

N

T
∑

n=1

λT−nΓ(n). (8)

The evolution of the weight matrix under the influence of the generic learning rule eq.(2)

originates from two additive contributions. If λ < 1, the “direct” contribution of W(1) to

W(T+1) (the first term in the RHS member) decays exponentially fast. Hence the effect of

λ is that the initial synaptic structure is progressively forgotten, offering the possibility to

entirely “rewire” the network in a time scale proportional to 1
| log(λ)|

. The second RHS term

of eq. (8) corresponds to the new synaptic structure emerging with learning and replacing
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the initial one (which fades away exponentially fast). Importantly, this second term includes

contributions from each previous matrices Γ(n), ∀n ≤ T (with an exponentially decreasing

contribution λT−n). Hence, the emerging weights structure depends on the whole history of

the neuronal dynamics.

If λ < 1, one expects to reach a stationary regime where synaptic weights do not evolve

anymore: both matrices W(T ) and Γ(T ) are expected to stabilize at long learning epochs

to constant values (limT→∞W(T ) = W(∞) and limT→∞ Γ(T ) = Γ(∞)). This means that, if

λ < 1, the dynamics settle at long learning epochs onto a stable attractor that is not modified

by further learning of a given stimulus. The existence of such a stationary distribution is

provided by the sufficient condition:

W(∞) =
α

N(1 − λ)
Γ(∞). (9)

We show in appendix B that, assuming moderate hypotheses on h (eq. 3), ‖Γ(T )‖ can be

upper-bounded, ∀T , by a constant NC, so that ‖W(∞)‖ ≤ αC/ (1 − λ). From eq.(8), an

upper bound for the norm of W(T ) is trivially found:

‖W(T+1)‖ ≤ λT‖W(1)‖ +
α

N

T
∑

n=1

λT−n‖Γ(n)‖, (10)

where ‖‖ is the operator norm (induced e.g. by Euclidean norm). Hence,

‖W(T+1)‖ ≤ λT‖W(1)‖ + αC
1 − λT

1 − λ
≤ λT‖W(1)‖ + αC

1

1 − λ
. (11)

This result shows that the major effect of the Hebbian learning rule we study may consist

in an exponentially fast contraction of the norm of the weight matrix, which is due to the

term λ, i.e. to passive forgetting (λ < 1). Note also that if λ = 1, this term may diverge,

leading to a divergence of W(T ). Therefore, in this case, one has to add an artificial cut-off

to avoid this unphysical divergence.

These analytical results need not to be “confirmed” by numerical simulations, as they are

rigorous. However, they only provide an upper bound that can be rough, while simulations

allows to evaluate how far from the exact values these bounds are.

Let s
(T )
i be the eigenvalues of W(T ), ordered such that |s(T )

1 | ≥ |s(T )
2 | ≥ . . . ≥ s

(T )
i ≥ . . ..

Since |s(T )
1 |, the spectral radius of W(T ), is smaller than ‖W(T )‖ one has from eq.(11):

|s(T+1)
1 | ≤ λT‖W(1)‖ + αC

1

1 − λ
. (12)
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FIG. 1 The Hebbian learning rule eq.(5) contracts the spectral radius of W . The evolution during learning of the norm of W

largest eigenvalue, |s
(T )
1 | is plotted on a log-log scale for, from bottom to top, λ = 0.80 (squares), 0.90 (circles), 0.95 (triangles)

or 1.00 (diamonds). Each value is an average over 50 realizations with different initial conditions (initial weights and neuron

states). Standard deviations are smaller than the symbols. Black full lines are plots of exponential decreases with equation

g(T ) = |s
(1)
1 |λT .

This equation predicts a bound on the spectral radius that contracts exponentially fast with

time, under the control of the forgetting rate λ. Figure 1 shows the evolution of the spectral

radius of W(T ) for different values of λ during numerical simulations (open symbols). The

results show that the spectral radius indeed decays exponentially fast. Moreover, we also

plot on this figure (full lines) exponential decays according to the first RHS member of

eq.(12), i.e. g(T ) = |s(1)
1 |λT . The almost perfect agreement with the measurements tells us

that the bound obtained in eq.(12) actually represents a very good estimate of the value of

|s(T )
1 |.

2. Jacobian matrices.

Let x ∈ [0, 1]N . A bound for the spectral radius of DF
(T )
x can easily be derived from 11

and 6. Call µ
(T )
i (x) the eigenvalues of DF

(T )
x ordered such that |µ(T )

1 (x)| ≥ |µ(T )
2 (x)| ≥ . . . ≥

|µ(T )
i (x)| ≥ . . .. One has, ∀x:

|µ(T )
1 (x)| ≤ ‖DF

(T )
x ‖ ≤ ‖Λ(u(T ))‖‖W(T )‖. (13)

Since ‖Λ(u(T ))‖ = maxi f
′(u

(T )
i ) (Λ is diagonal and f ′ > 0), one finally gets

|µ(T )
1 (x)| ≤ max

i
f ′(u

(T )
i )‖W(T )‖. (14)

Therefore, we obtain a bound on the spectrum of DF
(T )
x that can be contracted by two

effects: the contraction of the spectrum of W(T ) and/or the decay of maxi f
′(ui) related to

13



the saturation of neuronal activity. Indeed, f ′(ui) is small if xi is saturated to 0 or 1 (i.e. |ui|
is large), but large whenever |ui| is intermediate, i.e. falls into the central, pseudo-linear part

of the sigmoid f(ui). We have already evidenced above that λ < 1 yields to a decrease of

‖W(T )‖. Note that even if λ = 1 (no passive forgetting) and W(T ) diverges, then u(T ) diverges

as well, leading maxi f
′(u

(T )
i ) to vanish, thus decreasing the spectral radius of the Jacobian

matrix. Hence, if the initial value of |µ(T )
1 (x)| is larger than 1 and the bound in eq.(14)

represents an accurate estimate of |µ(T )
1 (x)|, eq.(14) predicts that the latter may decrease

down to a value < 1. We are dealing here with discrete time dynamical systems, so that

the value |µ(T )
1 (x)| = 1 locates a bifurcation of the dynamical system. Hence, eq.(14) opens

up the possibility that learning drives the system through bifurcations. Again, simulations

(fig. 4) show that the bound obtained in eq. 14 is indeed very close to the actual value of the

Jacobian matrix spectral radius. As will be shown later (section IV), this point is of great

importance from a functional viewpoint.

3. A bound on the maximal Lyapunov exponent.

Eq. (14) depends on x and cannot provide information on the typical behavior of the

dynamical system. This information is provided by the computation of the largest Lyapunov

exponent (see appendix A for definitions). In the present setting, the largest Lyapunov

exponent, L
(T )
1 depends on the learning epoch T . It can be computed exactly before learning

in the thermodynamic limit N → ∞, because Wij ’s are i.i.d. random variables (Cessac, 1995)

and it can be showed that it is positive provided g is sufficiently large4. However, because

the weights deviate from i.i.d. random distribution under the influence of Hebbian learning,

the evolution of L
(T )
1 cannot be computed analytically as soon as T > 1. Nevertheless, the

following theorem (proven in appendix C) yields a useful upper-bound of L
(T )
1 :

Theorem 1

L
(T )
1 ≤ log(‖W(T )‖) +

〈

log(max
i

f ′(ui))
〉(T )

. (15)

4 In the limit N → ∞ and for random i.i.d. weights with 0 mean and variance 1
N

, |µ(T )
1 (x)| converges

almost surely to a value proportional to g, the proportionality factor depending on the explicit form of f

(Cessac, 1994; Girko, 1984)
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where 〈log(maxi f
′(ui))〉(T ) denotes the time average of log(maxi f

′(ui)), in the learning epoch

T (see appendix for details).

This theorem emphasizes the two main effects that may contribute to a decrease of L
(T )
1 .

The first term in the RHS member states that the upper bound on L
(T )
1 decreases if the norm

of the weights matrix ‖W(T )‖ decreases during learning. The second term is related to the

saturation of neurons. However, the main difference with eq. (14) is that we now have an

information on how saturation effects act on average on dynamics, via log(f ′). The second

term in the RHS member is positive if some neurons have an average log(f ′) larger than

1 (that is, they are mainly dominated by amplification effects corresponding to the central

part of the sigmoid) and becomes negative when all neurons are saturated on average.

In any case, it follows that if learning increases the saturation level of neurons or decreases

the norm of the weights matrix ‖W(T )‖, then the result can be a decay of L
(T )
1 (if the bound

is a good estimate), thus a possible transition from chaotic to simpler attractors. A canonical

measure of dynamical complexity is the Kolmogorov-Sinai (KS) entropy which is bounded

from above by the sum of positive Lyapunov exponents. Therefore, if the largest Lyapunov

exponent decreases, KS entropy and the dynamical complexity decrease. On numerical

grounds we observe the following. Fig. 2A shows measurements of L
(T )
1 during numerical

simulations with different values of the passive forgetting rate λ. Its initial value is positive

because we start our simulations with chaotic networks (L
(1)
1 ≈ 0.21 ± 0.10). The Hebbian

learning rule eq.(5) indeed leads to a rapid decay of L
(T )
1 , whose rate depends on λ. Hence

L
(T )
1 shifts quickly to negative values, confirming the decrease of the dynamical complexity

that could be inferred from visual inspection of temporal traces of the network averaged

activity (fig. 2B).

To conclude, our mathematical framework indicates a systematic decay of L
(T )
1 induced by

passive forgetting and/or increased neuronal saturation. This decay explains the decreasing

dynamical complexity from chaos to steady state that is observed numerically.

B. Neuron activity.

We now present analytical results concerning the evolution of individual neuron activ-

ity. Application of the learning rule eq.(2) changes the structure of the attractor from one

learning epoch to the other. The magnitude of this change can be measured by changes
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FIG. 2 The Hebbian learning rule eq.(5) induces reduction of the dynamics complexity from chaotic to periodic and fixed

point. (A) Evolution of the largest Lyapunov exponent L1 during 100 learning epochs for, from bottom to top, λ = 0.80

(squares), 0.90 (circles), 0.95 (triangles) or 1.00 (diamonds). Each value is an average over 50 realizations with different initial

conditions (initial weights and neuron states). Bars are standard deviations (and are mostly smaller than symbol size). The

dashed lines illustrate decays of the form g(T ) ∝ T log(λ) (see text). (B) Examples of network dynamics when learning is

stopped at epoch (from bottom to top) T = 1 (initial conditions, chaos), 5 (limit cycle), 6 (simpler limit cycle) or 100 (fixed

point). These curves show the network-averaged state
〈

x(T )(t)
〉

= 1/N
∑N

i=1 x
(T )
i (t) and are shifted on the y-axis for clarity.

The height of the vertical bar represents an amplitude of 0.1. N = 100 and all other parameters are as in fig. 1.

in the average value of some relevant observable such as neuron activity (more generally,

learning induces a variation in the SRB measure ρ(T ), see appendix A). Let δρ(T+1)(x) be

the variation of the average activity x between learning epoch T and T + 1. By definition

(see appendix A):

δρ(T+1)(x) = 〈x〉(T+1) − 〈x〉(T ) . (16)

We show in appendix D that the average value of the neuron local field, u, at learning epoch

T depends on four additive terms:

〈u〉(T+1) = λT 〈u〉(1)+(1−λT )ξ+λ
T
∑

n=1

λT−nW(n)δρ(n+1)(x)+
α

N

T
∑

n=1

λT−nΓ(n) 〈x〉(n+1) . (17)

Provided that λ < 1, as T → +∞, time averages of observables converge to a constant. So

that δρ(T )(x) → 0 and limT→+∞ 〈x〉(T ) = 〈x〉(∞). Therefore, asymptotically:

〈u〉(∞) = ξ + H(∞), (18)
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where:

H(∞) = W(∞) 〈x〉(∞) =
α

N (1 − λ)
Γ(∞) 〈x〉(∞) . (19)

Therefore, the asymptotic local field (〈u〉(∞)) is the sum of the stimulus (input pattern)

plus an additional vector H(∞) which accounts for the history of the system. Note that

equations (18), (19) characterize the asymptotic regime T → ∞ which usually corresponds

to a fixed-point (see fig 2) with limited dynamical and functional interest (see e.g. fig. 4).

On intermediate time scales, eq. (17) must be considered. It shows that the local field u

contains a constant component (the input pattern) as well as additional (history-dependent)

terms whose relative contribution cannot systematically be predicted.

Figure 3 shows numerical simulations of the evolution of the local field u during learning.

Clearly, while the initial values are random, the local field (thin full line) shows a marked

tendency to converge to the input pattern (thick dashed line) after as soon as 10 learning

epochs. The convergence is complete after ≈ 60 learning epochs. An additional term

corresponding to H(∞) is observed numerically (but is hardly visible in the normalized

representations of fig. 3). This last term has an interesting structure in the case of the

learning rule (3). Indeed, in this case:

H(∞) =
α

N (1 − λ)
m(∞)

[

m(∞)H(m(∞))
]+ 〈x〉(∞) ,

so that:

H
(∞)
i =

α

N (1 − λ)
ηm

(∞)
i (20)

where :

η =
∑

j,m
(∞)
j >0

m
(∞)
j x

(∞)
j =

∑

j, x
(∞)
j >dj

(x
(∞)
j − dj)x

(∞)
j , (21)

can be interpreted as an order parameter. A large positive η means that neurons are mainly

saturated to 1, while a small η corresponds to neuron whose average activity is close to di.

Note that η is related to a set of self-consistent equations. Indeed, since xi = f(ui) one has:

< ui >(∞)= ξi +
α

N (1 − λ)
η
[

〈f(ui)〉(∞) − di

]

(22)

In the case where this constant asymptotic attractor is a fixed point (i.e. the attractor with

smallest complexity), one has:

u∗
i = ξi +

α

N (1 − λ)
η(f(u∗

i ) − di), (23)
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FIG. 3 The local field u = ξ + Wx (thin full line) and the real part of the first eigenvector of the Jacobian matrix (thin

dotted line) converge to the input pattern ξ (thick dashed line) at intermediate-to-long learning epochs. Snapshot are presented

at T = 1 (A, initial conditions), T = 10 (B), T = 60 (C ) and T = 200 (D) learning epochs. Each curve plots averages over 50

realizations (standard deviations are omitted for clarity), vectors have been normalized to [0, 1] for clarity. All other parameters

as in fig. 1

where u∗ and x∗ denote the values of u and x, respectively, on the fixed point attractor.

Here, the set of N nonlinear self-consistent equations (22) includes both a local (u∞
i ) and

a global term (the order parameter η). Assume that we slightly perturb the system, for

example by removing the stimulus ξi for some neurone i. If the system (22) is away from

a bifurcation point, this perturbation is expected to result in only a slight change in u∗
i .

Alternatively, if a bifurcation occurs, a dramatic change in u∗
i can take place. This local

modification of activity may in turn yield a big change in η, which corresponds to a global

(i.e. network-wide) modification of activity, through a some avalanche-like mechanism. On

practical grounds this means that presentation or removal of some parts of the input pattern

may induce a drastic change of the dynamics of the network.
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IV. FUNCTIONAL VIEWPOINT

Pattern recognition is one of the functional properties of RRNNs. In our terms, a pattern

is “learned” when its presentation (or removal) induces a bifurcation 5. Moreover, this effect

must be acquired via learning, selective (i.e. only the presented pattern is learned) and

robust (i.e. a noisy version of the learned pattern should lead to an attractor similar to the

one reached after presentation of the learned pattern). We now proceed to an analysis of the

effect of pattern removal, as a simple indicator of the functional properties of the network.

A deeper investigation of the functional properties of the network is out of the scope of the

present study and will be the subject of future works.

Label by x (resp. u) the neuron firing rate (resp. local field) obtained when the (time

constant) input pattern ξ is applied to the network (see eq. 1) and by x′ (resp. u′) the

corresponding quantities when ξ is removed (ξ = 0). The removal of ξ modifies the attractor

structure and the average value of any observable φ (though the amplitude of this change

depends on φ). More precisely call:

∆(T ) [φ] = 〈φ(x′)〉(T ) − 〈φ(x)〉(T ) (24)

where 〈φ(x′)〉(T ) is the (time) average value of φ without ξ and 〈φ(x)〉(T ) the average value

in the presence of ξ. Two cases can arise.

In the first case, the system is away from a bifurcation point and removal results in a

variation of ∆(T ) [φ] that remains proportional to ξ provided ξ is sufficiently small (remember

here that the present network admits a single attractor at a given learning epoch). Albeit

common for non-chaotic dynamics, we emphasize that this statement still holds for chaotic

dynamics. This has been rigorously proven for uniformly hyperbolic systems, thanks to the

linear response theory developed by Ruelle (Ruelle, 1999). In the present context, the linear

response theory predicts that the variation of the average value of u is given by (Cessac and

Sepulchre, 2006, 2007):

∆(T ) [u] = −χ(T )ξ (25)

5 This idea, as well as the preceding works of the authors on this topic was deeply influenced by Freeman’s

work (Freeman, 1987; Freeman et al., 1988).
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where

χ(T ) =
∞
∑

n=0

〈DFn〉(T ) (26)

is a matrix6, 7 whose entries can be written:

χ
(T )
ij = I +

+∞
∑

n=1

∑

γij(n)

n
∏

l=1

Wklkl−1

〈

n
∏

l=1

f ′(ukl−1
(l − 1))

〉(T )

(27)

where the sum
∑

γij(n) holds on every possible path γij(n) of length n, connecting neuron

k0 = j to neuron kn = i, in n steps.

Note therefore that ∆(T ) [u] = −ξ − M (T )ξ where the matrix M (T ) =
∑∞

n=1 〈DFn〉(T ) inte-

grates dynamical effects. A slight variation of ui at t = 0 implies a reorganization of the

dynamics which results in a complex formula for the variation of 〈u〉(T ), even if the domi-

nant term is ξ, as expected. More precisely, as emphasized several times above, one remarks

that each path in the sum
∑

γij(n) is weighted by the product of a topological contribution

depending only on the weights Wij and on a dynamical contribution. The weight of a path

γij depends on the average value of
〈
∏n

l=1 f ′(ukl−1
(l − 1))

〉(T )
thus on correlations between

the state of saturation of the units k0, . . . , kn−1 at times 0, . . . , n − 1.

Eq. 25 shows how the effects of pattern removal are complex when dealing with a chaotic

dynamics. However, the situation is much easier mathematically in the simplest case where

dynamics have converged to a stable fixed point u∗(T ) (resp. x∗(T )). In this case, eq. (25)

reduces to:

∆(T ) [u] = −
∞
∑

n=0

(

W(T )Λ(u∗)
)n

ξ (28)

Calling λk,vk the eigenvalues and eigenvectors of W(T )Λ(u∗(T )), ordered such that |λN | ≤
|λN−1| ≤ |λ1| < 1 one obtains:

∆(T ) [u] = −
N
∑

k=1

(vk, ξ)

1 − λk
vk (29)

6 The convergence of this series is discussed in (Cessac and Sepulchre, 2004, 2006; Ruelle, 1999). Note that

a similar formula can be written for an arbitrary observable φ, but is more cumbersome.
7 Incidentally, this equation shows once again why the synaptic weight matrix is not sufficient to capture

the dynamical effects of a perturbation. Indeed, it contains a purely topological term (
∏n

l=1 Wklkl−1
) and

also depends on a “purely dynamical” term
〈
∏n

l=1 f ′(ukl−1
(l − 1))

〉(T )
that involves an average of the

derivative of the transfer functions along the orbit of the neural network.
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where ( , ) denotes the usual scalar product. Actually, this result can easily be found

without using linear response, by a simple Taylor expansion (see appendix E). The response

is then proportional to ξ but becomes arbitrary large when λ1 tends to 1 and provided

that (v1, ξ) > 0. This analysis can be formally extended to the general case (i.e. including

chaos, eq. 26) but is delicate enough to deserve a treatment by its own and will be the scope

of a forthcoming paper8. Here, we simply want to make the following argument. From

the analysis above, we expect pattern removal to have a maximal effect at “the edge of

chaos”, namely when the (average) value of the spectral radius9 of DFx is close to 1. As

mentioned above, the effects are however more or less prominent according to the choice of

the observable φ. We empirically found that the effects were particularly prominent with

the following quantity:

∆(T )[Λ] =
1

N

√

√

√

√

N
∑

i=1

(

〈Λii(u)〉(T ) − 〈Λii(u′)〉(T )
)2

(30)

Indeed, Λii = f ′(ui) is maximal when the local field of i falls in the central pseudo-linear

part of the transfer function, hence where neuron i is the most sensitive to its input. Hence

∆(T )[Λ] measures how neuron excitability is modified when the pattern is removed. The

evolution of ∆(T )[Λ] during learning following rule eq.(5) is shown on fig. 4 (full lines) for

two values of the passive forgetting rate λ. ∆(T )[Λ] is found to increase to a maximum at

early learning epochs, while it vanishes afterwards. Interestingly, comparison with the decay

of the leading eigenvalue of the Jacobian matrix, µ1 (dotted lines) shows that the maximal

values of ∆(T )[Λ] are obtained when |µ1| = |λ1| is close to 1. Hence, these numerical

simulations confirm that sensitivity to pattern removal is maximal when the leading

eigenvalue is close to 1. Therefore, “Hebb-like” learning drives the global dynamics through

8 This can be achieved by formally “diagonalizing” the matrices 〈DFn〉(T )
but the problem is that eigenval-

ues λk(n) and eigenvectors vk(n) now depend on the time n. Information about the time dependence of

the spectrum can be found using the Fourier transform of the matrix χ and looking for its poles (Cessac

and Sepulchre, 2006). These poles are closely related to the graph structure induced by the Jacobian

matrices, by standard traces formula and cycle expansions (Gaspard, 1998). Essentially, we expect that,

under the effect of learning, the leading resonances move toward the real axis leading to a singularity at

the edge of chaos. The motion should be closely related to the reinforcement of feedback loops discussed

in appendix F.
9 There is a subtlety here. We have DFx = Λ(u)W , while in formula (29) we consider the eigenval-

ues of WΛ(u). However, if λk,vk are eigenvalues and eigenvectors of WΛ(u) then Λ(u)WΛ(u)vk =

DFxΛ(u)vk = λkΛ(u)vk. Therefore, λk, Λ(u)vk are eigenvalues and eigenvectors of DFx.
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FIG. 4 The network sensitivity to the input pattern is maximal close to a bifurcation. The evolution of the average value

for the spectral radius of DF
(T )
x during learning (dotted line) is plotted together with the sensitivity measure ∆(T )[Λ] (full

line) for λ = 0.80 (A) or 0.90 (B). The panels also display the corresponding evolution of the largest Lyapunov exponent L1,

plotted as 1.0 + L1 for obvious comparison purpose (dashed line). The values of ∆(T )[Λ] are normalized to the [0 − 1] range

for comparison purposes. Each value is an average over 50 realizations (standard deviations are omitted for clarity). All other

parameters were as in fig. 1

a bifurcation, in the neighborhood of which sensitivity to the input pattern is maximal. This

property may be crucial regarding memory properties of RRNNs, which must be able to

detect, through their collective response, whether a learned pattern is present or absent.

This property is obtained at the frontier where the strange attractor begins to destabilize

(|µ1| = 1), hence at the so-called “edge of chaos”.

We showed in section III.A that the Hebbian learning rules studied here contract the

spectral radius of DFx, ∀x, so that the latter crosses the value 1 at some learning epoch.

Thus, 1 is ensured to be an eigenvalue of DFx at some point . The evolution of v1, the

eigenvector associated to the leading eigenvalue of the Jacobian matrix µ1, is less obvious.

We plot on fig. 3 (dotted lines) the evolution of its real part during numerical simulations

(actually, its imaginary part vanishes after just a couple of learning epochs). It is clear from

numerical simulations that the possibility of a vanishing projection of the input pattern

ξ (thick dashed line) on v1 can be ruled out (the two vectors are not orthogonal). The

tendency is even opposite, i.e. v1 is found to align on the input pattern at long learning

epochs (T & 100; note that we were not able to find a satisfactory explanation for this

alignment).
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V. DISCUSSION

The coupled dynamical system studied in the present paper (eqs.(1) and (2)) is based

on several simplifying assumptions that allowed the rigorous mathematical study we have

presented. However, many of the results we obtain remain valid when some of these as-

sumptions are relaxed to improve biological realism. Here, we give a brief overview of the

related arguments. As already stated in the introduction, we do not pretend to encompass

the spectrum of complexity and richness of biological learning and plasticity rules (Kim and

Linden, 2007). However, the present study focuses on the major type of synaptic plasticity

(i.e Hebbian plasticity), which is generally considered as the principal cellular basis of be-

havioral learning and memory.

The learning rule we study here eq.(2) includes a term that allows passive forgetting (λ < 1).

This possibility is supported by a body of experimental data that shows that synaptic weights

decay exponentially toward their baseline after LTP, in the absence of subsequent homo-

or hetero-synaptic LTD, with time constants from seconds to days (Abraham et al., 1994,

2002; Brager et al., 2003). A plausible molecular mechanism for this passive behavior has

been recently proposed, which relies on the operation of kinase and phosphatase cycles that

are systematically implicated in learning and memory (Delord et al., 2007). Our theoretical

results predict that learning-induced reduction of dynamics complexity can still arise in the

limit case of λ = 1. Indeed, numerical simulations of Hebbian learning rules devoid of passive

forgetting (i.e. with λ = 1) have clearly evidenced a reduction of the attractor complexity

during learning (Berry and Quoy, 2006; Siri et al., 2006). In this case, the reduction of

the attractor complexity is provoked by an increase of the average saturation level of the

neurons, in agreement with our present analytical results. As a matter of fact, the question

is not so much to know what exactly is the value of λ in real neural networks, but how the

characteristic time scale 1
| log(λ)|

compares to other time scales in the system.

Another assumption of the generic Hebbian rule we study is that Γij = 0 whenever the

presynaptic neuron is silent. As already mentioned section II.A, an interpretation of this

assumption is that this learning rule excludes heterosynaptic LTD. To assess the impact of

this form of synaptic depression in the model, we ran numerical simulations using a variant

of eq.(5) in which the Heavyside term (that forbids heterosynaptic LTD) was omitted. The

results of these simulations (not shown) were in agreement with all the analytical results
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supported here, including those on spectral radius contraction. In agreement with these

numerical simulations, our analytical results on the contraction of the spectral radius are

expected to remain valid when heterosynaptic LTD is accounted for, but this would require

extending the model definition and further mathematical developments that are out of the

scope of the present study.

The effects of Hebbian learning were studied here in a completely connected, one population

(i.e. each neuron can project both excitatory and inhibitory synapses) chaotic network.

While this hypothesis allows a rigorous mathematical treatment, it is clearly a strong ide-

alization of biological neural networks. However, we have tested the analytical predictions

obtained here with numerical simulations of a chaotic recurrent neural network with con-

nectivity mimicking cortical micro-circuitry, i.e. sparse connectivity and distinct excitatory

and inhibitory neuron populations. These simulations unambiguously demonstrated that

our analytical results are still valid in these more realistic conditions (Siri et al., 2007).

From a functional point of view, we have shown that the sensitivity to the learned pattern

is maximal at the edge of chaos. Starting from chaotic dynamics, this regime is reached

at intermediate learning epochs. However, longer learning times result in poorer dynamical

regimes (e.g. fixed points) and the loss of sensitivity to the learned pattern. Additional

plasticity mechanisms like synaptic scaling (Turrigiano et al., 1998) or intrinsic plasticity

ref (Daoudal and Debanne, 2003) may constitute interesting biological processes to main-

tain the network in the vicinity of the edge of chaos and preserve a state of high sensitivity

to the learned pattern. Such possibilities are currently under investigation in our group.
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APPENDIX A: Definitions.

Dealing with chaotic systems, one is faced with the necessity to defining indicators mea-

suring dynamical complexity. There are basically two families of indicators: one is based on

topological properties (e.g. topological entropy), the other is based on statistical properties
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(e.g. Lyapunov exponents or Kolmogorov-Sinai entropy). The latter family can easily be

accessed numerically or experimentally by time averages of relevant observables along typi-

cal trajectories of the dynamical system. However, to this aim, one has to assume a strong

ergodic property: the time average of observables, along trajectories corresponding to initial

conditions drawn at random with respect to a probability distribution having a density (with

respect to the Lebesgue measure), is constant (it does not depend on the initial condition).

This property is far from being evident. Actually, we are not able to prove it in the present

context. On mathematical grounds, it corresponds to the following assumption.

Assumption 1 Call µL is the Lebesgue measure on [0, 1]N and let F
∗tµL the image of µL

under F
t. We assume that the following limit exists:

ρ(T ) = lim
τ→∞

1

τ

τ
∑

t=1

F
∗tµL (A1)

where the probability measure ρ(T ) is called “the Sinai-Ruelle-Bowen (SRB) measure at learn-

ing epoch T” (Bowen, 1975; Ruelle, 1978; Sinai, 1972). Under this assumption the following

holds. Let φ : [0, 1]N → IRN be some suitable (measurable) function. Then the time average:

φ̄[x(T )(0)]
def
= lim

τ→∞

1

τ

τ
∑

t=1

φ(x(T )(t)), (A2)

where x(t) = F
t(x), is equal to the ensemble average:

〈φ〉(T ) def
=

∫

[0,1]N
φ(x)ρ(T )(dx), (A3)

for Lebesgue-almost every initial condition x
(T )(0).

In other words, time average and ensemble average are identical on practical grounds.

The use of ρ(T ) is required to prove the mathematical results below while time average is

what we use for numerical simulations.

Note that in doing so, we have constructed a family of probability distributions ρ(T ) that

depends on the learning epoch T . ρ(T ) provides statistical information about the attractor

structure. A prominent example is the maximal Lyapunov exponent. Let x ∈ [0, 1]N ,

v ∈ IRN and ρ be an SRB measure. Then, the largest Lyapunov exponent is given by:
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L
(T )
1 = lim

t→∞
lim

‖v‖→0

1

t
log

(‖DFt
xv‖

‖v‖

)

(A4)

Its value is constant for ρ(T ) almost every x. (Note indeed that the LHS does not depend

on x, while the RHS does. This is a direct consequence of the assumption that ρ(T ) is an

SRB measure).

APPENDIX B: Asymptotic behaviors

In the specific learning rule eq.(5) used in our numerical simulations, Γij = mimjH(mj).

Thus

‖Γ‖ = supx

‖Γx‖
‖x‖ (B1)

= supx

‖m [mH(m)]+ x‖
‖x‖ (B2)

≤ ‖m‖‖ [mH(m)]+ ‖ (B3)

≤
(

N
∑

i=1

m2
i

)1/2




N
∑

j=1,mj>0

m2
j





1/2

(B4)

≤
√

N
√

Nφ1/2 (B5)

≤ N
√

φ (B6)

where [v]+ denotes the transpose of vector v,
∑

j=1,mj>0 denotes a sum restricted to the

active neurons and φ is the fraction of active neurons. Hence

‖Γ(T )‖ ≤ N
√

φ(T ) (B7)

If (as observed in our numerical simulations) φ(T ) tends to a stationary value φ(∞) then

‖Γ(T )‖ ≤ N
√

φ(∞) (B8)

Hence Γ is bounded in the specific case of eq.(5) by a constant N
√

φ(∞).

More generally, ‖Γ‖ is bounded provided that the function h in (3) is bounded as well.

APPENDIX C: Proof of theorem 1

Let v,x ∈ IRN . Denote by x(t) = Ft(x), and v(t) = DFx(t).DFt−1
x .v, v(0) = v. From

the chain rule:
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‖DFt
xv‖

‖v‖ =
‖DFx(t)v(t − 1)‖

‖v(t − 1)‖
‖v(t − 1)‖

‖v‖

=
‖DFx(t)v(t − 1)‖

‖v(t − 1)‖
‖DFx(t−1)v(t − 2)‖

‖v(t− 2)‖ . . .
‖DFx(1)v‖

‖v‖
Therefore:

L
(T )
1 = lim

t→∞
lim

‖v‖→0

1

t

t
∑

n=1

log

(‖DFx(n)v(n − 1)‖
‖v(n − 1)‖

)

.

Since ‖Av‖ ≤ ‖A‖‖v‖ :

L
(T )
1 ≤ lim

t→∞

1

t

t
∑

n=1

log
(

‖DFx(n)‖
)

= 〈log (‖DFx‖)〉(T ) ρ(T ) − almost surely.

But since DFx = Λ(u)W, we have ‖DFx‖ ≤ ‖W‖‖Λ(u)‖ ≤ ‖W‖maxi(f
′(ui).

APPENDIX D: Local fields

Fix x and the time epoch T . Set u = W(T )x + ξ. The average of u, 〈u〉(T ) is defined

either by the time average (A2) or by the ensemble average (A3). However, since W(T ) is

constant during a given learning epoch one has:

〈u〉(T ) = W(T ) 〈x〉(T ) + ξ, ∀T. (D1)

Therefore:

〈u〉(T+1) = W(T+1) 〈x〉(T+1) + ξ = (λW(T ) +
α

N
Γ(T ))(〈x〉(T ) + δρ(T+1)(x)) + ξ,

where δρ(T+1)(x)
def
= 〈x〉(T+1) − 〈x〉(T ) is the difference of the average value of x between

learning epochs T + 1 and T .

Thus:

〈u〉(T+1) = λ 〈u〉(T ) + (1 − λ)ξ + λW(T )δρ(T+1)(x) +
α

N
Γ(T ) 〈x〉(T+1) ,

and by recurrence:

〈u〉(T+1) = λT 〈u〉(1) +(1−λT )ξ+λ

T
∑

n=1

λT−nW(n)δρ(n+1)(x)+
α

N

T
∑

n=1

λT−nΓ(n) 〈x〉(n+1) (D2)
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APPENDIX E: Proof of eq.(29)

Call u∗(T ) (u
′∗(T )) the fixed point (for the variable u) with (without) ξ. We have:

u
′∗(T ) = WF(u

′∗(T ))

and:

u∗(T ) = WF(u∗(T )) + ξ

Therefore:

u
′∗(T ) − u∗(T ) = δu(T ) = W

[

F(u∗(T ) + δu(T )) − F(u∗(T ))
]

− ξ.

A series expansion yields, to the linear order:

(I −WΛ(u(T )))δu(T ) = −ξ

Decomposing on the eigenbasis vk of WΛ(u(T )) we obtain:

(1 − λk)(δu
(T ),vk) = −(ξ,vk) (E1)

which corresponds to eq. (29) provided |λk| < 1 (ensuring that the matrix I −WΛ(u(T )) is

invertible).

APPENDIX F: Jacobian matrix and feedback loops background

Assume that we slightly perturb at time t the state of neuron j with a small perturbation

(e.g. xj(t) → xj(t) + δj(t)). Then the effect of this change on neuron i, at time t +

1 is given by xi(t + 1) = f
(

∑N
k=1 Wikxk(t) + ξi + Wijδj(t)

)

. One can perform a Taylor

expansion of this expression in powers of Wijδj(t). To the linear order the effect is given

by f ′(ui(t))Wijδj(t). To each Jacobian matrix DFx one can associate a graph, called “the

graph of linear influences”. such that there is an oriented edge j → i iff ∂f(ui)
∂xj

6= 0. The

edge is positive if ∂f(ui)
∂xj

> 0 and negative if ∂f(ui)
∂xj

< 0. An important remark is that this

graph depends on the current state x, contrarily to the weights matrix which is a constant

inside a given learning epoch. This has important consequences. Indeed, in our case since
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∂Fi

∂xj
= f ′(ui)Wij , the edge j → i in the graph of linear influences can be very small even if the

synaptic weight Wij is large. It suffices that |ui| be large. This effect, due to the saturation

of the transfer function f , is prominent in the subsequent studies.

We have now the following situation: “above” (in the tangent bundle) each point x, there

is graph. This graph contains circuits or feedback loops. If e is an edge, denote by o(e)

the origin of the edge and t(e) its end. Then a circuit is a sequence of edges e1, ..., ek such

that o(ei+1) = t(ei), ∀i = 1...k − 1, and t(ek) = o(e1). Such a circuit is positive (negative)

if the product of its edges is positive (negative). A positive circuit basically yields (to the

linear order) a positive feedback that induces an increase of the activity of the neurons in

this circuit. Obviously, there is no exponential increase since rapidly nonlinear terms will

saturate this effect. It is thus expected that positive loops enhance stability.

A particularly prominent example of this is well known in the framework of continu-

ous time neural networks models and also in genetic networks. It is provided by so-called

“cooperative systems”. A dynamical system is called cooperative if ∂f(ui)
∂xj

(x) ≥ 0, ∀i 6= j.

Therefore, in this case, all edges are positive edges10, whatever the state of the neural net-

work and all circuits are positive. Cooperative systems preserve the following partial order

x ≤ y ⇔ xi ≤ yi, i = 1 . . . N . Thus x(0) ≤ y(0) ⇒ x(t) ≤ y(t), ∀t > 0 (this corresponds

to the positive feedback discussed above). From these inequalities, Hirsch (Hirsch, 1989)

proved that for a two dimensional cooperative dynamical system, any bounded trajectory

converges to a fixed point. In larger dimension, one needs moreover a technical condition

on the Jacobian matrix: it must be irreducible. Then Hirsch proved that the ω-limit set of

almost every bounded trajectory is made of fixed points. Note that this result holds when

f is nonlinear.

On the opposite, negative loops usually generate oscillations. For example, the second

Thomas conjecture (Thomas, 1981), proved by Gouzé (Gouzé, 1998) under the hypothesis

that the sign of the Jacobian matrix elements do not depend on the state, states that

“A negative loop is a necessary condition for a stable periodic behavior”. In our model,

negative loop generate oscillations provided that the nonlinearity g is sufficiently large. This

can be easily figured out by considering a system with 2 neurons. A necessary condition to

10 More generally, there is a variable change which maps the initial dynamical system to a cooperative system

with positive edges.

29



have a Hopf bifurcation giving rise to oscillations is W12W21 < 0, but the bifurcation occurs

only when g is large enough.
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