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Abstract. In this paper, we exhibit a strong relation between the sand automata con-
figuration space and the cellular automata configuration space. This relation induces a
compact topology for sand automata, and a new context in which sand automata are home-
omorphic to cellular automata acting on a specific subshift. We show that the existing
topological results for sand automata, including the Hedlund-like representation theorem,
still hold. In this context, we give a characterization of the cellular automata which are
sand automata.

1. Introduction

Self-organized criticality (SOC) is a common phenomenon observed in a huge variety
of processes in physics, biology and computer science. A SOC system evolves to a “critical
state” after some finite transient. Any perturbation, no matter how small, of the critical
state generates a deep reorganization of the whole system. Then, after some other finite
transient, the system reaches a new critical state and so on. Examples of SOC systems are:
sandpiles, snow avalanches, star clusters in the outer space, earthquakes, forest fires, load
balance in operating systems [2, 3, 16]. Among them, sandpiles models are a paradigmatic
formal model for SOC systems [8, 9].

In [4], the authors introduced sand automata as a generalization of sandpiles models
and transposed them in the setting of discrete dynamical systems. A key-point of [4] was
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to introduce a (locally compact) metric topology to study the dynamical behavior of sand
automata. A first and important result was a fundamental representation theorem similar
to the well-known theorem for cellular automata from Hedlund [10, 4]. In [5, 6], the authors
investigate sand automata by dealing with some basic set properties and decidability issues.

In this paper we continue the study of sand automata. First of all, we introduce a
different metric on configurations (i.e., spatial distributions of sand grains). This metric is
defined by means of the relation between sand automata and cellular automata [6]. With
the induced topology, the configuration set turns out to be a compact (and not only locally
compact), perfect and totally disconnected space. The “strict” compactness gives a better
topological background to study the behavior of sand automata (and in general of discrete
dynamical systems) [1, 12]. We show that all the topological results from [4], in particular the
Hedlund-like representation theorem, remain valid with the compact topology. Moreover,
with this topology, any sand automaton is homeomorphic to a cellular automaton defined on
a subset of its usual domain. We prove that it is possible to decide whether a given cellular
automaton represents, through that homeomorphism, a sand automaton.

The paper is structured as follows. In Section 2, we recall basic definitions and results
about cellular automata and sand automata. Then, in Section 3, we define the topology and
prove topological results, in particular the representation theorem.

2. Definitions

For all a, b ∈ Z with a ≤ b, let [a, b] = {a, a + 1, . . . , b} and ˜[a, b] = [a, b] ∪ {+∞,−∞}.
For a ∈ Z, let [a,+∞) = {a, a + 1, . . .} \ {+∞}. Let N+ be the set of positive integers.

Let A a (possibly infinite) alphabet and d ∈ N∗. Denote by Md the set of all the d-
dimensional matrices with values in A. We assume that the entries of any matrix U ∈ Md are
all the integer vectors of a suitable d-dimensional hyper-rectangle [1, h1]×· · ·× [1, hd] ⊂ Nd

+.

For any h = (h1, . . . , hd) ∈ Nd
+, let Md

h ⊂ Md be the set of all the matrices with entries
in [1, h1] × · · · × [1, hd]. In the sequel, the vector h will be called the order of the matrices

belonging to Md
h. For a given element x ∈ AZ

d

, the finite portion of x of reference position

i ∈ Zd and order h ∈ Nd
+ is the matrix M i

h(x) ∈ Md
h defined as ∀k ∈ [1, h1] × · · · × [1, hd],

M i
h(x)k = xi+k−1. For any r ∈ N, let r

d (or simply r if the dimension is not ambiguous) be
the vector (r, . . . , r).

2.1. Cellular automata and subshifts

Let A be a finite alphabet. A CA configuration of dimension d is a function from Zd

to A. The set AZ
d

of all the CA configurations is called the CA configuration space. This
space is usually equipped with the Tychonoff metric dT defined by

∀x, y ∈ AZ
d

, dT (x, y) = 2−k where k = min
{
|j| : j ∈ Zd, xj 6= yj

}
.

The topology induced by dT coincides with the product topology induced by the discrete
topology on A. With this topology, the CA configuration space is a Cantor space: it is
compact, perfect (i.e., it has no isolated points) and totally disconnected.

For any k ∈ Zd the shift map σk : AZ
d

→ AZ
d

is defined by ∀x ∈ AZ
d

,∀i ∈ Zd,

σk(x)i = xi+k. A function F : AZ
d

→ AZ
d

is said to be shift-commuting if ∀k ∈ Zd,
F ◦ σk = σk ◦ F .
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A d-dimensional subshift S is a closed subset of the CA configuration space AZ
d

which
is shift-invariant, i.e., for any k ∈ Zd, σk(S) ⊂ S. Let F ⊆ Md and let SF be the set of con-

figurations x ∈ AZ
d

such that all possible finite portions of x do not belong to F , i.e., for any
i, h ∈ Zd, M i

h(x) /∈ F . The set SF is a subshift, and F is called its set of forbidden patterns.
Note that for any subshift S, it is possible to find a set of forbidden patterns F such that
S = SF . A subshift S is said to be a subshift of finite type (SFT) if S = SF for some finite set
F . The language of a subshift S is L(S) =

{
U ∈ Md : ∃i ∈ Zd, h ∈ Nd

+, x ∈ S, M i
h(x) = U

}

(for more on subshifts, see [13] for instance).
A cellular automaton is a quadruple 〈A, d, r, g〉, where A is the alphabet also called the

state set, d is the dimension, r ∈ N is the radius and g : Md
2r+1

→ A is the local rule of the

automaton. The local rule g induces a global rule G : AZ
d

→ AZ
d

defined as follows,

∀x ∈ AZ
d

, ∀i ∈ Zd, G(x)i = g
(
M i−r

2r+1
(x)

)
.

Note that CA are exactly the class of all shift-commuting functions which are (uniformly)
continuous with respect to the Tychonoff metric (Hedlund’s theorem from [10]). For the
sake of simplicity, we will make no distinction between a CA and its global rule G.

The local rule g can be extended naturally to all finite matrices in the following way.
With a little abuse of notation, for any h ∈ [2r + 1,+∞)d and any U ∈ Md

h, define g(U) as

the matrix obtained by the simultaneous application of g to all the Md
2r+1

submatrices of

U . Formally, g(U) = Mr

h−2r(G(x)), where x is any configuration such that M0
h(x) = U .

2.2. SA Configurations

A SA configuration (or simply configuration) is a set of sand grains organized in piles
and distributed all over the d-dimensional lattice Zd. A pile is represented either by an
integer from Z (number of grains), or by the value +∞ (source of grains), or by the value

−∞ (sink of grains), i.e., it is an element of Z̃ = Z ∪ {−∞, +∞}. One pile is positioned in

each point of the lattice Zd. Formally, a configuration x is a function from Zd to Z̃ which

associates any vector i = (i1, . . . , id) ∈ Zd with the number xi ∈ Z̃ of grains in the pile of

position i. Denote by C = Z̃Z
d

the set of all configurations.
When the dimension d is known without ambiguity we note 0 the null vector of Zd and

|i| the infinite norm of a vector i ∈ Zd. A measuring device βm
r of precision r ∈ N and

reference height m ∈ Z is a function from Z̃ to [̃−r, r] defined as follows

∀n ∈ Z̃, βm
r (n) =





+∞ if n > m + r ,
−∞ if n < m − r ,
n − m otherwise.

A measuring device is used to evaluate the relative height of two piles, with a bounded
precision. This is the technical basis of the definition of cylinders, distances and ranges
which are used all along this article.

In [4], the authors equipped C with a metric in such a way that two configurations are
at small distance if they have the same number of grains in a finite neighborhood of the
pile indexed by the null vector. The neighborhood is individuated by putting the measuring
device at the top of the pile, if this latter contains a finite number of grains. Otherwise
the measuring device is put at height 0. In order to formalize this distance, the authors
introduced the notion of cylinder, that we rename top cylinder. For any configuration x ∈ C,
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for any r ∈ N, and for any i ∈ Zd, the top cylinder of x centered in i and of radius r is the

d-dimensional matrix C ′i
r(x) ∈ Md

2r+1
defined on the infinite alphabet A = Z̃ by

∀k ∈ [1, 2r + 1]d ,
(
C ′i

r(x)
)

k
=





xi if k = r + 1 ,
βxi

r (xi+k−r−1) if k 6= r + 1 and xi 6= ±∞ ,
β0

r (xi+k−r−1) otherwise.

In dimension 1 and for a configuration x ∈ C, we have

C ′i
r(x) = (βxi

r (xi−r), . . . , β
xi

r (xi−1), xi, β
xi

r (xi+1), . . . , β
xi

r (xi+r))

if xi 6= ±∞, while

C ′i
r(x) =

(
β0

r (xi−r), . . . , β
0
r (xi−1), xi, β

0
r (xi+1), . . . , β

0
r (xi+r)

)

if xi = ±∞.
By means of top cylinders, the distance d

′ : C ×C → R+ has been introduced as follows:

∀x, y ∈ C, d
′(x, y) = 2−k where k = min

{
r ∈ N : C ′0

r(x) 6= C ′0
r(y)

}
.

Proposition 2.1 ([4, 6]). With the topology induced by d
′, the configuration space is locally

compact, perfect and totally disconnected.

2.3. Sand automata

For any integer r ∈ N, for any configuration x ∈ C and any index i ∈ Zd with xi 6= ±∞,
the range of center i and radius r is the d-dimensional matrix Ri

r(x) ∈ Md
2r+1

on the finite

alphabet A = [̃−r, r] ∪ ⊥ such that

∀k ∈ [1, 2r + 1]d ,
(
Ri

r(x)
)
k

=

{
⊥ if k = r + 1 ,
βxi

r (xi+k−r−1) otherwise.

The range is used to define a sand automaton. It is a kind of top cylinder, where the
observer is always located on the top of the pile xi (called the reference). It represents what
the automaton is able to see at position i. Sometimes the central ⊥ symbol may be omitted
for simplicity sake. The set of all possible ranges of radius r, in dimension d, is denoted by
Rd

r .
A sand automaton (SA) is a deterministic finite automaton working on configurations.

Each pile is updated synchronously, according to a local rule which computes the variation of
the pile by means of the range. Formally, a SA is a triple 〈d, r, f〉, where d is the dimension,
r is the radius and f : Rd

r → [−r, r] is the local rule of the automaton. By means of the
local rule, one can define the global rule F : C → C as follows

∀x ∈ C, ∀i ∈ Zd, F (x)i =

{
xi if xi = ±∞ ,
xi + f(Ri

r(x)) otherwise.

Remark that the radius r of the automaton has three different meanings: it represents at
the same time the number of measuring devices in every dimension of the range (number
of piles in the neighborhood), the precision of the measuring devices in the range, and the
highest return value of the local rule (variation of a pile). It guarantees that there are only
a finite number of ranges and return values, so that the local rule has finite description.

The following example illustrates a very simple sand automaton. For more examples,
we refer to [6].
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Example 2.2 (the automaton N ). This automaton destroys a configuration by collapsing all
piles towards the lowest one. It decreases a pile when there is a lower pile in the neighborhood
(see Figure 1). Let N = 〈1, 1, fN 〉 of global rule FN where

∀a, b ∈ [̃−1, 1], fN (a, b) =

{
−1 if a < 0 or b < 0 ,

0 otherwise.

Figure 1: Illustration of the behavior of N .

When no misunderstanding is possible, we identify a SA with its global rule F . For
any k ∈ Zd, we extend the definition of the shift map to C, σk : C → C is defined by
∀x ∈ C,∀i ∈ Zd, σk(x)i = xi+k. The raising map ρ : C → C is defined by ∀x ∈ C,∀i ∈ Zd,
ρ(x)i = xi + 1. A function F : C → C is said to be vertical-commuting if F ◦ ρ = ρ ◦ F .
A function F : C → C is infinity-preserving if for any configuration x ∈ C and any vector
i ∈ Zd, F (x)i = +∞ if and only if xi = +∞ and F (x)i = −∞ if and only if xi = −∞.

Theorem 2.3 ([4, 6]). The class of SA is exactly the class of shift and vertical-commuting,
infinity-preserving functions F : C → C which are continuous w.r.t. the metric d

′.

3. Topology and dynamics

In this section we introduce a compact topology on the SA configuration space by means
of a relation between SA and CA. With this topology, a Hedlund-like theorem still holds
and each SA turns out to be homeomorphic to a CA acting on a specific subshift. We
also characterize CA whose action on this subshift represents a SA. Finally, we study some
topological properties of SA in this new setting.

3.1. A compact topology for SA configurations

From [6], we know that any SA of dimension d can be simulated by a suitable CA of
dimension d+1 (and also any CA can be simulated by a SA). In particular, a d-dimensional
SA configuration can be seen as a (d + 1)-dimensional CA configuration on the alphabet

A = {0, 1}. More precisely, consider the function ζ : C → {0, 1}Z
d+1

defined as follows

∀x ∈ C, ∀i ∈ Zd,∀k ∈ Z, ζ(x)(i,k) =

{
1 if xi ≥ k ,
0 otherwise.

A SA configuration x ∈ C is coded by the CA configuration ζ(x) ∈ {0, 1}Z
d+1

. Remark that
ζ is an injective function.

Consider the (d + 1)-dimensional matrix K ∈ Md+1
( 1, . . . , 1, 2) such that K1,...,1,2 = 1

and K1,...,1,1 = 0. With a little abuse of notation, denote SK = S{K} the subshift of
configurations that do not contain the pattern K.
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Proposition 3.1. The set ζ(C) is the subshift SK .

Proof. Each d-dimensional SA configuration x ∈ C is coded by the (d + 1)-dimensional
CA configuration ζ(x) such that for any i, h ∈ Zd+1, M i

h(ζ(x)) 6= K, then ζ(C) ⊆ SK .

Conversely, we can define a preimage by ζ for any y ∈ SK , by ∀i ∈ Zd, xi = sup{k : y(i,k) =
1}. Hence ζ(C) = SK .

Figure 2 illustrates the mapping ζ and the matrix K =

(
1
0

)
for dimension d = 1.

The set of SA configurations C = Z̃Z can be seen as the subshift SK = ζ(C) of the CA

configurations set {0, 1}Z
2

.

(a) Valid configuration. (b) Invalid configuration.

Figure 2: The configuration from Figure 2(a) is valid, while the configuration from Fig-
ure 2(b) contains the forbidden matrix K: there is a “hole”.

Definition 3.2. The distance d : C × C → R+ is defined as follows:

∀x, y ∈ C, d(x, y) = dT (ζ(x), ζ(y)) .

In other words, the (well defined) distance d between two configurations x, y ∈ C is
nothing but the Tychonoff distance between the configurations ζ(x), ζ(y) in the subshift

SK . The corresponding metric topology is the {0, 1}Z
d+1

product topology induced on SK .

Remark 3.3. Note that this topology does not coincide with the topology obtained as

countable product of the discrete topology on Z̃. Nevertheless, if you consider the topology

T on Z̃ based on singletons {a} where a ∈ Z and infinite intervals [a,∞] or [−∞, a], where
a ∈ Z, then d corresponds to its product topology. In other words, for any i ∈ Zd, the ith

projection πi : C → Z̃ defined by πi(x) = xi is continuous for T .

By definition of this topology, if one considers ζ as a map from C onto SK , ζ turns out
to be an isometric homeomorphism between the metric spaces C (endowed with d) and SK

(endowed with dT ). As an immediate consequence, the following results hold.

Proposition 3.4. The set C is a compact and totally disconnected space where the open
balls are clopen (i.e., closed and open) sets.
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Proposition 3.5. The space C is perfect.

Proof. Choose an arbitrary configuration x ∈ C. For any n ∈ N, let l ∈ Zd such that |l| = n.
We build a configuration y ∈ C, equal to x except at site l, defined as follows

∀j ∈ Zd \ {l} , yj = xj and yl =

{
1 if xl = 0 ,
0 otherwise.

By Definition 3.2, d(y, x) = 2−n.

Consider now the following notion.

Definition 3.6 (ground cylinder). For any configuration x ∈ C, for any r ∈ N, and for any
i ∈ Zd, the ground cylinder of x centered on i and of radius r is the d-dimensional matrix
Ci

r(x) ∈ Md
2r+1

defined by

∀k ∈ [1, 2r + 1]d ,
(
Ci

r(x)
)
k

= β0
r (xi+k−r−1) .

For example in dimension 1,

Ci
r(x) =

(
β0

r (xi−r), . . . , β
0
r (xi), . . . , β

0
r (xi+r)

)
.

Figure 3 illustrates top cylinders and ground cylinders in dimension 1. Remark that the
contents of the two kinds of cylinders is totally different.

(a) Top cylinder centered on xi = 4:
C′i

r(x) = (+1,−∞,−3,4,−2,−2, +1).
(b) Ground cylinder, at height 0:
Ci

r(x) = (+∞,−2, +1, +∞, +2, +2, +∞).

Figure 3: Illustration of the two notions of cylinders on the same configuration, with radius 3.

From Definition 3.2, we obtain the following expression of distance d by means of ground
cylinders.

Remark 3.7. For any pair of configurations x, y ∈ C, we have

d(x, y) = 2−k where k = min
{
r ∈ N : C0

r (x) 6= C0
r (y)

}
.

As a consequence, two configurations x, y are compared by putting boxes (the ground
cylinders) at height 0 around the corresponding piles indexed by 0. The integer k is the
size of the smallest cylinders in which a difference appears between x and y. This way of
calculating the distance d is similar to the one used for the distance d

′, with the difference
that the measuring devices and the cylinders are now located at height 0. This is slightly
less intuitive than the distance d

′, since it does not correspond to the definition of the local
rule. However, this fact is not an issue all the more since the configuration space is compact
and the representation theorem still holds with the new topology (Theorem 3.11).
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Finally, for a cylinder U , denote by [U ]r =
{
x ∈ C, C0

r (x) = U
}

the open ball of radius
2−r centered on U . We may write [U ] when the radius of the ball can be omitted.

3.2. SA as CA on a subshift

Let (X, m1) and (Y, m2) be two metric spaces. Two functions H1 : X → X, H2 : Y →
Y are (topologically) conjugated if there exists a homeomorphism η : X → Y such that
H2 ◦ η = η ◦ H1.

We are going to show that any SA is conjugated to some restriction of a CA. Let F
a d-dimensional SA of radius r and local rule f . Let us define the (d + 1)-dimensional
CA G on the alphabet {0, 1}, with radius 2r and local rule g defined as follows (see [6]

for more details). Let M ∈ Md+1
4r+1

be a matrix on the finite alphabet {0, 1} which does
not contain the pattern K. If there is a j ∈ [r + 1, 3r] such that M(2r+1,...,2r+1,j) = 1 and

M(2r+1,...,2r+1,j+1) = 0, then let R ∈ Rd
r be the range taken from M of radius r centered on

(2r+1, . . . , 2r+1, j). See figure 4 for an illustration of this construction in dimension d = 1.

Figure 4: Construction of the local rule g of the CA from the local rule f of the SA, in
dimension 1. A range R of radius r is associated to the matrix M of order 4r + 1.

The new central value depends on the height j of the central column plus its variation.
Therefore, define g(M) = 1 if j + f(R) ≥ 0, g(M) = 0 if j + f(R) < 0, or g(M) = M2r+1

(central value unchanged) if there is no such j.
The following diagram commutes:

C
F

−−−−→ C

ζ

y
yζ

SK −−−−→
G

SK

, (3.1)

i.e., G ◦ ζ = ζ ◦ F . As an immediate consequence, we have the following result.

Proposition 3.8. Any d-dimensional SA F is topologically conjugated to a suitable (d+1)-
dimensional CA G acting on SK .

Being a dynamical submodel, SA share properties with CA, some of which are proved
below. However, many results which are true for CA are no longer true for SA; for instance,
injectivity and bijectivity are no more equivalent, as proved in [5]. Thus, SA deserve to be
considered as a new model.

Corollary 3.9. The global rule F : C → C of a SA is uniformly continuous w.r.t distance d.

Proof. Let G be the global rule of the CA which simulates the given SA. Since the dia-
gram (3.1) commutes and ζ is a homeomorphism, F = ζ−1 ◦G◦ζ. The map G is continuous
and, by Proposition 3.4, C is compact, which proves the corollary.
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For every a ∈ Z, let Ca = π−1
0 ({a}) be the clopen (and compact) set of all configurations

x ∈ C such that x0 = a.

Lemma 3.10. Let F : C → C be a continuous and infinity-preserving map. There exists an
integer l ∈ N such that for any configuration x ∈ C0 we have |F (x)0| ≤ l.

Proof. Since F is continuous and infinity-preserving, the set F (C0) is compact and included
in π−1

0 (Z). From Remark 3.3, π0 is continuous on the set π−1
0 (Z) and in particular it is

continuous on the compact F (C0). Hence π0(F (C0)) is a compact subset of Z̃ containing no
infinity, and therefore it is included in some interval [−l, l], where l ∈ N.

Theorem 3.11. A mapping F : C → C is the global transition rule of a sand automaton if
and only if all the following statements hold

(i) F is (uniformly) continuous w.r.t the distance d;
(ii) F is shift-commuting;

(iii) F is vertical-commuting;
(iv) F is infinity-preserving.

Proof. Let F be the global rule of a SA. By definition of SA, F is shift-commuting, vertical-
commuting and infinity-preserving. From Corollary 3.9, F is also uniformly continuous.

Conversely, let F be a continuous map which is shift-commuting, vertical-commuting,
and infinity-preserving. By compactness of the space C, F is also uniformly continuous. Let
l ∈ N be the integer given by Lemma 3.10. Since F is uniformly continuous, there exists an
integer r ∈ N such that

∀x, y ∈ C C0
r (x) = C0

r (y) ⇒ C0
l (F (x)) = C0

l (F (y)) .

We now construct the local rule f : Rd
r → [−r, r] of the automaton. For any input range

R ∈ Rd
r , set f(R) = F (x)0, where x is an arbitrary configuration of C0 such that ∀k ∈

[1, 2r + 1], k 6= r + 1, β0
r (xk−r−1) = Rk. Note that the value of f(R) does not depend on

the particular choice of the configuration x ∈ C0 such that ∀k 6= r + 1, β0
r (xk−r−1) = Rk.

Indeed, Lemma 3.10 and uniform continuity together ensure that for any other configuration
y ∈ C0 such that ∀k 6= r + 1, β0

r (yk−r−1) = Rk, we have F (y)0 = F (x)0, since β0
l (F (x)0) =

β0
l (F (y)0) and |F (y)0| ≤ l. Thus the rule f is well defined.

We now show that F is the global mapping of the sand automaton of radius r and local
rule f . Thanks to (iv), it is sufficient to prove that for any x ∈ C and for any i ∈ Zd with
|xi| 6= ∞, we have F (x)i = xi + f

(
Ri

r(x)
)
. By (ii) and (iii), for any i ∈ Zd such that

|xi| 6= ∞, it holds that

F (x)i =
[
ρxi ◦ σ−i

(
F (σi ◦ ρ−xi(x))

)]
i

= xi +
[
σ−i

(
F (σi ◦ ρ−xi(x))

)]
i

= xi +
[
F (σi ◦ ρ−xi(x))

]
0

.

Since σi ◦ ρ−xi(x) ∈ C0, we have by definition of f

F (x)i = xi + f
(
R0

r(σ
i ◦ ρ−xi(x))

)
.

Moreover, by definition of the range, for all k ∈ [1, 2r + 1]d,

R0
r(σ

i ◦ ρ−xi(x))k = β[σi◦ρ−xi (x)]0
r (σi ◦ ρ−xi(x)k) = β0

r (xi+k − xi) = βxi

r (xi+k) ,

hence R0
r(σ

i ◦ ρ−xi(x)) = Ri
r(x), which leads to F (x)i = xi + f

(
Ri

r(x)
)
.
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We now deal with the following question: given a (d + 1)-dimensional CA, does it
represent a d-dimensional SA, in the sense of the conjugacy expressed by diagram 3.1? In
order to answer to this question we start to express the condition under which the action of
a CA G can be restricted to a subshift SF , i.e., G(SF ) ⊆ SF (if this fact holds, the subshift
SF is said to be G-invariant).

Lemma 3.12. Let G and SF be a CA and a subshift of finite type, respectively. The
condition G(SF ) ⊆ SF is satisfied iff for any U ∈ L(SF ) and any H ∈ F of the same order
than g(U), it holds that g(U) 6= H.

Proof. Suppose that G(SF ) ⊆ SF . Choose arbitrarily H ∈ F and U ∈ L(SF ), with g(U)
and H of the same order. Let x ∈ SF containing the matrix U . Since G(x) ∈ SF , then
g(U) ∈ L(SF ), and so g(U) 6= H. Conversely, if x ∈ SF and G(x) /∈ SF , then there exist
U ∈ L(SF ) and H ∈ F with g(U) = H.

The following proposition gives a sufficient and necessary condition under which the
action of a CA G on configurations of the G-invariant subshift SK = C preserves any
column whose cells have the same value.

Lemma 3.13. Let G be a (d+1)-dimensional CA with state set {0, 1} and SK be the subshift
representing SA configurations. The following two statements are equivalent:

(i) for any x ∈ SK with x(0,...,0,i) = 1 (resp., x(0,...,0,i) = 0) for all i ∈ Z, it holds that
G(x)(0,...,0,i) = 1 (resp., G(x)(0,...,0,i) = 0) for all i ∈ Z.

(ii) for any U ∈ Md
2r+1

∩ L(SK) with U(r+1,...,r+1,k) = 1 (resp., U(r+1,...,r+1,k) = 0) and
any k ∈ [1, 2r + 1], it holds that g(U) = 1 (resp., g(U) = 0).

Proof. Suppose that (1) is true. Let U ∈ Md
2r+1

∩L(SK) be a matrix with U(r+1,...,r+1,k) = 1

and let x ∈ SK be a configuration such that x(0,...,0,i) = 1 for all i ∈ Z and M−r

2r+1
(x) = U .

Since G(x)(0,...,0,i) = 1 for all i ∈ Z, and M0
2r+1

(x) = U , then g(U) = 1. Conversely, let
x ∈ SK with x(0,...,0,i) = 1 for all i ∈ Z. By shift-invariance, we obtain G(x)(0,...,0,i) = 1 for
all i ∈ Z.

Lemmas 3.12 and 3.13 immediately lead to the following conclusion.

Proposition 3.14. It is decidable to check whether a given (d + 1)-dimensional CA corre-
sponds to a d-dimensional SA.

3.3. Some dynamical behaviors

SA are very interesting models, whose complexity lies between that of d-dimensional
and d + 1-dimensional CA. Indeed, we have seen in the previous section that the latter can
simulate SA, and it was shown in [6] that SA could simulate the former. A classification of
one-dimensional cellular automata in terms of their dynamical behavior was given in [11].
Things appear to be very different as soon as we get into the second dimension, as noted in
[15, 14]. This classification is based on the following notions.

Let (X,m) be a metric space and let H : X → X be a continuous application. An
element x ∈ X is an equicontinuity point for H if for any ε > 0, there exists δ > 0 such
that for all y ∈ X, m(x, y) < δ implies that ∀n ∈ N, m(Hn(x), Hn(y)) < ε. The map H is
equicontinuous if for any ε > 0, there exists δ > 0 such that for all x, y ∈ X, m(x, y) < δ
implies that ∀n ∈ N, m(Hn(x), Hn(y)) < ε. An element x ∈ X is ultimately periodic
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for H if there exist two integers n ≥ 0 (the preperiod) and p > 0 (the period) such that
Hn+p(x) = Hn(x). H is ultimately periodic if there exist n ≥ 0 and p > 0 such that
Hn+p = Hn. H is sensitive (to the initial conditions) if there is a constant ε > 0 such that
for all points x ∈ X and all δ > 0, there is a point y ∈ X and an integer n ∈ N such that
m(x, y) < δ but m(Fn(x), Fn(y)) > ε. H is positively expansive if there is a constant ε > 0
such that for all distinct points x, y ∈ X, there exists n ∈ N such that m(Hn(x), Hn(y)) > ε.

We consider these notions in the setting of sand automata with the metric topology
induced by d. First we complete the definitions of equicontinuity and ultimate periodicity.

Proposition 3.15. A SA F is equicontinuous if and only if all configurations of C are
equicontinuity points.

Proof. Suppose that all configurations are equicontinuity points. Let ε > 0. For all x ∈ C,
there is some δx such that for every configuration y such that d(x, y) < δx, we have ∀n ∈
N, d(Fn(x), Fn(y)) < ε

2 . From the open covering C =
⋃

x∈C

{
y|d(x, y) < δx

2

}
, we can extract

a finite covering C =
⋃

x∈D

{
y|d(x, y) < δx

2

}
, where D ⊂ C is finite. Let δ = minx∈D

δx

2 . Then

for every x, y ∈ C, such that d(x, y) < δ, there is some z ∈ D such that d(x, z) < δz

2 . We

also have d(y, z) < δ + δz

2 ≤ δz. Hence, for any n ∈ N, d(Fn(x), Fn(y)) < d(Fn(x), Fn(z))+
d(Fn(y), Fn(z)) < ε. Since this is true for any ε > 0, F is equicontinuous. The converse is
trivial.

We introduce a helpful lemma, used to refine the notion of ultimate periodicity.

Lemma 3.16. Any covering C =
⋃

k∈N
Σk by closed shift-invariant subsets Σk contains

C = Σk for some k ∈ N.

Proof. If C =
⋃

k∈N
Σk where the Σk are closed, then by the Baire Theorem, some Σk has

nonempty interior. Hence, it contains some ball [U ] where U is a cylinder. If it is shift-

invariant, then it contains
⋃

k∈Zd σk([U ]), which is the complete space.

Proposition 3.17. A SA F is ultimately periodic if and only if all configurations of C are
ultimately periodic points for F .

Proof. Let F be a SA such that all configurations x ∈ C are ultimately periodic for F . For
any n ≥ 0 and p > 0, let Dn,p be the closed shift-invariant subset {x : Fn+p(x) = Fn(x)}.
Since C =

⋃
n,p∈N

Dn,p, by Lemma 3.16, C = Dn,p for some n ≥ 0 and some p > 0. The
converse is obvious.

Using the new compact topological framework, it is possible to prove that equicontinuity
and ultimate periodicity are equivalent (proof in [7]).

Proposition 3.18 ([7]). A SA is equicontinuous if and only if it is ultimately periodic.

Despite these classical results, it appears that the classification from [11] into four classes
(equicontinuous CA, non equicontinuous CA admitting an equicontinuity configuration, sen-
sitive but not positively expansive CA, positively expansive CA) becomes irrelevant for
one-dimensional SA. In particular, none of them satisfy the last topological concept of the
classification (positive expansivity).

Proposition 3.19 ([7]). There are no positively expansive SA.
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It also seems that the trichotomy between the other classes might be false. We conjecture
that there exist non-sensitive SA without equicontinuity points, which would lead to another
classification into four classes: equicontinuous, admitting an equicontinuity configuration
(but not equicontinuous), non-sensitive without equicontinuity configurations, sensitive.

4. Conclusion

In this article we have continued the study of sand automata, by introducing a compact
topology on the SA configurations set. In this new context of study, the characterization
of SA functions of [4, 6] still holds. Moreover, a topological conjugacy of any SA with a
suitable CA acting on a particular subshift might facilitate future studies about dynamical
and topological properties of SA.

In particular, injectivity and surjectivity and their corresponding dimension-dependent
decidability problems could help to understand if SA look more like CA of the same dimen-
sion or of the following one. Still in that idea is the open problem of the dichotomy between
sensitive SA and those with equicontinuous configurations. A potential counter-example
would give a more precise idea of the specificities of the dynamical behaviors represented by
SA.
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