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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Dense flows of cohesive granular materials
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1 LMSGC, Institut Navier, 2 allée Kepler, 77 420 Champs sur Marne, France
2 CEMAGREF, 2 rue de la Papeterie, BP 76, 38402 Saint-Martin d’Hères, France

(Received 8 July 2007)

Using molecular dynamic simulations, we investigate the characteristics of dense flows
of model cohesive grains. We describe their rheological behavior and its origin at the
scale of the grains and of their organization. Homogeneous plane shear flows give access
to the constitutive law of cohesive grains which can be expressed by a simple friction
law similar to the case of cohesionless grains, but intergranular cohesive forces strongly
enhance the resistance to the shear. Then we show the consequence on flows down a
slope: a plugged region develops at the free surface where the cohesion intensity is the
strongest. Moreover, we measure various indicators of the microstructure within flows
which evidence the aggregation of grains due to cohesion and we analyze the properties
of the contact network (force distributions and anisotropy). This provides new insights
into the interplay between the local contact law, the microstructure and the macroscopic
behavior of cohesive grains.

1. Introduction

Dense flows of cohesionless grains have a rich rheological behavior, as it has been
pointed out during the last 20 years or so. However, real granular materials often present
significant inter-particular cohesive forces resulting from different physical origins: van

der Waals forces for small enough grains such as clay particles, powders (Rietema 1991;
Quintanilla et al. 2003; Castellanos 2005) or third body in tribology (Iordanoff et al. 2001;
Iordanoff et al. 2002), capillary forces in humid grains as in unsaturated soils or wet snow,
and solid bridges in sintered powders (Miclea et al. 2005) or when liquid menisci freeze
(Hatzes et al. 1991). How do these cohesive forces affect dense granular flows ? Up to
now, this question is largely ignored.

In this paper we provide new insights in the understanding of dense flows of cohesive
grains. Flow characteristics are investigated through discrete numerical simulations (with
a standard molecular dynamics method) which enable to easily control the intensity of
cohesion and provide information at the level of the grains, most often inaccessible to ex-
periments. We simulate model cohesive grains with a simple intergranular adhesive force
which captures the main feature of any cohesion model, the tensile strength of contacts.
From homogeneous plane shear flows, prescribing pressure and shear rate, we measure a
strong evolution of the constitutive law as the intergranular cohesion is increased, and
we relate this macroscopic behavior to the micro-mechanical properties of the grains and
their microstructural organization. The understanding of the effect of intergranular cohe-
sive force on constitutive law enables to discuss practically relevant flows down inclined
planes, which are more complex since stresses are no more homogeneous.

† chevoir@lcpc.fr
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§ 2 presents the knowledge about the effect of cohesion on granular flows. The flow ge-
ometries and the interaction model are described in § 3. From homogeneous plane shear
flows and using dimensionless parameters identified in § 4, the macroscopic constitutive
law of cohesive grains is measured and expressed in a simple manner in § 5. The con-
sequences of this constitutive law for flows down rough inclined plane are discussed in
§ 6. We then come back to plane shear flows in § 7, to describe various microstructural
quantities which evidence the development of space-time heterogeneities as the cohesion
is increased. The link between the evolution of the microstructure and the macroscopic
behavior is given in § 8. Conclusion are drawn in § 9.

2. Background

Granular flows are currently a very active research domain motivated by fundamental
issues (see for example Hutter & Rajagopal 1994; Rajchenbach 2000) as well as prac-
tical needs such as the transport of minerals, cereals or powders (Rietema 1991), or in
geophysical applications: rock falls, landslides (Campbell et al. 1995), pyroclastic flows
(Félix & Thomas 2004) and snow avalanches (Bouchet et al. 2003; Rognon et al. 2007)
involve large scale flows of particulate solids.

2.1. Dense flow of cohesionless grains

Up to now, most studies on granular flows focused on cohesionless grains, and both
experimental and numerical approaches provided a good understanding of their behavior
in various geometries (see for example the review by GDR MiDi 2004). Among them,
homogeneous plane shear and inclined plane allowed to highlight some unusual flow
characteristics (these geometries are described in figure 1).

Using discrete simulations, da Cruz et al. (2005) investigated the behavior of two di-
mensional quasi-rigid grains of mass m submitted to plane shear, prescribing pressure
P and shear rate γ̇. Depending on the single inertial number I = γ̇

√

m
P

, they high-
lighted three flow regimes called quasi-static when grain inertia is negligible (I . 10−3),
collisional when the medium is agitated and dilute (I & 0.3), and, between these two ex-
tremes, dense when grain inertia is important with a contact network percolating through
particles. They pointed out a simple expression for the constitutive law in this dense flow
regime: the apparent friction coefficient µ∗ = τ/P linearly increases with the inertial
number I:

µ∗ = µ∗

min + bI. (2.1)

Both parameters µ∗

min and b depend on the properties of the grains. Also using discrete
simulations of plane shear flows, Campbell (2002) distinguished two kinds of dense flows
depending on the contact stiffness of the grains: an elastic-inertial regime for rather soft
grains and an inertial-non-collisional regime for rather rigid grains.

Several experimental and numerical studies focused on the flows of cohesionless grains
down inclined plane (see for example Pouliquen & Chevoir 2002; Pouliquen & Forterre
2002). Flows stop if the slope θ is lower than a critical slope (θ < θstop), accelerate
if the slope is higher than θacc and, in between these two limits, reach a steady and
uniform regime in which stress components vary along the flow depth y hydrostatically:
[P (y), τ(y)] ∝ (H − y) [cos θ, sin θ]. According to the constitutive law (2.1) integrated in
this stress field, the shear rate profile follows a Bagnold scaling:

γ̇(y) ∝ (θ − θstop)
√

H − y, (2.2)
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with some deviation toward a constant shear rate profile for thin flowing layer (Azanza
1998; Silbert et al. 2001; Prochnow 2002).

2.2. Effect of cohesive force on macroscopic behavior

It is well known that cohesion strongly affects the mechanical properties of a granular
material in the solid regime (see for example, Nedderman 1992). At the other extreme,
the collisional regime of cohesive grains can be well described by extension of the kinetic
theory (Kim & Arastoopour 2002). By contrast, how cohesion affects the dense flow
behavior previously described is much less understood.

Static properties of a cohesive piling are extremely sensitive to its preparation, since
depending on the quantity of agitation during the assembling phase, the cohesive sample
is more or less heterogeneous. This loose structure is evidenced in plastic flows or in
the compaction of the sample (see for example, Gilabert et al. 2007). The macroscopic
shear strength τmax of the granular packing is strongly enhanced by cohesion (Richefeu
et al. 2006; Taboada et al. 2006). This is usually described by the Coulomb criterion,
τmax = µcP + C where µc is the apparent friction coefficient of the assembly submitted
to pressure P and C represents the macroscopic intensity of cohesion, which Rumpf
(1958) has related to the microstructure (solid fraction and coordination number) and
the strength of inter-granular cohesive force. Cohesion also strongly increases the angle of
avalanches, above which a static assembly of grains flows, and the angle of repose, below
which the flow stops. This has been shown through rotating drum experiments using wet
glass beads (Fraysse et al. 1999; Tegzes et al. 1999; Nase et al. 2001; Bocquet et al. 2002)
as well as powders (Castellanos et al. 1999, 2001; Valverde et al. 2000), through heap
flow experiments (Mason et al. 1999; Samandani & Kudrolli 2001), and through crater
experiments and simulations using wet glass beads or powder (Hornbaker et al. 1997;
Tegzes et al. 1999; Nase et al. 2001; Mattutis & Schinner 2001).

Castellanos et al. (1999, 2001) showed that dense flows cannot be achieved using too
small grains such as fine powders (d . 10−4m), since they are directly fluidized by the
interstitial fluid from a solid to a suspension of fragile clusters. However, dense cohesive
flows can be experimentally observed with large enough grains such as wet glass beads,
as in Nase et al. (2001); Tegzes et al. (2002, 2003), or with natural snow (Rognon et al.

2007). Rotating drum experiments using wet glass beads or powders highlighted the
development of correlated motion which leads to an irregular free surface and an increase
of avalanche size (Samandani & Kudrolli 2001; Tegzes et al. 2002, 2003; Alexander et al.

2006). Discrete simulations also pointed out the aggregation of cohesive grains in various
flow geometries (Ennis et al. 1991; Talu et al. 2001; Weber et al. 2004), which was
evidenced by measuring the increasing fluctuation of local solid fraction (Mei et al. 2000)
or the increasing time of contact between grains (Brewster et al. 2005). Using annular
shear flows, Klausner (2000) measured an increase of the apparent friction coefficient of
powders from 0.2 for rather weak cohesion, up to 0.8 for rather strong cohesion. This
cohesion enhanced friction was also observed in plane shear simulations by Iordanoff
et al. (2005); Aarons & Sundaresan (2006); Alexander et al. (2006). Brewster et al.

(2005) simulated the flow of a thick layer of cohesive grains down an inclined plane, and
pointed out a breakdown of the Bagnold scaling for the shear rate profile (2.2) due to
the development of a plugged region at the surface of the flow, whose thickness increases
with cohesion.

Existing studies thus indicate that cohesion stongly affects the behavior of dense granu-
lar flow as well as its microstructure. However, the constitutive law of dense cohesive flow
has not yet been formulated, and the interplay between microstructure and macroscopic
behavior is still an open question.
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n L/d H/d

Plane shear with walls 2000 50 40-60
Plane shear without walls 800 40 20-30
Inclined plane 1500 50 ∼ 30

Table 1. Size of simulated systems: length L, height H and number of grains n.

3. Simulated system

The review by GDR MiDi (2004) revealed a good agreement between two dimensional
simulations and three dimensional experiments of cohesionless granular flows. Conse-
quently, we choose to simulate two dimensional systems which favor low computational
time without affecting the results qualitatively. The granular material is an assembly of
n disks of average diameter d and average mass m. A small polydispersity (±20%) is
introduced to prevent crystallization.

3.1. Flow geometry

Two flow geometries are studied: the homogeneous plane shear (without gravity) and
the rough inclined plane. The length L and the height H of the simulated systems are
summarized in Tab.1. In both cases, periodic boundary conditions are applied along the
flow direction (x) and rough walls are made of contiguous grains sharing the characteris-
tics of the flowing grains: same polydispersity and mechanical properties (especially same
cohesion), but without rotation.

Plane shear flows are performed prescribing pressure and shear rate through two kinds
of boundary conditions along the transverse direction y. First, the material is sheared
between two parallel rough walls distant of H (figure 1 a). One of the wall is fixed while
the other moves at the prescribed velocity V . The other method was introduced by Lees
& Edwards (1972) to avoid wall perturbations: it consists in applying periodic boundary
conditions along y, as shown in figure 1 (b). The top and bottom cells move with a
velocity ±V (t), which is adapted at each time step t to maintain a constant shear rate
γ̇ = V (t)/H(t). The control of the pressure is achieved by allowing the dilatancy of the
shear cell along y (H is not fixed), either through the motion of the moving wall, or
through a global dilation of the cell (in the absence of walls). The evolution of H is:
Ḣ = (P0 −P )L/gp (Campbell 2005; Gilabert et al. 2007), where gp is a viscous damping
parameter, and P0 is the pressure exerted by the grains on the moving wall, or the average
pressure in the shear cell (in the absence of walls). Steady state corresponds to 〈P0〉 = P ,
where 〈〉 denotes an average over time.

Flows down rough inclined plane are driven by gravity −→g (Figure 1 c). Grains consti-
tute a layer of thickness H flowing along a rough inclined wall (slope θ).

3.2. Contact law

Let us consider the contact between two grains i and j of diameter di,j , mass mi,j ,
centered at position ~ri,j , with velocity ~vi,j and rotation rate ωi,j . We call the reduced
mass mij = mimj/(mi + mj) and the reduced diameter dij = didj/(di + dj)). Let ~nij

denotes the normal unit vector, pointing from i to j (~nij = ~rij/||~rij || with the notation
~rij = ~rj − ~ri), and ~tij a unit tangential vector such that (~nij ,~tij) is positively oriented.

The intergranular force ~Fij exerted by the grain i onto its neighbor j is split into its

normal and tangential components, ~Fij = Nij~nij + Tij
~tij . The contact law relates Nij

and Tij to the corresponding components of relative displacements and/or velocities. The
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Figure 1. Flow geometries: plane shear (a) between two rough walls and (b) without wall ; (c)
rough inclined plane ; (—) periodic boundary conditions, (black grains) rough walls.

relative velocity at the contact point is equal to ~Vij = ~vi − ~vj + 1/2(diωi + djωj)~tij . Its

normal component V N
ij = ~nij · ~Vij is the time derivative of the normal deflection of the

contact (or apparent overlap of undeformed disks): hij = (di+dj)/2−||~rij ||. Its tangential

component V T
ij = ~tij · ~Vij is the time derivative of the tangential relative displacement δij .

The normal contact force is the sum of three contributions, an elastic one Ne, a viscous
one Nv, and a cohesive one Na.

The linear (unilateral) elastic law reads Ne
ij = knhij with a normal elastic stiffness

coefficient kn related to the Young’s modulus E of the grains: kn ∼ Ed (Hertz 1881).
A normal viscous force is added to dissipate energy during collisions: Nv

ij = ζij ḣij with
a damping coefficient ζij related to the restitution coefficient e in a binary collision of

cohesionless grains: ζij =
√

mijkn(−2 ln e)/
√

π2 + ln2 e.
The different models which represent the various physical origins of cohesive interaction

generally oppose to the repulsive force an attractive force Na(h). The shape of the total
static normal force N(h) = Ne(h)+Na(h) involves at least three parameters: a maximum
attractive force N c, an equilibrium deflection hc (for which N(hc) = 0), and a range
D of the attractive interaction (Na(h) = 0 for h ≤ −D). Direct adhesion between
solid surfaces associated to van der Waals forces was well characterized in (Tabor 1981;
Kendall 1993, 1994; Gady et al. 1996). It can be fully described by the model of Maugis
(1992) whose two limits give rise to the simpler models plotted in figure 2 (a). The DMT

(Derjaguin et al. 1975) and the JKR (Johnson et al. 1971) models respectively apply for
soft or hard grains whose contacts are slightly or strongly defromed by cohesion. In the
DMT model, the attractive force Na(h) is constant and its range D is null. In the JKR

model, the attractive force is proportional to the contact area, and a neck formation
when the grains recedes for −D ≤ h ≤ 0, thereby leading to an hysteresis. The capillary
cohesion was fully described experimentally in Pitois (1999); Bocquet et al. (2002) and
theoretically in Elena et al. (1999); Chateau et al. (2002). It also presents an hysteresis
which corresponds to the difference between the formation and the breaking distance
of a liquid meniscus (Figure 2 b). In both cases, the roughness of the surface plays an
important role in cohesive contact. The asperities decrease the effective surface where
the short range van der Waals force is significant (see Fuller & Tabor 1975; Thornton
1997; Tomas 2004), and, in the case of humid grains they give rise to different scales of
liquid menisci (Bocquet et al. 2002). Moreover their plastic deformation leads to aging
process for the contact (Ovarlez & Clément 2003). In their simulations, Gilabert et al.
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Figure 2. Common cohesive interactions: (a) DMT (—) and JKR (- -) models, (b) capillary
force ; simplified models used in numerical simulation: (c) linear (—) and square(- -), (d) plas-
ticity.
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Figure 3. Cohesion model used in the present paper: normal force N/Nc versus normal
deformation h/hc (inset: apparent interpenetration).

(2007); Kadau et al. (2002); Weber et al. (2004) approximated these models of cohesion
by the simple functions plotted in figure 2 (c), and Luding et al. (2003); Richefeu et al.

(2005) used a little more complex function which takes into account the contact plasticity
(figure 2 d).

We choose a simple cohesive force which captures the main feature of the previous
cohesion models: the maximum attractive force N c. We consider the limit of D = 0 and
we do not take into account any hysteretic behavior or contact plasticity. As previously
proposed by Mattutis & Schinner (2001) and Radjai et al. (2001), we choose the smooth
function :

Na
ij(hij) = −

√

4knN chij . (3.1)

In the static limit (Nv
ij = 0), this model leads to a maximum attractive force N c and

to an equilibrium deflection hc = 4N c/kn (see Figure 3). Richefeu et al. (2005) showed
that the shape of Na(h) does not have influence on provided it leads to the same N c. In
Rognon et al. (2006), we compared the previous function Na(h) with the DMT model
Na(h) = −N c and checked that they give rise to similar flow properties.
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Polydispersity µ e kt/kn

±20% 0.4 0.1 0.5

Table 2. List of fixed material parameters.

As usual (Radjai et al. 2001; Richefeu et al. 2005; Wolf et al. 2005; Gilabert et al.

2007), friction between grains is described by a Coulomb condition enforced with the
sole elastic part of the normal force :

|Tij | ≤ µNe
ij , (3.2)

where µ is the coefficient of friction between grains. The tangential component of the
contact force is related to the elastic part δe

ij of the relative tangential displacement δij :
Tij = ktδ

e
ij , with a tangential stiffness coefficient kt. δe

ij satisfies :

δ̇e
ij =

{

0 if |Tij | = µNe
ij and TijV

T
ij > 0,

V T
ij otherwise,

(3.3)

and vanishes when the contact opens. The contact is termed sliding in the first case in
(3.3) (the condition that Tij and V T

ij share the same sign ensuring a positive dissipation
due to friction) and sticking in the second case. Rolling friction could also be considered
(Gilabert et al. 2007). However, this mechanism is significant for very small particles, less
than one micron (Jones et al. 2004). For much larger particles (of the order of hundred
microns), this mechanism should not be relevant. In fact, an analysis of the influence of
rolling friction, keeping sliding friction, was performed in Gilabert et al. (2007) in the
case of the isotropic compaction of an assembly of cohesive grains, and it was found
that the inclusion of small rolling friction has only a small quantitative effect, but no
qualitative influence.

Table 3.2 summarizes the list of material parameters which are fixed in all our calcu-
lations. The friction coefficient between grains is fairly realistic (µ = 0.4), except in § 8.2
where the case of frictionless grains (µ = 0) is discussed. e = 0.1 corresponds to a rather
strongly dissipative material, which favors dense flows. da Cruz et al. (2005) showed that
the values of µ and e do not significantly affect the characteristics of cohesionless granular
flows, except for the extreme case µ = 0. Johnson (1985) showed that kt is of the same
order of magnitude as kn, and Silbert et al. (2001); Campbell (2002) pointed out that it
has a very small influence on the results for cohesionless grains. kt it then fixed to kn/2
in all our calculations. The values of the stiffness coefficient kn and of the maximum
attractive force N c will be discussed in § 4.

3.3. Simulation method

Numerical simulations are carried out with the molecular dynamics method, as in Cundall
& Strack (1979); Silbert et al. (2001); Roux & Chevoir (2005); da Cruz et al. (2005).
The equations of motion are discretized using a standard procedure (Gear’s order three
predictor-corrector algorithm Allen & Tildesley (1987)). The time step is chosen equal
to τc/50 where τc is the collision time for a pair of cohesionless equal-sized grains :

τc =
√

m(π2 + ln2 e)/(4kn).



8 P. G. Rognon, J.-N. Roux, M. Naäım and F. Chevoir

4. Dimensional analysis

The grains and the flow geometries are described by a list of independent parameters.
It is convenient to use dimensional analysis to extract dimensionless numbers which
express the relative importance of different physical phenomena and enable quantitative
comparison with real materials.

Grains are described by their diameter d, mass m, coefficient of restitution e and coef-
ficient of friction µ, elastic stiffness parameters kn and kt and maximum attractive force
N c. d and m respectively constitute the length and mass scales. Since the dimensionless
number µ, e and kt/kn are fixed, there remain two dimensional parameters that describe
grains: kn and N c. The flow geometries are described either by the gravity −→g , the slope
θ and the thickness H of the flowing layer for the inclined plane, or by the prescribed
pressure P , the prescribed shear rate γ̇, and the viscous damping parameter gp for plane
shear. The dimensionless number gp/

√
mkn = 1 is chosen, which ensures that the time

scale of the fluctuations of H is imposed by the material rather than the wall, and the
wall sticks to the material. Consequently, the shear state is described by pressure P and
shear rate γ̇. Among the various possible choices (see Campbell 2002; da Cruz et al.

2005), we use the following dimensionless numbers.

4.1. Inertial number I

da Cruz et al. (2005); GDR MiDi (2004) showed that the shear state of cohesionless rigid
grains is controlled by the single inertial number I, combination of the shear rate γ̇ and
of the pressure P , whose expression is (for a two dimensional system):

I = γ̇

√

m

P
. (4.1)

I compares the inertial time
√

m/P with the shear time 1/γ̇ and is called inertial number.
Small values (I . 10−3) correspond to the quasi-static regime where the grain inertia is
not relevant. Inversely, large values (I & 0.3) correspond to the collisional regime where
grains interact through binary collisions.

4.2. Cohesion numbers Bog and η

Different dimensionless numbers are used to quantify the intensity of cohesion. They
compare the maximum attractive force N c to a typical force scale in the system. In the
presence of gravity, Nase et al. (2001) introduced the Granular Bond Number :

Bog =
N c

mg
, (4.2)

which compares N c with the weight of a grain. For plane shear flows without gravity, we
define, as in Wolf et al. (2005); Gilabert et al. (2007), another dimensionless number η :

η =
N c

Pd
, (4.3)

which compares N c with the average normal force Pd due to the pressure. According
to this definition, the transition between a regime of low cohesion and a regime of high
cohesion should depend on η and should occur for η of the order unity. Let us now
give an estimation of the parameter η in realistic three dimensional situations. Then
η = N c/(Pd2). N c can be estimated by πγld in the case of humid grains (where γl is the
surface tension of the liquid, of the order of 0.05 N/m) and by Ad/(24z2

0
) in the case of

van der Waals adhesion (where A is the Hamaker constant, of the order of 10−19 Nm and
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Plane shear Inclined plane
I η h∗

0 H/d θ Bog h∗

0

10−2 → 0.3 0 → 85 10−5 ≈ 30 14◦ → 39◦ 0 → 200 10−6

Table 3. Ranges of dimensionless numbers explored.

z0 a molecular distance, of the order of 2 Å). In the presence of gravity, the pressure P is
given by ρpνgH, at the bottom of a layer of height H = Nd, with a solid fraction ν ≈ 0.6.
Considering glass beads for which ρ ≈ 2500kg/m3, we get η ≈ 10−5/(Nd2) for capillary
cohesion and η ≈ 710−8/(Nd2) for van der Waals adhesion (where d is expressed in m).
This means that a value of η ≈ 100 at the bottom of a layer of 10 grains is relevant if
d = 10−4 m for capillary cohesion or if d = 10−5 m for van der Waals adhesion. However
this estimation does not take into account the screening of cohesion bu the roughness of
the grains.

4.3. Stiffness number h∗

The third dimensionless number measures the average relative deformation of the con-
tacts in the system: h∗ = h/d. Without cohesion, this deformation is merely due to the
pressure and limited by the stiffness: h∗

0
= P/kn. Cohesive force enhances this deforma-

tion :

h∗(η) = h∗

0
H(η) (4.4)

with H(η) = 1 + 2η + 2
√

η + η2. For strong cohesion h∗ measures the deformation of
grains due to the sole cohesive force (without pressure): N c/(knd) and ranges from 10−5

for powders (Israelachvili 1992; Aarons & Sundaresan 2006) down to ≈ 10−12 for wet
glass beads.

4.4. Range of dimensionless numbers explored

Plane shear flows are performed prescribing six values of I between 10−2 and 0.3 and
36 values of η from cohesionless grains, η = 0, up to η = 85 (Table 3). It was shown
that the properties of cohesionless granular packings as well as flow characteristics do
not depend on the value of h∗

0
once it is small enough (h∗

0
. 10−4) (Roux & Combe

2002; da Cruz et al. 2005). We choose h∗

0
= 10−5 so that the systems are in this rigid

limit at least for low cohesion: h∗(η) 6 10−4 for η 6 2.5. For larger values of η, there
might be an influence of the deformation of the grains, which is specifically discussed in
Campbell (2002); Aarons & Sundaresan (2006). However lowering the value of h∗

0
below

10−5 would strongly increase computational time.
Flows down inclined are performed with slopes varying between 15◦ and 39◦, and with

a thickness H = 30d, in order to get steady and uniform regime. Six value of Bog are
set starting from cohesionless grains, Bog = 0, up to Bog = 200. This corresponds to the
range of Bog which was experimentally reached by Nase et al. (2001) varying the size
of glass beads (0.5 < d < 10 mm, ρ ≈ 2500kg/m3) and the surface tension of the liquid
(40 < γl < 72 mN/m).

5. Measurement of the macroscopic constitutive law

Using homogeneous plane shear flows, we present in this section the measurement
of the effect of cohesive force on the macroscopic behavior of grains. Such a method
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Figure 4. (Color online) Homogeneous shear state (P = 1, γ̇ = 0.1, Nc = 0): (a) shear rate
γ̇(y), (b) pressure P (y), (c) shear stress S(y) and (d) solid fraction ν(y) ; Transverse boundary
conditions with walls (...) and without wall (—).

was successfully used to measure the rheological behavior of cohesionless grains (see for
example da Cruz et al. 2005; Campbell 2002), and to explore the effect of grains stiffness
on cohesive flows (Aarons & Sundaresan 2006).

5.1. Steady homogeneous shear state

The preparation which has been used most of the time consists in starting from a con-
figuration where the disks are randomly deposited without contact and without velocity.
The average solid fraction is around 0.5. Then the prescribed shear rate and the pre-
scribed pressure are applied. After a sufficient amount of time, the flowing layer reaches
a steady shear state characterized by constant time-averaged kinetic energy, stress tensor
and solid fraction. This contrasts with the static case(Gilabert et al. 2007), where if P is
slowly decreased, a hysteresis is observed, with a microstructure which strongly depends
on the maximum value of P applied to the packing in the past. These steady flows do
not depend on the initial solid fraction or on the initial velocity profile (plug or linear).
A great advantage of the bi-periodic boundary conditions is that the convergence toward
a steady state is around ten times faster than with walls.

When a continuous steady state is reached, the simulation is carried out during a
sufficient amount of time ∆t, so that the relative displacement of two neighboring layers
is larger than around ten grains (γ̇∆t ≥ 10). In this steady state, we consider that the
statistical distribution of the quantities of interest (structure, velocities, forces. . . ) are
independent of time and uniform along flow direction, so that we proceed to an average
in space along the flow direction and in time on 100 time steps distributed over the
period ∆t. Using averaging methods described in Lätzel et al. (2000); Prochnow (2002),
the figures 4 plots the profiles of solid fraction ν(y), shear rate γ̇(y), pressure P (y), and
shear stress S(y). The stress tensor is dominated by the term associated to contact forces
between grains (da Cruz et al. 2005) :

Σ =
1

LH
Sym(

∑

i<j

~Fij ⊗ ~rij). (5.1)

For every steady and homogeneous shear flows, we observe that Σxx ≃ Σyy, implying that
stress tensors share common principal directions. Consequently, the pressure P given by
(Σxx + Σyy)/2 ≈ Σyy.

The figures 4 also compare the profiles for the two kinds of boundary conditions, with
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Figure 5. Homogeneous plane shear flows : picture from simulations for different values of
inertial number I and cohesion intensity η.

and without walls. Except in the five first layers near the walls, where the granular
material is organized, the two kinds of boundary conditions give rise to consistent shear
states. Even when starting from a localized velocity profile near one of the walls, we
systematically observed a relaxation toward an homogeneous shear state. The conclusion
is that the granular material is completely sheared and that the shear is homogeneous.
This allows to define average (along time and space) solid fraction ν, shear rate γ̇, pressure
P and shear stress S. The following measurements are done in the whole system using
simulations without walls.

In the range of I and η explored (see table 3), the flows are homogeneous as it was
previously described. Figure 5 shows some pictures of such flows. For strong enough
cohesion (η larger than around 100), the shear state becomes heterogeneous. Between
two walls, the flow is made of a single rigid block which sticks alternatively to one of the
two walls (Forsyth et al. 2002; Iordanoff et al. 2005). In the absence of walls, the shear is
localized in a few layers between two rigid assemblies. These localized shear flows would
require specific studies. They are not discussed in this paper.

5.2. Constitutive law

The homogeneous shear states give a direct access to the rheological law of the granular
materials through the measurement of two fundamental dimensionless quantities, the
solid fraction ν and the apparent friction coefficient µ∗ = S/P , which adjust in response
to the two prescribed dimensionless numbers: the inertial number (0.01 ≤ I ≤ 0.3) and
the cohesion number (0 ≤ η ≤ 85). For cohesionless grains, the influence of I on ν and
µ∗ was measured by da Cruz et al. (2005). We are going to show the strong influence of
the cohesion number η on those two quantities.

We call friction law the variations of the effective friction coefficient µ∗ as a function
of I and η (figure 6 a). The first general observation is that cohesion strongly increases
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Figure 6. (Color online) Friction and dilatancy laws. (a,c) µ∗(I) and ν(I) for η = 0 (¤), 10
(◦), 30 (△), 50 (▽), 70 (¦) ; (b) µ∗

min(η) (¤) and b(η) (◦); (d) νmax(η) (¤) and a(η) (◦).

µ∗, up to large values (µ∗ ≈ 2). da Cruz et al. (2005) showed that the apparent friction
coefficient of cohesionless granular materials increases approximately linearly with I,
starting from a minimum value µ∗

min: µ(I) ≃ µ∗

min + bI, with a possible saturation for
large I. We observe that this law may be extended to cohesive grains :

µ∗(I, η) ≃ µ∗

min(η) + b(η)I. (5.2)

Figure 6 (b) plots both functions µ∗

min(η) and b(η), which have the same shape. Below a
cohesion threshold (η . 10) the cohesion does not affect µ∗

min or b. Above this threshold,
µ∗

min(η) and b(η) strongly increase.
We call dilatancy law the variations of the solid fraction ν as a function of I and η

(figure 6 c). The first general observation is the strong expansion of the material due to
cohesion. da Cruz et al. (2005) showed that the solid fraction of cohesionless granular
materials decreases approximately linearly as a function of I, starting from a maximum
value νmax : ν(I) ≃ νmax − aI. We observe that this law may be extended to cohesive
grains :

ν(I, η) ≃ νmax(η) − a(η)I. (5.3)

Figure 6 (d) plots both functions νmax(η) and a(η) which have the same shape. They
strongly decrease for weak cohesion η . 2, then still decrease but more slowly. On the one
hand, the decrease of νmax(η) means that cohesion tends to dilate the flows, especially
for low η. On the other hand, the decrease of a(η), down to zero for the highest cohesion,
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Figure 7. Variation of the apparent friction coefficient µ∗ as a function of solid fraction ν
measured in plane shear flows for various η and I. ¤ denotes data for a constant inertial number
I = 0.05 and various η.

means that the solid fraction does not depend any more on the inertial number I for
strong cohesion.

Starting from both variations of solid fraction and apparent friction as function of I and
η, we draw on figure 7 the variation of the apparent friction as a function of solid fraction
instead of I and η. We observe an approximate collapse of the data on a master curve
made of complementary zones of high solid fraction (low η) and smaller solid fraction
(higher η). The apparent friction strongly decreases when the solid fraction increases.
This tendency of the data, which was previously observed for cohesionless grains by
Craig et al. (1986) and da Cruz et al. (2005), appears as a robust feature which shows
the importance of solid fraction in granular flows and may be of great help in rheological
models (see for example Josserand et al. 2004).

The constitutive law is usually written as the dependencies of the pressure and shear
stress on the shear rate and solid fraction. With cohesion, we should also include the
dependency on the cohesion intensity η. From the definition of I (4.1) and the friction
law (5.2), this leads to the following expression of the shear stress S :

S = µ∗

min(η)P + b(η)
√

mPγ̇, (5.4)

which corresponds to a viscoplastic constitutive law, with a Coulomb friction term and a
viscous term. The apparent viscosity b(η)

√
mP depends on the cohesion intensity through

the parameter b(η) (Figure 6 b). We shall then define a low cohesion regime (η . 10)
where the cohesion does not affect the apparent viscosity and a high cohesion regime

(η & 10) where the apparent viscosity is strongly enhanced by cohesion.

5.3. Quasi-static limit

In the quasi-static limit (I → 0), the extrapolation of the constitutive law 5.4 predicts
that S = µ∗

min(η)P . Figure 6 (b) shows that µ∗

min(η) is roughly linear, µ∗

min + αη with
α ≈ 0.012, so that constitutive law can be expressed as:

S = µ∗

minP + αN c/d, (5.5)

This is reminiscent of the Coulomb criterion described in § 2.2. µ∗

min then identifies to the
apparent friction coefficient µc and αN c/d to the macroscopic intensity of cohesion C.
Assuming that all the contacts break at the shear threshold, Rumpf (1958) related C to
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the microstructure (solid fraction ν and coordination number Z) and the strength of inter-
granular cohesive force N c through the following formula (written in two dimensions):

C = ZνNcµc

πd
. Considering the following values (Z ≈ 3, ν ≈ 0.8, µc ≈ µ∗

min ≈ 0.3) provides
C ≈ 0.2N c/d. The form is similar but the factor α estimated from quasi-static flows is
much smaller (by a factor around 20 than the value predicted by Rumpf formula. We shall
try to interpret this difference in section 8.4, after having analyzed the microstructure of
the flow.

6. Cohesive flows down an inclined plane

It is clear that the homogeneous plane shear cannot be achieved in real situations
because of gravity g. Nevertheless, it provided a good understanding of the macroscopic
behavior which can now be used to discuss flows down inclined planes. This geometry
is closer to practical needs but more complex since stresses are no more homogeneous
along the depth. This section presents the behavior of cohesive grains flowing down rough
inclined plane, focusing on steady and uniform regime. The dimensionless number that
measures the cohesion intensity is the Granular Bond Number Bog, defined in section 4.

6.1. Steady and uniform flow regimes

An important feature of cohesionless granular flows down inclined is that they reach a
steady and uniform regime in a large range of slope (Pouliquen 1999). In this regime,
friction exactly compensates the gravity driving force. In presence of cohesion, this regime
also exists, as detailed in this section.

The preparation which was used most of the time consists in starting from an initial
configuration where the disks are randomly deposited without contact and without ve-
locity. The average solid fraction is around 0.5. Then the gravity is applied so that the
plane is inclined with a slope θ. After a sufficient amount of time, the flowing layer may
reach a steady shear state characterized by constant time-averaged kinetic energy, stress
tensor and solid fraction. A second method consists in starting from a steady uniform
regime at given slope and cohesion, then changing either slope or cohesion. The final flow
does not depend on the initial state.

The figures 8 plots the profiles of solid fraction, stresses and velocity along the depth
for flows of similar thickness (H ≈ 30d), same slope (θ = 25◦) but with different co-
hesion Bog. Without cohesion (Bog = 0), as previously shown by Silbert et al. (2001);
Prochnow (2002), the solid fraction ν(y) is constant along the depth except for a thin
layer (few grains) near the rough wall where oscillations reveal the organization of grains
in layers. As cohesion increases, ν(y) remains constant in the bulk and oscillates near
the wall, but its mean value decreases. Figure 8 (b) compares the stresses measured
within the flow using (5.1) with the hydrostatic stresses under gravity:

[

Ph(y), τh(y)
]

=

ρpg
∫ y

y1=0
ν(y1)dy1 [cos θ,− sin θ] and reveals a good agreement (ρp is the mass density

of the grains). Shear stress τ compensates the gravity stress τh, which reveal that the
flow is in a uniform regime. Neglecting the small fluctuations of solid fraction around its
mean value ν, stresses follows :

(

P (y)
τ(y)

)

= ρpgν(H − y)

(

cos θ
sin θ

)

. (6.1)

Consequently, the apparent friction coefficient µ∗ = τ(y)/P (y) is constant along the
depth and directly prescribed by the slope: µ∗ = tan θ. Furthermore, since the pressure in-
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Figure 8. Steady and uniform flows down inclined plane (θ = 25◦, H/d ≈ 30). For different
values of the granular Bond Number Bog, profiles of solid fraction ν(y) and comparison of profiles

of measured stresses P and τ (—) with hydrostatic stresses P h and −τh (surface). For clarity,
pressures are plotted along the negative values and shear stresses along the positive values.

creases along the depth, the cohesion number η varies according to η(y) = Bogd/ (ν cos θ(H − y))
so that the cohesion increases close to the free surface.

6.2. Constitutive law deduced from flows down inclines

Steady and uniform flows down inclines consist in applying through the slope θ an ap-
parent friction coefficient µ∗ = tan θ to the material. The local constitutive law of the
granular material can be deduced from the measurements of the inertial number profiles
at various slope. The following method is used to explore different slopes: for various
cohesive intensity Bog, steady and uniform flows are initially performed at a given slope
; then, the slope is decreased (or increased) at a low enough rate so that flows can be
considered as steady and uniform at each time step, until the flows stop (or accelerate).

The figures 9 plots the profiles of solid fraction, velocity, and inertial number I for
various slope and cohesion intensity Bog. According to the relation µ∗(ν) (Section 5.2),
the solid fraction is set by the slope and is constant along the depth (except near the free
surface and near the rough base). Without cohesion, as shown by Silbert et al. (2001), the
velocity profile satisfies the Bagnold scaling, since the inertial number is approximately
constant along the depth, except in the first bottom layers where I increases (probably
due to the organization of the grains in layers near the wall, leading to a sliding velocity),
and the first free surface layers where I diverges due to the low pressure. With cohesive
force, the shear rate drops to zero in a solid layer near the free surface. The thickness of
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this layer increases as Bog increases. This breakdown of the Bagnold scaling, observed
by Brewster et al. (2005), is evidenced by the variation of the inertial number which is
no more constant along the depth, and drops to zero in the solid surface layer. Since
each layer into the flows is submitted to a shear with a prescribed µ∗ = tan θ, but a
varying cohesion intensity η(y), the constitutive law can be deduced by measuring the
inertial number profile I(y) and extracting µ∗ (I(y), η(y)). The figures 10 plot µ∗(η) for
various I, and compare the results obtained using inclined plane with the constitutive
law measured using plane shear flows. Results are in good agreement, although data from
inclined plane are scattered. This is not surprising since they are not averaged over time,
neither over transverse direction. The great difference between these two approaches is
that the shear rate is prescribed in plane shear whereas the shear stress is prescribed
in flows down inclined plane. As a consequence, large value of I combined with strong
cohesion, which can be explored using plane shear, cannot be reached within flow down
inclined since the most cohesive part of the flow is plugged. Since the apparent viscosity
of cohesive grains is strongly enhanced by cohesion above η & 10 but is not affected for
lower values, the thickness of the plugged layer is of the order of Bog/10 grains.
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Figure 10. (Color online) Constitutive law measured in plane shear flows (◦) and in flows
down inclined plane (¥) ; µ∗(η) for I = (a) 0.01, (b) 0.025, (c) 0.05, (d) 0.1.

7. Microstructure

The two previous sections have shown the strong effect of cohesion on the macroscopic
rheological law. We now turn to the evolution of the microstructure of the flow. As shown
in figure 5, when the intensity of cohesion increases, large voids appear separating dense
areas. This was also observed in Mei et al. (2000); Weber et al. (2004). Experimentally,
Tegzes et al. (2002, 2003) observed correlated motions of grains in dense flows of humid
grains. We notice that there is a large literature on the formation of aggregates in agitated
dilute systems, such as fluidized powders (Castellanos et al. 2001) or coagulation of dusts
in astrophysical situation (Dominik & Tielens 1997). In the present section, we measure
various microstructural indicators showing the development of space-time heterogeneities
within the granular flow submitted to homogeneous plane shear.

7.1. Coordination number Z

The first quantitative indicator is the average number of contacts per grain, called coor-
dination number Z. The variations of Z as a function of I and η are shown on figure 11.
In the low cohesion regime (η . 10), Z strongly increases when I decreases and tends
to a maximum value when I → 0. This is consistent with the dilatancy of the granular
material when going from the quasi-static regime to the collisional regime. This behavior
is similar to what is observed with cohesionless grains (da Cruz et al. 2005). For higher
cohesion, the dependency of Z on I becomes smaller, and Z is around 2.5 even for highest
value of I. This indicates that cohesion tends to increase the value of I for the transition
between dense and collisional regime

As cohesion increases, the coordination number first strongly increases while η . 5,
then increases more slowly to reach a maximum value. The increase of Z(η) whereas the
solid fraction ν(η) decreases is unexpected, and reveals that cohesive grains agglomerate
in dense areas where the coordination number is high, while, on the whole, the granular
material is becoming more porous, which decreases the average solid fraction.

7.2. Distribution of local solid fraction, length scale ℓν

As a way to characterize quantitatively the increasing heterogeneity of density induced
by cohesion, we measured the distribution of local solid fraction (Richard et al. 2003;
da Cruz et al. 2005). At each time step, we performed a radical tesselation. The local
solid fraction around each grain is defined as the ratio of the areas of the grain and of
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Figure 11. Coordination number Z. I = 0.01 (¤), 0.025 (◦), 0.05 (△), 0.1 (▽), 0.2 (¦), 0.3
(⊳).

its Voronoi cell (the points which are closer from this grain than from any other grain).
This defines the field of local solid fraction ν(~r). Figure 12 (a) shows the distribution of
local solid fraction for a given I and for various η. The small polydispersity allows high
values of solid fraction (ν(~r) → 0.9). With cohesion, dense areas still exist, whereas the
local solid fraction of the grains close to the voids decreases (ν(~r) → 0.2). The standard
deviation ∆ν of the distribution may be used to characterize the heterogeneity of density.
Figure 12 (b) shows that cohesion enhances ∆ν.

The auto-correlation F (~R) of the fluctuating solid fraction field δν(~r) :

F (~R) =
〈δν(~r)δν(~r + ~R)〉

δν2
, (7.1)

gives access to a characteristic length scale of the heterogeneities, associating dense areas
and voids. We observe that F is isotropic, and apart from a small peak around R =
d, decreases approximately exponentially with R, as shown in figure 12 (c). In order
to quantify this effect, we define the correlation length ℓν as the distance where the
correlation is equal to 0.4 (other values give similar qualitative results). Figure 12 (d)
shows that cohesion enhances ℓν .

7.3. Distribution of porosity, length scale ℓp

Another indicator of the organization of the granular material is given by the distribution
of pore sizes. The first step is a discretization of the picture of the granular flow at each
time step, with a pixel size of d/20. This allows to distinguish the pixels lying on voids
from those lying on grains. Then, using an invasion algorithm, it is possible to make
a list of the connected voids, and to measure their area S. Figure 12 (e) shows the
proportion of void space G(S) belonging to a pore of area larger than S. G(S) decreases
approximately exponentially with S: G(S) ≃ exp(−S/Sp). Then ℓp =

√
Sp characterizes

the length scale of the pores, but does not account for their anisotropy (the pores may
be elongated). Figure 12 (f) shows that cohesion strongly enhances ℓp. This length also
increases with the inertial number, which is not surprising because increasing I decreases
the solid fraction (dilatancy law) i.e increases the void fraction, so the connecting void
probability.

7.4. Persistence of contacts, strain scale εp

ℓν and ℓp provide information on the spatial organization of the granular material. We
now present another quantity associated to the time correlation of the contact network.
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Figure 12. (Color online) Heterogeneity of the microstructure. (a,b) Distribution of local solid
fraction and its standard deviation ∆ν(η) . (c,d) Correlation of the local solid fraction F (R)
and associated length scale ℓν/d. (e,f) Distribution of pore size G(S) and associated length scale
ℓp/d. (g,h) Persistence of contacts P (ε) and typical strain of persistence εp(η). Left column:
I = 0.2, η = 0 (¤), 10 (◦), 30 (△), 80 (▽). Right column: I = 0.01 (¤), 0.025 (◦), 0.05 (△),
0.1 (▽), 0.2 (¦), 0.3 (⊳).

Starting from a population of contacts at time t, we define the function P (T ) as the
proportion of contacts which have not been broken at the time t + T (an average over
time t is performed). We notice that a similar quantity, called topological correlation
function was defined in Choi et al. (2004), to measure the diffusion in granular flows.
This function obviously starts from the value 1. Figure 12 (g) shows that it decreases
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exponentially to zero with time T or the associated strain ε = γ̇T : P (ε) ≈ exp(−ε/εp).
εp is the characteristic strain scale of persistent contacts. Figure 12 (h) shows that εp is
lower than 1 for cohesionless grains, and that cohesion increases it above 1. This means
that the persistent time of the contacts becomes larger than the shear time.

7.5. Velocity correlations, length scale ℓv

Correlated motions of grains and transient rigid clusters were evidenced with cohesionless
grains (Bonamy et al. 2002; GDR MiDi 2004; Pouliquen 2004), and found to affect the
rheological properties of the granular flows (Ertas & Halsey 2002; Mills et al. 2005).
Pouliquen (2004) measured the fluctuating velocity field δ~v(~r) at the surface of a flow
down an inclined plane and showed that its correlation length ℓv strongly increases as the
inclination decreases near jamming. This observation suggests that jamming mechanism
is connected to the development of space-time correlations within the flow when going
from the collisional regime to the quasi-static regime. It is then tempting to measure
this correlation length ℓv within an homogeneous shear flow, as a function of the two
dimensionless numbers I and η.

We start by measuring the auto-correlation function C(~R) of the fluctuating velocity
field δ~v(~r) :

C(~R) =

∑

i,j

δviδvjg(~rij − ~R)

∑

i,j

g(~rij − ~R)
, (7.2)

where δvi = |δ~vi|, and g is a Gaussian function of width w = 0.4d. We checked that the
results do not depend significantly on w, and are qualitatively the same when considering
only one component of δ~v. We observe that C(~R) is isotropic and decreases exponentially
with R: C(R) ∝ exp(−R/ℓv), which defines the correlation length ℓv.

Figure 13 (a) shows ℓv as a function of I for cohesionless grains. Consistently with
the measurements down an inclined plane performed by Pouliquen (2004), ℓv strongly
increases when the inertial number I decreases, that is to say when going from the dense
regime to the quasi-static regime. Figure 13 (b) shows ℓv as a function of η for three
values of I. For I & 0.1, ℓv is small for cohesionless grains and increases as a function of
η. Conversely, for small I, there are already correlated motions for cohesionless grains,
then as η increases, there is first an expansion of the material which decreases ℓv before
an increase for larger η.

8. Links between the microstructure and the macroscopic behavior

In § 5, we have shown the strong effect of the cohesion number η on two macroscopic
quantities, the apparent friction µ∗ and the solid fraction ν. Then, in § 7, we have
measured the dependencies of several indicators of the microstructure of the granular flow
(Z, ℓν , ℓp, ℓv, εp) as a function of η. Their increase is a clear signature of the development
of space-time heterogeneities induced by cohesion. In this section, we focus on the relation
between the evolution of the microstructure and of the macroscopic behavior.

8.1. Distribution of normal forces

The cohesion seems to increase the apparent viscosity for η larger than around 10 (see
section 5.2). This is surpinzing since estimating by Pd the normal traction force necessary
to separate two cohesive grains would predict an high cohesion regime for η ≃ 1. However,
this assumption is rather crude since, like in cohesionless granular pilings (Radjäı et al.
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1996) or granular flows (O’Hern et al. 2001), we observe a large distribution of normal
forces N = Ne + Na. Figure 14 (a) plots the distribution of N/N c. In cohesive granular
systems, N/N c may be negative but is always larger than −1. For η ≤ 1, the force scale
Pd is larger than N c: the distribution is broad, so that contacts may be easily broken.
For much larger η, the force scale is given by N c: the distribution is much more peaked,
so that most contacts cannot be broken. Figure 14 (b) shows that the standard deviation
of the distribution slightly decreases when I increases but significant decreases when η
increases. It becomes smaller than unity for η between 3 and 10. This suggests that the
high cohesion regime transition might be controlled by the distribution of normal forces
rather than by their average value.

8.2. Increase of apparent friction

Friction between grains is described by a Coulomb condition enforced with the sole elas-
tic part of the normal force: |T/Ne| ≤ µ (see section 3.2). When compared with the total
normal force N = Ne + Na, it is easy to show that |T/N | ≤ µH(|N c/N |), where the
function H was defined in section 4.3. For N À N c, which happens for small cohesion,
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H ≃ 1. Then the apparent friction coefficient between grains remains µ. However, for
N ¿ N c which is frequent for large cohesion, H ≃ 4|N c/N | which means that the ap-
parent friction coefficient between grains is strongly increased. For cohesionless grains, it
was shown that an increase of µ significantly decreases νmax (da Cruz et al. 2005). Con-
sequently, we predict that this increase of the apparent friction between grains induced
by cohesion should result in an expansion of the granular flow. In order to evidence this
effect, we have compared the evolution of solid fraction for frictional (µ = 0.4) and fric-
tionless grains (µ = 0) on figure 15 (a). Contrarily to frictionless grains, the expansion of
frictional grains starts for small η (η . 2). Consistently, this increase of apparent friction
between grains strongly reduces the proportion of sliding contacts in the same range of η,
as shown in figure 15 (b). This suggests that conversion of sliding into sticking contacts
might be responsible for this dilation (Rivier 2005).

8.3. Anisotropy

We now come back to the friction law and analyse the strong increase of the appar-
ent friction µ∗(η) above the agglomeration transition. It has been shown by da Cruz
et al. (2005); Campbell & Brennen (1985) that µ∗ may be written as the sum of two
contributions, associated to the angular distribution of normal and tangential forces :

µ∗ = −
∫ π

0

ζN (φ) sin(2φ)dφ +

∫ π

0

ζT (φ) cos(2φ)dφ. (8.1)

φ is the direction of a contact counted counterclockwise from the flow direction, between
0 and π. ζN and ζT are the products of the distribution of contact orientations by the
intensities of normal and tangential forces respectively, normalized by the average normal
force in the system, and are shown in figure 16. As expected, figure 17 (a) shows that
the calculation of the apparent friction using (8.1) is in excellent agreement with the
direct calculation. Figure 17 (a) highlights that both normal and tangential anisotropies
significantly increase as a function of η, as was previously shown in quasi-static evolutions
by Radjai et al. (2001). The increase of the amplitude of ζN occurs for η & 10, so
that it seems related to the agglomeration transition: ζN (φ) increases in the direction
of force chain compression (φ ≃ 120), but decreases and may even become negative in
the direction of force chain traction (φ ≃ 30). This evolution, strongly enhanced by the
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factor sin 2φ, leads to an increase of the normal contribution to the apparent friction
µ∗

N . On the other hand, the enhancement of the amplitude ζT (φ) starts for small η, so
that it seems connected to the increase of apparent friction induced by cohesion. As
well, this evolution, strongly enhanced by the factor cos 2φ, leads to an increase of the
tangential contribution to the apparent friction µ∗

T . Figure 17 (b) shows that the relative
contribution of normal forces to the apparent friction µ∗

N/µ∗ decreases with cohesion
(going from around 90% for η = 0 to around 70% for η & 10).

8.4. Basic mechanisms

We now summarize as simply as possible the previous quantitative analysis. The shear
of dense cohesionless grains requires that each individual grain get over the neighbour
grain in front of it (Figure 18 a). The macroscopic resistance to the shear is then merely
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Figure 18. (Color online) Basic mechanisms involved in cohesive granular flows: (a) without
aggregates and (b) taking into account the agglomeration of grains.

due to the repulsive forces acting throughout the ascension. With cohesion, a second
contribution enhances the macroscopic resistance to the shear: after the ascension, the
cohesive contact must be broken. Naively, this reasoning predicts that the part of the
shear stress due to cohesion should increase as the maximum attractive force is increased,
and consequently that the part of the friction coefficient due to cohesion should increase
as η increases. Our measurements show that when the cohesion intensity η increases from
0 to 85, µ∗ increases from 0.25 to 3. However, the agglomeration of cohesive grains must
also be taken into account. Then the previous mechanism where a grain gets over the
neighbour grain in front of it must be considered at the scale of the large clusters, rather
than at the scale of individual grains (Figure 18 b). This leads to a strong expansion of
the granular media since two scales of porosity appears: between and inside the clusters.
Moreover, after the ascending phase, the separation of two clusters merely requires to
break the contacts of the grains at the interface of the clusters, while the contacts inside
the clusters are not broken. Consequently, the organization in clusters strongly favors
the flow of cohesive grains.

The interpretation of the difference between our interpolation of the friction law in
the quasi-static regime and the Coulomb criterion using Rumpf formula is now clear:
since the flowing granular materials is made of aggregates with enduring contacts, all the
contacts do not break simultaneously when the material is flowing but only those which
are at the periphery of the aggregates. This may reduce the number of breaking contacts
significantly. At the other limit, the aggregation of grains due to cohesion may affect the
transition between dense and collisional flow regimes. Cohesion favors multiple enduring
contacts within aggregates, and wether there exists a regime with binary collision at high
I is an open question which requires a specific study.

9. Conclusion

The existence of intergranular cohesive forces is found to strongly affect dense granular
flows. The simulations of simple systems with a generic cohesion model enable to identify
the rheological behavior of cohesive grains, and to provide a complete scheme on its origin
at the scale of the grains and of their organization.

The simulation of a simple flow geometry, the homogeneous plane shear, and the use of
dimensional analysis appears to be efficient to describe the behavior of cohesive granular
flows. We point out that their constitutive law can be expressed by a simple friction law,
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similar to the case of cohesionless grains, but that the cohesion strongly enhances the
resistance to the shear. The consequence on cohesive granular flow down a slope is that a
plugged region develops at the free surface where the cohesion intensity is the strongest.
Then, flows are made of a fluid bottom layer and a solid-like top layer, which thickness
increases with the intergranular cohesive force.

Moreover, we reveal the strong interplay between the local contact law (friction and
cohesion), the properties of the contact network (force distributions and anisotropy)
and the rheological law (dilatancy and apparent friction). For small cohesion, due to
the increase of the apparent friction between grains, the proportion of sliding contacts
decreases which induces expansion of the material. For larger cohesion, the agglomeration
of the grains results in the growth of heterogeneities (large voids separating dense granular
areas), and in the increase of the contact force anisotropy, which strongly enhances the
resistance to the shear. Then, for larger cohesion, the granular material breaks apart.

This study is a first step toward the understanding of the rheology of cohesive granular
materials. It is clear that further studies are necessary to take into account other speci-
ficities of cohesive forces (range of interaction, hysteresis, viscous dissipation in liquid
bridges, solid bridges...). It would be extremely interesting to compare those predictions
with physical experiments on model materials such as wet glass beads, or controlled
powders in vacuum.
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