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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Ecole des Ponts ParisTech

https://core.ac.uk/display/48355729?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00281859


Dynamis of disloation densitiesin a bounded hannel. Part II: existene of weaksolutions to a singular Hamilton-Jaobi/parabolistrongly oupled systemH. Ibrahim ∗, M. Jazar 1, R. Monneau ∗May 25, 2008AbstratWe study a strongly oupled system of a paraboli equation and a singular Hamilton-Jaobiequation in one spae dimension. This system desribes the dynamis of disloation densities ina material submitted to an exterior applied stress. Our system is a natural extension of thatstudied in [15℄ where the applied stress was set to be zero. The equations are written on abounded interval and require speial attention to the boundary layer. For this system, we provea result of existene of a solution. The method of the proof onsists in onsidering �rst a paraboliregularization of the full system, and then passing to the limit. For this regularized system, aresult of global existene and uniqueness of a solution has been given in [16℄. We show someuniform bounds on this solution whih uses in partiular an entropy estimate for the densities.AMS Classi�ation: 70H20, 49L25, 54C70, 46E30.Key words: Hamilton-Jaobi equations, visosity solutions, entropy, Orliz spaes.1 Introdution1.1 Physial motivation and setting of the problemIn [12℄, Groma, Czikor and Zaiser have proposed a model desribing the dynamis ofdisloation densities. Disloations are defets in rystals that move when a stress �eld isapplied on the material. These defets are one of the main explanations of the elastovis-oplastiity behavior of metals (see [8℄ and [9℄ for various models relating disloations andelastovisoplasti preperties of metals). This model has been introdued to desribe thepossible aumulation of disloations on the boundary layer of a bounded hannel. Morepreisely, let us all θ+ and θ−, the densities of the positive and negative disloationsrespetively. In fat, disloations are distinguished by the sign of their Burgers vetor ~b
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(see [13℄ for a desription of the Burgers vetor). The non-negative densities θ+(x, t) and
θ−(x, t) are governed by the following system:







θ+
t =

[(
θ+
x − θ−x
θ+ + θ−

− τ

)

θ+

]

x

in I × (0, T ),

θ−t =

[

−
(
θ+
x − θ−x
θ+ + θ−

− τ

)

θ−
]

x

in I × (0, T ),

(1.1)where τ is the stress �eld, T > 0, and I := (0, 1) ⊂ R. The hannel is bounded by wallsthat are impenetrable by disloations (i.e., the plasti deformation in the walls is zero).In this ase the boundary onditions are represented by the zero �ux ondition, i.e.
θ+
x − θ−x
θ+ + θ−

− τ = 0, at x = 0 and x = 1. (1.2)The original model in [12℄ is written in two spae dimensions (x, y). Here, system (1.1)orresponds to a situation where the problem is assumed invariant by translation in the ydiretion. In that ase τ appears to be the applied stress �eld and will be assumed to bea onstant. However, the term θ+x −θ−x
θ++θ−

is alled the bak stress and an be interpreted asthe ontribution to the stress of the short-range interations between disloations. Thisterm was, for instane, negleted in the Groma-Balogh model [11℄. Moreover, for themodel desribed in [11℄, we refer the reader to [5, 6℄ for a one-dimensional mathematialand numerial study, and to [4℄ for a two-dimensional existene result. The speial ase
τ = 0 for system (1.1) has been studied in [15℄ where a result of existene and uniquenesshas been proved. In the present paper we study the ase where τ 6= 0.1.2 Setting of the problemWe onsider an integrated form of (1.1) and we let

ρ±x = θ±, ρ = ρ+ − ρ− and κ = ρ+ + ρ−,to obtain (at least formally), for speial values of the onstants of integration, the followingsystem in terms of ρ and κ:
{

κtκx = ρtρx on I × (0, T )

ρt = ρxx − τκx on I × (0, T ),
(1.3)with the initial onditions:

κ(x, 0) = κ0(x) and ρ(x, 0) = ρ0(x). (1.4)To formulate heuristially the boundary onditions at the walls loated at x = 0 and
x = 1, we suppose that κx 6= 0 at x = 0 and x = 1. We note that the disloation �uxesat the walls must be zero, whih require (see 1.2) that :

Φ
︷ ︸︸ ︷

(θ+
x − θ−x ) − τ(θ+ + θ−) = 0, at x = 0 and x = 1. (1.5)2



Rewriting system (1.3) in terms of ρ, κ and Φ, we get
{

κt = (ρx/κx)Φ,

ρt = Φ.
(1.6)From (1.5) and (1.6), we dedue that

ρt(0, .) = ρt(1, .) = 0. (1.7)Also, from (1.5) and (1.6), and if κx 6= 0 at x = 0 and x = 1, we dedue that
κt(0, .) = κt(1, .) = 0. (1.8)Using (1.7) and (1.8), we an formally reformulate the boundary onditions as follows:

{

κ(0, .) = κ0(0) and κ(1, .) = κ0(1),

ρ(0, .) = ρ(1, .) = 0,
(1.9)where we have taken the zero normalization for ρ on the boundary of the interval.The positivity of θ+ and θ− redues in terms of ρ and κ to the following ondition:

κx ≥ |ρx|, (1.10)and hene a natural assumption to be onsidered onerning the initial onditions ρ0 and
κ0 is to satisfy

κ0
x ≥ |ρ0

x| on I. (1.11)Problem (1.3), (1.4) and (1.9), in the ase τ = 0, has been studied in [15℄ where a resultof existene and uniqueness is given using the visosity/entropy solution framework. Letus just mention that in this situation, system (1.3) beomes deoupled and easier to behandled.1.3 Statement of the main resultIn this paper, we assume that τ is a real onstant,
τ 6= 0and we examine the existene of solutions of (1.3), (1.4) and (1.9). To be more preise,our main result is:Theorem 1.1 (Existene of a solution)Let ρ0, κ0 ∈ C∞(Ī) satisfying (1.11), (1.9) and the additional onditions:

Ds
xρ

0 = Ds
xκ

0 = 0, s = 1, 2, x = 0, 1. (1.12)Then for every T > 0, there exists
(ρ, κ) ∈ (C(Ī × [0, T ]))2 and ρ ∈ C1(I × (0, T )),3



solution of (1.3), (1.4) and (1.9). Moreover, this solution satis�es (1.10) in the distribu-tional sense, i.e.
κx ≥ |ρx| in D′(I × (0, T )). (1.13)However, the solution has to be interpreted in the following sense:1. κ is a visosity solution of κtκx = ρtρx in IT := I × (0, T ),2. ρ is a distributional solution of ρt = ρxx − τκx in IT ,3. the initial and boundary onditions are satis�ed pointwisely.Remark 1.2 (Compatibility of the regularized solution)The method of the proof of Theorem 1.1 onsists in onsidering a paraboli regularizationof (1.3), and then passing to the limit. This method is alled the �vanishing visosity�method. We use a result of global existene and uniqueness of the regularized system from[16℄, whih requires some ompatibility onditions on the initial data of the problem. Theadditional boundary onditions (1.12) was taken for ahieving the ompatibility at theregularized level.Remark 1.3 The C∞ regularity of ρ0 and κ0, together with (1.12) seems to be essentiallytehnial.Vanishing visosity method is ommon in order to approah visosity solutions for aHamilton-Jaobi equation. It onsists to add ε∆ to the Hamilton-Jaobi equation

H(x, u,Du) = 0 and then obtain a more standard paraboli equation, after that weneed to pass to the limit ε→ 0. The literature is very rih and one an ite for instanethe Book of Barles [2℄ and the referenes therein, see also [20, 14℄.In our ase, we are interested in a singular Hamilton-Jaobi equation, strongly oupledwith a paraboli equation. The singularity omes from the following formal formulationof the �rst equation of (1.3):
κt =

ρtρx
κx

,that beomes a singular paraboli equation after adding the ε∆ term:
κt =

ρtρx
κx

+ εκxx.For a mathematial treatement of the above equation and various singular paraboliequations, see [16℄ and the referenes therein.1.4 Organization of the paperThis paper is organized as follows: in setion 2, we present the strategey of the proof.In setion 3, we present the tools needed throughout this work. This inludes somemisellaneous results for paraboli equations; a brief reall to the de�nition and thestability result of visosity solutions; and a brief reall to Orliz spaes. In setion 4, weshow how to hoose the regularized solution. An entropy inequality used to determine4



some uniform bounds on the regularized solution is presented in setion 5. Furtheruniform bounds and onvergene arguments are done in setion 6. Setion 7 is devotedto the prove of our main result: Theorem 1.1. In setion 8, some mumerial simulationsrelated to our physial model are presented. Finally, setion 9 is an appendix where weshow the proofs of some standard results.2 Strategy of the proofThe main di�ulty we have to fae is to work with the equation
κtκx = ρtρx. (2.1)Sine ρ solves itself a paraboli equation (see (1.3)), we expet enough regularity on

ρ (indeed ρ is C1), and then we need a framework where the equation on κ is stableunder approximation. This property is naturally satis�ed in the framework of visositysolutions. Then, assuming κx ≥ 0, we interpret κ as the visosity solution of (2.1).Assuming (1.11), we will indeed show that
M := κx − |ρx| ≥ 0.This is formally true beause M formally satis�es:
Mt = bMx + cM,with

b = τ sgn(ρx) −
ρxρxx
κ2
x

, c =
ρ2
xx

κ2
x

− ρxxx sgn(ρx)
κx

,where for suitable boundary onditions, we an (again formally) see that
M ≥ 0.In order to justify the omputations on M , we modify the system and we onsider thefollowing paraboli regularization for ε > 0 small enough:







κεt = εκεxx +
ρεxρ

ε
xx

κεx
− τρεx in I × (0, T )

ρεt = (1 + ε)ρεxx − τκεx in I × (0, T ),

(2.2)whih formally redues to (1.3) for ε = 0, with initial onditions (1.4) and boundaryonditions (1.9). In fat, system (2.2), (1.4) , (1.9), and under some onditions on theinitial and boundary data, has a unique smooth global solution (see [16, Theorem ??℄)for α ∈ (0, 1):
(ρε, κε) ∈ C3+α, 3+α

2 (Ī × [0,∞)) ∩ C∞(I × (0,∞)).This result will be learly presented in the tools (see Theorem 3.1, Setion 3). The nextstep is to �nd some uniform bounds (independent of ε) on this solution; this is done via:5



(1) an entropy inequality shown to be valid for our speial approximated model (2.2);
(2) a bound on κεt − εκεxx uniformly in ε.In fat, (1) guarantees the global uniform-in-time ontrol of the modulus of ontinuityin spae of our approximated solution, while (2) guarantees the loal uniform-in-spaeontrol of the modulus of ontinuity in time. The entropy inequality an be easily under-stood. For instane, for ε = 0 and τ = 0, we an formally hek that the entropy of thedisloation densities

θ± =
κx ± ρx

2
,de�ned by:

S(t) =

∫

I

∑

±

θ±(., t) log(θ±(., t)),satis�es:
dS(t)

dt
= −

∫

I

(θ+
x − θ−x )2

θ+ + θ−
≤ 0.Therefore we get S(t) ≤ S(0) whih ontrols the entropy uniformly in time. Finally, weneed to pass to the limit ε → 0 in the approximated solution after multiplying the �rstequation of (2.2) by κεx. Having enough ontrol on the approximared solutions, we an�nd a solution of the limit equation using in partiular the stability of visosity solutionsof Hamilton-Jaobi equations. However, the passage to the limit in the seond equationof (2.2) is done in the distributional sense.3 Tools: misellaneous paraboli results, visosity solution,and Orliz spaes3.1 Misellaneous paraboli resultsWe �rst �x some notations. Denote

IT := I × (0, T ), IT := Ī × [0, T ] and ∂pIT := I ∪ (∂I × [0, T ]).De�ne the Sobolev spae W 2,1
p (IT ) , 1 < p <∞ by:

W 2,1
p (IT ) :=

{

u ∈ Lp(IT ); (ut, ux, uxx) ∈ (Lp(IT ))3
}

.We start with a result of global existene and uniqueness of smooth solutions of theregularised system (2.2), with the initial and boundary onditions (1.4) and (1.9).Theorem 3.1 (Global existene for the regularized system, [16, Theorem 1.1℄)Let 0 < α < 1 and 0 < ε < 1. Let ρ0,ε, κ0,ε satisfying:
ρ0,ε, κ0,ε ∈ C∞(Ī), ρ0,ε(0) = ρ0,ε(1) = κ0,ε(0) = 0, κ0,ε(1) = 1, (3.1)

{

(1 + ε)ρ0,ε
xx = τκ0,ε

x on ∂I

(1 + ε)κ0,ε
xx = τρ0,ε

x on ∂I,
(3.2)6



and
min
x∈I

(
κ0,ε
x (x) − |ρ0,ε

x (x)|
)
> 0. (3.3)Then there exists a unique global solution

(ρε, κε) ∈ C3+α, 3+α
2 (Ī × [0,∞)) ∩ C∞(I × (0,∞)), (3.4)of the system (2.2), (1.4) and (1.9). Moreover, this solution satis�es :

κεx > |ρεx| on Ī × [0,∞). (3.5)Remark 3.2 Conditions (3.2) are natural here. Indeed, the regularity (3.4) of the so-lution of equation (2.2) with boundary onditions (1.4) and (1.9) imply in partiularondition (3.2).Remark 3.3 (Uniform L∞ bound on ρε and κε)We remark, from the boundary onditions (1.9) and from the inequality (3.5), that:
‖ρε‖L∞(Ī×[0,∞)) ≤ 1 and ‖κε‖L∞(Ī×[0,∞)) ≤ 1. (3.6)We now present two tehnial lemmas that will be used in the proof of Theorem 1.1. Theproofs of these lemmas will be given in the Appendix.Lemma 3.4 (Control of the modulus of ontinuity in time uniformly in ε)Let p > 3, and

uε ∈W 2,1
p (IT ). (3.7)Suppose furthermore that the sequenes

(uε)ε and (f ε)ε = (uεt − εuεxx)ε, (3.8)are loally bounded in IT uniformly for ε ∈ (0, 1). Then for every V ⊂⊂ IT , there existtwo onstants c > 0, ε0 > 0 depending on V , and 0 < β < 1 suh that for all 0 < ε < ε0:
|uε(x, t+ h) − uε(x, t)|

hβ
≤ c, ∀(x, t), (x, t+ h) ∈ V. (3.9)Lemma 3.5 (An interior estimate for the heat equation)let a ∈ C∞(IT ) ∩ L1(IT ) satisfying:

at = axx on IT , (3.10)then for any V ⊂⊂ IT , an open set, we have:
‖a‖p,V ≤ c‖a‖1,IT , ∀ 1 < p <∞, (3.11)with c = c(p, V ) > 0 is a positive onstant.

7



3.2 Visosity solution: de�nition and stability resultLet Ω ⊂ R
n be an open domain, and onsider the following Hamilton-Jaobi equation:

F (x, u(x),Du(x),D2u(x)) = 0, ∀x ∈ Ω, (3.12)where F : Ω × R × R
n ×Mn×n

sym 7→ R is a ontinuous mapping.De�nition 3.6 (Visosity solution of Hamilton-Jaobi equations)A ontinuous funtion u : Ω 7→ R is a visosity sub-solution of (3.12) if for any φ ∈
C2(Ω; R) and any loal maximum x0 ∈ Ω of u− φ, one has

F (x0, u(x0),Dφ(x0),D
2φ(x0)) ≤ 0.Similarly, u is a visosity super-solution of (3.12), if at any loal minimum point x0 ∈ Ωof u− φ, one has

F (x0, u(x0),Dφ(x0),D
2φ(x0)) ≥ 0.Finally, if u is both a visosity sub-solution and a visosity super-solution, then u is alleda visosity solution.To get a "non-empty" and useful de�nition, it is usually assumed that F is ellipti (see[2℄). This notion of elliptiity will be indiretly used in Setion 7. In fat, this de�nitionis used for interpreting solutions of the �rst equation of (1.3) in the visosity sense. Thiswill be shown in Setion 5. To be more preise, in the ase where Ω = IT , we say that uis a visosity solution of the Dirihlet problem (3.12) with u = ζ ∈ C(∂pIT ) if:(1) u ∈ C(IT ),(2) u is a visosity solution of (3.12) in IT ,(3) u = ζ on ∂pIT .For a better understanding of the visosity interpretation of boundary onditions ofHamilton-Jaobi equations, we refer the reader to [2, Setion 4.2℄. We now state thestability result for visosity solutions of Hamilton-Jaobi equations. An important resultonerning visosity solutions is presented by the following theorem:Theorem 3.7 (Stability of visosity solutions, [2, Lemma 2.3℄)Suppose that, for ε > 0, uε ∈ C(Ω) is a visosity sub-solution (resp. super-solution) ofthe equation

Hε(x, uε,Duε,D2uε) = 0 in Ω, (3.13)where (Hε)ε is a sequene of ontinuous funtions. If uε → u loally uniformly in Ω andif Hε → H loally uniformly in Ω × R × R
n ×Mn×n

sym , then u is a visosity sub-solution(resp. super-solution) of the equation:
H(x, u,Du,D2u) = 0 in Ω. (3.14)

8



3.3 Orliz spaes: de�nition and propertiesWe reall the de�nition of an Orliz spae and some of its properties (for details see [1℄).A real valued funtion Ψ : [0,∞) → R is alled a Young funtion if
Ψ(t) =

∫ t

0
ψ(s)ds,where ψ : [0,∞) → [0,∞) satisfying:

• ψ(0) = 0, ψ > 0 on (0,∞), ψ(t) → ∞ as t→ ∞;
• ψ is non-dereasing and right ontinuous at any point s ≥ 0.Let Ψ be a Young funtion. The Orliz lass KΨ(I) is the set of equivalene lasses ofreal-valued measurable funtions u on I satisfying

∫

I
Ψ(|u(x)|)dx < +∞.De�nition 3.8 (Orliz spaes)The Orliz spae LΨ(I) is the linear span of KΨ(I) supplemented with the Luxemburgnorm

‖u‖LΨ(I) = inf

{

k > 0;

∫

I
Ψ

( |u(x)|
k

)

≤ 1

}

, (3.15)and with this norm, the Orliz spae is a Banah spae.The funtion
Φ(t) =

∫ t

0
φ(s)ds, φ(s) = sup

ψ(t)≤s
t,is alled the omplementary Young funtion of Ψ. An example of suh pair of omple-mentary Young funtions is the following:

Ψ(s) = (1 + s) log(1 + s) − s and Φ(s) = es − s− 1. (3.16)We now state a lemma giving two useful properties of Orliz spaes that will be used inthe proof of Lemma 5.4.Lemma 3.9 (Norm ontrol and Hölder inequality, [17℄)If u ∈ LΨ(I) for some Young funtion Ψ, then we have:
‖u‖LΨ(I) ≤ 1 +

∫

I
Ψ(|u(x)|)dx. (3.17)Moreover, if v ∈ LΦ(I), Φ being the omplementary Young funtion of Ψ, then we havethe following Hölder inequality:

∣
∣
∣
∣

∫

I
uvdx

∣
∣
∣
∣
≤ 2‖u‖LΨ(I)‖v‖LΦ(I). (3.18)9



4 The regularized problemAs we have already mentioned, we will use a paraboli regularization of (1.3), and a resultof global existene of this regularized system from [16℄ (see Theorem 3.1). In order to usethis result, we need to give a speial attention to the onditions on the initial data of theapproximated system ρ0,ε and κ0,ε (see (3.1), (3.2) and (3.3)). This setion aims to showhow to hoose the suitable initial data ρ0,ε and κ0,ε in order to bene�t Theorem 3.1.Let ρ0 and κ0 be the funtions given in Theorem 1.1. Set
ρ0,ε =

ρ0 + ετφ

(1 + ε)2
, (4.1)and

κ0,ε =
κ0 + εx

1 + ε
, (4.2)with the funtion φ de�ned by:

φ(x) =
1

τ2
[1 − cos τ(x2 − x)]. (4.3)The funtion φ enjoys some properties that are shown in the following lemma.Lemma 4.1 (Properties of φ)The funtion φ given by (4.3) satis�es the following properties:(P1) φ, φ′ |∂I = 0;(P2) φ′′

∣
∣
∂I

= 1;(P3) |φ′

(x)| < 1/τ for x ∈ Ī.Proof. (P1) and (P2) diretly follows by simple omputations. For (P3), we alulateon Ī:
|φ′

(x)| = (1/τ)|2x − 1|| sin τ(x2 − x)|
≤ 1/τ.In order to obtain the strit inequality, we remark that

|2x− 1|| sin τ(x2 − x)| 6= 1 on Ī ,hene |φ′

(x)| < 1/τ. 2Form the above lemma, and from the onstrution of ρ0,ε and κ0,ε (see (4.1) and (4.2))together with the properties enjoyed by ρ0 and κ0 (see (1.9) and (1.12)), we write downsome properties of ρ0,ε and κ0,ε. 10



Lemma 4.2 (Properties of ρ0,ε and κ0,ε)The funtions ρ0,ε and κ0,ε given respetively by (4.1) and (4.2) , satisfy the followingproperties:(P4) ρ0,ε(0) = ρ0,ε(1) = κ0,ε(0) = 0 and κ0,ε(1) = 1;(P5) (1 + ε)κ0,ε
xx

∣
∣
∂I

= τρ0,ε
x

∣
∣
∂I

and (1 + ε)ρ0,ε
xx

∣
∣
∂I

= τκ0,ε
x

∣
∣
∂I
;(P6) κ0,ε

x ≥ |ρ0,ε
x | + ε(1 − τ |φ′ |)

1 + ε
> |ρ0,ε

x |.Proof. We only show (P5) and (P6). For (P5), we alulate:
ρ0,ε
x =

ρ0
x + ετφ

′

(1 + ε)2
, ρ0,ε

xx =
ρ0
xx + ετφ

′′

(1 + ε)2
, (4.4)and

κ0,ε
x =

κ0
x + ε

1 + ε
, κ0,ε

xx =
κ0
xx

1 + ε
.Therefore, on ∂I, we have:

(1 + ε)ρ0,ε
xx = τ

(
ε

1 + ε

)

= τκ0,ε
x ,and

(1 + ε)κ0,ε
xx = τρ0,ε

x = 0,where we have used (P1) and (P2) from Lemma 4.1, and the properties (1.9), (1.12) of ρ0and κ0 on ∂I. For (P6), we proeed as follows. We �rst use the inequality (1.11) between
ρ0
x and κ0

x, to dedue that:
κ0,ε
x =

κ0
x + ε

1 + ε
≥ |ρ0

x| + ε

1 + ε
,and then from the left identity of (4.4), we dedue that:

ρ0
x = (1 + ε)2ρ0,ε

x − ετφ
′

,therefore
κ0,ε
x ≥ (1 + ε)|ρ0,ε

x | + ε(1 − τ |φ′ |)
1 + ε

.The inequality (P6) then diretly follows. 2Remark 4.3 (The regularized solution (ρε, κε))Properties (P4)-(P5)-(P6) of Lemma 4.2 implies ondition (3.1)-(3.2)-(3.3) of Theorem3.1. In this ase, all
(ρε, κε), (4.5)the solution of (2.2), (1.4) and (1.9), given in Theorem 3.1, with the initial onditions

ρ(x, 0) = ρ0,ε and κ(x, 0) = κ0,ε,that are given by (4.1) and (4.2) respetively.11



5 Entropy inequalityProposition 5.1 (Entropy inequality)Let (ρε, κε) be the regular solution given by (4.5). De�ne θ±,ε by:
θ±,ε =

κεx ± ρεx
2

, (5.1)then the quantity S(t) given by:
S(t) =

∫

I

∑

±

θ±,ε(x, t) log θ±,ε(x, t)dx, (5.2)satis�es for every t ≥ 0:
S(t) ≤ S(0) +

τ2t

4
. (5.3)Proof. From (3.5), we know that

κεx > |ρεx|,hene
θ±,ε > 0,and the term log(θ±,ε) is well de�ned. Also from the regularity (3.4) of the solution

(ρε, κε), we know that
θ±,ε(., t) ∈ C(Ī), ∀t ≥ 0,hene the term S(t) is well de�ned. We derive system (2.2) with respet to x, and wewrite it in terms of θ±,ε, we get:







θ+,ε
t =

[(
(θ+,ε − θ−,ε)x
θ+,ε + θ−,ε

− τ

)

θ+,ε + εθ+,ε
x

]

x

θ−,εt =

[

−
(

(θ+,ε − θ−,ε)x
θ+,ε + θ−,ε

− τ

)

θ−,ε + εθ−,εx

]

x

.

(5.4)We �rst remark that:
(

(θ+,ε − θ−,ε)x
θ+,ε + θ−,ε

− τ

)

θ+,ε + εθ+,ε
x =

κt + ρt
2and

−
(

(θ+,ε − θ−,ε)x
θ+,ε + θ−,ε

− τ

)

θ−,ε + εθ−,εx =
κt − ρt

2
.Sine κεt and ρεt are zeros on ∂I × [0,∞), then

(
(θ+,ε − θ−,ε)x
θ+,ε + θ−,ε

− τ

)

θ+,ε+εθ+,ε
x = −

(
(θ+,ε − θ−,ε)x
θ+,ε + θ−,ε

− τ

)

θ−,ε+εθ−,εx = 0 on ∂I×[0,∞).(5.5)
12



Using (5.5), we ompute for t ≥ 0:
S

′

(t) =
∑

±

∫

I
θ±,εt log(θ±,ε) + θ±,εt ,

=
∑

±

∫

I
∓
(

(θ+,ε − θ−,ε)x
θ+,ε + θ−,ε

− τ

)

θ±,εx − ε

(
θ±,εx

)2

θ±,ε
,

=

∫

I
−
(
θ+,ε
x − θ−,εx

)2

θ+,ε + θ−,ε
+ τ(θ+,ε

x − θ−,εx ) − ε

((
θ+,ε
x

)2

θ+,ε
+

(
θ−,εx

)2

θ−,ε

)

.By Young's Inequality, we have:
∣
∣θ+,ε
x − θ−,εx

∣
∣ ≤ 1

τ

(
θ+,ε
x − θ−,εx

)2

θ+,ε + θ−,ε
+
τ

4
(θ+,ε + θ−,ε),and hene

S
′

(t) ≤
∫

I

τ2

4
(θ+,ε + θ−,ε) − ε

((
θ+,ε
x

)2

θ+,ε
+

(
θ−,εx

)2

θ−,ε

)

≤ τ2

4

∫

I
(θ+,ε + θ−,ε).Moreover, we have from (1.9), that

∫

I
(θ+,ε(., t) + θ−,ε(., t)) =

∫

I
κx(., t) = κ(1, t) − κ(0, t) = 1,and therefore

S
′

(t) ≤ τ2

4
.Integrating the previous inequality from 0 to t, we get (5.3). 2An immediate orollary of Proposition 5.1 is the following:Corollary 5.2 (Speial ontrol of κεx)For all t ≥ 0, we have:

∫

I
κεx(x, t) log(κεx(x, t))dx ≤ S(0) +

τ2t

4
+ 1, (5.6)where S is given by (5.2).The proof of Corollary 5.2 depends on the inequality shown by the next lemma.Lemma 5.3 For every x, y > 0, we have:

(x+ y) log(x+ y) ≤ x log(x) + y log(y) + x log(2) + y. (5.7)13



Proof. Fix y > 0. onsider the funtion f de�ned by:
f(x) = (x+ y) log(x+ y) − x log(x) − y log(y) − x log(2) − y, x > 0. (5.8)We laim that f(x) ≤ 0 for every x > 0. Indeed, we have limx→0+ f(x) = −y < 0. Weompute

f ′(x) = log(x+ y) − log(x) − log(2), (5.9)and we remark that this is always a dereasing funtion with
lim
x→0+

f ′(x) = +∞ and lim
x→+∞

f ′(x) = − log(2),hene the funtion f(x) an only be positive if f(x0) > 0 where x0 satis�es
f ′(x0) = 0.A simple omputation shows that x0 = y, then

f(y) = 2y log(2y) − 2y log(y) − y log(2) − y

= 2y log(2) + 2y log(y) − 2y log(y) − y log(2) − y

= y log(2) − y < 0,and therefore f(x) ≤ 0, ∀x > 0, whih ends the proof. 2Proof of Corollary 5.2. From (5.1), it follows that
κεx = θ+,ε + θ−,ε > 0.Then we have for t ≥ 0:

∫

I
κεx log κεx =

∫

I
(θ+,ε + θ−,ε) log(θ+,ε + θ−,ε)

≤
∫

I
θ+,ε log(θ+,ε) + θ−,ε log(θ−,ε) + θ+,ε log 2 + θ−,ε

≤
∫

I
θ+,ε log(θ+,ε) + θ−,ε log(θ−,ε) +

1

2
(log 2 + 1)

≤ S(t) + 1.Here we have used Lemma 5.3 with x = θ+,ε and y = θ−,ε for the seond line, and wehave used for the third line, the fat that
∫

I
θ±,ε =

1

2

∫

I
κx ± ρx =

1

2
[κ(1, .) − κ(0, .)] = 1/2.Using (5.3), the result follows. 2Lemma 5.4 (Control of the modulus of ontinuity in spae)Let u ∈ C1(I), ux > 0, satisfying

∫

I
ux log(ux) ≤ c1, (5.10)14



then we have for any x, x+ h ∈ I:
|u(x+ h) − u(x)| ≤ c2(1 + c1)

| log h| , (5.11)where c2 > is a universal onstant.Proof. Let x, x+ h ∈ I.Step 1. (ux ∈ LΨ(x, x+ h) with Ψ given in (3.16))We ompute
∫ x+h

x
Ψ(ux) =

∫ x+h

x
(1 + ux) log(1 + ux) − ux

≤
∫

I
(1 + ux) log(1 + ux) − ux

≤
∫

I
ux log(ux) + log 2

≤ c1 + log 2,where we have used (5.7) in the third line, and (5.10) in the last line. Hene from (3.17),we get
‖ux‖LΨ(x,x+h) ≤ c1 + 1 + log 2,and hene ux ∈ LΨ(x, x+ h).Step 2. (Estimating the modulus of ontinuity)It is easy to hek that the funtion 1 lies in LΦ(x, x + h), Φ is also given by (3.16).Therefore, by Hölder inequality (3.18), we obtain:

|u(x+ h) − u(x)| =

∣
∣
∣
∣

∫ x+h

x
ux · 1

∣
∣
∣
∣

≤ 2‖ux‖Lψ(x,x+h)‖1‖LΦ(x,x+h)

≤ 2(c1 + 1 + log 2)‖1‖LΦ(x,x+h). (5.12)We turn our attention now to the term ‖1‖LΦ(x,x+h). We have
‖1‖LΦ(x,x+h) = inf

{

k > 0;

∫ x+h

x
Φ

(
1

k

)

≤ 1

}

= inf

{

k > 0;

∫ x+h

x
(e1/k − 1/k − 1) ≤ 1

}

= inf
{

k > 0; h(e1/k − 1/k − 1) ≤ 1
}

≤ − 1

log(h)
, 15



where we have used in the last line the fat that for 0 < h < 1 and k = − 1
log(h) , thefollowing inequality holds:

h(e1/k − 1/k − 1) ≤ 1.Hene, (5.12) implies
|u(x+ h) − u(x)| ≤ 2(c1 + 1 + log 2)

1

| log h| ,and then (5.11) follows. 26 An interior estimateIn this setion, we give an interior estimate for the term
Aε = ρεx − τκε. (6.1)that will be used in the passage to the limit as ε goes to zero in the regularized system.We start by deriving an equation satis�ed by Aε.Lemma 6.1 The quantity Aε given by (6.1) satis�es for any T > 0:

Aεt = (1 + ε)Aεxx −
τρεx
κεx

Aεx. (6.2)Proof. From (2.2), we alulate:
Aεt = ρεtx − τκεt

= (1 + ε)ρεxxx − τκεxx − τ

(

εκεxx +
ρεxρ

ε
xx

κεx
− τρεx

)

= (1 + ε)(ρεxxx − τκεxx) −
τρεx
κεx

(ρεxx − τκεx)

= (1 + ε)Aεxx −
τρεx
κεx

Aεx,hene (6.2) is satis�ed. 2We now show an interior Lp estimate onerning the term Aε. This estimate gives aontrol on the loal Lp norm of Aε by its global L1 norm over IT , and it will be used inthe following setion. More preisely, we have the following lemma.Lemma 6.2 (Interior Lp estimate)Let 0 < ε < 1 and 1 < p <∞. Then the quantity Aε given by (6.1) satis�es:
‖Aε‖p,V ≤ c (‖Aε‖1,IT + 1) , (6.3)where V is an open subset of IT suh that V ⊂⊂ IT , and c = c(p, V ) > 0 is a onstantindependent of ε. 16



Proof. Throughout the proof, the term c = c(p, V ) > 0 is a positive onstant independentof ε, and it may vary from line to line. A simple omputation gives:
−τ ρ

ε
x

κεx
Aεx = −τ ρ

ε
x

κεx
(ρεxx − τκεx)

= −τ ρ
ε
xρ
ε
xx

κεx
+ τ2ρεx

= −τ(κεt − εκεxx). (6.4)De�ne κ̄ε as the unique solution of
{

κ̄εt = (1 + ε)κ̄εxx + κε on IT ,

κ̄ε = 0 on ∂pIT ,
(6.5)where the existene and uniqueness of this equation is a diret onsequene of the Lptheory for paraboli equations (see for instane [18, Theorem 9.1℄) using in partiular thefat that κε ∈ C1(IT ). Moreover, from the regularity (3.4) of κε, we an dedue that

κ̄ε ∈ C∞(IT ). Let Āε be given by:
Āε = −τ(κ̄εt − εκ̄εxx), (6.6)and

aε = Aε − Āε. (6.7)We alulate:
Āεt = −τ [κ̄εtt − εκ̄εxxt]

= −τ [(1 + ε)κ̄εxxt + κεt − ε((1 + ε)κ̄εxxxx + κεxx)]

= −τ(1 + ε)(κ̄εxxt − εκ̄εxxxx) − τ(κεt − εκεxx)

= (1 + ε)Āxx −
τρεx
κεx

Aεx,where for the �rst two line, we have used (6.5), and for the last line, we have used (6.4).In this ase, we obtain:
aεt = Aεt − Āεt

= (1 + ε)Aεxx −
τρεx
κεx

Aεx − (1 + ε)Āxx +
τρεx
κεx

Aεx

= (1 + ε)(Aεxx − Āεxx)

= (1 + ε)aεxx,where for the �rst line, we have used the equation (6.2). We apply Lemma 3.5 to thefuntion aε, after doing paraboli resaling of the form ãε(x, t) = aε
(

x, t
1+ε

), we get:
‖aε‖p,V ≤ c(1 + ε)

1− 1

p ‖aε‖1,IT ,and sine 0 < ε < 1, we �nally obtain
‖aε‖p,V ≤ c‖aε‖1,IT . (6.8)17



From the de�nition of aε (see (6.7) above), and the above inequality (6.8), we �nallydedue that:
‖Aε‖p,V ≤ c(‖Aε‖1,IT + ‖Āε‖p,IT ). (6.9)In order to omplet the proof, we need to ontrol the term ‖Āε‖p,IT in (6.9). We use theequation (6.5) satis�ed by κ̄ε to obtain:

‖Āε‖p,IT = τ‖κ̄εt − εκ̄εxx‖p,IT
= τ‖κ̄εxx + κε‖p,IT
≤ c(‖κ̄εxx‖p,IT + ‖κε‖p,IT ). (6.10)The Lp estimates for paraboli equations (see [16, Lemma ??℄) applied to (6.5) gives:

‖κ̄εxx‖p,IT ≤ c

1 + ε
‖κε‖p,IT ,then (6.10), together with the fat that 0 ≤ κε ≤ 1 (see (1.9)), implies that:

‖Āε‖p,IT ≤ c‖κε‖p,IT ≤ cT 1/p,hene the result follows. 27 Proof of the main theoremAt this stage, we are ready to present the proof of our main result (Theorem 1.1). Thisdepends essentially on the passage to the limit in the family of solutions (ρε, κε) of system(2.2). Sine κεx 6= 0, we multiply the �rst equation of (2.2) by κεx and we rewrite system(2.2) in terms of Aε, we obtain:
{

κεtκ
ε
x = εκεxκ

ε
xx + ρεxA

ε
x on IT

ρεt = ερεxx +Aεx on IT .
(7.1)We will pass to the limit in the framework of visosity solutions for the �rst equation of(7.1), and in the distributional sense for the seond equation. We start with the followingproposition.Proposition 7.1 (Loal uniform onvergene)The sequenes (ρε)ε, (ρεx)ε, (κε)ε, (Aε)ε and (Aεx)ε onverge (up to extration of a subse-quene) loally uniformly in IT as ε goes to zero.Proof. Let V be an open ompatly ontained subset of IT . The onstants that willappear in the proof are all independent of ε. However, they may depend on other �xedparameters inluding V . The idea is to give an ε-uniform ontrol of the modulus of on-tinuity in spae and in time of the quantities mentioned in Proposition (7.1), whih givesthe loal uniform onvergene. The ε-uniform ontrol on the spae modulus of ontinuitywill be derived from the Corollary 5.2 and Lemma 5.4, while the ε-uniform ontrol on thetime modulus of ontinuity will be derived from Lemma 3.4. The proof is divided into18



�ve steps.Step 1. (Convergene of Aε and Aεx)From (3.5), we know that ∥∥∥ ρεxκεx∥∥∥∞ ≤ 1. We apply the interior Lp, p > 1, estimatesfor paraboli equations (see for instane [19, Theorem 7.13, page 172℄) to the term Aεsatisfying (6.2), we obtain:
‖Aε‖W 2,1

p (V ) ≤ c3‖Aε‖p,V ′ , (7.2)where V ′ is any open subset of IT satisfying V ⊂⊂ V ′ ⊂⊂ IT . The onstant
c3 = c3(p, τ, V, V

′) an be hosen independent of ε �rst by applying a paraboli resal-ing of (6.2), and then using the fat that the fator multiplied by Aεxx in (6.2) satisfying
1 ≤ 1 + ε ≤ 2. At this point, we apply Lemma 6.2 for Aε on V ′, we get:

‖Aε‖p,V ′ ≤ c4(‖Aε‖1,IT + 1), (7.3)and hene the above two equations (7.2) and (7.3) give:
‖Aε‖

W 2,1
p (V )

≤ c5(‖Aε‖1,IT + 1). (7.4)We estimate the right hand side of (7.4) in the following way:
‖Aε‖1,IT =

∫

IT

|ρεx − τκε|

≤
∫

IT

κεx + τ |κε|

≤ (1 + τ)T,where we have used the fat that |ρεx| < κεx (see (3.5) of Theorem 3.1) in the seond line,and the fat that 0 ≤ κε ≤ 1 (see Remark 3.3) in the last line. Therefore, inequality (7.4)implies:
‖Aε‖

W 2,1
p (V )

≤ c6, 1 < p <∞. (7.5)We use the above inequality for p > 3. In this ase, the Sobolev embedding in Hölderspaes (see [16, Lemma 2.8℄) gives:
W 2,1
p (V ) →֒ C1+α, 1+α

2 (V ), α = 1 − 3/pand hene (7.5) implies:
‖Aε‖

C1+α,
1+α

2 (V )
≤ c7, (7.6)whih guarantees the equiontinuity and the equiboundedness of (Aε)ε and (Aεx)ε. Bythe Arzela-Asoli Theorem (see for instane [3℄), we �nally obtain

Aε −→ A and Aεx −→ Ax, (7.7)up to a subsequene, uniformly on V as ε→ 0.19



Step 2. (Convergene of κε)We ontrol the modulus of ontinuity of κε in spae and in time, loally uniformly withrespet to ε.Step 2.1. (Control of the modulus of ontinuity in time)The �rst equation of (7.1) gives:
κεt = εκεxx +

ρεx
κεx
Aεx,and hene, using the fat that ∥∥∥ ρεxκεx∥∥∥∞ ≤ 1, together with (7.6), we get:

‖κεt − εκεxx‖∞,V ≤
∥
∥
∥
∥

ρεx
κεx

∥
∥
∥
∥
∞,V

‖Ax‖∞,V ≤ c7. (7.8)Also, by (3.6), we have:
‖κε‖∞,V ≤ 1.This uniform bound on κε together with (7.8) permit to use Lemma 3.4 to onlude that

|κε(x, t) − κε(x, t+ h)| ≤ c8h
β, (x, t), (x, t + h) ∈ V, 0 < β < 1, (7.9)whih ontrols the modulus of ontinuity of κε with respet to t uniformly in ε. We nowmove to ontrol the moduls of ontinuity in spae.Step 2.2 (An ε-uniform bound on S(0))Reall the de�nition (5.2) of S(t):

S(t) =

∫

I

∑

±

θ±,ε(x, t) log θ±,ε(x, t)dx,with
θ±,ε =

κεx ± ρεx
2

.Hene
S(0) =

∫

I

κ0,ε
x + ρ0,ε

x

2
log

(

κ0,ε
x + ρ0,ε

x

2

)

+

∫

I

κ0,ε
x − ρ0,ε

x

2
log

(

κ0,ε
x − ρ0,ε

x

2

)

.Using the elementarty identity x log x ≤ x2 and (x± y)2 ≤ 2(x2 + y2), we ompute:
S(0) ≤

∫

I

(

κ0,ε
x + ρ0,ε

x

2

)2

+

∫

I

(

κ0,ε
x − ρ0,ε

x

2

)2

≤ ‖ρ0,ε
x ‖2

2,I + ‖κ0,ε
x ‖2

2,I . (7.10)20



From (4.1) and (4.2), we know that:
|ρ0,ε
x | =

∣
∣
∣
∣
∣

ρ0
x + ετφ

′

(1 + ε)2

∣
∣
∣
∣
∣
≤ |ρ0

x| + ε

(1 + ε)2
≤ |ρ0

x| + 1,and
|κ0,ε
x | =

∣
∣
∣
∣

κ0
x + ε

1 + ε

∣
∣
∣
∣
≤ |κ0

x| + 1.Using the above two inequalities into (7.10), we dedue that:
S(0) ≤ 2(‖ρ0

x‖2
2,I + ‖κ0

x‖2
2,I + 2).Step 2.3. (Control of the modulus of ontinuity in spae and onlusion)We use the uniform bound obtained for S(0) in Step 2.1, together with the speial ontrol(5.6) of κεx given in Corollary 5.2, we get for all 0 ≤ t ≤ T :

∫

I
κεx(x, t) log(κεx(x, t))dx ≤ 2(‖ρ0

x‖2
2,I + ‖κ0

x‖2
2,I + 2) +

τ2T

4
+ 1,therefore ∫

I
κεx(x, t) log(κεx(x, t))dx ≤ c9, ∀ 0 ≤ t ≤ T. (7.11)Inequality (7.11) permit to use Lemma 5.4, hene we obtain:

|κε(x+ h, t) − κε(x, t)| ≤ c10
| log h| , (x, t), (x + h, t) ∈ IT , (7.12)Inequalities (7.9) and (7.12) give the equiontinuity of the sequene (κε)ε on V , and againby the Arzela-Asoli Theorem, we get:
κε → κ, (7.13)up to a subsequene, uniformly on V as ε→ 0.Step 3. (Convergene of ρε)As in step 2, we ontrol the modulus of ontinuity of ρε in spae and in time, loallyuniformly with respet to ε.Step 3.1. (Control of the modulus of ontinuity in time)The seond equation of (7.1) gives:

ρεt − ερεxx = Aεx,hene, from (7.6), we dedue that:
‖ρεt − ερεxx‖∞,V ≤ c7,21



and from (3.6), we have:
‖ρε‖∞,V ≤ 1.The above two inequalities permit to use Lemma 3.4, we �nally get:

|ρε(x, t) − ρε(x, t+ h)| ≤ c8h
β, (x, t), (x, t + h) ∈ V, 0 < β < 1, (7.14)whih ontrols the modulus of ontinuity of ρε with respet to t uniformly in ε.Step 3.2. (Control of the modulus of ontinuity in spae and onlusion)The ontrol of the spae modulus of ontinuity is based on the following observation.From (3.5), we know that |ρεx| ≤ κεx on IT . Using this inequality, we get, for every

(x, t), (x + h, t) ∈ IT :
|ρε(x+ h, t) − ρε(x, t)| ≤

∫ x+h

x
|ρεx(y, t)|dy ≤

∫ x+h

x
κεx(y, t)dy ≤ |κε(x+ h, t) − κε(x, t)|.Inequality (7.12) gives immediately that:

|ρε(x+ h, t) − ρε(x, t)| ≤ c10
| log h| , (x, t), (x + h, t) ∈ IT . (7.15)From (7.14) and (7.15), we dedue that:
ρε → ρ, (7.16)up to a subsequene, uniformly on V as ε→ 0.Step 4. (Convergene of ρεx and onlusion)In fat, this follows from Step 1, Step 2, and the fat that

ρεx = Aε + τκε → ρx, (7.17)uniformly on V as ε→ 0. In this ase, we also dedue that
A = ρx − τκ.The proof of Proposition 7.1 is done. 2We now move to the proof of the main result.Proof of Theorem 1.1. We �rst remark that κε is a visosity solution of the �rstequation of (7.1):

κεtκ
ε
x − εκεxκ

ε
xx − ρεxA

ε
x = 0 on IT . (7.18)Indeed, let φ ∈ C2(IT ) suh that κε−φ has a loal maximum at some point (x0, t0) ∈ IT .Then Dκε = Dφ and D2κε ≤ D2φ. From this and the fat that κεx > 0, we alulate at

(x0, t0):
φtφx − εφxφxx − ρεxA

ε
x = κεtκ

ε
x − εκεxφxx − ρεxA

ε
x

≤ κεtκ
ε
x − εκεxκ

ε
xx − ρεxA

ε
x

≤ 0.22



On the other hand, if κε − φ has a loal minimum at (x0, t0), we similarly get:
φtφx − εφxφxx − ρεxA

ε
x ≥ 0,and hene κε is a visosity solution.Remark 7.2 The equation (7.18) an be viewed as the following Hamilton-Jaobi equa-tion of seond order:

Hε(X,Dκε,D2κε) = 0, X = (x, t) ∈ IT (7.19)with
Dκε = (κεx, κ

ε
t ) and D2κε =

(
κεxx κεxt
κεtx κεtt

)

,where Hε is the Hamiltonian funtion given by:
Hε : IT × R

2 ×M2×2sym −→ R

(X, p,M) 7−→ Hε(X, p,M) = p1p2 − εp1M11 − ρεx(X)Aεx(X),
(7.20)

p = (p1, p2) and M = (Mij)i,j=1,2.From (7.7) and (7.17), we dedue that (Hε)ε onverges loally uniformly in IT×R
2×M2×2

symto the funtion H given by:
H : IT × R

2 ×M2×2sym −→ R

(X, p,M) 7−→ H(X, p,M) = p1p2 − ρx(X)Ax(X).
(7.21)This, together with the loal uniform onvergene of κε to κ (see 7.13), and the fat that

κε is a visosity solution of (7.18), permit to use the stability of visosity solutions (seeTheorem 3.7), whih proves that κ is a visosity solution of
H(X,Dκ,D2κ) = κtκx − ρxAx = 0 in IT . (7.22)We now pass to the limit ε→ 0 in the seond equation of (7.1), we obtain

ρt = Ax in D′(IT ). (7.23)From (7.22) and (7.23), we get:1. κ is a visosity solution of κtκx = ρtρx in IT ;2. ρ is a distributional solution of ρt = ρxx − τκx in IT .Let us now prove inequality (1.13). Let φ ∈ C∞
0 (IT ) be a non-negative test funtion.From (3.5), we know that

κεx > |ρεx| in IT ,and hene
κεx > ρεx and κεx > −ρεx in IT .23



Multiplying these inequalities by a test funtion φ ∈ D(IT ), φ ≥ 0; integrating by partsover IT , and passing to the limit as ε→ 0, we obtain
κx ≥ ρx and κx ≥ −ρx in D′(IT ),therefore

κx ≥ |ρx| in D′(IT ).Finally, let us show that the two solutions ρ and κ an be extended by ontinuity tothe paraboli boundary of IT , in order to retrieve the initial and boundary onditions.Indeed, the loal uniform onvergene (ρε, κε) → (ρ, κ), together with the uniform ontrolof the modulus of ontinuity of these solutions:
• with respet to x near ∂I × [0, T ] by (7.12);
• with respet to t near I × {t = 0}, away from 0 and 1 by (7.9),and the fat that κ0,ε → κ0, ρ0,ε → ρ0 uniformly in Ī,

κε(0, .) → 0, κε(1, .) = 1, ρε = 0 on ∂I × [0, T ],show that (ρ, κ) ∈ (C(IT ))2, so the initial and boundary onditions are satis�ed point-wisely, and the proof of the main result is done. 28 Appliation: simulations for the evolution of elastovis-oplati materialsMotivated by the simulation of the elastovisoplasti behavior that are formulated bythe model of Groma, Csikor and Zaiser [12℄, this setion is devoted to write down theequations of the displaement vetor u inside the rystal when it is applied to a onstantexterior shear stress τ on the boundary walls (see Figure 1). Also, at the end of thissetion, we present some numerial simulations revealing the evolution of a rystal ofsmall size.
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Figure 1: Geometry of the rystal.Here, as we have already mentioned in the introdution, we suppose that the distri-bution of disloations is invariant by translation in the y-diretion. Also, we assume,24



without loss of generality (up to a hange of variables in (x, t) and a re-de�nition of τ),that
I = (−1, 1).We onsider a 2-dimentional rystal (Figure 1) with the displaement vetor:

u = (u1, u2) : R
2 7−→ R

2.For x = (x1, x2) and an orthonormal basis (e1, e2), we de�ne the total strain by:
ε(u) =

1

2
(∇u+ t∇u), (8.1)i.e.

εij(u) =
1

2
(∂jui + ∂iuj)with

∂jui =
∂ui
∂xj

, i, j = 1, 2.This total strain an be deomposed into two parts as follows:
ε(u) = εe(u) + εp, (8.2)where εe(u) is the elasti strain and εp is the plasti strain whih is given by:

εp = γε0, (8.3)with
ε0 =

1

2
(e1 ⊗ e2 + e2 ⊗ e1) =

1

2

(
0 1
1 0

)

,in the speial ase of a single slip system where disloations move following the Burgersvetor ~b = e1. Here γ is the resolved plasti strain that an be expressed in terms of thedisloation densities as:
γ = ρ+ − ρ− = ρ,therefore (8.3) implies that

εp = ρε0.The stress �eld σ inside the rystal is given by:
σ = Λ : εe(u),where for i, j = 1, 2,

σij = (Λ : εe(u))ij = 2µεeij(u) + λδijtr(ε
e(u)), (8.4)with λ, µ > 0 are the onstants of Lamé oe�ients of the rystal that are assumed (forsimpli�ation) to be isotropi, and δij is the Kroneker delta symbol. This stress �eld σhas to satisfy the equation of elastiity:divσ = 0. (8.5)25



Finally, the funtions ρ, κ (solutions of (1.3)) and u are solutions of the following oupledsystem:






divσ = 0 in I × (0,∞),

σ = Λ : (ε(u) − εp) in I × (0,∞),

ε(u) =
1

2
(∇u+ t∇u) in I × (0,∞),

εp = ε0(ρ+ − ρ−) in I × (0,∞),

κtκx = ρtρx in I × (0,∞),

ρt = ρxx − τκx in I × (0,∞),

(8.6)
Equation (8.5) an be reformulated as:div (2µε(u) + λtr(ε(u))Id) = div (2µεp + λtr(εp)Id),whih implies that:

µ∆u+ (λ+ µ)∇(divu) = µ

(
∂2ρ
∂1ρ

)

= µ

(
0
∂1ρ

)

. (8.7)Here ∂2ρ = 0 is due to the homogeneity of the distribution of disloations in the e2-diretion.Calulation of u. We �rst alulate the value of the displaement u on the boundarywalls. Remark �rst that sine we are applying a onstant shear stress �eld on the walls,the stress �eld σ there an be evaluated as: σ · n = ±τe2, n = ±e1,
σb =

(
0 τ
τ 0

)

, on ∂I. (8.8)Using (8.8) and (8.4), we an derive the following equations on the boundary:
{

∂1u1 = 0 on ∂I,

µ(∂1u2 − ρ) = τ on ∂I.
(8.9)Equation (8.7) leads to the following two equations inside I:

{

∂1[(λ+ 2µ)∂1u1] = 0 on I

∂1(∂1u2 − ρ) = 0 on I.
(8.10)Combining (8.9) and (8.10) we dedue that:







∂1u1 = 0 on I

∂1u2 − ρ =
τ

µ
on I.

(8.11)By the antisymmetry of our partiular on�guration with respet to the line x1 = 0, andthe fat that we are applying a shear stress on the walls, we eventually have:
u1(0, x2) = u2(0, x2) = 0,26



whih together with (8.11) �nally lead:






u1(x1, x2) = 0, (x1, x2) ∈ I × R

u2(x1, x2) =
τ

µ
x1 +

∫ x1

0
ρ(x)dx, (x1, x2) ∈ I × R.

(8.12)As an elastovisoplasti material of small size, the double-ended pile-up distribution of dis-loations a�ets the internal ontribution (displaement) of the material near the bound-ary (see Figures 2, 3 and 4). It appears that the rystal is perfetly elasti at a verysmall time t = 0+, while the plasti ontribution starts to take plae at t > 0 with twoboundary layers reated at the walls (see Figure 4). The following �gures are numeriallyomputed after alulating the displaement u2 (see (8.12)) by disretizing the last twoequations of (8.6) in order to alulate ρ.

Figure 2: The material at t = 0.

Figure 3: The elasti deformation at t = 0+.27



Figure 4: The total deformation at t = +∞.9 AppendixA1. Proof of Lemma 3.4 (ontrol of the modulus of ontinuity in time)Let V be a ompatly ontained subset of IT . Throughout the proof, the onstant c maytake several values but only depending on V . Sine V ⊂⊂ IT , then there is a retangularube of the form
Q = (x1, x2) × (t1, t2),suh that V ⊂⊂ Q ⊂⊂ IT . In this ase, there exists a onstant ε0, also depending on Vsuh that for any

0 < ε < ε0,and any (x, t) ∈ V , we have:
(x− 2

√
ε, x+ 2

√
ε) × {t} ⊂ Q.Moreover, for any (x, t), (x, t + h) ∈ V , we an always �nd two intervals I and J suhthat

(t, t+ h) ⊂ I ⊂⊂ J ,with
{x} × I ⊂ Q and {x} × J ⊂ Q.Let us indiate that these intervals might have di�erent lengths depending on h and Vbut we always have

|J |, |I| ≤ |t2 − t1|.Consider the following resaling of the funtion uε de�ned by:
ũε(x, t) = uε(

√
εx, t). (9.1)28



This funtion satis�es
ũεt = ũεxx + f̃ ε, (x, t) ∈ (0, 1/

√
ε) × (0, T ),where f̃ ε(x, t) = f ε(

√
εx, t). Take (x0, t0), (x0, t0 + h) in V , and let

Q1 = (x0 −
√
ε, x0 +

√
ε) × I and Q2 = (x0 − 2

√
ε, x0 + 2

√
ε) × J .These two ylinders are transformed by the above resaling into

Q̃1 =

(
x0√
ε
− 1,

x0√
ε

+ 1

)

× I and Q̃2 =

(
x0√
ε
− 2,

x0√
ε

+ 2

)

×J .We apply the interior Lp, p > 3, estimates for paraboli equations (see for instane [19,Theorem 7.13, page 172℄) to the funtion ũε over the domains Q̃1 ⊂⊂ Q̃2, we get
‖ũε‖

W 2,1
p (Q̃1)

≤ c(‖ũε‖p,Q̃2
+ ‖f̃ ε‖p,Q̃2

). (9.2)We ompute:
‖ũε‖p

Lp(Q̃2)
=

∫

Q̃2

|ũε(x, t)|pdxdt

=

∫

Q̃2

|uε(
√
εx, t)|pdxdt

=
1√
ε

∫

Q2

|uε(y, t)|pdydt

≤ c, (9.3)where for the last line, we have used the loal uniform boundedness of (uε)ε, and inexatly the same way (from the loal uniform boundedness of and (f ε)ε) we obtain:
‖f̃ ε‖p

Lp(Q̃2)
≤ c. (9.4)Therefore, from (9.3), (9.4), inequality (9.2) implies:

‖ũε‖
W 2,1
p (Q̃1)

≤ c. (9.5)We use the Sobolev embedding in Hölder spaes (see for instane [16, Lemma 2.8℄):
W 2,1
p (Q̃1) →֒ C1+α 1+α

2 (Q̃1), p > 3, α = 1 − 3/p,to obtain, from (9.5), that:
‖ũε‖

C1+α
1+α

2 (Q̃1)
≤ c,and hene

|ũε(x0/
√
ε, t0 + h) − ũε(x0/

√
ε, t0)|

h
1+α

2

≤ c,then from (9.1),
|uε(x0, t0 + h) − uε(x0, t0)|

h
1+α

2

≤ c.29



Choosing β = 1+α
2 we get the desired result. 2A2. Proof of Lemma 3.5 (An interior estimate for the heat equation)Reall that a is a solution of the heat equation on IT ,

at = axx.The proof of lemma 3.5 depends mainly on a mean value formula for solutions of the heatequations. Usually, basi mean value formulae of the solution of the heat equation areexpressed through unbounded kernels (see for example [7, Theorem 1℄), where a an beexpressed as:
a(x0, t0) = (4πr2)−1/2

∫

Ωr(x0,t0)
a(x, t)

(x0 − x)2

4(t0 − t)2
dxdt. (9.6)Here, (x0, t0) ∈ IT , (x, t) ∈ Ωr(X0), and r > 0 small enough in order to ensure that theparaboli ball of radius r:

Ωr(x0, t0) =

{

(x, t); t0 − r2 < t < t0, (x− x0)
2 < 2(t0 − t) log

(
r2

t0 − t

)}

⊂ IT . (9.7)In our ase, we need a mean value formula similar to (9.6) but with a bounded kernel on
Ωr(x0, t0). In [10℄, the authors have given suh a representation formula for the solutionof the heat equation. We present their result in a simpli�ed version.Theorem 9.1 (Mean value formula with bounded kernels, [10, Theorem 3.1℄)Let u ∈ C2(D) be a solution of the heat equation:

ut = uxx on D,where D is an oben subset of R
2 ontaining the modi�ed unit paraboli ball Ω′

1(0, 0), with
Ω′

1(0, 0) =
{
(x, t); −1 < t < 0, x2 < 8t log(−t)

}
.Then we have:

u(0, 0) =

∫

Ω′

1
(0,0)

u(x, t)E(x, t)dxdt, (9.8)where the kernel E satis�es:
‖E(x, t)‖∞,Ω′

1
(0,0) ≤ c, (9.9)and c > 0 is a �xed positive onstant.Remark 9.2 The above Theorem is an appliation of [10, Theorem 3.1℄ in the ase

m = 3. In this ase, an expliit expression of E is given by:
E(x, t) =

ω3

16π2

(
−x2 + 8t log(−t)

)3/2
[
x2

4t2
+

3(−x2 + 8t log(−t))
20t2

]

,where ω3 is the volume of the unit ball in R
3. For a more general expression of E, wesend the reader to [10, Equality (3.6) of Theorem 3.1℄.30



Using the paraboli resaling, we an obtain a similar mean value representation at any
(x0, t0) ∈ R

2. More preisely, we have:Corollary 9.3 (Mean value formula at any point (x0, t0) ∈ R
2)Let u ∈ C2(D) be a solution of the heat equation:

ut = uxx on D,where D is an oben subset of R
2 ontaining the modi�ed unit paraboli ball Ω′

r(x0, t0),
r > 0, with

Ω′
r(x0, t0) =

{

(x, t); t0 − r2 < t < t0, |x− x0|2 < 8(t0 − t) log

(
r2

t0 − t

)}

.Then we have:
u(x0, t0) =

c̄

|Ω′
r(x0, t0)|

∫

Ω′
r(x0,t0)

u(x, t)E

(
x− x0

r
,
t− t0
r2

)

dxdt, (9.10)where c̄ > 0 and |Ω′
r(x0, t0)| = c̄r3.Bak to the proof of Lemma 3.5. Sine V ⊂⊂ IT , then there exists a �xed

r0 = r0(dist(V, ∂pIT )),suh that:
Ω′
r0(x0, t0) ⊂ IT , ∀ (x0, t0) ∈ V.We use the mean value formula (9.10) at the point (x0, t0), we obtain:

a(x0, t0) = r−3
0

∫

Ω′

r0
(x0,t0)

a(x, t)E

(
x− x0

r0
,
t− t0
r20

)

dxdt,and hene from the L∞ bound (9.9)of E on Ω′
1(0, 0), we dedue that:

‖a‖∞,V ≤ cr−3
0 ‖a‖1,IT ,where the onstant c is given by (9.9). Finally, we obtain:

‖a‖p,V ≤ cr−3
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