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Dynamics and bifurcations of the adaptive exponential
integrate-and-fire model

Résuḿe : Recently, several two-dimensional spiking neuron models have been introduced, with
the aim of reproducing the diversity of electrophysiological features displayed by real neurons while
keeping a simple model, for simulation and analysis purposes. Among these models, the adaptive
integrate-and-fire model is physiologically relevant in that its parameters can be easily related to
physiological quantities. The interaction of the differential equations with the reset results in a rich
and complex dynamical structure. We relate the subthreshold features of the model to the dynamical
properties of the differential system and the spike patterns to the properties of a Poincaré map defined
by the sequence of spikes. We find a complex bifurcation structure which has a direct interpretation
in terms of spike trains. For some parameter values, spike patterns are chaotic.

Mots-clés :
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1 Introduction

The biophysics of neurons and their ionic channels are now understood in great details, although
many questions remain [Hille(2001)]. Yet, simple neuron models such as the integrate-and-fire
model [Lapicque(1907), Gerstner and Kistler(2002)] remain very popular in the computational neu-
roscience community, because they can be simulated very efficiently and, perhaps more importantly,
because they are easier to understand and analyze. The drawback is that these simple models cannot
account for the variety of electrophysiologicalbehaviorsof real neurons (see e.g. [Markram et al(2004)]
for interneurons). Recently, several authors introduced two-variable spiking models [Izhikevich(2004),
Brette and Gerstner(2005), Touboul(2008)] which, despitetheir simplicity, can reproduce a large
number of electrophysiological signatures such as bursting or regular spiking. Different sets of pa-
rameter values correspond to different electrophysiological classes.

All these two-dimensional models are qualitatively similar, but we are especially interested in
the adaptive exponential integrate-and-fire model (AdEx, [Brette and Gerstner(2005)]) because its
parameters can be easily related to physiological quantities, and the model has been successfully fit
to a biophysical model of a regular spiking pyramidal cell and to real recordings of pyramidal cells
[Clopath et al(2007)Clopath, Jolivet, Rauch, Lüscher, and Gerstner, Jolivet et al(2008)Jolivet, Kobayashi, Rauch,Naud, Shinomoto,
This model is described by two variables, the membrane potential V and an adaptation currentw,
whose dynamics are governed by the following differential equations:















CdV
dt = −gL(V −EL)+gL∆T exp

(

V−VT
∆T

)

−w+ I

τw
dw
dt = a(V −EL)−w

(1)

When the membrane potentialV is high enough, the trajectory quickly diverges because of the
exponential term. This divergence to infinity models the spike (the shape of the action potential is
ignored, as in the standard integrate-and-fire model). For displaying or simulation purposes, spikes
are usually cut to some finite value (e.g. 0 mV). When a spike occurs, the membrane potential is
instantaneously reset to some valueVr and the adaptation current is increased:

{

V →Vr

w → w+b
(2)

Although the differential system is only two-dimensional,the reset makes the resulting dynamical
hybrid system very rich.

The differential equations and the parameters have a physiological interpretation. The first equa-
tion is the membrane equation, which states that the capacitive current through the membrane (C is
the membrane capacitance) is the sum of the injected currentI and of the ionic currents. The first
term is the leak current (gL is the leak conductance andEL is the leak reversal potential), the mem-
brane time constant isτm = C/gL. The second (exponential) term approximates the sodium current,
responsible for the generation of action potentials [Fourcaud-Trocme et al(2003)Fourcaud-Trocme, Hansel, van Vreeswijk, and Brunel
The approximation results from neglecting the inactivation of the sodium channel and assuming that
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4 Touboul & Brette

activation is infinitely fast (which is reasonable). Because activation curves are typically Boltzmann
functions [Angelino and Brenner(2007)], the approximatedcurrent is exponential near spike initia-
tion. The voltage thresholdVT is the maximum voltage that can be reached without generating a
spike (without adaptation), and the slope factor∆T quantifies the sharpness of spikes. In the limit of
zero slope factor, the model becomes an integrate-and-fire model with a fixed thresholdVT . Quanti-
tatively, it is proportional to the slope constantk in the activation function of the sodium current. The
second variablew is an adaptation current with time constantτw, which includes both spike-triggered
adaptation, through the resetw→w+b, and subthreshold adaptation, through the coupling (variable
a). It may model ionic channels (e.g. potassium) or a dendritic compartment. Quantitatively, the
coupling variablea can result from a linearization of the dynamics of a ionic channel, or from the
axial conductance in the case of a dendritic compartment. Wegenerally assumea > 0 in this paper,
although the analysis also applies fora < 0 whena is not too large.

The interaction of the differential equations with the reset results in a rich dynamical structure.
There are 9 parameters plus the injected currentI , but these can be reduced to 4 variables plus the
currentI by changes of variables (e.g. settingVT as the reference potential,∆T as the voltage unit,
τm as the time unit, etc.). Thus, the electrophysiological class of the model, defined loosely here as
the set of qualitative behaviours for different values ofI , is parameterized in a 4-dimensional space.
In this paper, we will make this definition more precise by explaining different electrophysiological
signatures in terms of dynamics of the model. Because we are dealing with a hybrid dynamical sys-
tem, we shall study here two distinct dynamical aspects of the model: the subthreshold dynamics,
defined by the differential equations (section 2), and the spiking dynamics, defined the sequence of
resets (section 3). The former case was addressed by [Touboul(2008)] in a more general setting: we
will review some of those results in the specific context of the adaptive integrate-and-fire model, and
present new specific results, in particular about oscillations, attraction basins and rebound proper-
ties. In the latter case, we will see that the spike patterns of the model correspond to orbits under a
Poincaré map, which we shall call theadaptation mapΦ. Interestingly, we find that this map can
have chaotic dynamics under certain circumstances. Although we focus on this model for the rea-
sons mentioned above, many results also apply when the membrane equation is replaced by a more
general equationdV/dt = F(v)−w+ I , whereF is a smooth convex function whose derivative is
negative at−∞ and infinite at+∞ (in particular, Izhikevich model and the quartic model havethese
properties, see [Touboul(2008)]).

All simulations shown in this paper were done with the Brian software [Goodman and Brette(2008)]
The code is available on ModelDB at the following URL:http://senselab.med.yale.edu/
modeldb/ShowModel.asp?model=114242.

2 Subthreshold dynamics

2.1 Rescaling

The equations can be written in dimensionless units by expressing time in units of the membrane
time constantτm = C/gL, voltage in units of the slope factor∆T and with reference potentialVT ,
and rewriting both the adaptation variablew and the input currentI in voltage units. We obtain the

INRIA



Dynamics and bifurcations of the adaptive exponential integrate-and-fire model 5

following equivalent model:
{

dV̄
dt̄ = −V̄ +eV̄ − w̄+ Ī

τ̄w
dw̄
dt̄ = āV̄ − w̄

(3)

and when a spike is triggered:
{

V̄ → V̄r

w̄ → w̄+ b̄
(4)

where






























































τ̄w := τw
τm

= gLτw
C

ā := a
gL

Ī := I
gL∆T

+(1+ a
gL

)EL−VT
∆T

t̄ := t
τm

b̄ := b
gL∆T

V̄r := Vr−VT
∆T

V̄(t̄) := V(t)−VT
∆T

w̄(r̄) := w(t)+a(EL−VT )
gL∆T

(5)

It appears that the model has only four free parameters (plusthe input current). In this section
we will focus on the differential equations; we will turn to the sequence of resets in section 3. Thus,
only two parameters characterize the subthreshold dynamics: the ratio of time constantsτw/τm and
the ratio of conductancesa/gL (note:a can be seen as the stationary adaptation conductance).

The rescaled model belongs to the class studied in [Touboul(2008)] withF(v) = ev− v, i.e.,F
is convex, three times continuously differentiable, has a negative derivative at−∞ and an infinite
derivative at+∞. Therefore it has the same bifurcation structure, which we will develop here and
relate to electrophysiological properties We also provideformulas for the excitability type, rheobase
current, voltage threshold and the I-V curve. Besides, we give quantitative conditions for the oc-
curence of oscillations, along with a formula for their frequency. Finally, we examine the rebound
properties of the model, in relationship with the attraction basin of the stable fixed point.

2.2 Excitability

The dynamics in the phase plane(V,w) are partly determined by the number and nature of fixed
points, which are the intersections of the two nullclines (Fig. 1):

w = −gL(V −EL)+gL∆T exp

(

V −VT

∆T

)

+ I (V-nullcline)

w = a(V −EL) (w-nullcline)

Because the membrane current (first equation) is a convex function of the membrane potential
V, there can be no more than two fixed points. When the input current I increases, the V-nullcline
goes up and the number of fixed points goes from two to zero, while the trajectories go from resting
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Figure 1: Nullclines of the dynamical system (horizontal axis: V; vertical axis:w). A. The nullclines
intersect in two points, and divide the phase space into 5 regions. The potentialV increases below
theV-nullcline, w increases below thew-nullcline. The direction of the flow along each boundary
gives the possible transitions between regions (right). Spiking can only occur in the South region.
B. The nullclines do not intersect. All trajectories must enter the South region and spike.
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A

B

C

D

Type I (saddle-node) Type II (Andronov-Hopf)

Figure 2: Excitability types. A,B. Type I:agL
< τm

τw
(here: a = .2gL, τm = 3τw). When I is in-

creased, the resting point disappears through a saddle-node bifurcation: the two fixed points merge
and disappear. The current-frequency curve is continuous (B). C,D. Type II: a

gL
> τm

τw
(here:a= 3gL,

τm = .5τw). WhenI is increased, the resting point becomes unstable through anAndronov-Hopf
bifurcation: the stable fixed point becomes unstable. The current-frequency curve is discontinuous,
there is a non-zero minimum frequency (D).

to spiking. The excitability properties of the model dependon how the transition to spiking occurs,
that is, on the bifurcation structure.

2.2.1 Excitability types

When I is very negative, there are two fixed points, one of which is stable (the resting potential).
It appears that, when increasingI , two different situations can occur depending on the quantity
aτw
C = a

gL

τw
τm

(ratio of conductances times ratio of time constants).

If a
gL

< τm
τw

, then the system undergoes a saddle-node bifurcation whenI is increased, i.e., the
stable and unstable fixed points merge and disappear. This fact implies that the model has type I
excitability, that is, the current-frequency curve is continuous (Fig. 2). Indeed, when the fixed points
disappear, the vector field is almost null around the former fixed point (theghostof the fixed point).
Since the vector field can be arbitrarily small close to the bifurcation, the trajectory can be trapped
for an arbitrarily long time in the ghost of the fixed point, sothat the firing rate can be arbitrary small
whenI is close to the bifurcation point (threshold). This property also explains the phenomenon of
spike latency.

If a
gL

> τm
τw

, then the system undergoes an Andronov-Hopf bifurcation before the saddle-node
one, meaning that the stable fixed point first becomes unstable before merging with the other fixed
point. This fact implies that the model has type II excitability, that is, the current-frequency curve
is discontinuous at threshold, the firing rate suddenly jumps from zero to a finite value when the
bifurcation point is crossed (Fig. 2).

The bifurcation for the limit caseagL
= τm

τw
is called a Bogdanov-Takens bifurcation. It has codi-

mension two, i.e. it appears when simultaneously varying the two parameters ¯a andĪ of the rescaled
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8 Touboul & Brette

model. At this point, the family of unstable periodic orbitsgenerated around the Andronov-Hopf
bifurcation collides with the saddle fixed point and disappears via a saddle-homoclinic bifurcation.
There is no other bifurcation in this model (as well as in Izhikevich model [Izhikevich(2004)]).
Other similar models such as the quartic model may also undergo a Bautin bifurcation, associated
with stable oscillations (see [Touboul(2008)]).

The fixed points can be calculated using the Lambert functionW, which is the inverse ofx 7→ xex:














V− := EL + I
gL+a −∆TW0

(

− 1
1+a/gL

e
I

∆T (gL+a)
+

EL−VT
∆T

)

V+ := EL + I
gL+a −∆TW−1

(

− 1
1+a/gL

e
I

∆T (gL+a)
+

EL−VT
∆T

) (6)

whereW0 is the principal branch of the Lambert function andW−1 the real branch of the Lambert
function such thatW−1(x) ≤ −1, defined for−e−1 ≤ x < 1 (indeed sincex 7→ xex is not injective,
the Lambert function is multivalued).

The fixed pointV+ is always a saddle fixed point (hence unstable), i.e. its Jacobian matrix has
an eigenvalue with positive real part and an eigenvalue withnegative real part. The fixed pointV− is
stable if the model is type I, otherwise it depends on the currentI , as we discuss below.

2.2.2 Rheobase current

The rheobase current is the minimum constant current required to elicit a spike, i.e., the first point
when the stable fixed point becomes unstable, which depends on the excitability type.

For type I (a
gL

τw
τm

< 1), it corresponds to the saddle-node bifurcation point:

I I
rh = (gL +a)

[

VT −EL−∆T + ∆T log

(

1+
a
gL

)

]

(7)

which is obtained by calculating the intersection of the nullclines when these are tangent.
For type II ( a

gL

τw
τm

> 1), it corresponds to the Andronov-Hopf bifurcation point:

I II
rh = (gL +a)

[

VT −EL −∆T + ∆T log(1+
τm

τw
)
]

+ ∆TgL(
a
gL

− τm

τw
) (8)

It is important to note that the saddle-node bifurcation also occurs in the type II case at the point
ISN = I I

rh (> I II
rh; for type II we useISN instead ofI I

rh to avoid ambiguities).

2.2.3 Voltage threshold for slow inputs

For a parameterized inputIa(t), the threshold is the minimum value of the parametera for which
a spike is elicited. For example, the rheobase current is thethreshold constant current. How-
ever, the notion of a spike threshold for neurons is often described as avoltage threshold, al-
though the voltage is not a stimulation parameter (thus, it implicitly refers to an integrate-and-
fire model). It is nevertheless possible to define a meaningful voltage threshold for the case of

INRIA



Dynamics and bifurcations of the adaptive exponential integrate-and-fire model 9

constant current inputs as follows: the voltage threshold is the maximum stationary voltageV
for subthreshold constant current inputs (I ≤ Irh). For the exponential integrate-and-fire model
[Fourcaud-Trocme et al(2003)Fourcaud-Trocme, Hansel, van Vreeswijk, and Brunel], this is simply
VT . For the present model, it corresponds to the voltageV− at the first bifurcation point, when the
stable fixed point becomes unstable.

Not surprisingly, its value depends on the excitability type. For type I excitability (a/gL <
τm/τw), the voltage threshold is

Vslow
threshold= VT + ∆T log(1+a/gL)

For type II excitability (a/gL < τm/τw), the voltage threshold is

Vslow
threshold= VT + ∆T log(1+ τm/τw)

Interestingly, the threshold for type I excitability depends on the ratio of conductances, while the
threshold for type I excitability depends on the ratio of time constants.

2.2.4 Voltage threshold for fast inputs

For short current pulses (I = qδ (t), whereq is the total charge andδ (t) is the Dirac function), the
voltage threshold is different, but the same definition may be used: it is the maximum voltageV that
can be reached without triggering a spike. Injecting short current pulses amounts to instantaneously
changing the membrane potentialV, i.e., in the phase space(V,w), to moving along an horizontal
line. If, by doing so, the point(V,w) exits the attraction basin of the stable fixed point, then a spike
is triggered. Therefore, the threshold is a curve in the phase space, defined as the boundary of the
attraction basin of the stable fixed point (for which we have unfortunately no analytical expression,
although it can be computed numerically). Therefore the model displaysthreshold variability: the
voltage threshold depends on the value of the adaptation variablew, i.e., on the previous inputs. The
boundary of the attraction basin of the stable fixed point is either the stable manifold of the saddle
fixed point(separatrix) or a limit cycle. We examine this issue in section 2.6 and in appendix C.

2.3 I-V curve

The I-V curve of a neuron is the relationship between the opposite of the (constant) injected current
and the stationary membrane potential (it may also be definedfor non-constant input currents, see
e.g. [Badel et al(2008)Badel, Lefort, Brette, Petersen, Gerstner, and Richardson]). Experimentally,
this curve can be measured with a voltage-clamp recording. We obtain a simple expression by
calculatingI at the intersection of the nullclines:

I(V) = (a+gL)(V −EL)−gL∆T exp

(

V −VT

∆T

)

Thus, far from threshold, theI −V curve is linear and its slope is the leak conductance plus the
adaptation conductance.

RR n° 6563



10 Touboul & Brette

2.4 Oscillations

Because of the coupling between the two variablesV and w, there can be oscillations near the
resting potential, more precisely, damped oscillations (self-sustained oscillations are not possible
in this model, nor in Izhikevich model, as is shown in [Touboul(2008)]). Oscillations occur when
the eigenvalues associated with the stable fixed point are complex; when they are real, solutions
converge (locally) exponentially to the stable fixed point.

Because of the nature of the bifurcations, near the rheobasecurrent (section 2.2.2), the model is
non-oscillating if it has excitability type I (a/gL < τm/τw) and oscillating if it has type II. Far from
threshold, these properties can change. In this section we give explicit expressions for the parameter
zones corresponding to both regimes; details of the calculations are detailed in appendix A for the
rescaled model (3).

The parameter zones depend on the excitability types, the ratio τw/τm and the following condi-
tion:

a
gL

<
τm

4τw

(

1− τw

τm

)2

(9)

These results are summarized in Fig. 3.

2.4.1 Oscillations for type I

Three cases appear:

• If inequality (9) is false, then the model oscillates whenI < I+, where the formula forI+ is
given in Appendix A. In practice, we observe thatI+ is very close to the rheobase current, so
that the model almost always oscillates below threshold.

• If inequality (9) is true andτm > τw, then the model never oscillates near the fixed point.

• If inequality (9) is true andτm < τw, then the model oscillates whenI− < I < I+, where the
formula forI− is given in Appendix A.

2.4.2 Oscillations for type II

Two cases appear:

• If inequality (9) is false, then the model always oscillates near the fixed point, for any sub-
threshold input currentI .

• If inequality (9) is true, then the model oscillates only whenI > I−.

We call the occurrence of oscillations theresonatorregime and their absence theintegrator
regime (see 2.5.1). The model is called a resonator when it isalways (for allI ) or almost always (for
I < I+) in the resonator regime, i.e., when inequality (9) is false; it is called an integrator when it
never oscillates, i.e., whenτm > τw and inequality (9) is true; it is said to be in a mixed mode when
it oscillates only above some valueI− (see Fig. 3).

INRIA
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Figure 3: Oscillations. A. Behavior of the model as a function of a/gL andτm/τw. Light (dark)
colors indicate type I (type II) excitability. Blue: resonator mode (oscillations for any or almost any
I ). Green: integrator mode (oscillations for anyI ). Pink: mixed mode (resonator ifI is large enough,
otherwise integrator). B. Behavior of the model as a function of a/gL andI/gL for τm = .2τw (left)
andτm = 2τw (right). White: spiking; blue: oscillations; green: no oscillation. Spiking occurs when
I is above the saddle-node curve (SN) in the type I regime, and above the Hopf curve (Hopf) in the
type II regime. A repulsive limit cycle (circle) exists whenI is above the saddle-homoclinic curve
(SH; only for type II). Oscillations occur whenI− < I < I+ (on the left,I+ ≥ ISN; on the right,
I− = −∞). C,D. Response of the system to a short current pulse (Dirac) near the resting point, in the
resonator regime (C;a = 10gL, τm = τw) and in the integrator regime (D;a = .1gL, τm = 2τw). Left:
response in the phase space(V,w); right: voltage response in time.
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12 Touboul & Brette

2.4.3 Frequency of oscillations

When the model oscillates, the frequency of the oscillations is:

F =
ω
2π

=
2a

πgLτw
− 2

πτm

(

e
V−−VT

∆T −1+
τm

τw

)2

, (10)

which can be approximated far from threshold (V− ≪VT) as follows:

F =
ω
2π

≈ 2a
πgLτw

− 2
πτm

(

1− τm

τw

)2

. (11)

2.5 Input integration

The way the model integrates its inputs derives from the results above.

2.5.1 Resonator vs. integrator

On the temporal axis, the integration mode can be defined locally (for a small inputI(t)) as

V(t) = V0 +(K ⋆ I)(t)

where the kernelK is the linear impulse response of the model aroundV0, andK ⋆ I is a convolution.
This impulse response is determined by the eigenvalues of the stable fixed point. When these are
complex, the kernelK oscillates (with an exponential decay), as discussed in section 2.4 (see Fig.
3C). In that case the model acts as aresonator: two inputs are most efficient when separated by
the characteristic oscillation period of the model (given by eq. 10). The membrane time constant
is −1/λ , whereλ is the real part of the eigenvalues. Far from threshold (V << VT ), we find the
following time constant (see Appendix A):

τ = 2
τmτw

τm+ τw

When the eigenvalues are real, the kernelK is a sum of two exponential functions, and the
model acts as an integrator. In that case there are two time constants, given by the real part of the
eigenvalues. It is interesting to note that there is a parameter region where both integration modes
can exist, depending on the (stationary) input currentI : oscillations arise only when the model is
sufficiently depolarized (I > I−).

2.5.2 Adaptation

There are two sorts of adaptation in the model: threshold adaptation and voltage adaptation. The
former one comes from the orientation of the separatrix in the (V,w) plane, as we discussed in
section 2.2.4. The latter one derives from the fact that in the integrator mode (no oscillation), the
model kernelK is a sum of two exponential functions. If the slower one is negative, then the response

INRIA



Dynamics and bifurcations of the adaptive exponential integrate-and-fire model 13

to a step shows an overshoot (as in Fig. 4D for a negative current step), which is a form of adaptation
(the voltage response is initially strong, then decays). That overshoot can be seen when there is no
oscillation andτm < τw (see Appendix B), i.e., in themixed modeshown in pink in Fig. 3, when the
input current is low (I < I−).

2.6 The attraction basin of the stable fixed point

2.6.1 Limit cycle

The existence of a repulsive limit cycle arises for type II excitability from the Andronov-Hopf bi-
furcation. The saddle-node and Andronov-Hopf bifurcations collide via a Bogdanov-Takens bifur-
cation. In the neighborhood of this bifurcation, the familyof limit cycles disappears via a saddle-
homoclinic bifurcation. The normal form of the Bogdanov-Takens bifurcation gives us a local ap-
proximation of this saddle-homoclinic bifucation curve around the point in parameter space given by
(12) (see [Touboul(2008)]), and the full saddle-homoclinic curve can be computed numerically us-
ing a continuation algorithm. The currentI above which a limit cycle exists is locally approximated
at the second order by the following expression:

Icycle = IBT −
12
25

∆Tτ2
w

C(τm+ τw)
(a− C

τw
)2 +o(a2

1) (12)

for a > C
τw

, whereIBT is the rheobase current at the Bogdanov-Takens bifurcation:

IBT = (gL +
C
τw

)
[

VT −EL −∆T + ∆T log

(

1+
C

gLτw

)

]

Below the threshold currentIcycle, there is no limit cycle (see next section). Above theIcycle,
there is a repulsive limit cycle, circling anti-clockwise around the stable fixed point (see Fig. 3B
and 4A); the saddle fixed point is outside that cycle. Interestingly, it appears that one can exit the
attraction basin of the stable fixed point (and thus generatea spike) not only by increasingV, but
also by decreasingV or w (or increasingw). This phenomenon is sometimes calledrebound, and we
discuss it further in section 2.7.

2.6.2 Separatrix

For type I excitability, or for type II excitability whenI < Icycle, there is no limit cycle. In that
case the stable manifold of the saddle fixed point is an unbounded separatrix, i.e., it delimits the
attraction basin of the stable fixed point. From the positionof the nullclines, it appears that the
stable manifold must cross the saddle fixed point from above both nullclines (North) to below both
nullclines (South). It follows that the side above the nullclines is the graph of an increasing function
of V (see Fig. 4). As for the other part of the manifold, several cases can occur: it may cross the
w-nullcline, both nullclines or none. One can show (appendix C) that if condition (9) is false (section
2.4), then both nullclines are crossed, and ifτm < τw, then at least the w-nullcline is crossed. These
conditions cover all parameter regions except the zone where the model is always an integrator (no
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A

B

C

D

Figure 4: The attraction basin of the stable fixed point and rebound properties. Left column: the
dashed lines represent the nullclines, each panel corresponds to a different set of parameter values;
the red line delimits the attraction basin of the stable fixedpoint; the black line is the trajectory of the
model in response to a short negative current pulse, while the blue line is the trajectory in response to
a long negative current step. Right column: voltage response of the model to the a short pulse (black)
and to a long step (blue). A. Type II resonator (a = 3gL, τw = 2τm) close to the rheobase current.
A repulsive limit cycle appears. Trajectories can escape the attraction basin and spike with fast or
slow hyperpolarization. B. Type I resonator (a = 10gL, τm = 12τw). The separatrix crosses both
nullclines (for both branches,V andw go to+∞). In theory trajectories can escape the attraction
basin with hyperpolarization, but one would need to reach unrealistically low voltages (< −200
mV). C. Integrator (a = .2gL,τm = 3τw). The separatrix does not cross the nullclines. No rebound
is possible. D. Type II mixed mode (a = gL, τw = 10τm). The separatrix crosses the w-nullcline.
Rebound is possible with long hyperpolarization (short hyperpolarization can also induce rebounds,
but with unrealistically low voltages).
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oscillations); in particular, it includes the type II excitability zone. The position of the separatrix has
important implications for the rebound property (section 2.7).

2.7 Rebound

The termreboundrefers to the property that a spike can be triggered by hyperpolarizing the mem-
brane. This can be done either by sending a short negative current pulse, which amounts to moving
the state vector(V,w) horizontally to the left, or by slowly hyperpolarizing the membrane with a long
negative current step (or ramp) and releasing it, which amounts to moving the state vector along the
w-nullcline.

For type I excitability, there is no limit cycle and there is an unbounded separatrix. Ifτm < τw

or if condition (9) is false, then the separatrix crosses thew-nullcline. It follows that both types of
rebounds are possible. Otherwise the model is in the integrator regime, and the the separatrix may
not cross the w-nullcline. In that case it is only possible totrigger a spike by increasing the voltage:
there is no rebound.

For type II excitability, there is either a repulsive limit cycle which circles the stable fixed point
when the input current is close enough to the rheobase current (I > Icycle), or the separatrix crosses
both the w-nullcline and the v-nullcline. In both cases, it is possible to exit the attraction basin of the
stable fixed point and thus trigger a spike by changing any variable in any direction. Therefore, both
types of rebound are possible. Note that with short current pulses, a more negative voltage must be
reached in order to trigger a spike.

2.8 After-potential

After a spike, the state vector resets to a certain point in the state space. The subsequent trajectory
is determined by this initial state. We will discuss the spike sequences in more details in section 3,
but here we simply note that if the state vector is reset abovethe V-nullcline, then the membrane
potentialV will first decrease then increase (broad after-potential);if the state vector is reset below
the V-nullcline,V will increase (sharp after-potential).

3 Spike patterns

In the previous section, we analyzed the subthreshold dynamics of the model and found a rich struc-
ture, with the two parametersa/gL and τm/τw controlling excitability, oscillations and rebound
properties. Here we turn to the patterns of spikes, such as regular spiking, tonic/phasic bursting
or irregular spiking, and explain them in terms of dynamics.Compared to the previous section, two
additional parameters play an important role: the reset valueVr and the spike-triggered adaptation
parameterb.

To study the spike sequences, we introduce a Poincaré map which transforms the continuous
time dynamics of the system into the discrete time dynamics of that map.
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Figure 5: The adaptation map. A, B. Response of a type I model to a suprathreshold constant input
(A: membrane potentialV; B: adaptation variablew). The value ofw after each spike defines a
sequence(wn). C. The adaptation mapΦ maps the value of the adaptation variable from one spike
to the next. The sequence(wn) is the orbit ofw0 underΦ.

3.1 The adaptation map

After a spike, the potentialV is always reset to the same valueVr , therefore the trajectory is entirely
determined by the value of the adaptation variablew at spike time: the sequence of values(wn), wn =
tn (tn = time of spike numbern) uniquely determines the trajectory after the first spike. Therefore,
it is useful to introduce the functionΦ mappingwn to wn+1, which we call theadaptation map.
Let us defineD as the domain of the adaptation variablew such that the solution of (1) with initial
condition(Vr ,w) spikes (blows up in finite time). Then the adaptation mapΦ is

Φ :

{

D 7→ R

w0 7→ w∞ +b
(13)

wherew∞ is the value ofw at divergence time (spike time) for the trajectory startingfrom (Vr ,w0),
as illustrated in Fig. 5. The sequence(wn) is the orbit ofw0 underΦ, as shown in Fig. 5C. Note
that this sequence may be finite if for somen, wn /∈ D . The property that the sequence is infinite
(resp. finite) is calledtonic spiking(resp.phasic spiking). The spike patterns are determined by the
dynamical properties ofΦ (fixed points, periodic orbits, etc.), as we show in next section. First, we
examine the spiking domainD .

When there is no stable fixed point, i.e., whenI is above the rheobase current (section 2.2.2),
eitherI I

rh or I II
rh depending on the excitability type, then any trajectory spikes: D = R. When there

is a stable fixed point, all trajectories starting inside theattraction basin of that fixed point will not
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A

B

C

D

Figure 6: The spiking domainD for the same cases as in Fig. 4, when the nullclines (dashed
lines) intersect. The attraction basin of the stable fixed point is bounded by the red curve. The
blue and purple vertical lines indicate the reset lineV = Vr . When that line is outside the attraction
basin (blue), thenD = R and the model is bistable (tonic/resting). When the line intersects the
attraction basin (purple), thenD is an interval or the union of two intervals. In that case, themodel
is generally phasic (C,D) but may be bistable (A,B). In practice, with realistic values ofb (spike-
triggered adaptation), bistability essentially occurs when there is a limit cycle (A).
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spike. The spiking domainD is then the complementary of the intersection of the reset lineV = Vr

with the attraction basin of the stable fixed point (up to a projection onto thew axis), as shown in
Fig. 6. We previously found (2.6) that the attraction basin of the stable fixed point is either a limit
cycle or the stable manifold of the saddle fixed point. In the latter case, it may have a minimum
voltage (resonator) or not (integrator or mixed). Fig. 6 shows how these different cases determine
the spiking domainD . We summarize these findings below, and describe the adaptation mapΦ.

We first define two special valuesw∗ andw∗∗ as follows: the reset lineV = Vr intersects the
V-nullcline and w-nullcline at the points(Vr ,w∗) and(Vr ,w∗∗), respectively, where

{

w∗ = −gL(Vr −EL)+gL∆T exp
(

Vr−VT
∆T

)

+ I

w∗∗ = a(Vr −EL)

Nearby spiking trajectories starting on the reset lineV =Vr abovew∗ (i.e., above the V-nullcline)
may spike only after half a turn (sinceV initially decreases), or possibly an odd number of half-
turns, which implies that the vertical order of the trajectories is reversed at spike time:Φ is locally
decreasing abovew∗. Spiking trajectories starting beloww∗ spike either directly or after an even
number of half-turns, so thatΦ is locally increasing beloww∗. It follows that the sequences(wn) are
bounded.

We now describe the mapΦ and the spiking domainD for the two excitability types, depending
on the input currentI .

1. Type I:

(a) (subthreshold) ifI < I I
rh, then there is a stable fixed point and no limit cycle (see section

2.6). If the separatrix has no lower bound (typically: integrator or mixed regime), then
the domainD is an interval(−∞,wmax) wherewmax is the value of the adaptation variable
on the separatrix forV = Vr . The mapΦ is continuous on that set. We note that if
V− < Vr < V+, then there can only be phasing spiking: indeed,wn+1 > wn +b for all n,
therefore at some point the orbit exitsD .
When the separatrix has a lower voltage boundVmin (typically: resonator), then there are
two cases. IfVr < Vmin, thenD = R andΦ has the same properties as in case 1b. IfVr >
Vmin, thenD = (−∞,wmin)∪ (wmax,+∞). Besides,Φ((wmax,+∞)) ⊂ Φ((−∞,wmin)).

(b) (suprathreshold) ifI > I I
rh, all trajectories spike. Therefore,D = R. The adaptation map

is concave forw < w∗, regular, has a unique fixed point and an a horizontal asymptote
whenw→ +∞.

2. Type II:

(a) (subthreshold) ifI < Icycle, then there is a stable fixed point and no limit cycle, so that
the situation is similar to case 1b.

(b) (subthreshold) ifIcycle < I < I II
rh, then there is a stable fixed point and a repulsive limit

cycle bounding the attraction basin of the stable fixed point. Let Vmax andVmin be the
two extremal voltage values of the limit cycle. ForVr < Vmin or Vr > Vmax, D = R and
Φ has the same properties as in case 1b.
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(c) (suprathreshold) ifI II
rh < I < ISN, then there are two unstable fixed points and no limit

cycle, hence all trajectories spike. ThereforeD = R. WhenVr ∈ (V−,V+), the adaptation
map is discontinuous at some pointwmax < w∗, andΦ(wmax) < Φ(w−

max) (when trajec-
tories start circling around the fixed point). ThusΦ is locally but not globally increasing
on (−∞,w∗). The mapΦ also has a horizontal asymptote whenw→ +∞.

(d) (suprathreshold) ifI > ISN, thenD = R andΦ has the same properties as in case 1b (type
I).

Tonic spiking occurs for any initialw0 if D = R (in particular, in the suprathreshold regime). In
other cases, spiking is generally phasic but there can be tonic spiking if the set

⋂∞
n=0Φn(D) is not

empty. When it occurs, the model is bistable.
The sequence(wn)n≥0 of values of the adaptation variable at spike times is the orbit of w0 under

Φ: wn = Φn(w0). Since there is a mapping fromw to the interspike interval, the properties ofΦ
determine the spike patterns. In the following, we examine the relationship between the adaptation
mapΦ and the spike patterns.

3.2 Tonic Spiking

3.2.1 Regular Spiking

Regular spiking means that interspike intervals are regular, possibly after a transient period of shorter
intervals. For the adaptation variable, it means that the sequence(wn) converges, i.e.,Φ has a stable
fixed point. This situation is shown in Fig. 5. For low initialvalues of the adaptation variable,Φ
is increasing andΦ(w) > w, so that the sequence(wn) is increasing, implying that the duration of
interspike intervals decreases (this implication is true for w < w∗, i.e., before the maximum ofΦ).

The shape of after-potentials (broad or sharp) depends, as we previously saw, on whether(Vr ,w)
is above or below the V-nullcline, i.e., whetherw > w∗ or w < w∗. Asymptotically, the condition
for broad resets is thuswfp > w∗, wherewfp is the fixed point ofΦ. Given the properties ofΦ,
this meansΦ(w∗) > w∗. Since the parameterb (spike-triggered adaptation) shifts the curve ofΦ
vertically, there is a minimumb above which resets are (at least asymptotically) broad.

WhenΦ is continuous (cases 2d and 1b), it always has a fixed point (sinceΦ(w) > w+ b for
low w andΦ converges to a finite limit whenw→ +∞), but that fixed point may not be stable. That
property depends on all parameter values; in particular, the fixed point is an attraction basin whenb
or I is large enough (for largeb, the fixed point is on the plateau ofΦ, which implies broad resets). If
the fixed point is not stable, then the sequence(wn) may converge to a periodic orbit or be irregular.

3.2.2 Bursting

A bursting response is a sequence of shortly spaced spikes, separated by longer intervals. For the
adaptation variablew, it corresponds to a periodic orbit, where the period equalsthe number of
spikes per burst. For the adaptation map,p-periodic orbits are associated with stable fixed points of
Φp. This situation is illustrated in Fig. 7. Typically, bursting occurs for large reset valuesVr : the
first spike resets the trajectory to a high voltage value, which induces a fast spike, and the adaptation
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Figure 7: Bursting and chaos. Each panel shows a sample response (V andw) from the model,
with different values ofVr (parameters:C = 281 pF,gL = 30 nS,EL = −70.6 mV,VT = −50.4 mV,
∆T = 2 mV, τw = 40 ms,a = 4 nS,b = 0.08 nA, I = .8 nA). A burst withn spikes corresponds to an
n-periodic orbit underΦ. The last spike of each burst occurs in the decreasing part ofΦ, inducing a
slower trajectory. A. Bursting with 2 spikes (Vr =−48.5 mV). B. Bursting with 3 spikes (Vr =−47.7
mV). C. Bursting with 4 spikes (Vr = −47.2 mV). D. Chaotic spiking (Vr = −48 mV).

builds up after each spike, until the trajectory is reset above theV-nullcline (after the peak ofΦ at
w∗). At that pointdV/dt < 0 and the trajectory must turn in phase space before it spikes, producing
a long interspike interval. Thus, the number of spikes per burst increases whenVr increases (since
w∗ increases withVr ) and whenb decreases. Thus the bifurcation diagram with respect toVr (Fig. 8)
shows a period adding structure. Interestingly, when zooming on a transition fromn to n+1 spikes,
a period doubling structure appears, revealing chaotic orbits.

3.2.3 Chaotic spiking

The period doubling structure shown in Fig. 8B implies that orbits are chaotic for some parameter
values. A sample response of the model for one of those valuesis shown in Fig. 7D. It results in
irregular, unpredictable firing, in response to a constant input current.

3.3 Phasic spiking

Phasic spiking or (bursting) can occur in subthreshold regimes (I < I I
rh for type I excitability,I < I II

rh
for type II excitability), when there is a stable fixed point andD 6= R. In that case, the system needs
to be destabilized (e.g. a short current pulse, which may be positive or negative, as explained section
2.7). The situation depends on the properties of the attraction basin of the stable fixed point, and can
be understood from Fig. 6.
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A B

Figure 8: Bifurcation structure with increasingVr (same parameters as in Fig. 7). A. Bifurcation
diagram showing a period adding structure (orbits under theadaptation mapΦ with varying values
for Vr ). Fixed points indicate regular spiking, periodic orbits indicate bursting, dense orbits indicate
chaos. B. Zoom on the bifurcation diagram A (as indicated by the shaded box), showing a period
doubling structure.

We can distinguish two cases:

1. If D = (−∞,wmin) (C,D: integrator or mixed regime), then whenV− < Vr < V+ there can
only be phasic spiking, otherwise tonic spiking is possible. Indeed, ifV− < Vr < V+, then the
sequence(wn) is such thatwn+1 > wn +b, so that it must exitD in finite time.

2. If D = (−∞,wmin)∪ (wmax,+∞) (A,B: resonator or mixed regime), then there can only be
phasic spikingΦ(wmin) > wmax, otherwise tonic spiking is possible.

When tonic spiking (or bursting) is possible, then the modelis bistable (it can be turned on or off
with current pulses).

4 Discussion

The adaptive exponential integrate-and-fire model [Bretteand Gerstner(2005)] is able to reproduce
many electrophysiological features seen in real neurons, with only two variables and four free pa-
rameters. Besides, its parameters have a direct physiological interpretation. In the framework of
this model, we can define anelectrophysiological classas a set of dynamical properties for different
values of the inputI (for given parameter values). In this paper, we tried to provide a classification
of the parameter space as complete as possible, which is summarized for subthreshold dynamics
in Fig. 3. The subthreshold dynamics depends only on the ratio of time constants (τm/τw) and on
the ratio of conductances (a/gL), but is already non-trivial. The model can have excitability type
I or II depending whether it leaves the resting state througha saddle-node or an Andronov-Hopf
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bifurcation. It may act as an oscillator or an integrator depending on the eigenvalues associated to
the resting point. It may spike in response to hyperpolarizing currents (rebound), depending on the
properties of the attraction basin of the stable fixed point,which is bounded by either a limit cycle
or a separatrix.

The spiking dynamics is even more rich, as it also depends on the reset parametersb andVr . We
related the spike patterns with orbits under a discrete Poincaré mapΦ, and found a rich bifurcation
structure including even chaos. Regular spiking corresponds to a stable fixed point ofΦ, bursting
corresponds to periodic orbits underΦ and irregular spiking corresponds to chaotic orbits underΦ.

Most of the results shown in this paper generalize to two-dimensional spiking models in which
the first (membrane) equation isdV/dt = F(V) + I − w, whereF is a smooth convex function
whose derivative is negative at−∞ and infinite at+∞ (in particular, Izhikevich model and the
quartic model have these properties). We are currently working on the mathematical proofs of
these results in that more general setting and on a more complete picture of the spiking dynam-
ics [Touboul and Brette (2008)]. This work will provide botha dynamical system understanding
of the the spiking properties of the model and analytical methods to relate the parameter values
with electrophysiological classes. Another interesting line of research is the investigation of the
responses of such bidimensional models to time-varying inputs, as was done in [Brette(2004)] for
one-dimensional integrate-and-fire models.
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A Oscillations

In this appendix we calculate the parameter zones where the system oscillates in the rescaled model
(3). We then obtain the equations for the original model using the change of variables (5). Damped
subthreshold oscillations appear only when the systems hasa stable fixed point, i.e. if̄I ≤ (1+
ā)(log(1+ ā)−1) for ā < 1

τ̄w
and Ī ≤ (1+ 1

τ̄w
) log(1+ ā)− (1+ ā) for ā ≥ 1

τ̄w
. Furthermore, the
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system will oscillate around the stable equilibriumv− if and only if the imaginary part of the eigen-
values of the Jacobian matrix of the system at this point is non-null. This condition can be written at
the stable equilibriumv− via the discriminantδ defined by:

δ (v−) =

(

ev− −1+
1
τ̄w

)2

−4
ā
τ̄w

.

The system will oscillate around the stable fixed pointv− if and only if δ < 0. To invert this inequal-
ity, we compute the zones where we have

(

x−1+
1
τ̄w

)2

−4
ā
τ̄w

< 0 (14)

and check that a solutionv− exists. There exists av− such thatev− = x if and only if 0< x≤ (1+ ā),
sincev− < log(1+ ā).

The solution of (14) isx∈ {x−,x+} where

x± =
τ̄w−1±2

√
āτ̄w

τ̄w

First of all we are interested in the apparition of oscillations in the type I case. We know that when
the input currentI is close to the rheobase currentI I

rh given by (7), the system returns monotonously
to the resting potential. The system begins to oscillate when there exist solutions to the equation
ev− = x+. It is straightforward to check thatx+ is always lower than(1+ ā), since this condition is
equivalent to the condition(

√
τ̄wā+1)2 ≥ 0, which is always true. The conditionx+ > 0 is satisfied

on the parameter zone

{(τ̄w, ā) ; τ̄w > 1 or τ̄w < 1 andā >
1

4τ̄w
(1− τ̄w)2}

In this zone, oscillations occur when the currentĪ is below ¯I+, where:

¯I+ = (1+ ā) log(
τ̄w−1+2

√
āτ̄w

τ̄w
)− τ̄w−1+2

√
āτ̄w

τ̄w

Hence it appears in the type I excitable case. After the Bogdanov-Takens point, the equilibrium
associated withx+ is unstable, hence does not give rise to damped subthresholdoscillations.

It is easy to show that 1/(4τ̄w)(1− τ̄w)2 < 1/τ̄w. Whenā = 1/τ̄w, we have¯I+ = (1+ ā)(log(1+
ā)−1), which is the current at the Bogdanov-Takens bifurcation point. This result was predictible
since around the saddle node bifurcation the system does notoscillate around the fixed point and
around the Andronov-Hopf bifurcation the system does oscillate, and these two curves meet at the
Bogdanov-Takens point. Furthermore, after the Bogdanov-Takens point, the equilibrium associated
with x+ is no more stable, hence damped subthreshold oscillations associated with this separatrix
only appear in the type I excitable case.

The oscillations possibly disappear when a solution toev− = x− exists. These solutions exist
whenτ̄w > 1 andā≤ τ̄w

4 (1− 1
τ̄w

)2. Thus, oscillations disappear when̄I < ¯I−, where:
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¯I− = (1+ ā) log(
τ̄w−1−2

√
āτ̄w

τ̄w
)− τ̄w−1−2

√
āτ̄w

τ̄w

With the original parameters, the expression ofI± reads:

I± = (gL +a)∆T log
(gLτw−C±2

√
aCτw

gLτw

)

−∆T
gLτw−C±2

√
aCτw

τw
− (gL +a)(EL −VT) (15)

Hence, grouping the cases as a function ofτ̄w andā, we have:

• For τ̄w < 1:

– The system always returns monotonously to equilibrium whenā< 1
4τ̄w

(1− τ̄w)2 or when

ā > 1
4τ̄w

(1− τ̄w)2 andĪ > ¯I+.

– The system oscillates around equilibrium ¯a > 1
4τ̄w

(1− τ̄w)2 andĪ < ¯I+.

• For τ̄w > 1:

– the system oscillates for anȳI ∈ ( ¯I−, ¯I+) whenā < 1
4τ̄w

(1− τ̄w)2 and for anyĪ < ¯I+ if

ā > 1
4τ̄w

(1− τ̄w)2.

– otherwise it returns monotonously to its resting state.

When the system oscillates, the oscillation (angular) frequency is given byω̄ = −δ , which, in
the low-voltage approximation (far fromVT ), reads:

ω̄ ≈ 4
ā
τ̄w

−
(

1− 1
τ̄w

)2

When the system oscillates, the time constant of the decay isthe inverse of the opposite of the
real part of the eigenvalues, which is−1/2(ev− − 1− 1

τ̄w
). With the original parameters, the time

constant is thus:

(

1
2

(

1
τm

+
1
τw

− 1
τm

e
V−VT

∆T

))−1

and in the low-voltage approximation it is simply

2
τmτw

τm+ τw
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B Overshoot

As discussed in section 2.5.2, the response of the neuron to acurrent step can present an overshoot
when the coefficient of the slower exponential term is negative. In this section we show that in the
low-voltage approximation (V ≪ VT ), there is an overshoot if and only ifτm < τw and there is no
oscillation, thus, in the mixed mode regime (Fig. 3).

Indeed, in the low voltage approximation, the dynamics is linear and is governed by the operator:

L =





−1 −1

ā
τ̄w

− 1
τ̄w





which can be diagonalized. The overshoot appears only when the eigenvalues are real. In this
case, the voltage response to a short pulse (dirac) is a sum oftwo exponential functionsv(t) =
αe−t/τ1 +βexp−t/τ2 (we set the resting potential to 0) where−1

τ1
and−1

τ2
are the two real eigenvalues

of L. The coefficient of the slower exponential term is

ε
2δ

(
√

δ (1− τ̄w)+ δ )

with δ = (1− τ̄w)2−4āτ̄w. We now write the negativity condition of this coefficient:

√
δ (1− τ̄w)+ δ < 0⇔ 1− τ̄w < −

√
δ

A necessary condition for this inequality to be satisfied isτ̄w > 1. In this case, the condition
reads:

(1− τ̄w)2 > δ = (1− τ̄w)2−4āτ̄w

which is always true since ¯aτ̄w > 0. Hence the overshoot appears in the low voltage approximation
(far from threshold) when̄τw > 1, i.e., whenτm < τw.

C Separatrix

C.1 Position of the stable manifold

Some information about the stable manifold of the saddle fixed point can be obtained from the
nullclines (when these intersect). The nullclines cut the plane in 5 connected zones, which we call
North, South, West, East and Center, as shown in Fig. 1. The stable manifold consists in two
trajectories which converge to the saddle fixed point. Near the saddle point, these two trajectories
must lie in the North and South zone, or in the Center and East zones.

First we remark that all the trajectories starting from the East zone must spike. Indeed, in that
region,V increases andw decreases, until it crosses the w-nullcline horizontally and enters the South
zone. From that point,V keeps on increasing andw increases, which implies that the trajectory can
only remain in the South zone or enter the East zone. However,the direction of the vector fields
along the border does not allow crossing from South to East. Therefore, the trajectory will remain
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in the South zone and will spike. It follows that no part of thestable manifold can be in the East
zone. Therefore it has to be locally in the North and South zones. By following the manifold from
the saddle point to the North, we can see thatV andw increase and, since the manifold cannot enter
the East zone, it remains in the North zone and goes to infinity. In practice, it is in fact very close
(but slightly to the left) of the V-nullcline, as shown in Fig. 4.

By following the manifold from the saddle point to the South,we can see that it has the same
orientation as in the North zone, as long as it remains in the South zone. It may however cross the
w-nullcline (Fig. 4D), and possibly the V-nullcline again (Fig. 4B).

C.2 Asymptotic behavior of the solutions

To understand whether the stable manifold can cross the w-nullcline and possibly the V-nullcline, we
study the asymptotic behavior of the solutions whent →−∞. Here again we consider the rescaled
model (3). The idea is the following: if the manifold goes to−∞ (for V), then the exponential
term vanishes and its approximated dynamics can be solved analytically. Thus, in the following we
shall assume that the manifold does not cross the V-nullcline. In that case, the voltageV(t) of the
manifold, seen as a solution of the system, goes to−∞ ast → −∞, and we will look for possible
contradictions.

Asymptotically, the differential equations satisfied by a given solution(v,w) of the rescaled
model can be approximated by:

{

v̇ = −v−w+ I

τ̄wẇ = āv−w
(16)

Whent → −∞, the solutions of the linear system either spiral around thefixed point (complex
eigenvalues) or align asymptotically to the direction of eigenvector associated to the smallest nega-
tive eigenvalue of the matrixL governing the dynamics of the linear system (16):

L =

( −1 −1
ā

τ̄w
− 1

τ̄w

)

If the eigenvalues of this matrix are complex, i.e., when ¯a > (τ̄w−1)2

4τ̄w
, then the solutions spiral

around the fixed point. Therefore the trajectories cross theV-nullcline, which contradicts our initial

hypothesis. Thus when ¯a > (τ̄w−1)2

4τ̄w
(resonator regime), the stable manifold crosses both nullclines.

If the eigenvalues are real, the trajectories of the linear system align asymptotically to the direc-
tion of the lower eigenvalue

λ− = − 1
2τ̄w

(τ̄w +1+
√

(τ̄w−1)2−4τ̄wā)

This eigenvalue is always strictly negative hence solutions will diverge whent → −∞. The
eigenvector associated with this eigenvalue is:
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(

2τ̄w

1−τ̄w+
√

(τ̄w−1)2−4āτ̄w

1

)

The slope of that eigenvector is always below−1, so that (linearized) trajectories do not cross
the V-nullcline. However they can cross the w-nullcline when the slope of the eigenvector is smaller
thanā, i.e.:

1− τ̄w+
√

(τ̄w−1)2−4āτ̄w

2τ̄w
< ā

and this condition is satisfied when ¯a > 1
2( 1

τ̄w
−1). Assuming ¯a > 0, the inequality is always true

if τ̄w > 1; when whenτ̄w < 1, the inequality is never true given that the eigenvalues are real (ā <
(τ̄w−1)2

4τ̄w
).

In summary, the stable manifold crosses both nullclines when ā > (τ̄w−1)2

4τ̄w
(resonator regime),

and it crosses at least the w-nullcline whenτ̄w > 1.
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