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Dynamics and bifurcations of the adaptive exponential
integrate-and-fire model

Résune : Recently, several two-dimensional spiking neuron modeistbeen introduced, with
the aim of reproducing the diversity of electrophysioladieatures displayed by real neurons while
keeping a simple model, for simulation and analysis purpogenong these models, the adaptive
integrate-and-fire model is physiologically relevant imttlits parameters can be easily related to
physiological quantities. The interaction of the diffefiahequations with the reset results in a rich
and complex dynamical structure. We relate the subthreldkratures of the model to the dynamical
properties of the differential system and the spike pastéathe properties of a Poincaré map defined
by the sequence of spikes. We find a complex bifurcation gtraavhich has a direct interpretation
in terms of spike trains. For some parameter values, spitenpa are chaotic.
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1 Introduction

The biophysics of neurons and their ionic channels are nosderstood in great details, although
many questions remain [Hille(2001)]. Yet, simple neurondels such as the integrate-and-fire
model [Lapicque(1907), Gerstner and Kistler(2002)] remagry popular in the computational neu-
roscience community, because they can be simulated vecieetfiy and, perhaps more importantly,
because they are easier to understand and analyze. Theattaistthat these simple models cannot
accountforthe variety of electrophysiological behavmiiseal neurons (see e.g. [Markram et al(2004)]
forinterneurons). Recently, several authors introdueedvariable spiking models [I1zhikevich(2004),
Brette and Gerstner(2005), Touboul(2008)] which, desghitar simplicity, can reproduce a large
number of electrophysiological signatures such as bgstitregular spiking. Different sets of pa-
rameter values correspond to different electrophysiaialgilasses.

All these two-dimensional models are qualitatively similaut we are especially interested in
the adaptive exponential integrate-and-fire model (AdBxefte and Gerstner(2005)]) because its
parameters can be easily related to physiological quastiind the model has been successfully fit
to a biophysical model of a regular spiking pyramidal cellao real recordings of pyramidal cells
[Clopath et al(2007)Clopath, Jolivet, Rauch, Lisched @erstner, Jolivet et al(2008)Jolivet, Kobayashi, RaiNayd, Shinorm
This model is described by two variables, the membrane piatéh and an adaptation current
whose dynamics are governed by the following differentiplations:

C¥  =-gi(V-E)+ghrexp( Lkt
—w+1 @
W —aV-E)-w

When the membrane potentigl is high enough, the trajectory quickly diverges becausehef t
exponential term. This divergence to infinity models thekgthe shape of the action potential is
ignored, as in the standard integrate-and-fire model). isplaying or simulation purposes, spikes
are usually cut to some finite value (e.g. 0 mV). When a spil®is; the membrane potential is
instantaneously reset to some vallyeand the adaptation currentis increased:

{V v @)

w —w+b

Although the differential system is only two-dimensiorthle reset makes the resulting dynamical
hybrid system very rich.
The differential equations and the parameters have a plogsial interpretation. The first equa-
tion is the membrane equation, which states that the capacitrrent through the membrane is
the membrane capacitance) is the sum of the injected curi@md of the ionic currents. The first
term is the leak curreng( is the leak conductance aiig is the leak reversal potential), the mem-
brane time constant is, = C/gL. The second (exponential) term approximates the sodiuneicyr
responsible for the generation of action potentials [FaudzTrocme et al(2003)Fourcaud-Trocme, Hansel, van Vrigesand B
The approximation results from neglecting the inactivatb the sodium channel and assuming that
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4 Touboul & Brette

activation is infinitely fast (which is reasonable). Beaastivation curves are typically Boltzmann
functions [Angelino and Brenner(2007)], the approximatadent is exponential near spike initia-
tion. The voltage thresholdr is the maximum voltage that can be reached without gengratin
spike (without adaptation), and the slope fadigrquantifies the sharpness of spikes. In the limit of
zero slope factor, the model becomes an integrate-and-ficeehwith a fixed threshol¥t. Quanti-
tatively, it is proportional to the slope constdrinh the activation function of the sodium current. The
second variablev is an adaptation current with time constapt which includes both spike-triggered
adaptation, through the reset— w+ b, and subthreshold adaptation, through the coupling (b&ria
a). It may model ionic channels (e.g. potassium) or a demdeitimpartment. Quantitatively, the
coupling variablea can result from a linearization of the dynamics of a ionicrutel, or from the
axial conductance in the case of a dendritic compartmentg&¥derally assuma > 0 in this paper,
although the analysis also applies o 0 whena is not too large.

The interaction of the differential equations with the tassults in a rich dynamical structure.
There are 9 parameters plus the injected curtgbtit these can be reduced to 4 variables plus the
currentl by changes of variables (e.g. settitg as the reference potentidy as the voltage unit,
T as the time unit, etc.). Thus, the electrophysiologicalaf the model, defined loosely here as
the set of qualitative behaviours for different values$ a6 parameterized in a 4-dimensional space.
In this paper, we will make this definition more precise bylekging different electrophysiological
signatures in terms of dynamics of the model. Because weealng with a hybrid dynamical sys-
tem, we shall study here two distinct dynamical aspects ®itlodel: the subthreshold dynamics,
defined by the differential equations (section 2), and thleirsp dynamics, defined the sequence of
resets (section 3). The former case was addressed by [T2D08)] in a more general setting: we
will review some of those results in the specific context efdldaptive integrate-and-fire model, and
present new specific results, in particular about osailfej attraction basins and rebound proper-
ties. In the latter case, we will see that the spike pattefiseomodel correspond to orbits under a
Poincaré map, which we shall call thelaptation mapb. Interestingly, we find that this map can
have chaotic dynamics under certain circumstances. Affhave focus on this model for the rea-
sons mentioned above, many results also apply when the na@mbkruation is replaced by a more
general equatiodV/dt = F(v) —w+1, whereF is a smooth convex function whose derivative is
negative at-o and infinite at-o (in particular, Izhikevich model and the quartic model hévese
properties, see [Touboul(2008)]).

All simulations shown in this paper were done with the Briaftware [Goodman and Brette(2008)]
The code is available on ModelDB at the following URkttp://senselab.med.yale.edu/
modeldb/ShowModel . asp?model=114242.

2 Subthreshold dynamics
2.1 Rescaling

The equations can be written in dimensionless units by esgrg time in units of the membrane
time constant,, = C/g., voltage in units of the slope factdyr and with reference potentisfr,
and rewriting both the adaptation varialbleand the input curreritin voltage units. We obtain the

INRIA



Dynamics and bifurcations of the adaptive exponentialgrage-and-fire model 5

following equivalent model:
= _ 3)

and when a spike is triggered: B 3
{\f oV @)

where

T
b (5)
oAy
. Vi-\g
= Ar
O-Vr

—
Z
<

(0 atEvr)
_  wt)ta(E —
W) =R
It appears that the model has only four free parameters (prigput current). In this section
we will focus on the differential equations; we will turn toet sequence of resets in section 3. Thus,
only two parameters characterize the subthreshold dyrsartiie ratio of time constants,/Tm and
the ratio of conductances/g, (note:a can be seen as the stationary adaptation conductance).
The rescaled model belongs to the class studied in [TouBOO&)] withF (v) =€’ —v, i.e.,F
is convex, three times continuously differentiable, hasgative derivative at-co and an infinite
derivative at+. Therefore it has the same bifurcation structure, which \iledevelop here and
relate to electrophysiological properties We also provatenulas for the excitability type, rheobase
current, voltage threshold and the I-V curve. Besides, we guantitative conditions for the oc-
curence of oscillations, along with a formula for their feepcy. Finally, we examine the rebound
properties of the model, in relationship with the attractizasin of the stable fixed point.

2.2 Excitability

The dynamics in the phase plafé w) are partly determined by the number and nature of fixed
points, which are the intersections of the two nullclineig (R):

V —Vr

W= —QL(V—EL)+9LAT6XD( )+I (V-nulicline)
w = alV-E) (w-nulicline)

Because the membrane current (first equation) is a convestitumof the membrane potential
V, there can be no more than two fixed points. When the inpueatirrincreases, the V-nulicline
goes up and the number of fixed points goes from two to zerdewine trajectories go from resting
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6 Touboul & Brette
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Figure 1: Nullclines of the dynamical system (horizontasa¥ ; vertical axis:w). A. The nullclines
intersect in two points, and divide the phase space into lomeg The potentiaV/ increases below
theV-nullcline, w increases below the-nullcline. The direction of the flow along each boundary
gives the possible transitions between regions (rightjkigg can only occur in the South region.
B. The nullclines do not intersect. All trajectories mustezrihe South region and spike.
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Dynamics and bifurcations of the adaptive exponentialgrage-and-fire model 7
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Figure 2: Excitability types. A,B. Type Ift TV"; (here: a= .29, Ty = 31w). Whenl is in-
creased, the resting point disappears through a saddkeifidcation: the two fixed points merge
and disappear. The current-frequency curve is continudus3,D. Type II 2 > Im (here:a=3g,
Tm = .5Tw). Whenl is increased, the resting point becomes unstable througﬂmdnonov Hopf
bifurcation: the stable fixed point becomes unstable. Theeot-frequency curve is discontinuous,
there is a non-zero minimum frequency (D).

to spiking. The excitability properties of the model depemchow the transition to spiking occurs,
that is, on the bifurcation structure.

2.2.1 Excitability types

Whenl is very negative, there are two fixed points, one of which &bkt (the resting potential).
It appears that, when increasihgtwo different situations can occur depending on the gtyanti
% = g—aL ;W (ratio of conductances times ratio of time constants).

If 2 ;m then the system undergoes a saddle-node bifurcation Wiemcreased, i.e., the
stable and unstable fixed points merge and disappear. Tdtignfiglies that the model has type |
excitability, that is, the current-frequency curve is doabus (Fig. 2). Indeed, when the fixed points
disappear, the vector field is almost null around the formedipoint (theghostof the fixed point).
Since the vector field can be arbitrarily small close to tHaroation, the trajectory can be trapped
for an arbitrarily long time in the ghost of the fixed point,tbat the firing rate can be arbitrary small
whenl is close to the bifurcation point (threshold). This progexiso explains the phenomenon of
spike latency.

If % > % then the system undergoes an Andronov-Hopf bifurcatidoreethe saddle-node
one, meaning that the stable fixed point first becomes urestadibre merging with the other fixed
point. This fact implies that the model has type Il excit@jilthat is, the current-frequency curve
is discontinuous at threshold, the firing rate suddenly jarfipm zero to a finite value when the
bifurcation point is crossed (Fig. 2).

The bifurcation for the limit cas§ T’“ is called a Bogdanov-Takens bifurcation. It has codi-

mension two, i.e. it appears when S|multaneously varyiegwo parametera andl of the rescaled
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8 Touboul & Brette

model. At this point, the family of unstable periodic orbgsnerated around the Andronov-Hopf
bifurcation collides with the saddle fixed point and disaggevia a saddle-homoclinic bifurcation.
There is no other bifurcation in this model (as well as in kavich model [Izhikevich(2004)]).
Other similar models such as the quartic model may also gdzBautin bifurcation, associated
with stable oscillations (see [Touboul(2008))).
The fixed points can be calculated using the Lambert fundtipwhich is the inverse of — x€*:
EL-VT

|
—+—
Voi=Eitgla - ATvvo< o AL

o ©)
Vo _EL+g|_+a ATW_l( l+/ eAT(9L+a) AT )

whereW is the principal branch of the Lambert function i, the real branch of the Lambert
function such that_;(x) < —1, defined for-e* < x < 1 (indeed since — xe is not injective,
the Lambert function is multivalued).

The fixed pointV.. is always a saddle fixed point (hence unstable), i.e. itshlananatrix has
an eigenvalue with positive real part and an eigenvalue méthative real part. The fixed poit is
stable if the model is type I, otherwise it depends on theeir;, as we discuss below.

2.2.2 Rheobase current

The rheobase current is the minimum constant current requo elicit a spike, i.e., the first point
when the stable fixed point becomes unstable, which depentiecexcitability type.
For type | (g% % < 1), it corresponds to the saddle-node bifurcation point:

rh—(gL‘f‘a){VT—EL—AT‘f‘ATlOg( g—>} (7)

which is obtained by calculating the intersection of thdclules when these are tangent.
For type Il (g%% > 1), it corresponds to the Andronov-Hopf bifurcation point:

rh =(gL+a) {VT—EL—AT +Arlog(1+ — )}

a Tm
+ATQL(— - (8
TgL(gL TW) 8

Itis important to note that the saddle-node bifurcatiom ascurs in the type Il case at the point
Isn= I n (> Irh, for type 1l we usdgy instead oﬂr'h to avoid ambiguities).

2.2.3 Voltage threshold for slow inputs

For a parameterized inpl(t), the threshold is the minimum value of the parametéor which
a spike is elicited. For example, the rheobase current igshreshold constant current. How-
ever, the notion of a spike threshold for neurons is oftercilesd as avoltage thresholdal-
though the voltage is not a stimulation parameter (thusnilicitly refers to an integrate-and-
fire model). It is nevertheless possible to define a meaningfitage threshold for the case of

INRIA



Dynamics and bifurcations of the adaptive exponentialgrage-and-fire model 9

constant current inputs as follows: the voltage threshslthe maximum stationary voltagé
for subthreshold constant current inputs<{ I;). For the exponential integrate-and-fire model
[Fourcaud-Trocme et al(2003)Fourcaud-Trocme, HanselMraeswijk, and Brunel], this is simply
Vr. For the present model, it corresponds to the voltdget the first bifurcation point, when the
stable fixed point becomes unstable.

Not surprisingly, its value depends on the excitabilityeéypFor type | excitability &/g. <
Tm/Tw), the voltage threshold is

Viirotnols= Vr + At log(1+a/gL)
For type Il excitability @/g. < Tm/Tw), the voltage threshold is
Viirotnold= VT + A1 10g(1+ T/ Tw)

Interestingly, the threshold for type | excitability deksnon the ratio of conductances, while the
threshold for type | excitability depends on the ratio of¢iconstants.

2.2.4 \Voltage threshold for fast inputs

For short current pulses & gd(t), whereq is the total charge and(t) is the Dirac function), the
voltage threshold is different, but the same definition mayised: it is the maximum voltagethat
can be reached without triggering a spike. Injecting shomntent pulses amounts to instantaneously
changing the membrane potentigli.e., in the phase spag¢¥,w), to moving along an horizontal
line. If, by doing so, the poinfV,w) exits the attraction basin of the stable fixed point, thenikesp
is triggered. Therefore, the threshold is a curve in the ptspace, defined as the boundary of the
attraction basin of the stable fixed point (for which we haméoatunately no analytical expression,
although it can be computed numerically). Therefore the ehdisplaysthreshold variability the
voltage threshold depends on the value of the adaptatigablaw, i.e., on the previous inputs. The
boundary of the attraction basin of the stable fixed poinitisee the stable manifold of the saddle
fixed point(separatrix) or a limit cycle. We examine thisiissn section 2.6 and in appendix C.

2.3 |-V curve

The |-V curve of a neuron is the relationship between the sfip®@f the (constant) injected current
and the stationary membrane potential (it may also be defredon-constant input currents, see
e.g. [Badel et al(2008)Badel, Lefort, Brette, Petersenstaer, and Richardson]). Experimentally,
this curve can be measured with a voltage-clamp recording. o¥tain a simple expression by
calculatingl at the intersection of the nullclines:

V) =@+ o)V - E) - auarexp( T )

Thus, far from threshold, the—V curve is linear and its slope is the leak conductance plus the
adaptation conductance.

RR n° 6563



10 Touboul & Brette

2.4 Oscillations

Because of the coupling between the two variableand w, there can be oscillations near the
resting potential, more precisely, damped oscillatioredf{sustained oscillations are not possible
in this model, nor in Izhikevich model, as is shown in [Toulfg008)]). Oscillations occur when
the eigenvalues associated with the stable fixed point amlsx; when they are real, solutions
converge (locally) exponentially to the stable fixed point.

Because of the nature of the bifurcations, near the rhechasent (section 2.2.2), the model is
non-oscillating if it has excitability type laf/g. < Tm/Tw) and oscillating if it has type Il. Far from
threshold, these properties can change. In this sectioriweesgplicit expressions for the parameter
zones corresponding to both regimes; details of the calonkare detailed in appendix A for the
rescaled model (3).

The parameter zones depend on the excitability types, tiewg/ 1, and the following condi-

tion: 5
a Tm Tw
—<—(1-— 9
g 4ty ( Tm) ©
These results are summarized in Fig. 3.

2.4.1 Oscillations for type |
Three cases appear:

* If inequality (9) is false, then the model oscillates wheq |, where the formula fot is
given in Appendix A. In practice, we observe thatis very close to the rheobase current, so
that the model almost always oscillates below threshold.

« Ifinequality (9) is true andy, > 1y, then the model never oscillates near the fixed point.
* If inequality (9) is true and, < Ty, then the model oscillates whén < | < 1, where the
formula forl_ is given in Appendix A.
2.4.2 Oscillations for type I
Two cases appear:

* If inequality (9) is false, then the model always oscillatesar the fixed point, for any sub-
threshold input currerit

« Ifinequality (9) is true, then the model oscillates onlyewh > | _.

We call the occurrence of oscillations thesonatorregime and their absence tligegrator
regime (see 2.5.1). The model is called a resonator whemliviays (for alll) or almost always (for
I < 1;) in the resonator regime, i.e., when inequality (9) is falsés called an integrator when it
never oscillates, i.e., whem, > 1,y and inequality (9) is true; it is said to be in a mixed mode when
it oscillates only above some valle (see Fig. 3).

INRIA
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Figure 3: Oscillations. A. Behavior of the model as a funetad a/g. and 1/ Tw. Light (dark)
colors indicate type | (type Il) excitability. Blue: resdnamode (oscillations for any or almost any
1). Green: integrator mode (oscillations for anyPink: mixed mode (resonatorlifis large enough,
otherwise integrator). B. Behavior of the model as a funcbba/g. andl /g, for Tm = .21y (left)
andty = 21y (right). White: spiking; blue: oscillations; green: no ddion. Spiking occurs when
| is above the saddle-node curve (SN) in the type | regime, bBodeathe Hopf curve (Hopf) in the
type Il regime. A repulsive limit cycle (circle) exists whéris above the saddle-homoclinic curve
F%Hr%o%nl for type II). Oscillations occur when. < | < I, (on the left,l; > Isy; on the right,
= —). C,D. Response of the system to a short current pulse (Dirgr the resting point, in the
resonator regime (3 = 10g., Tm = Tyw) and in the integrator regime (&= .1g., Tm = 2Ty). Left:
response in the phase spd®ew); right: voltage response in time.
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2.4.3 Frequency of oscillations

When the model oscillates, the frequency of the oscillatisn

2 2 [ vv 2
_w_ 2 (e ATT_1+E> : (10)
2 TQLTw Ty

which can be approximated far from thresholfl (< Vi7) as follows:

2
Fo®. 2 _i(l_h) . (11)

Tw

2.5 [Input integration

The way the model integrates its inputs derives from theltesbove.

2.5.1 Resonator vs. integrator

On the temporal axis, the integration mode can be definedydéar a small inputl (t)) as
V(t) =Vo+ (KxI)(t)

where the kerneK is the linear impulse response of the model arounandK x| is a convolution.
This impulse response is determined by the eigenvalueseodtéble fixed point. When these are
complex, the kerneK oscillates (with an exponential decay), as discussed itiose2.4 (see Fig.
3C). In that case the model acts aseaonator two inputs are most efficient when separated by
the characteristic oscillation period of the model (givendy. 10). The membrane time constant
is —1/A, whereA is the real part of the eigenvalues. Far from threshvldi(< V), we find the
following time constant (see Appendix A):

TmTw
Tm+ Tw

When the eigenvalues are real, the kerels a sum of two exponential functions, and the
model acts as an integrator. In that case there are two timstaots, given by the real part of the
eigenvalues. It is interesting to note that there is a parammegion where both integration modes
can exist, depending on the (stationary) input curterdscillations arise only when the model is
sufficiently depolarized (> 1_).

2.5.2 Adaptation

There are two sorts of adaptation in the model: thresholgtdian and voltage adaptation. The
former one comes from the orientation of the separatrix & (¥, w) plane, as we discussed in
section 2.2.4. The latter one derives from the fact that @ititegrator mode (no oscillation), the
model kerneK is a sum of two exponential functions. If the slower one isatizg, then the response

INRIA



Dynamics and bifurcations of the adaptive exponentialgrage-and-fire model 13

to a step shows an overshoot (as in Fig. 4D for a negativeristep), which is a form of adaptation
(the voltage response is initially strong, then decaysatTvershoot can be seen when there is no
oscillation andry, < T (See Appendix B), i.e., in theaixed modeshown in pink in Fig. 3, when the
input currentis low ( < 1_).

2.6 The attraction basin of the stable fixed point
2.6.1 Limitcycle

The existence of a repulsive limit cycle arises for type Itigability from the Andronov-Hopf bi-
furcation. The saddle-node and Andronov-Hopf bifurcagionllide via a Bogdanov-Takens bifur-
cation. In the neighborhood of this bifurcation, the fanoliylimit cycles disappears via a saddle-
homoclinic bifurcation. The normal form of the Bogdanoweas bifurcation gives us a local ap-
proximation of this saddle-homoclinic bifucation curveand the point in parameter space given by
(12) (see [Touboul(2008)]), and the full saddle-homoclituirve can be computed numerically us-
ing a continuation algorithm. The currenabove which a limit cycle exists is locally approximated
at the second order by the following expression:

12 AT TVZV C 2 2
leycle= BT — == ——2_(a— — 12
cycle BT 25 C(Tm T Tw) (a Tw) + O(al) ( )

fora> % wherelgT is the rheobase current at the Bogdanov-Takens bifurcation

IgT = (oL + E) Vr —E_L—Ar +Atlog (14—&)}
Tw OLTw

Below the threshold currerityce, there is no limit cycle (see next section). Above thgje,
there is a repulsive limit cycle, circling anti-clockwiseoand the stable fixed point (see Fig. 3B
and 4A); the saddle fixed point is outside that cycle. Int@mgly, it appears that one can exit the
attraction basin of the stable fixed point (and thus genexateike) not only by increasing, but
also by decreasing orw (or increasingv). This phenomenon is sometimes caltedound and we
discuss it further in section 2.7.

2.6.2 Separatrix

For type | excitability, or for type Il excitability whemh < I¢ycle, there is no limit cycle. In that
case the stable manifold of the saddle fixed point is an untiediseparatrix, i.e., it delimits the
attraction basin of the stable fixed point. From the positdérthe nullclines, it appears that the
stable manifold must cross the saddle fixed point from abaée bullclines (North) to below both
nullclines (South). It follows that the side above the nlirles is the graph of an increasing function
of V (see Fig. 4). As for the other part of the manifold, severaksacan occur: it may cross the
w-nullcline, both nuliclines or none. One can show (appe@jithat if condition (9) is false (section
2.4), then both nulliclines are crossed, anthf< 1y, then at least the w-nulicline is crossed. These
conditions cover all parameter regions except the zone evtier model is always an integrator (no
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Figure 4: The attraction basin of the stable fixed point armbued properties. Left column: the
dashed lines represent the nuliclines, each panel comesgo a different set of parameter values;
the red line delimits the attraction basin of the stable figenht; the black line is the trajectory of the
model in response to a short negative current pulse, whelltine line is the trajectory in response to
along negative current step. Right column: voltage respofithe model to the a short puls&'ffifack)
and to a long step (blue). A. Type Il resonatar=£ 3g,, Tw = 2Tm) close to the rheobase current.
A repulsive limit cycle appears. Trajectories can escapeattraction basin and spike with fast or
slow hyperpolarization. B. Type | resonat@ £ 10g,, Tm = 121y). The separatrix crosses both
nullclines (for both branche®, andw go to +). In theory trajectories can escape the attraction
basin with hyperpolarization, but one would need to reacteaiistically low voltages < —200
mV). C. Integrator § = .29,,Tm = 31Tw). The separatrix does not cross the nuliclines. No rebound
is possible. D. Type Il mixed moda & gL, w = 101y). The separatrix crosses the w-nullcline.
Rebound is possible with long hyperpolarization (shortdmpolarization can also induce rebounds,
but with unrealistically low voltages).
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oscillations); in particular, it includes the type Il exaiility zone. The position of the separatrix has
important implications for the rebound property (section)2

2.7 Rebound

The termreboundrefers to the property that a spike can be triggered by hygarjzing the mem-
brane. This can be done either by sending a short negativentyrulse, which amounts to moving
the state vectd(V, w) horizontally to the left, or by slowly hyperpolarizing theembrane with a long
negative current step (or ramp) and releasing it, which art®td moving the state vector along the
w-nulicline.

For type | excitability, there is no limit cycle and there is anbounded separatrix. tf, < Tw
or if condition (9) is false, then the separatrix crosseswheulicline. It follows that both types of
rebounds are possible. Otherwise the model is in the integragime, and the the separatrix may
not cross the w-nullcline. In that case it is only possibl&igger a spike by increasing the voltage:
there is no rebound.

For type Il excitability, there is either a repulsive limigae which circles the stable fixed point
when the input current is close enough to the rheobase duirenlcyce), Or the separatrix crosses
both the w-nullcline and the v-nulicline. In both casessipossible to exit the attraction basin of the
stable fixed point and thus trigger a spike by changing anialbe in any direction. Therefore, both
types of rebound are possible. Note that with short currefggs, a more negative voltage must be
reached in order to trigger a spike.

2.8 After-potential

After a spike, the state vector resets to a certain pointénstate space. The subsequent trajectory
is determined by this initial state. We will discuss the gpilequences in more details in section 3,
but here we simply note that if the state vector is reset aloee/-nulicline, then the membrane
potentialV will first decrease then increase (broad after-potentigilie state vector is reset below
the V-nulicline,V will increase (sharp after-potential).

3 Spike patterns

In the previous section, we analyzed the subthreshold digsashthe model and found a rich struc-
ture, with the two parametes/g, and 1/ T controlling excitability, oscillations and rebound
properties. Here we turn to the patterns of spikes, such @daespiking, tonic/phasic bursting
orirregular spiking, and explain them in terms of dynami€empared to the previous section, two
additional parameters play an important role: the resateMdl and the spike-triggered adaptation
parameteb.

To study the spike sequences, we introduce a Poincaré magh whnsforms the continuous
time dynamics of the system into the discrete time dynanfitisad map.
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Figure 5: The adaptation map. A, B. Response of a type | modekuprathreshold constant input
(A: membrane potentid¥; B: adaptation variablev). The value ofw after each spike defines a
sequencéwy). C. The adaptation map maps the value of the adaptation variable from one spike
to the next. The sequence,) is the orbit ofwy underd.

3.1 The adaptation map

After a spike, the potentidl is always reset to the same vaMe therefore the trajectory is entirely
determined by the value of the adaptation variabt spike time: the sequence of vales), wy =

ty (t, = time of spike numben) uniquely determines the trajectory after the first spikberefore,
it is useful to introduce the functio® mappingw, to wy1, which we call theadaptation map
Let us defineZ as the domain of the adaptation variabMsuch that the solution of (1) with initial
condition(V;,w) spikes (blows up in finite time). Then the adaptation rifais

cp:{@HIR (13)
Wo — Weo + D

wherew,, is the value ofwn at divergence time (spike time) for the trajectory startiramn (Vy,wp),
as illustrated in Fig. 5. The sequen@®,) is the orbit ofwy under®, as shown in Fig. 5C. Note
that this sequence may be finite if for somew, ¢ 2. The property that the sequence is infinite
(resp. finite) is calledonic spiking(resp.phasic spikingy The spike patterns are determined by the
dynamical properties oP (fixed points, periodic orbits, etc.), as we show in nextisectFirst, we
examine the spiking domai@.

When there is no stable fixed point, i.e., wheis above the rheobase current (section 2.2.2),
eitherlr'h or Ir'r'] depending on the excitability type, then any trajectorksepi 2 = R. When there
is a stable fixed point, all trajectories starting inside dltteaction basin of that fixed point will not
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Figure 6: The spiking domaiw for the same cases as in Fig. 4, when the nullclines (dashed
lines) intersect. The attraction basin of the stable fixethipig bounded by the red curve. The
blue and purple vertical lines indicate the reset Nhe- ;. When that line is outside the attraction
basin (blue), therz = R and the model is bistable (tonic/resting). When the linernsects the
attraction basin (purple), the# is an interval or the union of two intervals. In that case, riedel

is generally phasic (C,D) but may be bistable (A,B). In pigtwith realistic values ob (spike-
triggered adaptation), bistability essentially occurewlthere is a limit cycle (A).
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spike. The spiking domai® is then the complementary of the intersection of the reseMi=V,;
with the attraction basin of the stable fixed point (up to gjgotion onto thew axis), as shown in
Fig. 6. We previously found (2.6) that the attraction badithe stable fixed point is either a limit
cycle or the stable manifold of the saddle fixed point. In #telr case, it may have a minimum
voltage (resonator) or not (integrator or mixed). Fig. 6\w@hdow these different cases determine
the spiking domair. We summarize these findings below, and describe the adaptagp®.

We first define two special valueg® andw** as follows: the reset lin¥ =V, intersects the
V-nullcline and w-nulicline at the pointd/,w*) and(V;,w"*), respectively, where

W =—g (Vi —EL) +0lAT exp(V'A;TVT) +1

Nearby spiking trajectories starting on the reset \ihe V, abovew* (i.e., above the V-nulicline)
may spike only after half a turn (sindé initially decreases), or possibly an odd number of half-
turns, which implies that the vertical order of the traje@s is reversed at spike time is locally
decreasing abows™. Spiking trajectories starting below* spike either directly or after an even
number of half-turns, so that is locally increasing below*. It follows that the sequencéw,) are
bounded.

We now describe the map and the spiking domaify for the two excitability types, depending
on the input current.

1. Typel:

(a) (subthreshold) if < Ir'h, then there is a stable fixed point and no limit cycle (see®ect
2.6). If the separatrix has no lower bound (typically: irsgr or mixed regime), then
the domairZ is an interval —o, winax) Wherewmax is the value of the adaptation variable
on the separatrix fo =V;. The map® is continuous on that set. We note that if
V_ <V, < V4, then there can only be phasing spiking: indegg,, > w,+ b for all n,
therefore at some point the orbit exits
When the separatrix has a lower voltage boupd (typically: resonator), then there are
two cases. I¥; < Vmin, thenZ = R and® has the same properties as in case 1%; if
Viin, then? = (—o0, Wiin) U (Wmay, +). Besides®((Wmax, +)) C P((—, Wmin)).

(b) (suprathreshold) if > Ir'h, all trajectories spike. Therefor&, = R. The adaptation map
is concave fow < w*, regular, has a unique fixed point and an a horizontal asytepto
whenw — +oco.

2. Typell:

(a) (subthreshold) if < l¢ycle, then there is a stable fixed point and no limit cycle, so that
the situation is similar to case 1b.

(b) (subthreshold) ifeycle < I < Ir'L then there is a stable fixed point and a repulsive limit
cycle bounding the attraction basin of the stable fixed poli®t Vimax andVmin be the
two extremal voltage values of the limit cycle. Pér< Vimin 0rVy > Viax 2 =R and
@ has the same properties as in case 1b.
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(c) (suprathreshold) ifr'}1 < | < Igp, then there are two unstable fixed points and no limit
cycle, hence all trajectories spike. Thereféte= R. WhenV, € (V_,V. ), the adaptation
map is discontinuous at some pomthax < W*, and®(Wmax) < ®(Wnay) (When trajec-
tories start circling around the fixed point). Th@ds locally but not globally increasing
on (—o,w*). The mapd also has a horizontal asymptote whenr- +-co.

(d) (suprathreshold) if > Isy, thenZ = R and® has the same properties as in case 1b (type

).

Tonic spiking occurs for any initialg if 2 = R (in particular, in the suprathreshold regime). In
other cases, spiking is generally phasic but there can be $piking if the sef,_,®"(2) is not
empty. When it occurs, the model is bistable.

The sequencén,)n>o of values of the adaptation variable at spike times is thé oftwg under
®: w, = ®"(wp). Since there is a mapping from to the interspike interval, the properties ®f
determine the spike patterns. In the following, we examigerelationship between the adaptation
map® and the spike patterns.

3.2 Tonic Spiking
3.2.1 Regular Spiking

Regular spiking means that interspike intervals are regpiessibly after a transient period of shorter
intervals. For the adaptation variable, it means that tiheesecgw,) converges, i.e P has a stable
fixed point. This situation is shown in Fig. 5. For low initiglues of the adaptation variabl®,

is increasing an@(w) > w, so that the sequences,) is increasing, implying that the duration of
interspike intervals decreases (this implication is trored < w*, i.e., before the maximum ab).

The shape of after-potentials (broad or sharp) dependsegseaviously saw, on whethév,,w)
is above or below the V-nulicline, i.e., whether> w* or w < w*. Asymptotically, the condition
for broad resets is thusg > w*, wherewy, is the fixed point of®. Given the properties ob,
this meangb(w") > w*. Since the parametdr (spike-triggered adaptation) shifts the curvedpf
vertically, there is a minimurb above which resets are (at least asymptotically) broad.

When® is continuous (cases 2d and 1b), it always has a fixed poimtédd(w) > w+ b for
low w and® converges to a finite limit whew — +o), but that fixed point may not be stable. That
property depends on all parameter values; in particularfited point is an attraction basin whben
orl is large enough (for large, the fixed point is on the plateau @ which implies broad resets). If
the fixed point is not stable, then the sequefvag may converge to a periodic orbit or be irregular.

3.2.2 Bursting

A bursting response is a sequence of shortly spaced spiéparated by longer intervals. For the
adaptation variablev, it corresponds to a periodic orbit, where the period eqtlasnumber of
spikes per burst. For the adaptation mpgperiodic orbits are associated with stable fixed points of
®P. This situation is illustrated in Fig. 7. Typically, bunsg occurs for large reset valu¥s: the
first spike resets the trajectory to a high voltage valuecWimduces a fast spike, and the adaptation
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Figure 7: Bursting and chaos. Each panel shows a samplenssgo andw) from the model,
with different values o¥/; (parametersC = 281 pF,g. = 30 nS,E. = —70.6 mV, V; = —50.4 mV,
At =2mV, 1, =40 ms,a=4nS,b=0.08 nA,l =.8 nA). A burst withn spikes corresponds to an
n-periodic orbit under. The last spike of each burst occurs in the decreasing p&t ofducing a
slower trajectory. A. Bursting with 2 spike¥,(= —48.5 mV). B. Bursting with 3 spikesf = —47.7
mV). C. Bursting with 4 spikes = —47.2 mV). D. Chaotic spiking\{ = —48 mV).

builds up after each spike, until the trajectory is resetvaltbeV-nullcline (after the peak oP at
w"). At that pointdV/dt < 0 and the trajectory must turn in phase space before it spikeducing
a long interspike interval. Thus, the number of spikes pestincreases whew increases (since
w* increases witlV;) and wherb decreases. Thus the bifurcation diagram with respeét (6ig. 8)
shows a period adding structure. Interestingly, when zogron a transition fronm to n+ 1 spikes,
a period doubling structure appears, revealing chaotitorb

3.2.3 Chaotic spiking

The period doubling structure shown in Fig. 8B implies thdtits are chaotic for some parameter
values. A sample response of the model for one of those vadugsown in Fig. 7D. It results in
irregular, unpredictable firing, in response to a constaptit current.

3.3 Phasic spiking

Phasic spiking or (bursting) can occur in subthresholdmesi ( < I}, for type | excitability,| < 1}

for type Il excitability), when there is a stable fixed poinde? # R. In that case, the system needs
to be destabilized (e.g. a short current pulse, which mayolséipe or negative, as explained section
2.7). The situation depends on the properties of the aitrabtsin of the stable fixed point, and can
be understood from Fig. 6.
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Figure 8: Bifurcation structure with increasing (same parameters as in Fig. 7). A. Bifurcation
diagram showing a period adding structure (orbits undertiegptation mag® with varying values
for V). Fixed points indicate regular spiking, periodic orbitglicate bursting, dense orbits indicate
chaos. B. Zoom on the bifurcation diagram A (as indicatedhigyghaded box), showing a period
doubling structure.

We can distinguish two cases:

1. If 2 = (—o,wmin) (C,D: integrator or mixed regime), then wh&h <V, <V, there can
only be phasic spiking, otherwise tonic spiking is possilheleed, ifV_ <V, <V, then the
sequencéwy) is such thatn1 > Wy + b, so that it must exitZ in finite time.

2. If = (—00,Wmin) U (Wmax, +) (A,B: resonator or mixed regime), then there can only be
phasic spikingP(Wmin) > Wmax, Otherwise tonic spiking is possible.

When tonic spiking (or bursting) is possible, then the masdddistable (it can be turned on or off
with current pulses).

4 Discussion

The adaptive exponential integrate-and-fire model [Bratig Gerstner(2005)] is able to reproduce
many electrophysiological features seen in real neuroitk, anly two variables and four free pa-
rameters. Besides, its parameters have a direct physalogiterpretation. In the framework of
this model, we can define afectrophysiological clasas a set of dynamical properties for different
values of the input (for given parameter values). In this paper, we tried to te\a classification
of the parameter space as complete as possible, which is atinea for subthreshold dynamics
in Fig. 3. The subthreshold dynamics depends only on the ddttime constantstg,/ 1) and on
the ratio of conductances(gL), but is already non-trivial. The model can have excitépitype

I or Il depending whether it leaves the resting state throagiaddle-node or an Andronov-Hopf
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bifurcation. It may act as an oscillator or an integratoretgging on the eigenvalues associated to
the resting point. It may spike in response to hyperpolagziurrents (rebound), depending on the
properties of the attraction basin of the stable fixed poitich is bounded by either a limit cycle
or a separatrix.

The spiking dynamics is even more rich, as it also depends®reset parametebsandV,. We
related the spike patterns with orbits under a discretedoémapd, and found a rich bifurcation
structure including even chaos. Regular spiking corredpda a stable fixed point @b, bursting
corresponds to periodic orbits undeérand irregular spiking corresponds to chaotic orbits urider

Most of the results shown in this paper generalize to twoedtisional spiking models in which
the first (membrane) equation &//dt = F(V) 4+ 1 —w, whereF is a smooth convex function
whose derivative is negative ato and infinite at+o (in particular, Izhikevich model and the
quartic model have these properties). We are currently imgrion the mathematical proofs of
these results in that more general setting and on a more edtenpicture of the spiking dynam-
ics [Touboul and Brette (2008)]. This work will provide boghdynamical system understanding
of the the spiking properties of the model and analyticallrods to relate the parameter values
with electrophysiological classes. Another interestiimg lof research is the investigation of the
responses of such bidimensional models to time-varyingtsypas was done in [Brette(2004)] for
one-dimensional integrate-and-fire models.
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A Oscillations

In this appendix we calculate the parameter zones whereygters oscillates in the rescaled model
(3). We then obtain the equations for the original model gisive change of variables (5). Damped
subthreshold oscillations appear only when the systemsatsiable fixed point, i.e. if < (1+
a)(log(1+a) — 1) fora< & andl < (1+ )log(1+ &) — (1+a) for a> . Furthermore, the
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system will oscillate around the stable equilibriwmif and only if the imaginary part of the eigen-
values of the Jacobian matrix of the system at this pointismall. This condition can be written at
the stable equilibriunv_ via the discriminan® defined by:

2 —
O(v_)= <e"— —1+ i) _42
Tw Tw

The system will oscillate around the stable fixed peoinif and only if < 0. To invert this inequal-
ity, we compute the zones where we have

2 —
(x—1+i> 42 -0 (14)
Tw Tw

and check that a solution exists. There existswa_ such thae'- = xifand only if 0< x < (1+a),
sincev_ < log(1+a).
The solution of (14) ix € {x_,x } where

B Tw—1+2/at,

Tw

X+

First of all we are interested in the apparition of oscithats in the type | case. We know that when
the input current is close to the rheobase curre}ﬂtgiven by (7), the system returns monotonously
to the resting potential. The system begins to oscillatenathere exist solutions to the equation
€'~ =x,. Itis straightforward to check that, is always lower tharil + a), since this condition is
equivalent to the conditiof\/T,a+ 1)? > 0, which is always true. The condition > 0 is satisfied
on the parameter zone

_ _ _ _ 1 —
{(tw.®); > 1ormy <landa> 7=(1- Tw)?}
w

In this zone, oscillations occur when the curref belowl,, where:

Tw—1+2at,. Tw—1+2yany
Tw W

Tw

I+ = (1+a)log( )—

Hence it appears in the type | excitable case. After the Bogddakens point, the equilibrium
associated with, is unstable, hence does not give rise to damped subthresbailthtions.

Itis easy to show that/{47y)(1— Ty)? < 1/Tw. Whena= 1/1,, we have . = (1+ a)(log(1+
a) — 1), which is the current at the Bogdanov-Takens bifurcatiomiparhis result was predictible
since around the saddle node bifurcation the system doesseitate around the fixed point and
around the Andronov-Hopf bifurcation the system does tageil and these two curves meet at the
Bogdanov-Takens point. Furthermore, after the Bogdarekefis point, the equilibrium associated
with x; is no more stable, hence damped subthreshold oscillateswcmted with this separatrix
only appear in the type | excitable case.

The oscillations possibly disappear when a solutioe'to= x_ exists. These solutions exist
whent, >1anda< % (1— %)2. Thus, oscillations disappear wher: | _, where:
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|- = (1+a)log(

Tw—1— 2\/arw) ~ Ww—1-2Van
Tw Tw
With the original parameters, the expression.ofeads:

gLTW - CZl: 2\/ aCTW)

I = (9L+a)ATlog( R
w

gLtw—C+2yaCry B

Tw

_AT

(oL +a)(EL—Vr) (15)

Hence, grouping the cases as a functiompanda, we have:
e Forty < 1:

— The system always returns monotonously to equilibrium v@e:nﬁ(l— Tw)? Or when
a> z(1-tyw)?andl > 1.
— The system oscillates around equilibrim]%w(l— tw)2andl < I.
e Forty, > 1:
— the system oscillates for arlye (I, 1;) whena< z=(1—1,)? and for anyl < I if
a> z=(1—tw)?
— otherwise it returns monotonously to its resting state.

When the system oscillates, the oscillation (angular)desgy is given byw = —3, which, in
the low-voltage approximation (far frowy), reads:

When the system oscillates, the time constant of the deddne iswerse of the opposite of the
real part of the eigenvalues, which-sl/2(e"- —1— %). With the original parameters, the time

constant is thus:
1/1 1 1 vw\\1!
- —4+———e AT
2\Tm Tw Tm

and in the low-voltage approximation it is simply

TmT,
2 mtw
Tm+ Tw
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B Overshoot

As discussed in section 2.5.2, the response of the neuroouaent step can present an overshoot
when the coefficient of the slower exponential term is negatin this section we show that in the
low-voltage approximation < Vr), there is an overshoot if and only if, < T and there is no
oscillation, thus, in the mixed mode regime (Fig. 3).

Indeed, in the low voltage approximation, the dynamicgisdir and is governed by the operator:

-1 -1
L= B

a _1

Tw Tw

which can be diagonalized. The overshoot appears only wihereigenvalues are real. In this
case, the voltage response to a short pulse (dirac) is a sumooéxponential functions(t) =
ae /™ 4+ Bexp /™ (we set the resting potential to 0) whege and <! are the two real eigenvalues
of L. The coefficient of the slower exponential term is

£

(V31— ) +0)

with & = (1 — )2 — 4at,,. We now write the negativity condition of this coefficient:

VO(1-Ty)+0<021-Ty<—Vo

A necessary condition for this inequality to be satisfied,js> 1. In this case, the condition
reads:
(1—Tw)? > & = (1—Ty)? — 4aTy

which is always true sincert,, > 0. Hence the overshoot appears in the low voltage approiamat
(far from threshold) whem,, > 1, i.e., whenrm, < Ty.

C Separatrix

C.1 Position of the stable manifold

Some information about the stable manifold of the saddledfigeint can be obtained from the
nullclines (when these intersect). The nulliclines cut tlame in 5 connected zones, which we call
North, South, West, East and Center, as shown in Fig. 1. Tdid@estmanifold consists in two
trajectories which converge to the saddle fixed point. Nearsaddle point, these two trajectories
must lie in the North and South zone, or in the Center and Eass

First we remark that all the trajectories starting from thesEzone must spike. Indeed, in that
region,V increases an@ decreases, until it crosses the w-nullcline horizontatlgt anters the South
zone. From that poin¥ keeps on increasing andincreases, which implies that the trajectory can
only remain in the South zone or enter the East zone. Howéwerdirection of the vector fields
along the border does not allow crossing from South to Ealserdfore, the trajectory will remain
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in the South zone and will spike. It follows that no part of #table manifold can be in the East
zone. Therefore it has to be locally in the North and Souttezoy following the manifold from
the saddle point to the North, we can see thaindw increase and, since the manifold cannot enter
the East zone, it remains in the North zone and goes to infititypractice, it is in fact very close
(but slightly to the left) of the V-nulicline, as shown in Fig.

By following the manifold from the saddle point to the Soutte can see that it has the same
orientation as in the North zone, as long as it remains in thélSzone. It may however cross the
w-nullcline (Fig. 4D), and possibly the V-nulicline agairig. 4B).

C.2 Asymptotic behavior of the solutions

To understand whether the stable manifold can cross thellating and possibly the V-nulicline, we
study the asymptotic behavior of the solutions when —«. Here again we consider the rescaled
model (3). The idea is the following: if the manifold goes-teo (for V), then the exponential
term vanishes and its approximated dynamics can be sohadgtemally. Thus, in the following we
shall assume that the manifold does not cross the V-nuficlin that case, the voltad&t) of the
manifold, seen as a solution of the system, goesdoast — —o, and we will look for possible
contradictions.

Asymptotically, the differential equations satisfied by igeg solution(v,w) of the rescaled
model can be approximated by:

{v_. ::V—W—H (16)
TwW —=av—w

Whent — —oo, the solutions of the linear system either spiral aroundfitteel point (complex
eigenvalues) or align asymptotically to the direction @fezivector associated to the smallest nega-
tive eigenvalue of the matri governing the dynamics of the linear system (16):

-1 -1
(7 })
Tw Tw
— 2
If the eigenvalues of this matrix are complex, i.e., wizen ﬁﬁ;wl) , then the solutions spiral
around the fixed point. Therefore the trajectories crosdthelicline, which contradicts our initial
—(Tr—1)2 . . .
hypothesis. Thus wheam> (ijhwl) (resonator regime), the stable manifold crosses bothlmek:
If the eigenvalues are real, the trajectories of the lingatesn align asymptotically to the direc-

tion of the lower eigenvalue

1 — —
2Ty

This eigenvalue is always strictly negative hence solgtiasill diverge whent — —c. The
eigenvector associated with this eigenvalue is:
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28 Touboul & Brette

2Tw
< 1—Tw+ \/(TVV—1)2—43TTVV )
1

The slope of that eigenvector is always belev, so that (linearized) trajectories do not cross
the V-nullcline. However they can cross the w-nullcline whiee slope of the eigenvector is smaller
thana, i.e.:

1—tw++/(tw—1)2—4an, _
w T+ (W_ ) w_ 3

2Ty

and this condition is satisfied Whﬂb_%(% —1). Assuminga > 0, the inequality is always true
if Tw > 1; when wherr,, < 1, the inequality is never true given that the eigenvalueseal @ <

— 2
(Tmzllr\,\,l) ).

(tw—1)?
4

Tw

In summary, the stable manifold crosses both nullclinesrwée
and it crosses at least the w-nullcline whgn> 1.

(resonator regime),
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