
Automatic Generation of CINNI Instances for the

Maude System∗

Jonas Eckhardt† Tobias Mühlbauer‡ José Meseguer§

September 27, 2011

Abstract

Many formal languages use the concept of names to range over essential
entities of the language and are usually equipped with special binding
constructs for names. For example, the λ-calculus uses variables as names
and λ-abstractions as a name binders; Milners π-calculus uses the action
prefixes in and new to bind variables in a subsequent term; and first-
order logic uses variables as names, which can be bound by the ∀ and ∃
quantifiers.

CINNI is a calculus of explicit substitutions that contributes a first-
order representation of terms which takes variable bindings into account
and captures free substitutions. The CINNI calculus is parametric in the
syntax of the object language, which allows it to be applied to many
different object languages.

The createCINNI tool makes the parametric nature of CINNI avail-
able to the Maude system by means of an automatic module transforma-
tion which — given a Maude module specifying the syntax of an object
language L — generates a Maude module containing the instantiation
CINNIL.

1 Introduction

Many formal languages use the concept of names to range over essential entities
of the language and are usually equipped with special binding constructs for
names. For example, the λ-calculus uses variables as names and λ-abstractions
as name binders; Milner’s π-calculus [6] uses the action prefixes in and new
to bind variables in a subsequent term; and first-order logic uses variables as
names, which can be bound by the ∀ and ∃ quantifiers.

Stehr [7] proposes CINNI, a calculus of explicit substitutions that contributes
a first-order representation of terms which takes variable bindings into account

∗Research partially supported by NSF Grant CCF 09-05584.
†eckharjo@in.tum.de
‡muehlbau@in.tum.de
§meseguer@cs.uiuc.edu

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4835565?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and captures free substitutions. The CINNI calculus is parametric in the syntax
of an object language, which allows it to be applied to many different object
languages. Stehr shows applications of CINNI to the λ-, ς-, and π-calculi in
Maude. In other work [1, 8], the CINNI calculus is applied to manage names
and bindings in various host languages.

In this work, we make the parametric nature of CINNI available to Maude
users by means of an automatic module transformation which — given a Maude
module specifying the syntax of an object language L — generates a Maude
module containing the instantiation CINNIL.

We first provide an overview of the CINNI calculus. Then, as a running
example, we apply the CINNI calculus to Millner’s π-calculus, and give, based
on that example, an idea how the transformation can be generated automatically
using reflection. Finally, we describe how the transformation works in more
detail and present the Maude tool createCINNI, which performs the module
transformation in Full Maude.

2 CINNI

Stehr [7] proposes CINNI, a calculus of explicit substitutions that contributes
a first-order representation of terms which takes variable bindings into account
and captures free substitutions. For a given language L and its defining syntax,
the instantiation of CINNI for L is denoted by CINNIL. Stehr tries to stay as
close as possible to the standard name notation while at the same time including
the canonical representation of the de Bruijn notation [5] as a special case, in
which a single name is used. CINNI uses the Berklin notation [2, 3] that unifies
indexed and named notations. In the Berklin notation, each variable name X
is annotated with an index i ∈ N which represents the position of the binder
in the term that binds Xi. The index i of Xi thereby indicates that the binder
that binds the variable X is the ith binder to the left of the variable in the term.

Example 1: Berklin notation
The following example illustrates the Berklin notation. Variable X0 is bound
by the second binder while variable X1 is bound by the first binder in the term.

∀X. ∀X. f(X0) ∧ f(X1)

CINNI extends a given language L with explicit substitutions as shown in
equations 1, 2 and 3. The simple substitution [X := M] replaces variable X0

with value M and reduces the index of any other equally named variable Xn+1

to Xn. The shift substitution ↑X for variable X increases the index of variables
with the same name X. The lifted substitution ⇑X (S) is defined in equations
4, 5, and 6. It decreases the index of variables with the name X, performs the

2

substitution S, and finally lifts the variable.

[X := M] (simple substitution) (1)

↑X (shift substitution) (2)

⇑X (S) (lifted subsitution) (3)

⇑X (S)X0 = X0 (4)

⇑X (S)Xn+1 = ↑X ((S)Xn) (5)

⇑X (S)Yn = ↑X ((S)Yn) if X 6= Y (6)

For each syntactical constructor f of the language L, CINNI adds a syntax-
specific equation which automatically shifts the bound variables in each argu-
ment of the constructor. Let ji,1, . . . ji,mi

be the arguments that are bound by
f in argument i, then the syntax-specific equation is defined by:

S f(P1, . . . , Pn) = f(⇑Pj1,1
(. . . ⇑Pj1,m1

(S))P1, . . . ,⇑Pjn,1
(. . . ⇑Pjn,mn

(S))Pn)

3 Running Example: CINNIπ

In the following, we will describe the application of CINNI to Millner’s π-
calculus. We will later use this running example to illustrate out module trans-
formation. Process terms are represented by the sort Trm and channels by the
sort Chan. Process terms can be concatenated by the associative and commu-
tative parallel composition operator P|Q for which the null process nil acts as
identity. For a process term P, the term out CX <CY>. P represents a process that
sends the channel CY over the channel CX and then continues with P. The term
in CX [Y]. P represents a process term that receives a channel name over the
channel CX and then continues with P. Finally, the term new [Y] P represents
a process term that creates a new local name that can be used in P and then
continues with P. The functional Maude module

fmod PI-SYNTAX is
protecting QID .

sorts Chan Trm .

op _{_} : Qid Nat -> Chan .

op nil : -> Trm [ctor] .

op _|_ : Trm Trm -> Trm [ctor assoc comm id: nil] .

op new[_]_ : Qid Trm -> Trm [ctor] .

op out_<_>._ : Chan Chan Trm -> Trm [ctor] .

op in_[_]._ : Chan Qid Trm -> Trm [ctor] .

endfm

describes the syntax of the π calculus.
The two terms in CX [Y] P and new [Y] P bind the channel name Y in the

subsequent process P. The variables

3

vars X Y : Qid .

vars CX CZ : Chan .

vars P Q : Trm .

var S : Subst .

vars n : Nat .

are used in the following equations.
The application of CINNI to the syntax of the π-calculus adds a sort that

represents substitutions (sort Subst), new operators and equations for the three
kinds of substitution: simple, shift and lifted.

op [_:=_] : Qid Chan -> Subst .

op [shift_] : Qid -> Subst .

op [lift__] : Qid Subst -> Subst .

op __ : Subst Chan -> Chan .

op __ : Subst Trm -> Trm .

eq [X := CZ] X{0} = CZ .

eq [X := CZ] X{suc(n)} = X{n} .

ceq [X := CZ] Y{n} = Y{n} if X =/= Y .

eq [shift X] X{n} = X{suc(n)} .

ceq [shift X] Y{n} = Y{n} if X =/= Y .

eq [lift X S] X{0} = X{0} .

eq [lift X S] X{s(n)} = [shift X] (S (X{n})) .

ceq [lift X S] Y{n} = [shift X] (S (Y{n}))

if X =/= Y .

Additionally, syntax-specific equations are added to the module. A substitu-
tion that is applied to the nil process is discarded. If a substitution is applied to
the parallel composition of two process terms, it is applied to each process term
individually. As nil acts as the identity for the associative and commutative
parallel composition operator, it is important not to apply the substitution to
a composition where one of the subterms is the process term nil. Similarly to
the parallel composition, if a substitution is applied to the process term out CX<

CZ>.M, the substitution is simply applied to all subterms. The two process terms
in CX[Y].M and new[Y]M bind the name Y in the subsequent process term M, so the
lifted substitution [lift Y S] has to be applied to M.

eq S nil=nil.

ceq S (P | Q) = (S P) | (S Q)

if P =/= nil and Q =/= nil .

eq S (out CX<CZ>.P) = out (S CX)<S CZ>.(S P).

eq S (in CX[Y].P) = in(S CX)[Y].([lift Y S] P).

eq S (new[Y]P) = new[Y]([lift Y S]P).

Discussion

Using Berklin’s representation, a requirement for an automatic generation of
CINNI specifications is that the language differentiates between names, indexed
names, and values. Names are used in binding expressions, indexed names are
names quantified by an index that are bound to a name by binding operators,

4

and values are terms of the language that can be substituted for indexed names.
In our example of Millner’s π calculus, these entities were mapped to entities of
the target language as follows:

name 7→ sort Qid

indexed name 7→ sort Chan

value 7→ sort Chan

If this mapping is given, the CINNI transformation can be fully automated.
The transformation consists of two main steps:

1. A sort that represents substitutions and operators for the simple, shift,
and lifted substitutions are added. Additionally, for each constructed sort
of the language, e.g., Chan and Trm, an operator to prefix substitutions is
added. Then, equations defining the semantics of the simple, shift, and
lifted substitution are added. These equations need to be aware of the
actual sorts for names, indexed names, and values.

2. A syntax-specific equation is added for each syntactic constructor of the
language. Basically, there are two types of syntactic constructors: those
that bind names in one or more of the arguments and those that don’t.
For example, the syntactic constructor new[_]_ binds the first argument
in the second whereas the parallel operator _|_ does not bind any names.
The syntax-specific equations describe the effect of applying a substitution
a term built with the constructor by passing down the substitution to each
of the arguments. If the constructor binds a name in an argument, the
name is lifted in the substitution of that argument.

The information about which names are bound in which argument cannot
be derived directly from the first-order declaration of a syntactic constructor.
Our transformation uses Maude’s metadata attribute so that the user can add
this binding information. The two constructors new[_]_ and in_[_] bind the first
in the second argument. Thus they are be annotated accordingly.

op new[_]_ : Qid Trm -> Trm [ctor metadata "1->2"] .

op in_[_]._ : Chan Qid Trm -> Trm [ctor metadata "2->3"] .

Having the mapping between names, indexed names, and values and the
corresponding sorts in the language together with the information about which
name is bound in which argument by the syntactic constructors enables us to
create a fully automated module transformation. The next section describes the
transformation in more detail.

4 The Transformation

Figure 1 shows a top level view of the transformation. The transformation
lifts the source module to the meta-level, renames the module, and adds sorts,
operators, and equations to the meta-representation of the module.

The two overloaded operators

5

L

ML ML′ ML′′

ML′′′MCINNIL
upModule

renameModule addSorts

addOps

addEqs

META-LEVEL

Figure 1: Top level view on the module transformation

op cinni : Qid Type Type Type Type -> Module .

op cinni : Module Type Type Type Type -> Module .

only differ in their first argument: One can either specify the module’s name or
give directly the meta representation of the source module. Additionally, one
has to specify the sorts that will be used for: (i) substitutions, (ii) names, (iii)
indexed names, and (iv) values, where sorsts (i)–(iv) are sorts of the source mod-
ule. To apply the transformation on our running example, the transformation
is executed using the command

red cinni(’PI-SYNTAX, ’Subst, ’Qid, ’Chan, ’Chan) .

The equation for the cinni operator, which takes the name of the source
module as an argument, uses the upModule operator to create the meta repre-
sentation of the source module. The invocation of the cinni operator with the
resulting meta-representation of the module is then evaluated by the second
equation, which performs the transformation.

ceq cinni(MOD, SUBSTT, NAMET, INAMET, VALT) =

cinni(M, SUBSTT, NAMET, INAMET, VALT)

if M := upModule(MOD, false) .

ceq cinni(M, SUBSTT, NAMET, INAMET, VALT) = MWE

if RM := renameModule(M, qid("CINNI-" + string(getModuleName(M)))

{getParameterDeclList(M)})

/\ CTL := removeDoubles(getConstructedTypes(getOps(M)))

/\ MWS := addSorts(RM, SUBSTT)

/\ MWO := addOps(MWS, simpleSubst(NAMET, VALT, SUBSTT)

shiftSubst(NAMET, SUBSTT)

liftSubst(NAMET, SUBSTT)

substOps(removeDoubles(CTL INAMET),SUBSTT))

/\ MWE := addEqs(MWO, substBase(NAMET, VALT)

shiftEqs(NAMET)

liftEqs(NAMET, SUBSTT)

6

createSpecificEqs(getOps(M), SUBSTT,

NAMET, INAMET, CTL)

createIdentityEq(CTL, SUBSTT)) .

The effect of applying the second equation is as follows. First, the name
of the source module is prefixed with the string CINNI using the renameModule

operator. Then, the following sorts, operators, and equations are added using
the addSorts, addOps, and addEqs operators, respectively:

• The specified sort for substitutions.

• Operators for the three types of substitutions.

• For each constructed sort in the source module, one operator for prefixing
substitutions.

• Equations defining the semantics of the simple, shift, and lifted substitu-
tion.

• One syntax-specific equation for each syntactic constructor of L.

• Identity equations are added to avoid unnecessary substitutions.

The operators to rename a module, and to add sorts, operators, or equations
are not described here. A detailed description of these operators is given in the
subsection “A Deadlock-Freedom Transformation” of [4, p. 480]. The automatic
creation of the CINNI operators and equations is described in more detail in
the next subsections. Subsection 4.1 describes how the CINNI operators are
created, and Subsection 4.2 shows how the CINNI equations, including the
syntax-specific equations, are created.

4.1 Creation of CINNI operators

The meta-representation of a Maude operator is a term of sort OpDecl and is
defined in the Maude module META-MODULE. Terms of sort OpDeclSet represent sets
of operators and can be concatenated using the associative and commutative
operator __ for which the term none acts as identity. We construct the operators
for the simple, shift, and lifted substitution by using the auxiliary operators
simpleSubst, shiftSubst, and liftSubst, respectively. The equation

eq simpleSubst(NAMET, VALT, SUBSTT)

= (op ’‘[_:=_‘] : NAMET VALT -> SUBSTT [none] .) .

takes the type of names, values, and substitutions, as argument, and yields
the meta-representation of the simple substitution operator. In our running
example, the term

simpleSubst(’Qid, ’Chan, ’Subst)

would be reduced to the following term, which is the meta-representation of the
simple substitution operator of CINNIπ.

op ’‘[_:=_‘] : ’Qid ’Chan -> ’Subst [none] .

7

The equations

eq shiftSubst(NAMET, SUBSTT)

= (op ’‘[shift_‘] : NAMET -> SUBSTT [none] .) .

eq liftSubst(NAMET, SUBSTT)

= (op ’‘[lift__‘] : NAMET SUBSTT -> SUBSTT [none] .) .

take the type of names and substitutions, and create the meta-representation of
the shift and lifted substitution.

Additionally, for each sort that is constructed in the source module, the cor-
responding operators to prepend substitutions are added. The operator substOps

is defined recursively on the structure of the first argument. The base case takes
a term of sort Type, and the sort of substitutions and creates the meta represen-
tation of the prefixing operator for that type.

eq substOps(T, ST) = (op ’__ : ST T -> T [none] .) .

The two recursive cases

ceq substOps(T TL, ST) = substOps(T, ST) substOps(TL, ST) if T =/= nil .

ceq substOps(T TL, ST) = substOps(TL, ST) if T == nil .

decompose the first argument — of sort TypeList — structurally.

4.2 Creation of CINNI equations

As for the meta-representation of operators, the meta-representation of equa-
tions can be found in the Maude module META-MODULE. Equations and sets of
equations are represented at the meta-level by terms of the sorts Equation and
EquationSet.

We first describe the creation of the equations that define the semantics
of the CINNI substitution operators. Then, we describe the creation of the
syntax-specific equations.

4.2.1 Creation of the equations for the CINNI operators

The auxiliary operators substBase, shiftEqs, and liftEqs create the meta repre-
sentation of the equations defining the semantics of substitutions. For example,
the equations

eq shiftEqs(NAMET) =

shiftEq1(NAMET) shiftEq2(NAMET) .

eq shiftEq1(NAMET) =

(eq ’__[’‘[shift_‘][qid("X:" + string(NAMET))],

’_‘{_‘}[qid("X:" + string(NAMET)), ’M:Nat]]

= ’_‘{_‘}[qid("X:" + string(NAMET)), ’s_[’M:Nat]] [none] .) .

eq shiftEq2(NAMET) =

(ceq ’__[’‘[shift_‘][qid("X:" + string(NAMET))],

’_‘{_‘}[qid("Y:" + string(NAMET)), ’M:Nat]]

= ’_‘{_‘}[qid("Y:" + string(NAMET)), ’M:Nat]

if ’_=/=_[(qid("Y:" + string(NAMET)),

qid("X:" + string(NAMET)))] = ’true.Bool [none] .) .

8

op f:T1 ... TN -> T [ctor metadata M]

getOperators(MOD)

X1:T1,...,XN:TN (S1 X1:T1),...,(SN XN:TN)

eq S f(X1:T1,...,XN:TN) f((S1 X1:T1),...,(SN XN:TN))=

createSpecificEq

createLeft createRight

Figure 2: Creation of a syntac-specific equation

take the type of names as an argument and return the meta-representation
of the following two equations of the CINNI calculus:

↑X Xm = Xm+1

↑X Yn = Yn if X 6= Y

The equations defining the operators substBase and shiftEqs are omitted for
the sake of brevity.

4.2.2 Creation of the syntax specific equations

In a last step, the syntax-specific equations are created. A schematic overview
of the auxiliary functions, that are used, is shown in Figure 2. Syntax-specific
equations have to be created for each operator of the source module. The op-
erator getOperators returns the meta-representation of the operators defined in
the given module. For each of these operators, say f, the createSpecific oper-
ator is executed. Using the two auxiliary functions createLeft and createRight,
which create the left-hand and right-hand side of the syntax-specific equation,
the equations are created.

Let us assume that the declaration for the operator f contains as a metadata

attribute,

op f : T1 ... TN -> T [ctor metadata i1->j1,...,iM->jM]

with i1,...,iM,j1,...,jM ∈ {1, ..., N}. Thus, the operator f binds the argument
ik in the argument jk for k ∈ {1, . . . ,M}. Furthermore, we assume that no two
names are bound in the same argument. This is expressed by the requirement
that jk 6= jl for all l 6= k.

If we are applying a substitution S to f(t1, . . . , tn), then the substitutions
Sj for the jth argument tj is of the form [shift Xi:Ti S] if i->j appeared in
the metadata declaration of f, i.e., if there is an argument i that is bound in
the argument j. Otherwise, if no argument is bound in the argument j, the

9

substitution Sj is equal to S. To better illustrate how the algorithm works, we
create the syntax specific equation based on the operator declaration of the

op new[_]_ : Qid Trm -> Trm [ctor metadata "1->2"] .

operator of our running example. The meta-representation of the syntax specific
equation is thereby defined by the equation

eq __[S:’Subst, ’new‘[_‘]_[VAR0:’Qid, VAR1:’Trm]] =

’new‘[_‘]_[VAR0:’Qid,’lift[VAR0:’Qid, S:’Subst]] .

Creating the left-hand side of a syntax-specific equation. Given a list
of types and the index of the first variable as argument, the createLeft operator
creates the meta-representation of the argument list of an equation.

op createLeft : TypeList Nat -> NeTermList .

eq createLeft(T TL, INDEX) =

createLeft(T, INDEX) , createLeft(TL, INDEX + 1) .

eq createLeft(T, INDEX) =

qid("VAR" + string(INDEX, 10) + ":" + string(T)) .

The first equation recursively decomposes the given term of sort TypeList, and
counts the current argument position in the second argument. If the first argu-
ment is a term of sort Type, the second equation creates the meta-representation
VARi of a variable at argument position i. The term

createLeft(’Qid ’Trm, 0)

in our running example is reduced to

VAR0:’Qid, VAR1:’Trm

which is the left-hand side of the syntax specific equation of the operator

op new[_]_ : Qid Trm -> Trm [ctor metadata "1->2"] .

Creating the right-hand side of a syntax-specific equation. The right-
hand side of a syntax-specific equation also depends on the metadata attribute.
Thus, the operator createRight takes the list of types from the operator dec-
laration, the current index of the variable, the variable for the substitution,
a list of types that should be lifted, the mapping between arguments and the
bound arguments, and the type of names as arguments, and creates the meta-
representation of the list of variables for the right-hand side of the equation.

op createRight : TypeList Nat Variable TypeList Map{Nat, Nat} Type

-> NeTermList .

The first equation recursively decomposes the first argument of TypeList,
and increases the index of the current variable. The second equation creates
the meta-representation, if the first argument is a term of sort Type. If the type
is not included in the list of relevant types for substitution, the substitution is
omitted. Otherwise, as discussed above, if the argument at the current index
binds a name, i.e., $hasMapping(MAP, INDEX)= true, then the lifted substitution is
created. Otherwise, the substitution is simply passed down to the argument.

10

eq createRight(T TL, INDEX, SVAR, TTL, MAP, VNT) =

createRight(T, INDEX, SVAR, TTL, MAP, VNT) ,

createRight(TL, INDEX + 1, SVAR, TTL, MAP, VNT) .

eq createRight(T, INDEX, SVAR, TTL, MAP, VNT) =

if T in TTL then

if ($hasMapping(MAP, INDEX)) then

’__[’‘[lift__‘][qid("VAR" + string(MAP[INDEX], 10) + ":" +

string(VNT)) ,SVAR], qid("VAR" + string(INDEX, 10) + ":" +

string(T))]

else

’__[SVAR, qid("VAR" + string(INDEX, 10) + ":" + string(T))]

fi

else

qid("VAR" + string(INDEX, 10) + ":" + string(T))

fi .

In our running example, the right-hand side of the equation is created by
the term

createRight(’Qid ’Trm, 0, ’S:Subst, ’Qid ’Trm, 1->2, ’Qid)

This results in the meta-representation

VAR0:’Qid,’lift[VAR0:’Qid, S:’Subst]

Creating the syntax-specific equation. Bringing it all together, the oper-
ators createSpecificEqs, and createSpecificEq create the syntax specific equations.

op createSpecificEqs : OpDeclSet Type Type Type TypeList

-> EquationSet .

op createSpecificEq : OpDecl Type Type Type TypeList -> EquationSet .

Except for the first parameter — either a set of operator declarations, or
a single operator declaration — both operators take the same parameters: the
type of substitutions, the type of names, the type of indexed names, and a list
of types that can be substituted. The operator createSpecificEqs recursively
creates the syntax-specific equations using the createSpecificEq operator.

eq createSpecificEqs(OPD, SUBSTT, VARNAMET, VART, TERMTL)

= createSpecificEq(OPD, SUBSTT, VARNAMET, VART, TERMTL) .

ceq createSpecificEqs(OPD OPDS, SUBSTT, VARNAMET, VART, TERMTL)

= createSpecificEqs(OPD, SUBSTT, VARNAMET, VART, TERMTL)

createSpecificEqs(OPDS, SUBSTT, VARNAMET, VART, TERMTL)

if OPDS =/= none .

The behavior of the createSpecificEq operator is defined in three equations.
First, if the operator’s definition contains the ctor and metadata S attributes, S is
parsed, and the createLeft and createRight operators are used to construct the
resulting meta-representation of the syntax-specific equation.

ceq createSpecificEq((op N : TL -> TERMT [ctor metadata(S) AS].),

SUBSTT, VARNAMET, VART, TERMTL) =

(eq ’__[SVAR, N[createLeft(TL, 0)]]

= N[createRight(TL, 0, SVAR, (TERMTL VART), getPairs(S),

VARNAMET)] [none] .)

if SVAR := qid("S:" + string(SUBSTT))

/\ TL =/= nil /\ TL in (TERMTL VART) .

11

Second, if the operator’s definition contains the ctor and id(ID) attribute (but
no metadata attribute), then the substitution is simply passed down to the ar-
guments. A conditional equation is created, since all arguments are required to
be unequal to the identity element of the operator to prevent infinite loops.

ceq createSpecificEq((op N : TL -> TERMT [ctor id(ID) AS].),

SUBSTT, VARNAMET, VART, TERMTL) =

(ceq ’__[SVAR, N[createLeft(TL, 0)]]

= N[createRight(TL, 0, SVAR, (TERMTL VART), empty, VARNAMET)]

if createUnequalToId(TL, ID, 0) [none] .)

if SVAR := qid("S:" + string(SUBSTT))

/\ TL =/= nil /\ TL in (TERMTL VART) .

Finally, if the ctor attribute is contained in the operator’s definition (and
no metadata or id attribute), the syntax-specific equation is created using the
createLeft and createRight operators.

eq createSpecificEq((op N : TL -> TERMT [AS].),

SUBSTT, VARNAMET, VART, TERMTL) =

if ctor in AS and TL =/= nil and TL in (TERMTL VART) then

(eq ’__[qid("S:" + string(SUBSTT)), N[createLeft(TL, 0)]]

= N[createRight(TL, 0, qid("S:" + string(SUBSTT)),

(TERMTL VART), empty, VARNAMET)] [none] .)

else

none

fi [owise] .

5 The createCINNI Tool

The Full Maude show module command is used to retrieve the Maude repre-
sentation of the meta-module that is created using the cinni command. Thus,
the created meta-module has to be loaded in the Full Maude database, then
printed using the show module, and finally the result has to be filtered. The
createCINNI tool is defined by the shell script

#!/bin/bash

if [$# -ne 6]

then
echo "Usage: ./createCINNI.sh {module name} {substitution sort}

{name sort} {indexed name sort} {value sort} {module file}"

exit 65

fi

echo "

(select META-LEVEL .)

(fmod CREATE-CINNI is

ex META-LEVEL .

ex CINNI-META .

op module : -> Module .

eq module = cinni(’$1, ’$2, ’$3, ’$4, ’$5) .

endfm)

(load module .)

(show module CINNI-$1 .)

12

q" | maude -no-prelude -no-banner -no-advise -no-wrap -no-ansi-color

prelude.maude CINNIMETA.maude $6 full-maude26.maude | awk ’/fmod/,/

endfm/’ > CINNI-$6

which takes six parameters: The name of the source module, the required
sort of substitutions, the sort of names, the sort of indexed names, the sort of
values, and a the name of the file containing the source module.

Basically, a new Full Maude module with name CREATE-CINNI is created, which
extends the META-LEVEL and the CINNI-META module. Additionally, a constant
operator module is created that is reduced to the meta-representation of the
new module. Then, the new module is loaded into the Full Maude database
using the load command. Finally, the module is printed using the show module

command. The result is then filtered with an regular expression and the module
is written in a file.

In our example of Milner’s π calculus, the createCINNI tool is executed using
the command

./createCINNI PI-SYNTAX Subst Qid Chan Chan pi-syntax-file

The resulting Full Maude module

(fmod CREATE-CINNI is
ex META-LEVEL .

ex CINNI-META .

op module : -> Module .

eq module = cinni(’PI-SYNTAX, ’Subst, ’Qid, ’Chan, ’Chan) .

endfm)

is loaded in the Full Maude database. The resulting module is then printed and
written to the file CINNI-pi-syntax-file.

The create CINNI Maude tool can be found on the Maude homepage:
http://maude.cs.uiuc.edu/tools/createcinni.

13

http://maude.cs.uiuc.edu/tools/createcinni

References

[1] M. AlTurki and J. Meseguer. Dist-Orc: A Rewriting-based Distributed
Implementation of Orc with Formal Analysis. In Electronic Proceedings in
Theoretical Computer Science, pages 26–45, 2010.

[2] K. Berkling. A Symmetric Complement to the Lambda Calculus, volume 76–
77 of Bonn Interner Bericht ISF. Gesellschaft für Mathematik und Daten-
verarbeitung mbH, September 1976.

[3] K. Berkling and E. Fehr. A Consistent Extension of the Lambda Calculus as
a Base for Functional Programming Languages. Information and Control,
55(1–3):89–101, 1982.

[4] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
C. Talcott. All About Maude - A High-Performance Logical Framework: How
to Specify, Program and Verify Systems in Rewriting Logic, volume 4350 of
Lecture Notes in Computer Science. Springer-Verlag, 2007.

[5] N. G. De Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser
theorem. Indagationes Mathematicae, 75(5):381–392, 1972.

[6] R. Milner. Communication and concurrency. Prentice-Hall, 1989.

[7] M. Stehr. CINNI - A Generic Calculus of Explicit Substitutions and its
Application to λ- ς- and π-Calculi. Electronic Notes in Theoretical Computer
Science, 36:70–92, 2000.

[8] P. Thati. A theory of testing for asynchronous concurrent systems. PhD
thesis, University of Illinois at Urbana-Champaign, 2003. AAI3101979.

14

	1 Introduction
	2 CINNI
	3 Running Example: CINNIPI
	4 The Transformation
	4.1 Creation of CINNI operators
	4.2 Creation of CINNI equations
	4.2.1 Creation of the equations for the CINNI operators
	4.2.2 Creation of the syntax specific equations

	5 The createCINNI Tool

