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INRIA Rhône-Alpes / PERCEPTION / LJK, Grenoble, France

2
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Abstract

This article proposes a variational multi-view stereo vision method based on

meshes for recovering 3D scenes (shape and radiance) from images. Our

method is based on generative models and minimizes the reprojection error

(difference between the observed images and the images synthesized from the

reconstruction). Our contributions are twofold. 1) For the first time, we rigor-

ously compute the gradient of the reprojection error for non smooth surfaces

defined by discrete triangular meshes. The gradient correctly takes into ac-

count the visibility changes that occur when a surface moves; this forces the

contours generated by the reconstructed surface to perfectly match with the

apparent contours in the input images. 2) We propose an original modifica-

tion of the Lambertian model to take into account deviations from the constant

brightness assumption without explicitly modelling the reflectance properties

of the scene or other photometric phenomena involved by the camera model.

Our method is thus able to recover the shape and the diffuse radiance of non

Lambertian scenes.

1 Introduction

Multi-view stereo is the problem of recovering the shape of scenes using cameras. Given

a set of images of a scene taken from different camera positions, the goal is to reconstruct

the shape S, and optionally the appearance, of the object. Since it is the inverse problem

of image rendering, this problem can be modelled in a Bayesian framework by minimizing

the difference between the images of the reconstructed model and the observed ones, i.e.

the reprojection error. The correct variational interpretation of the Bayesian analysis yields

to the minimization of some energy functional defined on the images [6, 10, 12, 16, 20]

and requires the visibility of the surface points to be carefully accounted for. Handling

visibility is one of the major difficulties in the stereo vision problem. Previous work copes

with this difficulty more or less elegantly. Most often the authors approximate the visibility

in some pre-processing steps which can be completely prior to the whole algorithm or else

inside the iterations of the minimization process [1, 5, 8, 9, 12, 16, 21].

Only recently, some authors [6, 20] manage to rigorously and fully account for visi-

bility in the optimization process. In this recent work, Yezzi and Soatto [20] (for convex

surfaces) and Gargallo et al. [6] (in the general case) provide the exact gradient of the

reprojection error. This computation is done in the mathematical framework of continuous

(smooth) surfaces as used in [17]. This work has shown that the correct computation of the

reprojection error involves a new term in the gradient which forces the apparent contours
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generated by the reconstructed surface to perfectly match with the apparent contours in

the observed images. This makes the use of additional energy terms like ballooning [18],

visual hull [7, 14] or contours unnecessary and completely removes the minimal surface

bias present in many other problem formulations.

Our work can be then seen as an extension of the previous work [6, 20]. One of the

limitations of the gradient computed in the mathematical framework of the continuous

surfaces is that, in practice we mainly deal with discrete representations of the surface. So

whichever discrete representation one uses, it may be a discrete level set representation

or a mesh, one has to discretize the computed continuous gradient (i.e. [1, 3, 22] for

meshes). Also, this unavoidably introduces errors and gives rise to significant numerical

difficulties. Computing the correct gradient flows for triangulated meshes is the work

of [4, 15]. Nevertheless, previous authors did not use energy functionals depending on

visibility (3D image segmentation [15] and 3D shape matching [4]). In this paper, we give

the exact gradient of the reprojection error for the case of discrete surfaces represented by

triangulated meshes.

Another limitation of the algorithms implemented in [6, 20] is due to the fact that the

authors assume that the scene is perfectly Lambertian. In real life, such surfaces are rare

and, therefore, multi-view stereo algorithms have to be robust to non-Lambertian reflec-

tions. To improve the robustness, a common strategy is to modify input images in order

to remove specular highlights [23]. However, these methods are strongly limited by the

specific lighting configuration. Some authors do not consider the image pixels that poten-

tially have specular reflection components: they treat these points as outliers [1, 8]. To

compensate for the loss of information they then need a lot of images. Other authors try

to improve the robustness to non-Lambertian effects by directly incorporating a specular

reflectance model in the mathematical formulation of the problem [9, 21], nevertheless

until now, these formulations lead to very complex and consuming optimization processes

which return rather inaccurate results. Also, this kind of formulation is necessarily limited

to specific materials (having the same reflectance as the one used in the modelling). An-

other widespread idea is to use robust similarity measures [10, 12, 19]. However, these are

rather complex to implement and cannot deal with strongly erroneous information as in

the case of camera occlusions. So the second contribution of this paper is a modification

of the Lambertian model in order to take into account the deviations from the constant

brightness assumption based on a smooth image-based component. We do not explicitly

model the reflectance properties of the scene (contrary to [9, 21]) and other complex pho-

tometric phenomena involved by the cameras. Thus the method is fully generic, simple,

easy to implement and very efficient. It recovers quite robustly the shape and the diffuse

radiance of non Lambertian scenes viewed from flawed cameras.

2 Problem Formulation

Inferring the 3D shape and photometric information (such as radiance) of a scene from

images of that scene is the inverse problem of image synthesis. Also if one is able to

generate images from a candidate model, then, the comparison of these generated images

and the observed images (i.e. the data) provides a natural reprojection error measure.

In fact, this approach corresponds exactly to the Bayesian formulation of the problem

which consists in maximizing the likelihood (i.e. here the reprojection error) and the prior

probability (priors on the model) instead of maximizing the posterior probability directly.

The formulation in terms of energies corresponds to the minimization of the sum of the

data term (the reprojection error) and a prior term.



2.1 Modelling of the Reprojection Error

In order to be able to compare the whole observed images (data) with the images gener-

ated by the model, it is crucial to define and model the background. Also, as shown by

[6, 20], this allows us to be sure that the estimated foreground surface does not shrink to

an empty set (which is the global optimum for most cost functionals used in other work)

and this allows that contours generated by the recovered object perfectly match the appar-

ent contours of the input images. Whereas most of the previous work assumes that the

background is known (e.g. simply modelling it as uniformly black, or by exploiting given

silhouette images), here we also estimate the background images Bi : Ii → R
3 , under

the single assumption that these images are smooth, similarly as [20]. Here i corresponds

to the index of the camera and Ii is its image domain.

Now, let us assume that the scene surface S is Lambertian and the illumination static.

Let C : S → R
3 be the radiance function that associates colors to the points on the

surface. Ideally, the color Ii(u) observed at pixel u of image Ii should be equal to the

color C(π−1
i,S(u)) of its backprojection π−1

i,S(u) onto the surface or, in the case where

u /∈ πi(S), to the color Bi(u) of the same pixel on the background images (πi denoting

the projection associated with camera i). Thus, the reprojection error of the surface is

Edata =
1

2

∑

i

[

∫

πi(S)

(

Ii(u) − C(π−1
i,S(u))

)2
du +

∫

Ii−πi(S)

(

Ii(u) − Bi(u)
)2

du

]

.

(1)

Finally, in order to well pose the problem, we use as a prior on S an additional smooth-

ing area energy ERS =
∫

S
dσ. We also assume that the background images are smooth

by adding the term ERB =
∑

i

∫

Ii
|∇Bi(u)|2du.

2.2 Breaking Down the Constant Brightness Assumption

Few, if any, real world scenes are truly Lambertian. In this section, we present a modifica-

tion of the Lambertian model (1) to take into account deviations from the constant bright-

ness assumption without explicitly modelling the reflectance properties of the scene. We

consider predicted images that would be produced by a perfect Lambertian object, plus an

additional corrective component. This additional term contains the non-Lambertian com-

ponent of the radiance. Also, we estimate both the Lambertian color C and the corrective

component Fi : Ii → R
3 . In order to constrain the problem, we assume the correc-

tive component to be smooth by adding the energy term ERF =
∑

i

∫

Ii
|∇Fi(u)|2du.

The surface radiance is estimated using the corrected image Ri : Ii → R
3 such that

Ri = Ii − Fi. In other words, in equation (1) we replace Ii by Ri.

Additionally to correct non-Lambertian reflectance effects, images Fi can also ab-

sorb other complex photometric phenomena neglected in the camera model, which makes

our method able to recover quite robustly the shape and the diffuse radiance C of non-

Lambertian scenes viewed from flawed cameras. Contrary to other methods which try to

be robust to specular effects by modelling the reflectance using parametric models [21],

the algorithm we propose here is quite generic and can deal with many materials without

any modification. Also, it does not need complex similarity measures such as normalized

cross-correlation or mutual information as [12], is simpler (at least from the implementa-

tion point of view), and naturally allows us to deal with significant degradations of some

parts of images, as for example can be the case with occlusions of some cameras.



3 Minimization of the Total Energy

For optimizing our total energy Etotal = Edata+λSERS+λBERB+λF ERF we perform

gradient descents alternatively with respect to Fi, Bi and S. The computation of the

gradients with respect to Fi and Bi is classical since they are image-based [20]. For a

fixed shape S and a fixed C, we have

∇Etotal(F ) = −
∑

i

[

(Ii − C ◦ π−1
i,S − Fi)h + λF ∆Fi

]

∇Etotal(B) = −
∑

i

[(Ii − Bi)(1 − h) + λB∆Bi] ,
(2)

where h is the characteristic function that indicates if u is covered by the projection of

the surface S (h(u) = 1) or not (h(u) = 0, u being explained by the background); λ is

the smoothness parameter; C(x) is computed taking the mean color of the projection in

the corrected image Ri where x is visible. In contrast, the computation of the gradient of

Etotal with respect to S (more exactly of Edata since ERB and ERF do not depend on S;

ERS is classical [2, 20]) is difficult and requires some work. Actually, the computation of

the exact gradient of this kind of functional is the goal of [6, 20], where the computation

is done in the purely theoretical framework of the continuous (smooth) surfaces as the one

described by [17] using Gâteaux derivatives.

Here, contrary to [6, 20], we are going to directly compute the exact gradient of a

surface represented by a mesh (of course the surface being non smooth, the results of

[6, 20] do not apply). Similarly as [6], we first rewrite the energy as an integral over

the visible volume. Then in section 4 we will compute the exact gradient of Edata with

respect to the discrete surface mesh. For simplicity of notation, we are going to compute

the gradient for a single camera and so we remove the dependency on i. For several

cameras, the gradient will be the sum of the gradients associated with each camera.

Rewriting the Energy as an Integral over the Visible Volume

The first step to be able to optimize our energy functional with respect to the shape S
is to rewrite the energy as an integral over the surface instead of the image. This change

of variables involves adapting the measure on the surface [16] and in counting only the

visible points [6, 12, 20]. This can be achieved by du = −x·n(x)
x3

z
νS(x)dσ where dσ is

the classical surface area measure, νS is the visibility function (giving 1 for an x that is

visible from the camera and 0 otherwise), n(x) is the unit normal vector to the surface S
at x, and xz is the depth of x. Thus, by using the separation technique proposed by [20],

the energy functional becomes (for a single image):

Edata(S) = −
∫

S
gR(x)

x · n(x)

x3
z

νS(x)dσ +
∫

I−π(S)
gB(u)du ,

= −
∫

S
[gR(x) − gB(π(x))]

x · n(x)

x3
z

νS(x)dσ +
∫

I
gB(u)du ,

(3)

where gR(x) is 1/2 [R(π(x))−C(x)]2 and gB(u) is 1/2 [R(u)−B(u))]2. The right-hand

term of equation (3) does not depend on S, so in the following we intentionally omitted

it as it does not contribute to the gradient expression (with respect to S). Hence, denoting



g(x) = gR(x) − gB(π(x)) for convenience, the energy to minimize with respect to S is

E(S) = −

∫

S

g(x)
x · n(x)

x3
z

νS(x)dσ. (4)

Finally, by using Gauss’ divergence theorem which states that for all domains Ω ∈ R
3

and for all vector fields w : R
3 → R

3,
∫

Ω
∇ · wdx =

∫

∂Ω
w · ndσ, the error functional

(4) can be rewritten as :

E(S) = −

∫

R3

(

∇g(x) ·
x

x3
z

)

νS(x) dx = −

∫

R3

f(x) νS(x) dx . (5)

For convenience, we have denoted f(x) = ∇g(x) · x

x3
z

. Let us note that above results hold

for any piecewise continuous (smooth) surface.

4 Gradient of the Reprojection Error for Meshes

In this section we compute the discrete gradient of E(S) (and then of Edata) with respects

to the surface shape, in the case where the surface S is represented as a triangulated mesh

X. Vertices of X are denoted by xk and S is deformed by moving vertices xk according

to some vectors Vk. The method for computing the gradient of E(S) with respect to xk

consists in computing the directional derivative of E(S[t]) for any deformation xk[t] =
x0

k + tVk and then in rewriting it as a scalar product of Vk, i.e. as 〈Vk, G〉. The obtained

vector G is called the gradient and the energy necessarily decreases when deforming the

surface according to its opposite direction −G. Indeed, for xk[t] = x0
k − tG, we have

[E ◦ S]′(0) = −〈G, G〉 ≤ 0, see [4].

To compute the gradient, we have to understand the variations of our energy when S is

deforming. Since our energy E(S) is an integral over the visible volume, its variations are

only due to the variations of the visible volume. Also, as illustrated by Figure 1 (reduced

to the 2D case for simplicity), when the vertex xk is moving according to Vk we have to

separate two cases: 1) when all the triangles adjacent to xk are visible, the variation of

the visible volume is just the sum of the tetrahedra formed by the adjacent triangles and

the moved point xk + Vk (see Fig. 1, left). The corresponding gradient computation is

detailed in Sec. 4.1. 2) when xk is generating occluding contours in images, i.e. when it is

a horizon point, its movement affects the visibility of other points located behind it (called

terminator points). So the variation of the visible volume is the sum of the first case term,

plus the volume swept out by the crepuscular rays generated by the horizon movement

(see Fig. 1, right). The corresponding gradient computation is detailed in Sec. 4.2.

4.1 Term Due to the Tetrahedra of the Visible Adjacent Triangles

In the sequel, we denote Sj the jth triangle of the mesh. Following the variation of the

energy caused by the visible adjacent triangles of xk, we have

E(S[t]) − E(S[0]) =
∑

j

̟j,Vk

∫

V ol[j,V,t]

f(x) dx + B(t), (6)

where V ol[j,V, t] is the volume of the tetrahedron formed by the vertices of the visible

triangle Sj and the point xk + Vk. The sign ̟j,Vk
specifies if matter has been added to



Visible Volume

Occluded Volume
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Crepuscular ray
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Figure 1: Geometric representation of the change of visibility when moving the mesh. Contrary

to the interior (left), movements of the horizon (right) strongly affect the movement of the visible

interface between visible and occluded volumes by creating a movement of the crepuscular rays.

or removed from the object volume and it is equal to Nj ·
Vk

|Vk|
, where Nj is the outward

surface normal of triangle Sj . B(t) on the right of equation (6) is null except if the vertex

xk is a horizon point; this additional part will be detailed in the next paragraph.

Now, we parameterize the volume V ol[j,V, t] by x(u, v, w) = x(u, v) + w tVk,

where x(u, v) = xk + u −−−→
xkxk1 + v −−−→

xkxk2 parametrizes the triangle Sj ; xk1 and xk2

being the other two vertices of Sj ; (u, v) ∈ T = {(u, v) | u ∈ [0, 1] and v ∈ [0, 1 − u]}
and w ∈ [0, 1 − u − v]. By a change of variables, (6) becomes

∑

j

̟j,Vk

∫

T

∫ 1−u−v

0

f(x(u, v) + wtVk)|det(−−−→xkxk1,
−−−→
xkxk2, tVk)| dwdudv + B(t).

(7)

Let Ai be the area of the triangle Sj . Since ̟j,Vk
|det(−−−→xkxk1,

−−−→
xkxk2, tVk)| = −2t AjVk ·

Nj , equation (7) becomes

−2t Vk ·





∑

j

AjNj

∫

T

∫ 1−u−v

0

f(x(u, v) + wtVk) dwdudv



 + B(t). (8)

It follows that the limit of
E(S[t])−E(S[0])

t
when t tends to zero is

Vk ·



−2
∑

j

AjNj

∫

T

∇g(x(u, v))
x(u, v)

x(u, v)3z
(1 − u − v) dudv



 + lim
t→0

B(t), (9)

the part in square brackets being the considered first part of the gradient.

4.2 Term Due to the Movement of the Horizon

Let Hk,j be the vector such that [xk,xk + Hk,j ] is the edge of the triangle Sj generating

the horizon. The volume corresponding to the movement of the horizon can be parame-

terized by the points y(u, v) of the triangle {xk,xk + Hk,j ,xk + v tVk} generated by

the movement of the horizon. More rigorously, it can be parameterized as the set of points



x(u, v, r) = r y(u, v) where y(u, v) = xk + u Hk,j + v tVk; r corresponds to the depth

of x in the view point direction; r ∈ [1, T(u,v)].
Let us note that y(u, v) depends on t; we emphasize this dependency by denoting yt(u, v).
By a change of variable, we get E(S[t]) − E(S[0]) =

A(t) + 1/2

∫

(u,v)∈T

∫

r∈[1,T(u,v)]

f(r yt(u, v)) (Hk,j ∧ tVk) ·
yt(u, v)

|yt(u, v)|
r2dudvdr ,

where A(t) corresponds to the part described in the previous paragraph. It follows that the

limit of
E(S[t])−E(S[0])

t
when t tends to zero is

lim
t→0

A(t) + 1/2

∫

(u,v)∈T

∫

[1,Tu]

f(r y(u)) (Hk,j ∧ Vk) ·
y(u)

|y(u)|
r2dudvdr , (10)

where y(u) = xk + u Hk,j and Tu = T(u,0). Denoting L(u) =
∫

1,Tu
f(r y(u))r2dr, the

right-hand part of equation (10) can be rewritten as

Vk ·
1

2

∫

u∈[0,1]

L(u)

(

y(u)

|y(u)|
∧ Hk,j

)

(1 − u)du . (11)

Finally, remembering that f(x) = −∇g(x) x

x3
z

, we can explicit

L(u) =
[

g(T (y(u))) − g(y(u))
] 1

[y(u)]3z
, (12)

where T (x) is the terminator of x. Then the complete gradient flow optimizing Edata

(with respect to xk) is the term in brackets of lim
t→0

A(t) in (9) obtained previously, plus the

following term if xk belongs to the horizon :

∑

horizon edges Hk,j

1

2

∫

u∈[0,1]

(

g(T (y(u)))−g(y(u))
) y(u) ∧ Hk,j

|y(u)| [y(u)]3z
(1−u)du . (13)

5 Experiments

We have implemented our algorithm using the Delaunay topology-adaptive meshes pro-

posed by [11]. The visibility is computed using OpenGL Z-buffer. The evolution is done

using a multi-resolution scheme and starting from the visual hull. Horizons are located

using the changes of signs of the dot products of facet normals and viewpoint directions.

Tests on the Discrete Gradient

As in [6], we first reconstruct three uniformly colored balls arranged on a plane (20

640×480 images), see Fig. 2. This way we ensure the importance of the horizon term as

the color gradient is null over the surface except at interfaces between objects in images.

With the only use of the interior term (section 4.1), the surface shrinks. By using only

the horizon term (given in section 4.2), we correctly reconstruct and separate the balls,

and apparent contours correctly reproject in images. Then we tested our algorithm on

synthetic Lambertian data for the Stanford dragon mesh (Fig. 3) composed of 32 640×480



Figure 2: The balls sequence. From left to right : 4 of 20 input images; results with the horizon

term computed in section 4.2 from different viewpoints.

Figure 3: Synthesized dragon sequence. From left to right : 1 of 32 diffuse input images; ground

truth model; recovered shape by our algorithm;

Figure 4: Synthesized dragon sequence. From left to right : 2 of 32 original images; components

added for simulating the photometric camera effects; input images; estimated corrective component

(scaled by 2 for visualization); estimated background images; estimated shape and radiance.

images. The result shows the correct reconstruction of the dragon, even though the texture

is smooth and some parts in shadow are dark (See Tab. 1).

Non-Lambertian surfaces with photometric camera problems

In order to test the corrective model of Sec. 2.2, we modify some of the input images

used in the previous tests to simulate photometric camera problems. 8 of the 32 input

images have been changed by adding a various smooth colored gradient. We not only

recover the shape, but we also correctly estimate the radiance of the object, cf. Fig. 4 and

Tab. 1. The corrective images are recovered on the foreground region. As expected from

Sec. 3, the recovered background images corresponds to the one of the input images on the

complementary regions. In a second experiment, we add a specular reflectance model to

the dragon images and modify 3 of the 32 images such that half of these images is black.

This could simulate occluding objects in front of the camera. Results obtained with the

perfect Lambertian model of Sec. 2.1 are much less accurate than the ones obtained with

the corrective model of Sec. 2.2. Also, the corrective model allows to correctly separate

and recover the diffuse and specular components of the images (see Fig. 5 and Tab. 1).

Finally, we tested our method on the classical Dino (16 640×480 images) and Temple

(16 640×480 images) datasets (Fig. 6). We refer to the Middlebury benchmark website

[13] for evaluation. Even if these datasets were intentionally chosen for being Lambertian,

they exhibit a certain amount of specular reflection that can be interpreted in the resulting

corrective component. This component also shows a greenish upper part and a magenta



Figure 5: Dragon sequence synthesized with specular reflectance model and occlusions. From

left to right : 2 of 32 input images; recovered corrective images; ground truth corrective images;

recovered shape without the corrective model; recovered shape with the corrective model.

Diffuse images Diffuse images Specular images Specular images

(Fig. 3) Corrective model Lambertian model Corrective model

(Fig. 4) (Fig. 5) (Fig. 5)

Acc. 95% 0.241mm 0.199mm 0.410mm 0.300mm

Comp. 0.5mm 98.3% 98.7% 97.2% 97.6%

Table 1: Numerical evaluation of the proposed method for the dragon sequence that shows accuracy

at 95% and completeness at 0.5mm following [13]. (compared to ground truth)

Figure 6: Dino and Temple sequence. From left to right: 1 of 16 input images; estimated non-

Lambertian component (scaled by 8 for visualization); estimated background images (scaled by 2

for visualization); estimated radiance; estimated mesh seen from a different viewpoint.

lower part which might be due to some photometric camera bias as it appears in all images.

6 Conclusion

In this paper we have presented a novel deformable surface approach for the multiview

stereo problem based on a discrete representation. Contrary to previous works, during

the evolution, we correctly deal with visibility changes by expressing the exact gradient

of the reprojection error functional. In particular, exactly as in the continuous case [6],

this forces the contour generators of the surface to appear at their correct location in the

images and removes the minimal surface bias from which most previous methods suffer. In



addition, our method is robust to smooth non-Lambertian effects (such as smooth specular

reflections) and photometric camera defects (such as photometric calibration errors and

partial occlusions) by introducing an original and simple image-based corrective model

which has proved to be effective on the tests we have made on synthetic and real images.
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