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Abstract 

Strength parameters of rocks are currently determined from indentation tests. In 

this paper, a finite element analysis of this test is presented and scale effect is 

studied. The rock is modelled as an elasto-plastic medium with Cosserat 

microstructure and consequently possesses an internal length. The response of the 

indentation curve is studied for various values of the size of the indentor as 

compared to the internal length of the rock in order to assess the scale effect. 
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Introduction 

Hardness tests on rocks are currently used in rock mechanics and in rock 

engineering practice in order to provide a convenient and rapid characterisation of 

a rock. (see for example the comprehensive review of Atkinson [1]). Various 

quantitative measures of hardness depending on the particular test being employed 

are used empirically to characterise the rock drilling efficiency. For static 

indentation tests, an indentor is forced into a rock surface as for example the so-

called 'stamp-test' [2] where a rigid circular indentor is used. Hardness is 

empirically related to the modulus of elasticity, the material yield stress, the 

fracture toughness, the material ductility or brittleness, the resistance to 

scratching, the surface energy. Moreover, apart from providing empirical 

applications in quality control, a more fundamental understanding of the 

indentation test in terms of actual deformation mechanisms has been developed in 

order to measure intrinsic fracture parameters of brittle solids [3-5]. This requires 

a detailed analysis of the actual indentation stress field which depends upon the 

nature of the contact zone and the size of this contact zone as compared to the 

characteristic size of the microstructure of the indented rock (e.g. grain size). The 

correlation between indentation hardness and grain size has been studied by Brace 

[6]. It was shown that the indentation hardness is proportional to d
-m
 where d is 

the maximum grain diameter and m is a constant of the order of 0.5 for hard rocks 

and 0.3 for carbonates (see also Jaeger [7]). 

Failure criteria for rocks usually involve only stresses and are thus suited 

primarily for homogeneous states of stresses. Since in rock mechanics highly 
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inhomogeneous stresses may occur, it is possible that stress-gradients have some 

effects of failure mechanism. As mentioned by Mindlin [8], the apparent strength 

of rock-type materials is affected by strain gradient. It is observed that brittle 

failure and the onset of static yielding in the presence of stress concentration 

occur at higher loads than might be expected on the basis of stress concentration 

factors calculated from the theory of elasticity. In general, increasing strain 

gradients appear to make some materials stronger and to a degree that depends 

upon grain size. If the size of the indentor is comparable to the internal length of 

rock the scale effects cannot be neglected and the load-indentation curve must be 

re-interpreted in order to extract intrinsic parameters of the tested material. 

Then it appears necessary to resort to continuum models with microstructure to 

describe correctly the deformation process at small scale. These generalized 

continua usually contain additional kinematical degrees of freedom (Cosserat 

continuum) and/or higher deformation gradients (higher grade continuum). 

Rotation gradients and higher velocity gradients introduce a material length scale 

into the problem, which allow to assess the effect of scale (e.g. Vardoulakis and 

Sulem [9]). 

In this paper, the response of a Cosserat elasto-plastic half-space under 

indentation is studied using a large-strain finite element analysis with Cosserat 

structure [10]. The aim of this study is to show quantitatively that scale effect can 

be significant when the size of the indenting tool is comparable to the grain size of 

the rock. For granular rock, it has been shown in previous works (e.g. Vardoulakis 
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and Sulem [9]) that the Cosserat theory is well suited to account for the influence 

of the microstructural response of the rock on the macroscopic behaviour. 

The mechanisms of deformation and failure of the rock under the indentor are 

complex. In particular grain crushing may be important when the size of the 

indentor is rather big as compared to the grain size of the rock. However we are 

interested here in micro-indentation tests and in that case it is observed in 

micrographs of indented rock surface, that the dominant micro-mechanisms that 

control the deformation process is grain rotation and grain sliding without 

significant grain breakage (Fig.1). Therefor we shall consider in the numerical 

examples presented in this paper, a simple Mohr-Coulomb elastic perfectly plastic 

constitutive model with a Cosserat microstructure. Considering a perfectly plastic 

model, no mesh dependence in relation strain localisation and ill-posed 

mathematical problems encountered with softening behaviour is expected.  

A 2D-Cosserat elasto-plastic model 

Kinematics and statics 

In a two-dimensional Cosserat continuum each material point has two 

translational degree of freedom (u1 ,u2) and one rotational degree of freedom ωc
. 

The index c is used to distinguish the Cosserat rotation from the rotation 

 

     ( ) ( )
( )

ω
∂

∂
= − = =
1

2
1 22 1 1 2u u

x
i

i

i

, , ,
; .

.
,  (1) 

 



J. Sulem & M. Cerrolaza (2002): Finite element analysis of the indentation test on rocks with microstructure 5 

For the formulation of the constitutive relationships we need deformation 

measures which are invariant with respect to rigid body motions which are the 

conventional strain tensor  

 

     ( )ε ij i j j iu u= +
1

2
, ,  (2) 

 

the relative rotation 

 

     ω ω ωrel c= −  (3) 

 

and the gradient of the Cosserat rotation which is called the curvature of the 

deformation 

 

     κ ∂ω ∂i

c

ix= /  (4) 

 

It is usual to combine equations (2) and (3) to a single, tensorial deformation 

measure  
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The six deformation quantities (equations 4 and 5) are conjugate in energy to six 

stress quantities. First we have the four components of the non symmetric stress 

tensor σij which is conjugate to the non symmetric deformation tensor γij and 

second we have two couple stresses (moment per unit area) m1 and m2, which are 

conjugate to the two curvatures κ1 and κ2.  

Elastic strains 

The stress-strain relationships for a 2D isotropic Cosserat continuum are 
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In equation (6) G and ν are the classical elastic shear modulus and Poisson's ratio 

respectively. The additional Cosserat shear modulus G
c
 links the antisymmetric 

part of the deformation tensor to the antisymmetric part of the stress tensor and 

couple-stresses and curvatures are linked through a bending modulus M, which 
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has the dimension of a force. Thus in 2D Cosserat elasticity the problem is 

governed by four material constants. An internal material length for bending 

appears as 

 

 � = M G/  (7) 

 

Plastic strains 

For more convenient representation we introduce first the pseudo vectors 
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the usual decomposition between elastic and plastic strains is used 

 

 � � �e e e= +e p  (9) 

 

 

A 2D flow theory of plasticity for granular media with Cosserat microstructure 

can be derived by keeping the same definitions for the yield surface and the 

plastic potential as in the classical theory and by generalising appropriately the 
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stress and strain invariants involved in these definitions (Vardoulakis and Sulem 

[9], Lippmann [11]). The following generalised stress invariants are utilised 
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with 

 

 sij ij ij= −σ σδ  (11) 

 

We distinguish among a static and a kinematical plasticity model [9]. It can be 

shown that a kinematical model which is based on the micromechanical definition 

of interparticle slip results in the following set of weighting factors, 
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A static model which is more appropriate for granular rocks is based on the 

micromechanical definition of interparticle shear and is given by 
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The elastic Cosserat parameters can be defined from micromechanical 

considerations [12-13]: 

 
( )
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where Rg is the grain diameter. 

Consequently:  

 for the statical model Gc = G/2  ;  � = Rg 

for the kinematical model Gc = 2G  ;  � = Rg/√2 

By analogy to the classical flow theory of plasticity, a Mohr-Coulomb yield 

surface and plastic potential are defined as  

 

      
F q

Q

= − − =

= +

τ φ σ

τ σ ψ

sin ( )

sin

0
 (15) 

 

where σ and τ are the generalised invariants of the plane Cosserat continuum 

defined above, φ and ψ are the mobilised friction and dilatancy angles 

respectively and q is the tension cut-off. The mobilised cohesion of the rock is c = 

qcotφ. 

In flow theory of plasticity, the flow rule states that the plastic strain increments 

are proportional to a given vector which is normal to the plastic potential surface 
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Similarly the normal to the yield surface in generalised stress space is obtained by 

replacing in equation (15) the dilatancy angle by the friction angle. 

Incremental elasto-plastic constitutive equations 

Elasticity relations (6) are written under the general form 

 

 � �s C e= e e  (18) 
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where C
e
 is the elastic stiffness tensor. 

In equation (15) the plastic multipliers where �λ  are eliminated by using as in 

classical plasticity the consistency conditions 
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If we assume no hardening we obtain the following explicit form of the 

incremental constitutive equations 
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Finite element formulation 

For general boundary value problems numerical methods are used. The finite 

element method is a well established tool for these purposes. Finite element 

analyses for a Cosserat continuum has been presented by several authors [14-17]. 

In the following we present the most important features of the extension of the 

method to a Cosserat continuum. 

We define general displacement and traction pseudo vectors as 
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by means of which the virtual work principal can be written as 
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Above equation (21) looks formally the same as for the classical continuum. 

Using the constitutive relationships (19) the incremental form of (21) is 
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Essentially the finite element method consists of specifying an assumed 

distribution of the displacements and rotations within the domain B
e
 of a finite 

element. This can be written as 

 

 v v v v= = =φ δ φ δM M M M eM M; , ....1 2  (24) 
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where φM are the so-called shape functions, M is the number of nodal points and 

M
e
 the total number of nodal points of each element. When dealing with Cosserat 

medium the question of the order of interpolation of the shape functions arises. 

Since the same order of derivatives of translational displacements and the 

rotations is involved in the governing equations, the shape functions of the 

displacement should be one order higher that those of the Cosserat rotation. This 

is however not considered at the moment in our finite element code where the 

linear interpolation for displacements and rotations is used for 4-noded element.  

The relation between the deformation vector e and the nodal variables is written 

as : 
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Inserting equation (24), equation (22) becomes 

 

 ( ) ( ) ( )δ δv K v v F F
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where 
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is the element tangent stiffness matrix, 
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is the generalised external load vector and 

 

 [ ] ( )F B stint

M M T

B

dV
e

= ∫  (29) 

 

is the generalised initial stress vector. 

The above formulation can be extended to large strain deformation as proposed by 

Adhikary et al [18]. This is done on one side by updating of the finite element 

mesh at each step of loading and on the other side by considering in the 

expression of the tangent stiffness matrix an additional term which results from 

the consideration of geometric non-linearities [19]. Equation (26) is thus modified 

as follows: 
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Notice that equation (30) is identical to equation (45) in Adhikary et al [18] except 

a small difference in sign for the term (−σ11−σ22)φΜφΝ. 

Numerical analysis of the indentation test 

Position of the problem and material parameters 

An axisymmetric finite element simulation of an indentation experiment on a 

elastic-perfectly plastic granular rock has been performed in order to study scale 

effect. As experimental data on such scale effect are not available at the moment 

for rocks, the aim of this study is to evaluate the influence of the various 

parameters and to compare the results of the simulation for a Cosserat continuum 

and for a classical Cauchy medium. 

The numerical analysis is using the above bidimensional large-strain Cosserat 

theory adapted to axisymmetric problems. The effect of punching of a flat, 

circular and rigid indentor of size 2a is simulated by applying constant 
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displacement at the corresponding nodes of the finite element mesh. This 

boundary condition is considered in our finite element code by putting elastic 

springs with infinite stiffness defined in the vertical (x2) direction and given 

displacements at the considered nodes. To simulate the behaviour of the interface 

between the rock and the punching tool in the horizontal (x1) direction, two cases 

were considered herein:  

a) the case of allowed horizontal (x1) displacements (perfect sliding) of the nodes 

at the interface between rock and the punching tool is shown in Fig. 2.a. and 

b) the case of zero horizontal (x1) displacements (perfect adherence) of the nodes 

at the interface between rock and the punching tool is shown in Fig. 2.b, 

where a second set of springs with infinite stiffness and zero imposed 

displacements in the horizontal (x1) direction is added to the model. 

The easiest way to simulate the perfect adherence condition between the rock and 

the punching tool is to use infinite-stiffness springs, since they allow to impose 

null displacements to the model by avoiding numerical contamination. The two 

extreme cases of free horizontal displacement (perfectly sliding contact) and 

totally restrained horizontal displacement (perfectly adherent contact) at the rock-

tool interface is then studied without the need of introducing an interface frictional 

model. On the other hand the higher order boundary condition (in terms of 

imposed Cosserat rotation or imposed couple stress) introduces a 'boundary 

length' and therefor it is possible in the frame of the present theory to take into 

account the roughness of the tool. At the present time without experimental data 
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on the effect of this parameter it is assumed in the numerical simulation that no 

couple stress is imposed on the boundaries of the model. 

From the computed normal stress on the loaded surface it is then possible to 

calculate the corresponding punching force. The following set of material 

constants has been used for a sandstone: 

Young modulus E = 18 000 MPa, Poisson's ratio ν = 0.11, friction angle φ = 38°, 

uniaxial compression strength UCS = 46 MPa. For the additional Cosserat 

parameters namely the Cosserat shear modulus Gc and the internal length we shall 

distinguish between the kinematical and the statical Cosserat model as presented 

in the previous section.  

Spatial discretisation and boundary conditions  

For symmetry reasons, only half of the domain is discretised as shown on Fig. 3. 

Zero horizontal (x1) displacements and Cosserat rotations are maintained at the 

axis of symmetry (AC) as well as on the boundary (BD). Zero vertical (x2) 

displacement and Cosserat rotation are maintained on boundary (DC). It is also 

assumed that on (AB) no couple-force is applied which simulates the effect of a 

perfectly smooth tool at the interface and of a free surface elsewhere. 

Two different mesh sizes are tested. For the first one M1 (Figure 4a) which is 

rather coarse the size of the square elements under the indentor is a/4. For the 

second one M2 which is finer the corresponding element size is a/7 (Figure 4b).  

Elastic response 

Assuming no friction at the interface between the indentor and the rock, 

indentation of a linear elastic half space is simulated for various values of the 
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scale parameter �/2a assuming a statical elastic Cosserat model as shown on Fig. 

5. The response is linear and the slope of the indentation curve is increasing with 

the scale as �/2a increases which means that the apparent rigidity of the rock will 

be bigger for small indentors than for large ones as compared to the internal 

length (grain size) of the material. If the size of the indentor is comparable to the 

internal length (grain size) of the material the apparent rigidity of the rock is 

bigger than in the case of a large indentor as compared to the material length. This 

is summarised on Table 1 for the two different mesh sizes. 

Usual indentors for rocks have a size comprised between 0.5 to 2 mm. If the size 

of the indentor is comparable to the grain size of the material the apparent rigidity 

is overestimated of about 18%. 

These results can be compared to the analytic solution of the response of a 

classical (Cauchy) elastic half-space with uniform normal displacement applied 

on a circular region [20] where the slope of the indentation curve is 

2

1
18220

2

a
E

−
=

ν
N / mm . Table 1 shows also that the results obtained with the 

two different mesh sizes are very close. 

The effect of the conditions at the interface between the indentor and the rock are 

studied by considering the two extreme cases of perfect sliding and perfect 

adherence. Scale effect is shown on Fig. 6 where the slope of the indentation 

response for a Cosserat elastic continuum and a classical Cauchy elastic 

continuum is plotted as a function of the scale factor � / 2a . This figure shows 
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that the scale effect is still more pronounced in case of frictionless interface (18%) 

that in case of perfectly adherent one (12%). 

Scale effect for an elasto-plastic Cosserat medium 

The aim of the computations presented in this section is to show that the Cosserat 

model is able to capture a scale effect in terms of maximum indentation force as a 

function of the scale parameter � / 2a . We therefor consider here a simple elastic 

perfectly plastic Cosserat model which is an acceptable assumption for granular 

rock. 

a) Perfectly sliding rock-tool interface 

A simulated indentation curve for � / .2 05a =  and a statical model is shown on 

Fig. 7 assuming perfect sliding of the rock-tool interface. The responses obtained 

for the coarse mesh M1 and for the more refined one M2 are shown on this figure. 

Obviously the two simulations lead to close results which gives confidence in the 

fact that our results are not mesh-dependent. The corresponding deformed mesh 

with plastic zones indicated in dark colour for an imposed displacement of 0.1 

mm on the loaded zone is shown for both models on Fig. 8. 

On Fig. 9, the simulated indentation curves for various values of the scale 

parameter are shown for a statical Cosserat model (Fig. 9a) and for a kinematical 

one (Fig. 9b). These figures show that the maximum load is increasing with 

increasing values of the scale parameter. The softening part of the curve is purely 

structural and is due to stress redistribution when the maximum strength is 
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reached. It is observed that this structural softening is less important for higher 

values of the scale parameter due to arching effect of the Cosserat microstructure.  

The scale effect is shown on Fig. 10 with comparison between the results obtained 

assuming a statical Cosserat model and a kinematical Cosserat. The maximum 

force for an indentation depth 0.2mm (a=0.5mm) is plotted versus the ratio 

� / 2a . This curve shows that for a classical (Cauchy) continuum ( � = 0 ) the 

apparent strength is smaller as the one obtained for a Cosserat continuum for 

which the internal length is comparable to the indentor size ( � / .2 05a = ). This 

scale effect can reach 15% for the statical model and 50% for the kinematical 

model. For the same loading force (F = 240N) the deformed meshes obtained with 

a statical model for two different internal lengths are compared on Fig.11. For 

� / .2 0 01a =  (Fig. 10a) the displacement under the indentor is 0.03mm whereas 

for � / .2 05a =  (Fig. 10b) the displacement under the indentor is 0.016 mm i.e. 

about twice smaller. 

b) Effect of frictional rock-tool interface 

The effect of the interface conditions on the scale effect is studied by comparing 

the above results to the one obtained in the extreme case of perfect adherence 

between the tool and the rock. The simulated indentation curves for a statical 

Cosserat model and a kinematical model assuming zero displacement in x1 

direction at the interface nodes are shown on Fig. 12a and Fig. 12b respectively, 

for various values of the scale factor. These graphs which are to be compared with 

the one of Fig.9a,b (for which perfectly sliding interface is assumed) show that the 

necessary force to indent the rock of a given displacement is higher in case of 
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adherent interface than for sliding interface. It shows also that the loading force is 

monotonous without structural softening as obtained in the other case. The scale 

effect for the two extreme interface conditions is shown on Fig.13a,b. This graph 

shows that the scale effect is of the same order (15% for the statical model and 

50% for the kinematical model) for both interface conditions. This shows that 

interface friction is not influencing significantly scale effect. 

Conclusions 

Hardness tests are currently used in rock mechanics to characterise rock 

mechanical properties and rock drilling efficiency. However it is observed that 

brittle failure is influenced by large strain gradients and that the onset of static 

yielding in the presence of stress concentration occurs at higher loads than might 

be expected from classical continuum theories. Although based on simple 

constitutive assumptions and geometrical configuration the above analysis gives 

an example of microstructural effects in the presence of stress concentration. 

Using finite element numerical simulations, it is shown that for a material with 

Cosserat microstructure, the apparent strength and rigidity increase as the size of 

the indentor decreases. This scale effect for the strength can reach 15% for a 

statical model and 50% for a kinematical Cosserat model when the size of the 

indentor tool is comparable to the grain size of the rock. It is shown that this scale 

effect is not significantly affected by the interface condition at the rock tool 

interface. Such a scale effect has been observed experimentally for [21, 22]. In the 

lack of relevant quantitative experimental data for the scale effect in the case of 

rocks this analysis suggests that this effect may be of importance and has to be 
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investigated further. In addition, indentation tests appear as an experimental tool 

for the testing and validation of continuum theories with microstructure and 

calibration of internal lengths parameters. 

References 

[1] Atkinson R.H. Hardness tests for rock characterisation. In: Hudson J, Editor. 

Comprehensive Rock Engineering, Pergamon Press 1993; vol. 1, chap. 5 p. 105-

117 

[2] Wijk G. The stamp test for rock drillability classification. Int. J. Rock Mech. 

and Min. Sci., 1989; 26(1): 37-44. 

[3] Lawn B. and Wilshaw R. Indentation fracture: principles and applications. J. 

Mat. Sci., Chapman and Hall, 1975; 10: 1049-1081. 

[4] Detournay E. and Defourny P. A phenomenological model for the drilling 

action of drag bits. Int. J. Rock Mech. And Min. Sci., 1992; 29(1): 13-23. 

[5] Huang H., Damjanac B. and Detournay E. Numerical modelling of normal 

wedge indentation in rocks with lateral confinement. Int. J. Rock Mech. and Min. 

Sci. 1997; 34 (3-4), paper No. 064. 

[6] Brace WF. Dependence of fracture strength of rocks on grain size. Penn. State 

Mineral Ind. Expl. Sta. Bulletin, 1961; 76: 99-103. 

[7] Jaeger JC. Brittle failure of rocks, in: Failure and Breakage of Rocks. Proc. 8
th
 

U.S. Symposium on rock mechanics, 1967;3-57. 

[8] Mindlin RD. The influence of couple stresses on stress concentrations. 

Experimental Mech. 1963; 3, 1-7. 



J. Sulem & M. Cerrolaza (2002): Finite element analysis of the indentation test on rocks with microstructure 23 

[9] Vardoulakis I. and Sulem J. Bifurcation analysis in geomechanics. Blackie 

Academic & Professional, 1995. 

[10] Cerrolaza M., Sulem J. and El Bied A. A Cosserat non-linear finite element 

analysis software for blocky structures. Int. J. Adv. Eng. Software, 1999; 30: 69-

83. 

[11] Lippmann H. Cosserat plasticity and plastic spin. ASME Appl. Mech. Rev. 

1995; 48(11): 753-762. 

[12] Mühlhaus HB. and Vardoulakis I. The thickness of shear bands in granular 

materials. Géotechnique 1987; 37: 271-283. 

[13] Sulem J. and Vardoulakis I. Bifurcation analysis of the triaxial test on rock 

specimens. A theoretical model for shape and size effect. Acta Mechanica 1990; 

83: 195-212. 

[14] Borst R. de and Sluys LJ. Localisation in a Cosserat continuum under static 

and dynamic loading conditions. Comp. Meth. Appl. Mech. Eng. 1991; 90: 805-

827. 

[15] Papanastasiou P. and Vardoulakis I. Numerical treatment of progressive 

localisation in relation to borehole stability. Int. J. Num. Anal. Meth. Geomech. 

1992; 16: 389-424. 

[16] Dai C., Mühlhaus HB., Duncan Fama M, Meek J. Finite element analysis of 

Cosserat theory for layered rock mass. Computers and Geotechnics 1993; 15: 145-

162. 

[17] Ehlers W. and Volk W. On shear band localisation phenomena of liquid-

saturated granular elastoplastic porous solid material accounting for fluid 



J. Sulem & M. Cerrolaza (2002): Finite element analysis of the indentation test on rocks with microstructure 24 

viscosity and micropolar solid rotations. Mech. Cohesive-Frictional Mat. 1997; 2: 

301-320. 

[18] Adhikary DP., Mühlhaus HB. and Dyskin AV. Modelling the large 

deformations in stratified media – the Cosserat continuum approach. Mechanics 

of Cohesive-Frictional Mat. 1999; 4: 195-213. 

[19] Sulem J. and Mühlhaus HB. A continuum model for periodic two-

dimensional block structures. Mechanics of Cohesive-Frictional Mat. 1997; 2: 31-

46. 

[20] Johnson KL. Contact mechanics, Cambridge University Press, 1985. 

[21] Poole WJ., Ashby MF. and Fleck NA. Micro-hardness of annealed and work-

hardened copper polycrystals. Scripta Materialia, , Elsevier Science Ldt 1996; 

35(4): 559-564. 

[22] Fleck, N.A. and J.W. Hutchinson. Strain gradient plasticity. Advances in 

Appl. Mech.1997; 33: 295-361. 

 



J. Sulem & M. Cerrolaza (2002): Finite element analysis of the indentation test on rocks with microstructure 25 

 

 

 

Figure 1: Fontainebleau sandstone indented with a flat indentor 

 

indented zone 

1mm 
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Figure 2: Modelling boundary conditions in terms of horizontal (x1) 

displacements at the rock-punching tool interface 

(a) Perfect sliding (allowed displacement x1-axis) ; (b) Perfect adherence (zero 

displacement along x1-axis) 

 

a 

rotational spring linear spring 

(a) 

(b) 
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Figure 3 : The complete finite element model for mesh M1 

A 
B 

C D 
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Figure 4 : The finite element mesh zoomed on the zone of loading: (a) model M1, 

(b) model M2 

 

(a) 
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Figure 5: Elastic response for various values of the scale factor (statical Cosserat 

model), a=0.5mm
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Figure 6: Effect of interface conditions on scale effect for an elastic Cosserat half-

space 
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Figure 7: Simulation of an indentation experiment on an elasto-plastic Cosserat 

half-space for � / .2 05a =  with two different mesh sizes (statical model). 
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Figure 8: Deformed mesh with plastic zones for an imposed displacement of 

0.1 mm on the boundary; (a) mesh M1, (b) mesh M2 

(frictionless interface)

(a) 

(b) 
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Figure 9 : Elastic-perfectly plastic Cosserat continuum :Computed indentation 

curves assuming perfect sliding conditions at rock tool interface (a = 5mm) 

(a) statical model, (b) kinematical model 

(a) 

(b) 
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Figure 10: Scale effect for the maximum load of a Cosserat elastic-perfectly 

plastic rock under indentation 

(frictionless rock-tool interface) 
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Figure 11: Deformed mesh for a loading force of 240 N (statical model, 

frictionless interface) 

(a) � / .2 0 01a = , (b) � / .2 0 5a =  

(a) 

(b) 

a = 0.5 mm 



J. Sulem & M. Cerrolaza (2002): Finite element analysis of the indentation test on rocks with microstructure 36 

0 0.04 0.08 0.12 0.16 0.2

imposed displacement (mm)

0

100

200

300

400

in
d
e
n
ta
ti
o
n
 f
o
rc
e
 (
N
)

statical Cosserat model
(perfect adherence)

l/2a = 0.01

l/2a = 0.1

l/2a = 0.25

l/2a = 0.5

 
 

 

0 0.04 0.08 0.12 0.16 0.2

imposed displacement (mm)

0

100

200

300

400

500

in
d
e
n
ta
ti
o
n
 f
o
rc
e
 (
N
)

kinematical Cosserat model
(perfect adherence)

l/2a = 0.01

l/2a = 0.05

l/2a = 0.1

l/2a = 0.25

l/2a = 0.5

  
Fig. 12 : Elastic-perfectly plastic Cosserat continuum :Computed indentation 

curves assuming perfect adherence at rock tool interface (a = 5mm) 

(a) statical model, (b) kinematical model 
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Figure 13: The effect of rock-tool interface friction on scale effect 

(a) statical model, (b) kinematical model 

(a) 
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slope of the indentation curve (N.mm
-1
) �/2a 

Mesh M1 Mesh M2 

0 20150 19677 

0.1 21018 20596 

0.25 22150 21750 

0.5 23665 23243 

 

Table 1: Indentation of a Cosserat elastic half-space (frictionless tool): Slope of 

indentation curve 

 


