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Abstract. Fractal and occasionally multifractal be-
haviour has been invoked to characterize (independently
of their magnitude} the spatial distribution of seismic
cpicenters, whereas more recently, the frequency distri-
bution of magnitudes (irrespective of their spatial loca-
tion} has been considered as a manifestation of Self-
Organized Criticality (SOC). In this paper we relate
these two aspects on rather general grounds, (i.e. in
a model independent way), and further show that this
involves a non-classical SOC. We consider the multifrac-
tal characteristics of the projection of the space-time
seismic process onto the horizontal plane whose values
are defined by the measured ground displacements, we
show that it satisfies the requirements for a first order
multifractal phase transition and by implication for a
non-classical SQC. We emphasize the important con-
sequences of this stochastic alternative to the classical

(deterministic) SOC.

1 Imtroduction

One of the oldest scaling laws in geophysics is the Omori
law (Omort, 1895). It describes the teraporal distribu-
tion of the number of aflershocks which occur after a
larger earthquake (i.e., the mainshock) by a scaling re-
lationship (power law). In the 1980’s, due to the impe-
tus of fractal geometry, scaling ideas were also applied
to the spatial distribution of earthquakes. Others have
shown that hypocenters and epicenters of earthquakes
could be treated as geometric fractal sets whose scaling
could be characterized fractal dimensions ranging be-
tweer 1.1 ~ 1.6 (Kagan and Knopofl, 1980; Sadovskiy
et al., 1984; Okubo and Aki, 1987; Aviles et al., 1987;
Hirata et al., 1987; Hirata, 1989). Recent multifrac-
tal analyses (Geilikman et al., 1990; Hirabayashi et al.,
1992; Hirata and Imoto, 1991) of the spatial density of
earthquakes have confirmed the spatial scaling and have
given a more complete description.

Correspondence to: C. Hooge

While the Omori law coupied with the scaling of the
positions (and corresponding spatial density) of the seis-
mic events clearly show that the dynamics underlying
the occurrence of seismic events is a scaling space-time
process, it still provides only a very limited description.
This is because the spatio-temporal position of events
does not take into account their intensities which for
earthquakes have long been known to vary tremendously
even at a fixed location. Conversely, the other basic
empirical seismological law, the Gutenberg-Richter law
(Gutenberg and Richter, 1944), ignores an evenl’s space-
time location, and relates its intensity (amplitude and
hence magnitude) to its probability of occurrence. It is
therefore nalural to combine the two types of informa-
tion — i.¢. on the one hand the space-time location of
seismic events in a given area and during a given period,
and on the other hand the intensity of each event — into
a space-time process whose values are the intensities. In
this paper, in order to have the highest possible density
of events, we will pursue the slightly more modest ap-
proach of considering only the spatial projection of such
a process. We will however make an important exten-
sion of previous analyses by systematically considering
the different powers n of the process. One may note
already that the above mentioned geometric studies of
the density of epicenters corresponds to p = 0. To our
knowledge there has been until now a single multifractal
study for g # 0, using the value n = 1.5 which is an esti-
mate of the distribution of seisinic energy (Hirabayashi
et al., 1992). In any event, the treatment of such gener-
alized seismic fields takes us heyond geometric consid-
erations on the space or time distribution of the centers
to consider processes'.

During the 1980’s it became increasingly clear that
whereas the general framework for scaling geometric sets

1In the following we will employ interchangebly the tcrms fields
and processes to indicate space-time dependencies although the
former emphasizes the spatial dependency while the latter, the
temporal dependency.
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was fractals, for scaling processes it was rather multi-
fractals. Furthermore, it was recognized that a generic
feature of the general (stochastic, cancnical) multifrac-
tals was the appearance of qualitatively different weak-
/strong soft /hard behaviour — initially termed hyper-
bolic intermittency (Schertzer and Lovejoy, 1985) —
also characterized by power law probabilities {Schertzer
and Lovejoy, 1987, 1992). Due to the existence of a for-
mal analogy between multifractals and thermodynam-
1cs, qualitative changes of this sort are termed mullifrac-
tal phase transitions; the soft/hard transition discussed
here is an example of a first order, low temperature tran-
sition (Schertzer et al., 1993). Recently this combina-
tion of spatio-temporal scaling with power law proba-
bilities has been taken as the hallmark of Self-Organized
Criticality (SOC, Bak et al., 1987) and it has been ar-
gued that this is the result of deterministic rather than
stochastic “toy” models. Several earthquake models of
this sort have since been proposed (e.g. lto and Mat-
suzaki, 1990). However many criticisms of this “clas-
sical” SOC scenario have been made. For example, it
is not. consistent with the presence of foreshocks or af-
tershocks (Barriere and Turcotte, 1991), This defect is
fundamental since it results from the fact that classi-
cal SOC cannot deal with interacting avalanches (i.e.
events): it requires a vamshing flux whereas stochastic
SOC deals with non—zero flux and interacting avalanches
(see discussion in Schertzer and Lovejoy (19941b)).

Below, using multifractal analysis techniques involv-
ing the different normalized powers 5 of space-time seis-
mic processes, we simultaneously analyze the position
and amplitude of the seismic processes (using the USGS
catalogue). As mentioned earlier, we omit the time de-
pendency proceeding to a multifractal analysis of the
projection on the space of the space-time process, pre-
serving its multifractal space-intensity properties.

We go on to show that the critical (generalized Guten-
berg-Richter) exponents characterizing the multifractal
phase transitions obey a relationship predicted by multi-
fractal theory. We specifically show that the critical or-
ders of statistical moments (¢p ,,) of the first order mul-
tifractal phase transition of the 5 (normalized) power of
the process, generalize the Gutenberg-Richter exponent
b(n) = qpn (the usual Gutenberg-Richter exponent is
b = 5(1)). Indeed, the statistical moment scaling ex-
ponent of order ¢ of the 7 (normalized) power of the
process, K{gq, ), follows a special theoretically predicted
linear form: K{gpn,n) = (apn—1)Dfor q > qp,, where
D is an empirical constant. By varying n, we are able
to determine the non-linear dependence upon 7 of the
critical order moment gp ,. The value of D is shown to
be independent of the parameter 5. Siuce ¢p 5 changes
with n while D does not, D) is a more fundamental con-
stant with which to describe the earthquake process.
These results show that the crigin of self-organized crit-
icality in earthquakes may be in stochastic, space-time
tensorial multifractal processes.

2 Normalized Powers Of Selsmic Processes

Scaling ideas have evolved rapidly since the early 1980’s
and many geophysical fields or processes have now been
shown to be scaling, somectimes over very large ranges
of space and time scales. Indeed, it has been argued
for some time (e.g. Schertzer and Lovejoy (1991) and
references therein) that this ubiquity is not surprising
since scaling can be regarded as a symmetry principle.
Viewed in this way, geophysical systems are expected
to be scaling because few geophysical processes have
specific mechanisms which operate at unique scales and
which are strong enough to break the scaling. However,
treating scale invariance as a symmetry principle does
more than simply explain the presence of scaling; it gives
us quite specific predictions about the overall dynamics
and statistics. For example, when nonlinear dynamical
processes are scale invariant, it is now becoming clear
that the resulting fields are multifractals, whereas asso-
ciated scale invariant geomelric sets are fractals. Var-
ious theoretical properties of multifractals can then be
exploited including the occurrence of rare but violent
events (“hard” behavior) and the possibility of univer-
sality (i.e., behaviour independent of many of the details
of the process, see Schertzer and Lovejoy (1987, 1992},
in earthquakes, see Hooge (1993)).

The basic seismological fields are the stress and strain
tensors, and given the evidence for scaling discussed
above, the natural framework is multifractal tensor pro-
cesses (see Schertzer and Lovejoy (1994a) for the gener-
alizations of multifractals beyond positive scalars using
Lie cascades). However, the stress and strain tensors are
generally not directly observable; seismic observations
are based on the ground displacements of each event.
This data is then used (via inversion techniques) to de-
termine the position of the hypocenter, the origin time,
and seismic moment tensor. Consider a seismic zone
size L. The natural way to create a multifractal field
is therefore to use a grid size | < L and sum the am-
plitudes over all the ¢vents that cceur within each grid
element. Since by itself the sum of maximum ground
motion amplitudes 4 over a grid has no obvious phys-
ical significance, we are thus lead to define the various
(normalized) powers of seismic fields, indexed by the
parameter 7:

S fB; (AA)ﬂdd?}
A =TT T
? fBA ddx

where the subscript A = L/l{{> 1) denotes the resolu-
tion of the seismic field. The subscript A > A > 1
indicates the very small intrinsic resolution of the cata-
logue data. d denotes the dimension of the coustructed
seismic field (here, d = 2, the earth’s surface), and B is
a grid box scale A (size L/A). The dencminator normal-
izes the integrated n power of the ground displacement.
When 1 = 0, each event is given the same weight; Sy 2

(1)



will be the density of the number of eventls al scale A,
the statistics will be the same as in the geometric multi-
fractals references discussed above. Since semi-empirical
models of earthquake processes relate the amplitudes to
moments and encrgics of individual events, seismic fields
with specific values of 5 (such as n = 1.5 for seisimic en-
ergy (Hirabayashi et al., 1992)) could be regarded (due
to the normalization) as generalized moment or energy
fields. Similarly, by studying probability distribution
of Sy x, we will obtain a family of exponents indexed
by n which are generalizations ol the Gutenberg-Richter
exponents (below, we show that with # = 1 , the gener-
alized (normalized) exponent equals the usual, (unnor-
malized) one). As we increase the parameter n we place
mncreasing weight on the extreme events; by studying
the statistical properties of the entire family of 5, ) as
functions of resolution A, we obtain a complete char-
acterization of the scaling properties of the earthquake
catalogue. This technique has the advantage that as 7
increases, 1l is less and less sensitive to the minimum
detection of the network, unlike either the box-counting
or pair correlation techniques mentioned above (Hooge,
1993). Presumably, since multifractals are generic scal-
ing fields, if the seismic fields are multifractal then the
nonlinear process which generated these fields is also
multifractal. A fundamental problem in seismology will
be to relate the scaling properties of the seismic ficlds
to those of the underlying tensor fields.

One may note that for the present time we have only
scalar and pointwise data. The effect of the latter may
not be too severe since only some of the larger events will
have rupture areas larger than our resolution (& Zkm).
Due to the sparseness of the network, some weaker events
may be missed. [However, the measuring network can be
seen as another, independent, multifractal phenomenon
(see Tessier et al. (1994)), and given this, will not break
the scaling (although it may medify the multifractal
exponents). A more significant limitation is that our
scalar analysis is unable to take into account the strong
anisotropy of individual events associated with fault di-
rections; Lie analysis (Schertzer and Lovejoy, 1994a) is
required to proceed with more sophisticated data includ-
ing tensorial information. However, there is still a strong
anisotropy of the observed scalar process; this takes us
beyond self-similar processes requiring the framework
of Generalized Scale Invariance (Schertzer and Lovejoy,
1985), and will be investigated in future papers.

In this study, we treat each earthquake as a point pro-
cess. On the one hand this treatment is similar to previ-
ous studics of the density of events —we simply consider
n not restricted to only zero —on the other hand this
simplistic assumption will only affect our definition of
seismic fields for the few earthquakes which have rupture
areas larger than the minimum resolution of the con-
structed seismic field (which is typically around 2km).

A=32 =064

Fig. 1. The scismic field for various values of the parameter
A with 5 = 1. This fizure shows how the picture changes with
resolution (i.c. A).

3 Multiscaling Properties Of Seismic Fields

To test these ideas we used data from the local earth-
quake catalogue of earthquakes in Central California
compiled by the U. S. Geological Survey (USGS) at
Menlo Park, California. This study is based on earth-
quakes occurring between January 1°%, 1980 and De-
cember 31%%, 1990 (approximately 4000 days). These
carthquakes were situated in an area bounded by the
lines of North latitude 33°30” and 43°10” and lines of
West longitude by 115°00” to 128°48”. There were ap-
proximately 235,000 earthquake events in this catalogue
which uses information derived from the California seis-
mic detection network which now, for example, com-
prises more than 300 seismological stations (there were
roughly 200 stations in operation as of 1990 — see Marks
and Lester (1980)). The fields for several values of A
are shown in Fig. 1 using a gray scale rendering. Fig-
ure 2 shows the same region at maximum resolution (i.e.
A = 512). The maximum ground motion (normalized
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Fig. 2. The seismic field at the finest resolution (512 x 512 grid)
with 7 = 1.

to 50 km from the epicenter) was determined from the
catalog. The depth and time coordinates were ignored,
that is, only the earthquake epicenter and magnitude
were used in this study. In the future we hope to apply
multifractal techniques to more complete descriptions of
the earthquake process (e.g. incorporate the depth and
time coordinates, employ the seismic moment tensor,
etc.).

The seismic fields were produced on 512 by 512 square
grids over a 1000km x 1000km region yielding a mint-
mum resolution of =z 2km. This resolution was cho-
sen so as to be larger than the accuracy of the location
measurements while simultaneously frequently contain-
ing more than one earthquake per grid box. The latter
conditions are necessary since both measurement errors,
and the finite number of events in the sample will intro-
duce spurious breaks in the scaling at large A (small
distances). Note that many of the grid boxes contained
no events; this is either due to their weak intensity (the
minimum detectable amplitude corresponded to magni-
tude 0), or due to the fact that seismicity - even at
extremely low intensity levels — is confined to a fractal
subspace with d < 2 . We discuss this further below.

The basic scaling properties we are interested in are
the behavior of the different moments of Spx as the
resolution (i.e. A) is varied. In the scaling regime, we
define the moment scaling function K(g,n) as follows:

((Sa0)?) o AR, (2)

where “()” indicates statistical (ensemble) averaging.
This averaging is necessary since we treat the selsmic
field as the outcome of a stochastic seismic process. The
symbol & indicates equality Lo within constant factors,

30
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Fig. 3. Multiscaling of statistical moments for earthquakes in the
period 1980-50. The range of scaling for this {and all subsequent
earthquake analyses) is from 2km (log;o(A) = 2.7) to 1000km

(logip(A) = 0).

We have already mentioned that virtually all the pre-
vious scaling results on earthquakes are obtained with
n = 0 ; for example, the generalized dimension func-
tion (Grassberger, 1983; Hentschel and Proccacia, 1983;
Schertzer and Lovejoy, 1983) is given by D, = D —
K{(¢,0)/(g — 1) and the box counting and correlation
dimensions of seismic events are the special cases I,
D, respectively (Kagan and Knopoff, 1980; Aviles et
al., 1987; Hirata et al., 1987; Hirata, 1989; Geilikman
et al., 1990). In order to estimate K(g,n) for each 5,
field we use a generalization (due to ensemble averages)
of the partition functions used in literature called the
trace moments. This is equivalent to a double trace mo-
ment (DTM) analysis (Lavallée, 1991) of the underlying
Ay field. The trace moment of S, i is defined as:

Tr{(Sp2)1] = <Z(5n,a,i)"p)q>

i

(=(f, ) )

Algm)=(a- 1D (3)

where the sum is over all the grid elements at scale A
and indexed by i.

In Fig. 3 one can observe scaling over the entire range
of A, from 2km to 1000km. Figure 4 shows a plot of
K(g,n) versus ¢ for various values of . If the field were a
monofractal, the lines in Fig. 3 would have slopes which
increase as a linear function of ¢ which is not the case,
hence seismic fields are multifractal processes. At both
the larger and smaller values of g, the K({g,7) becomes
linear. At smaller values this is due to weak order sin-
gularities (i.e. smaller carthquakes) either as a result
of the detection limits of the seismological network, or
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Fig. 4. Statistical Moment Scaling function, K{g,7), versus g for
various values of 7.

the absence of such events in the underlying multifractal
seismic process. The reason K{¢,n) becomes linear for
larger g will be explained below in terms of a first order
multifractal phase transition.

4 Generalized Critical Exponents,
First Order Multifractal Phase Transitions
and Self-Organized Criticality

To generalize the Gutenberg-Richter law to the seismic
fields we define the following set of critical exponents

905"
Pr(Sy > s8)ms™ 00 fors» 1 (4)

where Pr indicates “probability”, and ¢p , is the gener-
alized Gutenberg-Richter exponent. This notation an-
ticipates the independence (due to the scaling) of ¢p ,,
on the resolution X, but to its nontrivial dependence
on the effective dimension D, and the index 5. Be-
cause of its power law form, the Gutenberg-Richter law
is often called “scaling” which is unfortunate since it is
only “scaling” with respect to the intensity of the event,
whereas the term “scaling” is more properly reserved
for power law behaviour under changes in spatial (or
temporal) size/resolution. Since the above implies the
divergence of high order statistical moments:

{(Sp,0)") — o0, for ¢ > qn (5)

¢pn is more properly called the critical exponent of “di-
vergence of moments” and separates two qualitatively
different behaviors: the low ¢ soft behavior and the high
g hard behaviour (Schertzer and Lovejoy, 1992). Fig-
ure 5 shows the probability histograms for several of the
Sy .a fields defined above. One can see that the proba-
bility tail is linear for each value of 5 ; we estimate ¢p ,
from the negative asymptotic slopes.

One of the attractive features of our multifractal mo-
del of seismicity is that multifractal processes generical-
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Fig. 5. This figure show the logio(relative frequency of an event)
versus login(Sy,a), using a 512 x 512 grid, for three values of
7= 0,1,1.5. The corresponding negative slopes are equal to 1.2+
0.1,1.0+0.1,0.5+ 0.1.

ly lead, via a specific mechanism called “dressing” de-
scribed below, to this type of divergence. Since diver-
gence of moments coupled with scaling has been taken
as the basic features of “self-organized criticality” (Bak
et al., 1987, 1988), Schertzer et al. (1993) and Schertzer
and Lovejoy (1994h) have argued that “self-organized
criticality” may be a multifractal phenomenon. In any
case, no matter what is the origin of the divergence,
it will be associated with a qualitative change in the
K(q,n) function estimated with a finite sample size.
This is apparent since empirical values are always finite;
for ¢ > ¢p ., the empirical estimates of {(S, »)?) will de-
pend on sample size and IJ in a precise way; Schertzer
and Lovejoy (1994b) show that empirical K(q,%) func-
tions undergo discontinuities in their slopes at ¢ = ¢p 4
after which they are linear. The amplitude of the discon-
tinuity is determined by the sample size and D. Figure 4
shows this linear behavior for ¢ > ¢p . Since there is
a formal analogy between multifractals and thermody-
namics, such qualitative changes are called “multifractal
phase transitions”, here they are first order (discontinu-
ities 1 the second derivative can also arise due to sam-
pling effects, even if there is no divergence of moments,
see Schertzer and Lovejoy (1994b)).

As amultifractal process proceeds to smaller and smal-
ler scales, it becomes more and more intermittent, being
characterized by increasingly violent regions (the sin-
gularities) and increasingly calm regions {the regulari-
ties). The small scale limit is mathematically singular;
in order to obtain well defined limiting properties, it is
necessary to integrate (i.e. average) the process over
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Fig. 6. This figure shows the relation between K(gp,,,n) and
gp,n for values of 5 ranging from 0.0 to 2.0 — 100 values of #
between. The slope of the best-fit line is 1.1, with an intercept
roughly zero. Using earthquake data from the years 1980-90,

finite sets with dimension d. For low order moments,
the resulting “dressed” field will have the same scaling
properties as the nonintegrated (“bare”) process; how-
ever, for ¢ > gqp, the integration fails to sufficiently
smooth out the process, one obtains violent “hard” sin-
gularities and divergence of the corresponding moments.
The exact order is given by the solution of the following
equation:

K{gpgn) = (apn — 1)D (6)

which is a consequence of applying the formula for p =1
to n powers of the underlying (bare) process {Schertzer
and Lovejoy, 1987, 1994a). It should be emphasized
that this equation is a theoretical prediction of the the-
ory of general (“canonical”) multifractals and applies
only when the source of the divergence is this dressing
(smoothing/averaging) mechanism. It is therefore of in-
terest to test this equation so as to discover whether the
observed K(q,n) and ¢p , can be explained this simple
way. Due to the difficulty of measuring very weak but
frequent seismic events, it is not immediately obvious
whether or not seismic processes generate such events.
If they do not, and the process is confined to a [rac-
tal subspace, then the dimension D in Eq.(6) will be
less than d. Here we rather regard I} as an cmpirically
determined parameter, which we estimate directly by
plotting K(¢p,n,n) against ¢p ,.

Figure 6 shows this relation for values of # ranging
from (.0 to 2.0 and using earthquake data from the years
1980-90. The slope of the line is 1.1. This confirms the

relation with a dressing dimension of D ~ 1.1.

5 Conclusions

Until now, the two basic empirical laws about earth-
quakes, the spatial scaling of their distribution (the hyp-
ocenters form a fractal set, the density, a multifrac-
tal measure), and the divergence of statistical moments
(the Gutenberg-Richter law) have not simultaneously
coexisted in a coherent theoretical framework. Even
deterministic models exhibiting self-organized critical-
ity fail to provide a general connection between the
two. Largely as a consequence of this, empirical analy-
ses have generally not been able to simultaneously deal
with the spatial distribution of the earthquakes and with
their intensities. We have argued here that the funda-
mental seismic processes are scaling space-time tensor
(e.g. stress-strain) processes involving (tensor) space-
time multifractal fields resulting from Lie cascades. Al-
though the observed ground displacements (and the as-
sociated seismic fields) are non-trivially (and nonlin-
early) related to these processes, we will nevertheless
expect multifractals to provide the appropriate theoreti-
cal framework and analysis methods. This motivates the
study of the (normalized} powers of seismic fields from
the USGS ecarthquake catalogue by summing varicus
powers of ground displacements onto grids, With only
one exception (n=1.5, Hirabayashi et al. (1992)) exist-
ing scaling analysis has been on the special case n = 0 —
the only case with no intensity information. By apply-
ing a multifractal analysis technique (trace moments)
on all the members, we show that the seismic fields
exhibit characteristics typical of multifractals. Finally,
using multifractal theory, we show that multiscaling of
the seismic fields leads via multifractal phase transitions
to (generalized) Gutenberg-Richter exponents ¢p . An
important consequence is that multifractality, although
theoretically present for any n and ¢ is only directly
observable for ¢ < g¢p,. These exponents are shown
to obey a simple theoretically predicted formula which
arises due to the “dressing” of the fundamcntal seismic
fields. Contrary to the usual deterministic framework
which situates the origin of the self-organized critical
behaviour of carthquakes in deterministic toy-models,
we demonstrated the possibility of an alternative: self-
organized criticality of earthquakes can originate from
stochastic space-time tensorial multifractal proccsses.
We also pointed out the necessity to proceed to mul-
tifractal tensorial analysis with the help of Lie analysis
to better taking into account many features of the seis-
micity which are beyond the present scalar multifractal
analysis.
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