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Émilien Tlapale, Guillaume Masson, Pierre Kornprobst

To cite this version:
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ABSTRACT

We propose a model of motion integration modulated by

form information, inspired by neurobiological data. Our

dynamical system models several key features of the mo-

tion processing stream in primate visual cortex. Thanks to

a multi-layer architecture incorporating both feedforward-

feedback and inhibitive lateral connections, our model is

able to solve local motion ambiguities. The main feature of

our model is to propose an anisotropic integration of mo-

tion based on the form modulation. The proposed mech-

anism is not only simple but is also not limited to a fixed

number of depth/scale layers [1] and does not blindly detect

and ignore all junctions [2, 3]. Our model can be imple-

mented efficiently on GPU and we show its properties on

classical psychophysical examples. First, a simple read-out

allows us to reproduce the dynamics of eye movements for

a moving bar stimulus. Second, we show how our model

is able to discriminate between extrinsic and intrinsic junc-

tions present in the chopstick and Lorenceau-Alais [4] il-

lusions. We also show how our form modulation induces

a notion of objects explaining recent experiments [5]. Fi-

nally, we show some promising results on complex and real

videos.
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1 Introduction

Many bio-inspired models of motion processing by the

visual cortex of primates have been proposed to explain

the complex motion integration mechanisms and the psy-

chophysical experiments. We can distinguish two big

classes of approaches. The first class of approaches is pri-

marily high level and their main goal is not to focus on the

precise anatomical or functional properties the visual sys-

tem but to show of some fundamental principles that per-

mit to reproduce some psychophysical results (see, e.g., the

Bayesian models [2, 6]). The second class of approaches

aims at modeling some of the key features of the visual

system in term of structure and connectivity, and to show

how this so-called bio-inspiration allows psychophysical

effects to be reproduced. The model we propose belongs

to that later class and it is inspired by some recent contri-

bution [7, 8, 1].

In order to compute the global motion of a scene, mo-

tion processing systems, and similarly the visual cortex,

take local motion estimates as input. The problem is that

this local motion information, which is estimated over a

limited spatial neighborhood, is in general noisy and am-

biguous, leading to the well known aperture problem [9].

For example, along contours only motion perpendicular to

the contour can be perceived, a problem illustrated in Fig-

ure 1. To solve the aperture problem, we need to integrate

motion information from other non ambiguous areas like

corners.

Figure 1. Seeing a translating bar through a circular aper-

ture masking its ends does not give enough information to

know its real motion, we only perceive a motion orthogonal

to the bar direction. Displaying the bar ends we are able to

spatially integrate information and perceive the correct mo-

tion.

Diffusion of local features, or equivalently regular-

ity constraints, have been proposed to solve the aperture

problem in machine vision. Interestingly, the visual system

also performs such a diffusion by an integration of the lo-

cal motion features across different layers: motion signals

from unambiguous regions such as line endings are propa-

gated inside the moving objects. It is this motion diffusion

process based on integration rules which solve the aperture

problem. For instance [1] use multiple rules based on junc-

tion detectors, depth/scale layers, and motion direction.

A winner-take-all mechanism can be used in order to

select and enhance the motion signals to be diffused. In-

deed the raw signal from motion detectors is often noisy

and ambiguous. Various bio-inspired approaches can be
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found in the literature for signal amplification, for instance

in feedforward systems [7] and using divisive [10] or sub-

tractive [11] inhibition. After local amplification, unam-

biguous motion signals may be diffused spatially to help

disambiguation of areas affected by the aperture problem.

This diffusion may either be done thanks to local intra-

cortical connections or via feedbacks from other cortical

areas [8].

Incorporating more features, in particular form infor-

mation, help to obtain more accurate results. Recent mod-

els employ this strategy to get a better output in term of

velocity estimation and of psychophysical results. Indeed,

motion models compute motion perception from locally

unambiguous motions not affected by the aperture prob-

lem. However psychophysical studies [12] shows that some

of the unambiguous motion signals are ignored in global

motion perception. Those studies thus classify locally un-

ambiguous signals as either intrinsic junctions if they are

globally integrated, or extrinsic junctions if they are ig-

nored in the global percept. We later describe the chop-

stick illusions, a classical example of the importance of

extrinsic and intrinsic junctions. In order to discriminate

between extrinsic and intrinsic motion signals, some mod-

els discard certain kind of junctions [13, 3] assuming their

extrinsic probability based on their geometrical character-

istics. Other models segregate motion information into two

layers according to form features [1] thus allowing a lim-

ited transparent motion process.

In this paper we propose a new motion integration

mechanism based on a directional motion diffusion which

is form modulated. Section 2 describes the model and its

biological interpretation. Section 3 presents some of the

results obtained for both synthetic and real sequences. We

conclude in Section 4.

2 Towards a model of motion integration

2.1 Coupled dynamical systems

Our model describes the activity and the interactions be-

tween different layers as a coupled dynamical system. This

widely adopted formalism [8, 1] reflects the brain division

in cortical areas. The state of a layer i is defined in our

model by the function

pi : (t, x, v) ∈ R
+
× Ω × V → pi(t, x, v) ∈ [0, 1]. (1)

where t is the time, x = (x1, x2) denotes the spatial po-

sition belonging to the 2D-spatial domain Ω ⊂ R
2, and V

represents the space of possible velocities. This function pi

can be interpreted as the state of a cortical area retinotopi-

cally organized which describes at each position the instan-

taneous activity of a velocity tuned neuron.

Since we implement a multi-layer system, we will de-

scribe the evolution of the activity in each layer in respect

with the activity of the whole system. The dynamical de-

scription leads to a differential equation in time which com-

bine a local decay and various interactions:

ṗi(t, x, v) = −λipi(t, x, v)+fi(p0(t, x, v), p1(t, x, v), . . .).
(2)

a description also employed by [1] and [8], even if the later

do not use a dynamical system in the implementation. Fol-

lowing equations do not explicit the (t, x, v) parameters of

the layers.

2.2 Proposed model

The initial stage of every motion processing model is to

compute local motions cues, denoted by p0(t, x, v), from

an input video sequence I : (t, x) 7→ I(t, x) ∈ R. In

the visual system, this local processing is done at differ-

ent levels and time, from the retina to the visual cortex.

Some existing approaches, such as [7], model this process

with banks of spatio-temporal filters. In this paper, we will

use the implementation of the Reichardt detectors of [8],

which estimates some correlations between delayed filters

at neighboring areas.

Our model is defined by the interaction of two cou-

pled cortical layers, p1 and p2, depicted in Figure 2 and

defined by:

ṗ1 = −λ1p1+ (3)

(1 − p1)
[
λap0 + λbp0p2 − λcGσ1

x
∗

∫

V

p1(t, x, w)dw
]
+

ṗ2 = −λ2p2+ (4)

(1 − p2)
[
λmGσ2

x
∗

∫

Ω

Gσx
(x − y)φ(t, y, ŷx)p1(t, y, v)dy

− λnGσ2

x
∗

∫

V

p2(t, x, w)dw
]
+
.

where ṗi = ∂pi

∂t
is the partial derivative in time of pi, ŷx

denotes the angle of the vector yx in retinotopic coordi-

nates, [·]+ is the rectification operator defined by [s]+ =
max(0, s), the λ•, σ• are constants.

Figure 2. Schematic view of the proposed model showing

the interactions of the different cortical layers. The motion

integration (p0, p1 and p2) system is modulated (dashed

arrow) by a form information (φ).

The evolution of the two main layers, p1 and p2 is de-

fined by differential equations, characterizing their behav-

ior across time. This model is inspired by [8], where the



authors make the correspondence between these layers and

layers V1 and MT. Both layers contain a leak (−pi) which

stabilizes the system by attracting the state to zero. Then,

the factor (1−pi) has been chosen in order to constrain the

activation rate to be in the interval [0, 1].

2.3 Model features

Feedback integration Our first layer,p1, combines feed-

forward input from p0 and feedback from the second layer,

i.e., p2. This structure is inspired by [8]. To allow motion

diffusion and integration p2 neurons have access to mul-

tiple p1 neurons in an anisotropic neighborhood. This fol-

lows observations concerning the increase of receptive field

sizes from V1 to MT. Note that the feedback from p2 are

combined in a multiplicative way in p1 as in [8] supporting

the no strong loop hypothesis: feedback alone cannot evoke

a response in our system.

Form-modulated diffusion In layer p2, we integrate

motion information from p1 in a spatial neighborhood. This

spatial neighborhood is not defined by a simple isotropic

and invariant Gaussian smoothing, it also depends on the

input stimulus through form information which is pro-

cessed in area V2. V2 neurons can extract edges/shape

information from different cues (i.e. luminance, relative

motion, disparity, . . . ). The role of shape in general has

been demonstrated in several psychophysical experiments

[12, 5].

Here we propose to use shape descriptors positively,

i.e., to control a diffusion instead of suppressing it in the

presence of complex structures. To do this, we define a

shape function, φ, which can be related to V2 cells [14]

and defined as:

φ : R
+
× Ω × [0, 2π[→ R

+

φ(t, y, θ) =

∫

Ω

w(y, z, θ)Gσs
(I(y) − I(z))dz (5)

where w(y, z, θ) = Gσx
(y − z) Gσθ

(θ − ŷz)

Equation (5) describes the power of diffusion at a given

point y and in a given direction θ. In this article we only

consider luminosity information I(t, y) as form informa-

tion. Thus we diffusion information from a point y in a

direction θ if the luminosity in this direction, i.e. in the

neighborhood w, is similar to the one at y. In Figure 3

we display the directional neighborhood w and a sampled

representation of φ for an orthogonal edge frame.

Thanks to the φ function, the stimulus dependent in-

tegration process has two main properties that have been

observed in cell recordings: integration is facilitated inside

similar structures (see, e.g., [5]) and the extension of the

integration also depends on the local contrasts (see [15]).

Lateral inhibition The last part of the equations defin-

ing our layers is the lateral inhibition. All neurons at a

given local neighborhood for all possible velocities inhibits

y θyz

z

(a) (b)

Figure 3. (a) To compute φ(t, y, θ) we integrate the differ-

ences of luminosity between I(t, y) and the points in a spa-

tial weighted neighborhood, w(y, z, θ). (b) Spatially sam-

pled representation of φ for a synthetic corner displayed in

the green square. At each point of the sampling the weight

of diffusion along each direction is displayed.

one the other. This lateral inhibition, sometimes called re-

current inhibition, leads to a winner-take-all mechanism

[11]. Instead of this kind of subtractive inhibition, a di-

visive inhibition has also been successfully used [10, 8].

3 Results

Material and methods A discretization procedure has

to be applied since we work on dynamical equation: we

choose the Runge-Kutta algorithm. Moreover since the in-

put is not continuous but is made of successive frames, and

because we want more precision than the coarse input, we

need intermediary frames. For simplicity, we did not inter-

polate but choose input similar to the previous frame for all

intermediate frames before the next one. We discretized the

system with ten intermediary time steps between two input

frames, not including the intermediary frames of Runge-

Kutta.

On the following results we choose our discretized ve-

locity space to be all the integer pairs v = (vx, vy) in a 7×7
regularly spaced grid. As a read-out, we can extract one

velocity field vi(t, x), i.e. a single motion at each spatial

position, for the layer pi by:

vi(t, x) =
( ∑

v

pi(t, x, v) v
)
/
( ∑

v

pi(t, x, v)
)
. (6)

For the calculation of φ we used the following pa-

rameters: σx = 12, σθ = π/8, σs = 0.4. We fixed

motion integration parameters to λ1 = λ2 = 4, λa = 1,

λb = λm = 16, λc = λn = 4 and Gaussian radius to

σx = 10, σ1 = 4, σ2 = 8.

Because of the anisotropic diffusion depending on in-

put stimulus, our model takes a considerable computational

effort. Conventional CPU implementation is far from being

fast, so we implemented our model on GPU to take advan-

tage of its parallel nature using NVIDIA’s CUDA technol-

ogy. Except for GPU kernels, all the code is written in

Python using the SciPy library.

http://www.scipy.org/


Motion integration The motion integration and disam-

biguation mechanisms can be illustrated with a translating

bar (see Figure 4 (a)). Figures 4 (b)-(d) display the velocity

field computed at the first iteration and after some iterations

of our model according to Equation (6). The colormap of

Figure 4 (e) is used to associate a color to each velocity.

Note how the end of line information is propagated towards

the center of the bar.

In Figure 4 (f) we display our read-out computed by

averaging the velocity field over the whole stimulus for

each frame. It can be associated to the eye movements

and indeed show a shape similar to what can be found in

psychophysical literature for the same stimulus [16].

(a) (b) (c) (d)

0 20 40 60 80 100 120 1400.0

0.2
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(e) (f)

Figure 4. Response of the model on a horizontally trans-

lating bar presented in (a). (c)-(d) Evolution of the velocity

field v1(t, x). (e) Color code used for the velocity fields.

(f) Temporal read-out providing a global motion similar to

the one get in eye movements computed by averaging the

velocity field. Green and blue correspond respectively to

the vx and vy components.

Extrinsic/intrinsic junctions We use the chopstick il-

lusions to illustrate the influence of form information in

motion processing. The first stimulus is made of two hor-

izontally translating bars (see first line of Figure 5). We

thus have unambiguous motion information from the end

of lines, the horizontal motion, and from the bars intersec-

tion, the vertical motion. We display the velocity field v1

and show that our results are coherent to psychophysical

experiments where two horizontal bars are perceived.

In the second line of Figure 5 we use the same stimu-

lus with two rectangular occluders at the the end of lines

level. Again our results are coherent with psychophysi-

cal experiments where one vertical motion is perceived. In

both experiments we use the same stimulus characteristics.

The same simple form modulated motion integra-

tion model has also been applied to Lorenceau-Alais illu-

sions [4], see Figure 6. We obtain results similar to [1]: mo-

tion information compatible with the correct rotation mo-

tion in the diamond case but two translational motions in

the arrow case; similar to psychophysical results. Again,

without relying on depth/scale layers, neither on junction

Figure 5. The first line show the non-occluded chopstick

illusion made of two horizontally translating bars. For

perception, the end of line 2D information is propagated

(green), the intersection 2D information is inhibited (red).

We display the velocity field v2 obtained from our model

which exhibit the same behavior, i.e. having two horizontal

motions. On the second line we use the occluded chopstick

illusion which adds two rectangular occluders at the end of

lines level. This change the perception to a single vertical

motion. A result which is also reproduced by our model.

Figure 6. The two first rows display the output of

our model (v1) applied to Lorenceau-Alais diamond illu-

sion [4] for three different frames. We observe a percept co-

herent with rotation with results similar to the model in [1].

The two last rows display the output or our model (v1) for

the arrow Lorenceau-Alais illusion [4]. We observe two

translational motions instead of the rotation like in [1].

(a) (b) (c)

Figure 7. (a) Square moving left and down with points

moving randomly down at top removed edge (see [5]). (b)

Velocity field in p2 at the beginning with the aperture prob-

lem. (c) Iterating does not solve the aperture problem on

top.

detectors, nor on complex rules, as in [1], but only on our

directional form information we are able to reproduce hu-

man motion percept.

Diffusion on objects



In Figure 7 we use the stimulus used in [5]: a square

moving in the lower right direction with its top edge re-

moved and replaced by a set of points moving randomly

downward. The points reproduce the velocity distribution

in the aperture problem at the center of an edge. Our model

gives results similar to the cells recording: the ambiguity

is not solved in the replaced edge and the velocity field is

thus averaged as a downward motion.

Complex and real sequences We also applied our mo-

tion processing model on real sequences, such as the Taxi

sequence. Results for this sequence are shown in Figure 8

displaying the segmentation of moving objects in homoge-

neous regions by our method.

(a) (b) (c)

Figure 8. Motion field obtained by processing the Taxi

video sequence in our model. (a) A frame of the used video

sequence. (b) Initial velocity in p2. (c) Velocity field after

a few frames.

(a) (b) (c) (d)

Figure 9. (a) A frame of the Yosemite sequence. (b)-(d)

Velocity field computed respectively from p0, p1 and p2

In Figure 9 we display the velocity field computed

from our model on the Yosemite video sequence. All mo-

tion processing layers are shown: p0, p1 and p2 for a given

time. Note the patch effect due to the limited range of ve-

locities and the winner-take-all nature of our system.

4 Conclusion

We described a motion integration mechanism which dis-

ambiguate local motion signal by incorporating a form in-

formation into the pure motion system. By doing so we

are able to discriminate between intrinsic and extrinsic

junctions leading to motion percept coherent with the psy-

chophysic, as illustrated with the chopstick illusion, or the

diamond illusions [4]. Moreover our model is able to dis-

criminate between moving objects and segment them seg-

ment moving object in real video sequences, again without

the need of explicit junction detectors [13, 3] or motion lay-

ers [1].

The dynamical computation of our model enables us

to compute a simple read-out representing the velocity of

the object of interest. Such output can be compared to

the temporal dynamics of smooth pursuit eye movements

in humans [16] where the tracking direction errors closely

match the estimated 2D velocity. Such comparison would

be more difficult using a coarser frame-by-frame algo-

rithm [3].

Our model however is not yet able to perceive trans-

parent motion directly despite the use of a distributed mo-

tion representation similar to the one found in the visual

cortex. Additionally certain stimuli may need a more so-

phisticated form modulation even if the one presented is

able to discriminate between extrinsic and intrinsic junc-

tions in the chopstick illusion where a 3D model has been

previously suggested as a possible explanation. Yet to be

investigated is also the influence of a large scale feedback,

as reported by the biological literature, instead of the sim-

pler local one used in the model. Future work may also use

weighted lateral inhibition in order to compute more accu-

rate smooth motion fields and remove the patching effect.
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