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PROPERTIES OF SOME PRELIMINARY TEST ESTIMATORS
IN REGRESSION USING A QUADRATIC LOSS CRITERION

M.E. Bock, T.A. Yancey, G.G. Judge*

University of Illinois at Urbana-Champaign

This study is concerned with deriving the properties of the
preliminary test estimator for the general linear normal regression
model and determining the conditions necessary for the risk of this

estimator to exceed or be less than the conventional one under a

quadratic loss criterion. A test procedure and the problem of
choosing an optimal level of significance for the test aie discussed.

1 . Introduction

In much of the work concerned with estimating the parameters of behav-

ioral and technical relations, there is uncertainty as to the appropriate

model to be used. As a consequence, investigators begin with an initial set

of specifications and then modify their models by testing the statistical

significance of some or all of a class of h;'/potheses. This process makes the

model and thus the estimation procedurii dependent on the outcome of the tests

of hypotheses and leads to, what has been termed in the literature, prelimi-

nary test or sequential estimators . Fortunately, this class of statistical

procedures has been studied, starting with Bancroft in the early 1940' s, by

Mosteller (1948), Kitagawa (1963) ,' Kuntsberger (1965), Larson and Bancroft

(1963a, 1963b) , Bancroft (1964), to determine the properties of the resulting

statistics in terms of their means and mean square errors . Cohen (1965)

showed that under certain assumptions for estimation with quadratic loss.

*The authors have benefited from papers by, and comments from, T.D.

Wallace, S.L. Sclove and T.A. Bancroft.





the preliminary test estimator is inadmissible. Unfortunately, he did not

suggest a superior estimator. Toro-Vizcarrondo (1968) and Wallace (1971)

suggest a practical procedui'e for determining the estimator to use based on

a test of compatibility of sample and exact prior information in a regression

model and in so doing implied a preliminary test estimator. Ashar (1970)

studied the conditional omitted variable (preliminary test) estimator for the

regression model. In an unpublished paper, Sclove et^ al^. (1970) show when

certain conditions are fulfilled that the preliminary test estimator is dom-

inated by the positive part version of the James-Stein (1961) estimator.

Unfortunately, the conclusions flowing from this result are of limited sig-

nificance for practitioners since (i) only the orthonormal regressor case is

considered and extension to the non-orthonormal or general case is not direct

since in reparametrizing the model the measure of goodness is changed; (ii)

the number of regressors must be strictly greater than 2; (iii) the critical

value of the test statistic is constrained to lie within a range that implies,

for the usual sample sizes and numbers of regressors, a risk function very

close to that of the conventional estimator; (iv) the risk for the positive

part estimator is, over the range of critical test values that are appro-

priate, approximately equal to the preliminary test estimator— and (v) the

risk of the positive part and preliminary test estimators are only analyzed

for comparable values of the level of the test. In addition, Strawderman and

Cohen (1971, pp. 284-285) have shown, following the results of Sacks (1963),

that the James-Stein (1961) estimator fails to satisfy the conditions neces-

sary for a generalized Bayes estimator and thus this estimator is inadmissible.

For the same reason, the Stein-James (1966) positive part estimator is also

inadmissible.

— See Sclove, et al . (1970, p. 9)





In reviewing the literature, it would appear that although many investi-

gators have not understood the properties of the preliminary test estimator

or the possible distortion of subsequent inferences from the use of a prelim-,

inary test of significance based on the data of the investigation, this esti-

mator is widely used in practice. Given this state of affairs, a study of the

properties of the estimator and the characteristics of its risk function under

a squared error loss criterion, are of interest and value. Within this con-

text, the purpose of this paper, which is to a large degree expository in

nature, is to analyze, for the general linear normal regression model , (i)

the properties of the preliminary test estimator implied by a two-stage test-

ing estimation procedure; (ii) the characteristics of the risk function for

the preliminary test and restricted estimators; (iii) the conditions under

which the risk of the preliminary test estimator is greater than, less than

or equal to the conventional and restricted estimators; (iv) the decision

problem of choosing an optimal level of the test and (v) the implications of

the results for model specification, conditional mean forecasting and aggre-

gation over micro relations or pooling data.

The statistical models, estimator."? and tests are given in Section 2.

The risk function for the preliminary test estimator is derived and compared

with other estimators in Sections 3 and 4. The optimal choice of the level

of the test, the sampling properties of the sequential estimator and the

risk for the conditional mean forecasting case is given in Sections 5, 6 and

7. Some theorems and lemmas necessary for the results given in the test are

given in the Appendices.

/
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2. The Statistical Models and Estimators

Assume the linear hypothesis model

(2.1) ^ = X§ + e,

where y is a (T x 1) vector of observations, X is a (T x K) matrix of non-

stochastic variables of rank K, 3 is a (K x i) vector of unknown parameters

and e is a (T X 1) vector of unobservable normal random variables with

(2.2) E(e) '= and E(ee') = a^l,

where I is an identity matrix of order T.

Using the sample information, specifications (2.1) and (2.2), and defin-

ing S = X'X, the unrestricted least squares estimator is

(2.3) b = S'h'Y,

where b is distributed normally with

(2.4a) E(b) = §,

(2.4b) E(b-3)(b-§)' = aV-^,

2
and an unbiased estimate of a is given by

.2 (y-Xb)'(rXb)
(2.4c) a = .

T-K

As is well known for the model (2.1) and (2.2), b is the maximum likelihood

estimator, and is unbiased.

In addition to the sample information (2.1), suppose additional informa-

tion which consists of J linear restrictions is perceived as

(2.5a) R6 - r = 0,

where r is a (J x i) vector of known elements, R is a (J x k) known matrix





with rank J, and is a (J x 1) null vector. The true relationship among

parameters is assumed to be

(2.5b) R§ - r = 6,

where 6 is a (J x i) vector representing specification errors in the perceived

information, which are zero if that information is correct.

The restricted least squares estimator, which makes use of both the sam-

ple and exact p»ior information or linear hypotheses, (2.1) and (2.5), is

(2.6) § = b - S"'^R'(RS"-^R')'-^(Rb-r),

where Q is normally distributed with mean

(2.7a) E(B) = § - S"-^R'(RS'-^R')''^6,

variance

(2.7b) E(§-E§)(§-EB)' = a^[S'^ - S"-^R'(RS"-^R')'-^RS'-^]

and mean square error

(2.7c) E(3-§)(§-6)' = o^S'^ - aV'^R'(RS"-^R')"-^RS"-^

+ S~-^R' (RS'-^R')"'^6 5'(RS'-^R')"-^RS"^.

If the restriction hypotheses are correct, 6=0, the restricted least

squares estimators are unbiased and have smaller variances (mean square errors)

than do the unrestricted least squares estimators. If the prior restrictions

are incorrect, § ^ 0, use of a quadratic loss function involves a trade-off

between variance and bias and results in the following risk function for 6:

(2.7d) £(§-§) •(§-§) = o^trS"^ - a^trS'^R'(RS"^R')"^RS"^

+ trS'-^R'(RS'-^R')'-^§-6'(RS'-^R')"-^RS"^

Using this criterion to appraise performance, the equality restricted estima-

tor is defined to be better than the unrestricted estimator if (2.7d) is





smaller than the trace of (2.4b).

In order to test the compatibility of the sample information (2.1) and

the linear hypotheses (2.5a), it is conventional to use the test statistic:.

(2.8) u = (Rb-r)'(RS"-^R')"-^(Rb-r)/Ja^.

If the restrictions (2.5a) are correct, u has a central F distribution with J

and T-K degrees of freedom and conventional two stage test procedures such as

those found in Qhipman and Rao (1964) and Rao (1945) may be used. If the

linear restrictions are incorrect, u is distributed as a non-central F dis-

tribution with J and T-K degrees of freedom and non-centrality parameter

(2.9) X =
5'(RS''^R')'-^6

1?

Wallace (1971) suggests that instead of using the traditional test and

assuming the linear restrictions are correct, we determine values of X for

which the risk of the restricted estimator (2.7d) is less than that of the

unrestricted estimator. Given these critical values of X, a parameter in the

distribution of u, Wallace tests whether or not X is small enough to insure

that the risk for S is as small. or smaller than that of b. Thus, the hypoth-

esis, H , that X is less than or equal to a critical value, is tested against

not H , by using u and rejecting H, ifu>F,._„,.=c. The value of c
~ (.Jji-K-tA ;

is determined, for a given level of the test, a, by

/ dFX^(u) = a.

c

and X is the value of X for which the risk of the restricted estimator is

less than the unrestricted estimator. By accepting H , we take 3 as our esti-

mate of B, and by rejecting H , we use the unrestricted least squares estimate.
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In either the conventional or Wallace two stage testing procedures,

estimation is dependent on a preliminary test of significance, which implies

the use of the preliminary test estimator,

(2.10) e = Ifo.c)"^"^^ * ^[c,»)t^)^'

where Iv„ . (u) and Ir ^ (u) are indicator functions which are one if u
(0,c)' [c,*)''

falls in the interval subscripted and zero otherwise.

It is useful, for the development of the risk function of 6, to write

I as

(2.11) 6 = b-I . (u)S"-^R'(RS"-^R')'-^R[b-S"-^R'(RS"'^R')"'^r].
Ky , C J

- ~

If, as is the case in much of applied work, we follow the decision rule

suggested by conventional testing procedures or by Wallace, the preliminary

/^

test estimator 6 results, and it becomes important to know the sampling pro-

perties of this estimator and its performance relative to the conventional

estimator (2.4) and other estimators such as (2.6).

3. The Risk Function of the Preliminary Test Estimator

In deriving the properties of the preliminary test estimator, 3, use is

made of the following quadratic loss function:

(3.1) L(§,§,) = |1§-§|1^ = Ci-§)'ci-6),

where the estimator B is defined by (2.10), and its risk is

(3.2a) R(6,6,) = E[L(|,§,a2)] = E(§-6) '(§-§)

.

In order to compare the risk functions of different estimators, by using

methods based on the work of Stein (1966) and Sclove et al^. (1970) , it is

convenient to transform the random variables appearing in (3.2a) and .in the
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argument of the test statistic (2.8), It is to this sequence of transforma-

tion that we now turn.

Using 6 derived in (2.11) , the risk function of § becomes

(3.3) E(S-§) '(§-§) = E(b-S)'(b-6) - 2E(b-§)'[I(o,c)^"^^'

[b-S"-^R'(RS'

+ EIj.Q^^j(u)[S"-^R'(RS"

•[b-S"-^R'(RS'

Rtb-S'^^R^CRS'

R'(RS"'^R')"-^R

R')"'^R

R')"'^r]]'[S''^R'CRS'^f f

R')"^r]].

2-1 -1
The first term on the right side of the equality is a trS and S may be

written using P" (P"'^)' = S" . In addition, an orthogonal transformation Q

is chosen to diagonalize the idempotent matrix (P* )'R'(RS' R')" RP" , which

is of rank J, giving J characteristic roots of one and K-J zero roots. Con-

sequently, (3.3) may be written as

(3.4) E(3-6)'(6-6) = a^trS'-^ 2EI^Q^^^(u)(QPb-QP§)'Q(P"b'P"^Q'

• [QPb-Q(p'-^) 'R' (RS"'^R')"-^r]

'b'^'

.0 0,

+ EIfO,c) '^"^ [QPb-QCP'^) 'R' (RS'^R')"^r] •

•Q(P'^) 'P~^Q'
h'

[QPb-Q(P"-^) 'R' (RS"-^R')"^r:

where I . is an identity matrix of order J and

Oj

is of order K. Defining

w = [QPb-Q(P" )'R'CRS R')' r], where w is a normally distributed random vec-

tor with mean n = QP§-Q(P" ) 'R' (RS" RM'^^r and covariance matrix a I, the

risk function of B is





(3.5)
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E(6-S)'(6-e) = a^rS"^ - 2EI
^^ ^^

(u) (QPb-QP§) •

fA, 0] :

Al

w

where

(3.6)
Q(p-l)rp-lQ.

*^^(0,c)f")^'

\^3

A^O

^^2

and A^ and A- al-e of order J and K-J, respectively.

The second term of equation (3,5) may be written as

(3.7) -2E[I^Q^^^(u)(w'-D')

A,

IA3O/
w.

The elements of w are independent. Partitioning the (K x 1) vectors w' and n'

as vectors (wj w') and (ri' ri ') , each with J and K-J, respectively, the risk
/\

function of 6 becomes

(3.8) E(B-§) '(§-§) = o^trS"-^ - EI^q^^j(u)w|a^w^ - 2EI
^^^^^

(u)w2A3Wj

^ 2D;AiEI^q^^^(u)Wj * 2n2A;EI^Q^^^(u)w^.

.A.

The evaluation of the risk function of 6 now requires transforming the test

statistic u to a function of wjw^.

a . A Reformulation of the Test Statistic , u

Using the operations and notation defined above, the test statistic u

may be written as

(3.9)

_ [QPb-Q(P"b 'R' (RS"^R')"^r] 'Q(P"^ 'R' (RS"^R')'^RP" V' [QPb-Q(P^^) 'R' (RS'^R')'^r]

or
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CS. 10) u =
^1^1

Jo

I£ a (J X J) orthogonal matrix C. is chosen so that C^A.Cj^ becomes a diagonal

matrix D, , the test statistic u may be expressed as

(3.11) u
u«'u'

Ja'

where u* = C,w/ has mean §* = C,)], and variance a Ij.

ft

b. A Reformulation of the Risk Function for

The test statistic presented in (3.10) may now be used as the argument

for the indicator function in (3.8) giving

(3.12) E(6-8)'(B-B) = a^trS"^ - a^EI
^1^1 ^1 . ^1

C0.c*)[-7-j-^-* ^an^AiE

•f'co.c*)

-2
Jo c

where —=— = c*. In order to continue the evaluation of (3.12), the two fol-

'^l^l '^l.

lowing theorems, proven in Appendix A, are required:

^1 '^l

Theorem 1 : If the (J x 1) vector ~ is distributed N(—,1), then

E[I

r »
"^

w.,w.

(0,c*) r-l^'^ = P-^^\0,c*Xx,J^2)\^'^-

^1 .^1
Theorem 2 : . If the (J x i) vector ^ is distributed N(—,1) and A^ is a posi-

tive definite symmetric matrix, then

^^^(0,c*)

^1^*1 w, w

o
'\"^ro'] - E[I(o.c*)f^(X,J*2)^l^'j^^^l

2,^1 . '^l

*^^^0,c*)t^(X,J*4))l<^ ^-^5--
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Utilizing Theorems 1 and 2, (3.12) can be written as

(3.13) E(i-6)'(|-§) = ?^trS"^ - a^E[E[I^Q^^^^()C^^^j^2)^l^^l^^^^l

-D:V,^[E[I(0,c*)^'(X.J.4))l^^3
2 ...2^

2 ^1-2,
20WDiE[E[ItO.c*)^^A.J*2)^l^31

Recognizing that

*-"'T-K''

^(X,J+Jl)

(T-K)

= Pr
'•(X,J-i-il) cJ_
2 T-K
^(T-K)

and using the orthogonal transformation C. again,

(3.14) E(e-3)'(^-8) = a^trS"^ - a^Pr
^x'

(X,J-t-2) < cJ_
,2 T-K
(T-K) ;

1=1

(1)

i=l ' ^

2 Z d!^^^C*^Pr
i=l

1 1

'(X.J^4) , cJ

2 T-K
^(T-K)

^(X,J^2) , cJ

2 T-K
'^(T-K)

where d|- -^ and C^ are the characteristic roots of A, and the elements of §*,

respectively.

Furthermore, the non-centrality pareimeter for the distribution of u,

given in (2.9), can be written as:

J ^

(2.9a)
1=1

20^

c. Characteristics of the Risk Function

If in line with the specifications in the previous section, and by defining

^ /X?T L.A
< cJ/(T-K)) and t. = d!^^V 2 d^^^ which implies

^ j=l J
\(^) = P^(^(X,J*il)/X(T-K)
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•e^

t. > and E t^ = 1, (3.14) may be expressed as

i=l
^

(3.15) E(e-3)'(l-B) = a^trS"^ - a^( Z d^^) [h, C2)r2Ch, (4)-2h, (2)) I t,
- - -

-
i=l ^ ^ ^ ^ i=l

^

.*2^

2a

Written in this form, the risk of the preliminary test estimator (3.16) is seen

"^ *2 2
to be a function of both X and E t.^. /2a , where X appears through the

1=1

functions h (£) . ITius, a given value of X does not com-

pletely determine the risk functions of g, and one must know in addition the

values of the ^* which appear in Z t.C* /2a''.

i=l

In order to determine the largest and smallest risk values that 6 may take

J
,2 2

for a given X = Z ^1 /2a , we may choose t. and t„ as the t. with the largest
1=1

*2
and smallest values, respectively, and vary the £,. 's. The value of the risk

*2
function (3.15) is largest, for a given A, when only the E,. associated with

*2 2
t, , IS non-zer^o which means that C, = 2a X. Alternatively, the value of the

risk function (3.15) is smallest when the 5^ are varied so that only the ^*

*2 2 ''/

associated with tg is non-zero, and hence ^^ = 2a X.— Thus, given X,

(3.i6a) E(6-§)'(§-§) < a^trS"-^ - E dp^a^[hj^(2)+2(h^(4)-2h^(2))XtJ

,

i=l

and

(3.16b) E(i-3) •(§-§) > a^trS'V - Z dP^a^[h^(2)+2Ch^(4)-2h^(2))Xt2]

.

i=l

2/

Note that i > h, (2) = Pr

r 2
>i

^2 T-K
l^(T-K)

> Pr
(X,Jt-4) ^ cJ_

^(T-K)

T-K
h,(4)

2 2
> 0, since X,, ^ „. is stochastically larger than X,, ^ .. .

(X,J+2) •' * (X,J+4)
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Furthermore, by varying the E,* under the restriction X = IE,. /2a , the
i=l

rest of the preliminary test estimator, E(p-3)
' (3-§) , can assume any value

from (3.16b) to (3.16a). There is only one point for each equation for which

the value of the right side is a trS" , the risk of the conventional estima-

tor, (3.16a) and (3.16b) are equal when A = 0.

The characteristics of the risk functions (3.16a) and (3.16b) are re-

2
fleeted in Figure 1, for the situation where a = .05, a = 1, J = 2, T-K » 10,

E dp^ = 1, t, = .9. t„ = .1 and E(b-3)'(b-6) = 2.

i=l
^ ^ ^ - - - -

4. Comparison of the Risk Functions

a. Conventional and Preliminary Test Estimators

We now wish to determine conditions under which the risk function of the

/\
/\

preliminary test estimator, 3, is less than or greater than that of the un-

restricted least squares estimator, b, in terms of X. Subtracting (3.15)

from the risk function for b, (2.4), we have

(4.1) E(b-8)'(b-e)-E(S-6)'(6-6) = ( 2 dp^)o^[h, (2)+2(h, (4)-2h, (2)) Z t.--------
.^j, 1 X X X .^j 1

For a given value of X_, the risk function least favorable to the prelim-

inary test estimator is equation (3.l6a), where ?* = 2a X. Therefore, for

a fixed X, the smallest possible value of (4.1) is

(4.2a) (_Z d.^^^)a^[h^(2) + 2(h^(4)-2h^(2))tj^X],

and the risk of the conventional estimator b is at least as large as that for

the preliminary test estimator 6 if

rr*2'

i

2c'
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Risk Functions for the Conventional
Restricted and Preliminary Test Estimators,
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(4.3a) \ < h,l4T~ .

Alternatively, the risk function most favorable to the preliminary test esti-

mator is equation (3.16b), where F* = 2o \.

For a given value of X, the largest possible value of (4.1) is

(4.2b) ( E d{^^)a^[h^(2)+2(h^(4)-2h^(2))t2X],
i=l ''

which lies above (4.2a) for every X. Making use of (4.2b), the condition for

the risk of b to be less than or equal to that of 6 is

(4.3b) X > h, (4) .

Since h, (4) and h, (2) are complicated functions of X, it is difficult, in

general, to solve for the equality of the risk functions involving t. , i.e.,

1

for X such that f(X ) = 0, where f(X) = X - h, (4) , We do, however,
° °

2t r2 - — 1

know that X^ > l/4t, , since . .,.- > 0, and X > -^ ,_ =- if T-K > 2, since
- L' n.(2) - ' - 2t, (2-0} ) - *

X L

. v-. > 0)^, where u
h- (2) - 0* T-K

+ c

3/

Correspondingly, the same type of reasoning applies to finding the equal-

ity of the risk functions involving tg, i.e., for X^ such that g(X.) = 0,

where g(X) = X - h^(4) , with g(X) < if X < X^. Using tg.

2^st2 - h^l

3/— See Theorem 1 in Appendix B.
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h (4j

since , ,^i < 1, the risk for the preliminary test estimator is less than

^ -

that of the conventional estimator if X, <
1 - 2t3

Therefore, the equality of the risk functions of the preliminary test and

unrestricted least squares estimators have the following bounds :

Lt O

with the lower bound replaced by - .^ c- if T-K > 2.

In order to depict this situation graphically, the case that formed the

basis for Figure 1 is used and the neighborhood of the origin is enlarged

in Figure 2 in which the actual values of X and X, sy^ identified.

As a special case if the characteristic roots, d. , are the same (for

example, X'X is a scalar matrix) and thus,
^i

- ^i ~ '"' ~
^J'

^^®"
^L

^^^

t_ equal 1/J, and (3.16a) is equal to (3.16b). Under this situation, the

conditions for the preliminary test estimator to be less than or equal to

the conventional estimator are

C4.3d) ^ < X^ = X^ < |,

T

where the lower bound is replaced by -^-r^—r- if T-K > 2. This result is con-
2(2"aj^J

Sistent with that derived by Sclove, et^ al^. (1970) for the orthonormal re-

gressor case.

We may siimmarize the conclusions to this point as follows:

If X ^
^^o''^!'^

or X ji (tt— » 27"^ ^^^ ^ ^^ known, we can decide if (4.1)

is positive or negative. Furthermore, even if X is known and X e (X ,X,) with

X ^ X, , one cannot determine whether or not the risk function of b exceeds

J t.q'
that of 8 without knowing the value of I i—

.

i=l 2a
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The risk of § at the origin where X = 0, a consequence of 6 » 0, is

a^trS'^ - Pr
fx

(J+2) , cJ

T-K
'(T-K)

i=l
^

which is smaller than o^trS"^, the risk of b. This can be seen from (3. IS)

since X = implies -^ = 0, i = 1, . . . ,J. At X = 0, the risk function (3.16a)

2a

is equal to (3.16b).

Alternatively, since Xh, (il) and hj^(Z) approach as X approaches «»,

(3.15), (3.16a) and (3.16b) approach o^trS" as X - «. This implies that the

risk of 3 approaches that of b from above as X -^ « (see Figure 1)

.

Finally, it should be noted that the terms h, (2) and h, (4) are the proba-

bilities of ratios of random variables, being less than a constant and they

depend on the critical value c or the level of the test o. Therefore, as

a -^ 0, h> (A) -*" 1 and the risk of the preliminary test estimator, §, approaches

that of the restricted least squares estimator, B, since in a repeated sampling

context, % is used more frequently as an estimator of 6 for all X. Altema-

tively, as a -> 1 and h, (£) -* 0, the risk function for § approaches that for

the conventional estimator, b.

b. Conventional and Restricted Estimators

To facilitate a comparison of the risk of the equality restricted least

squares estimator, 3, with the conventional estimator, b, we note from the

derivation given in Appendix C that

(4.4) E(3-3)»(3-3) = a^trS-l

i=l ' i=l ^ ^

a^trS-l a2 i dP) . <P-

i=l
^

I d
(1)

J

[2 Z t.

i=l
^

..*2i

2a'
].
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Written in this form, it is clear that, in general, (4.4) is not just a func-

J

tion of X, but one must know the ^. which appear in E t.

i=l

',f

2a
As a ,counte::-

part for (3. 17a) and (3.17b), for a fixed value of X,

J
'^ -^ 2-1 2 fll 2

(4.Sa) E(e-B)'(e-6) < a trS ^ - a^ I dr^ * a^
, i=l

and

' T
^ ^ 2-1 2 fl"J 2

(4.5b) E(0-6)'(S-6) > a'^trS - a^ Z dr-" + a^
1=1

^

Z d)
(1)

2tsX,

Zd>
j«l ^

(1)
zt^x.

Thus, the risk function (4.4) can assume any value from (4.Sb) to (4.5a), by

2 ^ ^f
varying the 5* 's, under the restriction that Z —=• = X. Making use of

^
i«l 2a^

J

(4.4) or (4.5a) and (4.Sb), when X = 0, the risk of 6 = a^trS"'^ - a^ I d^^^
i»l

^

> 0. Also, as X goes to infinity, the expressions on the right side of (4.Sa)

and (4.5b), and thus (4.4), go to infinity. The characteristics of the risk

function for tg and t^^ in (4.Sa) and (4.5b), respectively, for the example

given in Section 3c, are given in Figures 1 and 2.

Making use of (3. 2b), and comparing the risk of B and b, we have

2^

].(4.6) E(b-8)'(b-6)-E(3-0)'(3-B) = a^ Z d^^\l-2 Z t. -X
i=l ^ i=l "-ha'

*2 ^ ^-^

By varying ^1 where X = Z -~
, (4.6) may assume any value from

i=l 2a^ .

(4.7a) a^ I df^^[l - 2t,X]
i»l ^ ^

to -*>»..»

(4.7b) a^ Z d.^^^[l - 2t„X] , for fixed X.

i=l ^ ^

Therefore, (4.6) will be non-negative if
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(4.8a) X <
1

2t,

and (4.6) will be non-positive if

1
(4.8b) X >

2t,

If t,, i^ t, and X e (^>r— • -oT—) > one cannot determine the sign of (4.6) even
b L ix^ 2tg

if X is known precisely. Thus, as in the case of the preliminary test esti-

mator, it is necessary to know the value of E t.

i=l
^

(rr*2\

2a

c. Preliminary Test and Restricted Estimators

By making use of (3.16) and (4.4), the difference between the risk func-

tions for § and § may be expressed as

(4.9) £(§-§)• (§-§)-£(§-§) •(§-§) =

, J
,(1)

( I dj"^)[l-h^(2)-2(l+h^(4)-2hj^(2))( S t^

i=l i=l

-• *2^

2a
)].

Proceeding as before, for a given value of X, (4.9) may assxime any value be-

tween

(4.10a) a2( I d{^^)[l-h^(2)-2(l+h^(4)-2hj^(2))(Xtj^)]
i=l

and

(4.10b) a^ E dP^)[l-h^(2)-2(l+h^(4)-2h^(2))(Xts)].
i=l

J C^
if we let the values of the ?* vary under the restriction that Z —s- = X,

^
i»l 2a

Now l-hj^(4) > l-h^(2) implies l+h^(4)-2h^(2) > and the difference in the

risk functions given by (4.10a) (and thus (4.9)) will be non-negative if

1

(4.11) X < (l-h^(4))

2Ht2 - a-h^(2))^
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l-h^{4)
Since ^_, .^^ ^ ^> ^^is means that (4.11) is satisfied if

A

(4.12) X, < ^

2 - 2tL
•

Also, (4.10b) (and thus (4.9)) will be non-positive if

J*2 a-\(^)) x]j.
J

If w^ < 3^, then [2 - (_^.-^\2))'^ - P^t-2 - T^^ '
^^ ^^"= ^^''^^'^ ^^.

^ ^(T-K)

satisfied if

(4.14) \^ > ^2 .

' 2tsPr[-^>^]
^(T-K)

The inequalities (4.12) and (4.14) are helpful because it is difficult

to solve for X- such that (4.11) holds for X < X- and X- such that (4.13)

holds for X > X_, Therefore, the equality of the risk functions of the pre-

liminary test and restricted least squares estimators have the following bounds

1

1
(4.15) < X2 < X3 < 2 .

2t3Pr[-I^ > f^l
^(T-K)

As before, if t^ = t2 = ... = tj, then (4.9) = (4.10a) « (4.10b) and

X2 = X_. This implies t. = y, for i = 1,...,J, and thus

(4.16) ^ < X- = X- <
2 "2 -^3 2

^(T-K)
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If X ^ (Xo,Xt) or X ^ (^^, =
'

) and X is known, we can decide

. S ^^2 - T-K^

(T-K)

if C4.9) is positive or negative. However, even if X is known and X e CX2,X,)

with X- / X, (which occurs if tg f t ), one cannot determine whether or not

the risk function of 3 exceeds that of § without knowing the value of

J X.C^

1=1 2a^

For X = 0, the difference in the risk functions of § and § (4.9) is

J X^
a^( Z dP^)Pr[ i^*^^ > ^nrl > 0. Furthermore, as X goes to infinity, the

i=l ^ X

right side of (4.9) goes to minus infinity because Xh, (i) and h, (i) go to zero

so (4.10a) and (4.10b) go to minus infinity (see Figure 1).

5. Optimal Choice of a

For X such that < X < l/4tj , the risk for the preliminary test estima-

tor is smaller than the conventional estimator regardless of the choice of

the level of statistical significance, a, or the critical value, c. However,

the choice of a or c does affect the magnitude of the difference between the

risk functions that result for each X.

When a approaches zero, the critical value c approaches infinity, and the

risk function for the preliminary test estimator approaches that of the re-

stricted least squares estimator 8. Alternatively, when a approaches one the

risk function for the preliminary test estimator approaches that of the con-

ventional estimator, and the difference in the risk functions tend to zero.

A graph of the risk functions for two levels of a is given in Figure 3.
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Since we have expressed the conditions for the risk of the conventional

estimator to exceed that of the preliminary test estimator in terms of, the

non-central ity parameter, X, of the non-central F distribution, we could

follow Toro-Vizcarrondo and Wallace (1968) or Wallace (1970) and propose

a test, for example, for the orthonormal regressor case for the hypothesis

X < J against the alternative X > ^. For this test, the investigator com-

putes the value for the test statistic and rejects the hypothesis if this

value exceeds tlie critical value based on an a and the non-central F with

J and T-K degrees of freedom and a non-centrality parameter of j. However,

it does not matter whether one uses the test statistic with the central F

(F„ „ ,
x-o-^

' ^^® °"^ originally proposed by Toro-Vizcarrondo and Wallace

(F»._„ . X-—-^ ' °^ ^^® ^'^^ suggested above, since the critical points for

these tests can always be matched up by varying a for one test versus another.

Since in reality X is unknown and the gain or loss for the preliminary

test estimator varies with the choice of c, we are faced with a decision prob-

lem, where the optimum critical value, c, or the level of statistical signif-

icance, a, depends on the optimality criterion used. If we are interested in

a choice of c or a which would minimize the maximum risk, a minimax solution

is c =^ 0. Given this trivial result, one alternative is to use the minimax

regret in the class of preliminary test estimators. Some results have been

obtained in this area for the risk function criterion, by Sawa and Hiromatsu

(1970), for the special case when J = 1.

Alternatively, if one could specify a tractable prior probability density

function for X, say, for example, a uniform or a chi-square distribution, then

a Bayesian extension of these results is possible. Relative to (4.1)' for a

uniform density for X on [0,<»), the integral exists and is finite. When a =

1, i.e., w^ = 0, the integral is 0, Of course, when a = 0, i.e., w = 1, then

the integral is infinite because estimator Q is always chosen.
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6. The Bias and Covariance Matrix of 3

It is well known that unrestricted estimator b is unbiased with a covar-

2-1 -^

iance matrix a S . The restricted estimator 6 has mean

(6.1)
' E§ = § - S''^R'CRS'-^R')"-^6,

and if 6 ?i 0, § is biased with bias S" R'(RS" R')6. Furthermore, § has a

covariance matrix,

(6.2) E(§-E§)C§-E§)' = a^[S"-^-S"'^R'(RS"-^R')"-^RS''^].

The mean of the preliminary test estimator,

(6.3) E§ = EI^Q^^j(u)|*EI^^^„3(u)b,

is evaluated in Appendix D and gives, from (D.4),

(6.4) E§ = § * h^(2)S"-^R'(RS"'^R')'^5.

If 6 = 0, the preliminary test estimator is unbiased. Otherwise, its bias

depends on (i) the probability of a random variable with a non-central F dis-
,

tribution being smaller than a constant determined by the level of the test

and the number of restrictions, J, as well as the incorrectness of the restric-

tion through the non-centrality parameter, X, (ii) the incorrectness of the

prior information through 6, and (iii) the matrix S' R' (RS R') . Thus, the

bias is always as small as that of 8 given in (6.1).

The covariance matrix of B is derived in Appendix C and is given in

(D.12) as

« ^ . . 2-1-1 fhxC2)a"I *[2h^(2)-h^(4).h^(2)]n^n;

(6.5) E(B-E6)(8-E6)' = a^S -P ^Q'

where P, Q, h,(2), h,(4) and n^ were defined in Section 3.

Q(P"^)'.
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By using

'j'

,0 0,

= QPS''^R'(RS"'^R'r'^RS"-^P'Q'

and

so

n = QP(B-S"-^R'(RS"-^R')"-^r),

P'^^Q' Q(P'-^)' = S"-^R'(RS"^R')"^RS"'^

and

QPS'-^R' CRS'-^R')~-^RS"-^P'Q'QP(§-S"^R' (RS"^R')''^r)

•(r'(RS"-^R')"-^RS"-^-0)P'Q'QPS"^R'(RS'^R')"-^RS"'^PQ,

(6.5) can be expressed as

(6.6) E(§-E§)(6-E6)' = o^S'^ - a^h^(2)S"'^ - [2hj^(2)-h^(4)+h^(2)]S"^R'

•(RS"^R')'^66' CRS"-^R')'^RS"^.

ft

Hence, the variance of 6 depends on the variance of b, the error in the re-

striction, 6, and probabilities which are associated with the chance of

accepting the hypothesis that X < X and using the restriction matrix, R.

7. The Risk for the Preliminary Test Estimator 2

In addition to the risk function for the preliminary test estimator 6,

one might be interested in the quadratic loss for conditional mean forecast-

ing and thus the risk function for the estimator ^ ~ ^1- ^°^ °^^ case, this

implies a risk function

(7.1) E(XB-)C6)'(XB-xe) = E(6-6)'X'X(B-6),

which weights the elements in the quadratic form, E(g-6)'(6-6) with elements
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from the cross products matrix, X'X, Wallace (1971) considered arisk func-

tion of the form (7.1) for the restricted estimator 3 largely because of the

simplification it produced in the tables required for testing hypotheses about

the non-centrality parameter, X. These same simplifications occur for the

preliminary test estimator.

The value of risk function (7,1) can be developed using the methodology

of Section 3 with only minor changes. Equation (3.7) from Section 3 becomes

-1 -1
(7.2) Q(P ^)'SP Q' = A*

""a* a*''^1 ^3

A*' A*
I,

since (P" )'SP" = I and Q is an orthogonal transformation.

As a consequence of the weighting pattern in risk function (7.1), the

criterion for the risk function for b to exceed that of § is

(7.3) X < i.2
ji- = 3-.

1=1 L

and for the risk function of § to exceed that of b is

(7.4) X > i- Z ^ "^

since d,,...,d- are all ones. Thus, in this special case, which is in line

with the results of Section 3b, the minimvim value for X, which is small enough

to insure that the risk function for the unrestricted estimator is less than

that of the unrestricted estimator, reduces to a single value, j . It should

be noted that if one assumes the orthonormality of regressors, this is equiva-

lent to taking (7.1) as the risk function. The extension of the orthonormal

regressor results to the general case is not a direct one as the measure of

goodness is changed .
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8. Concluding Remarks

Using a quadratic risk, function to measure estimator performance, a test

procedure proposed by Wallace, and the methods for evaluating the preliminary

test statistic developed by Stein and Sclove, we have investigated the pro-

perties of the preliminary test estimator for the standard regression problem

in which both sample and exact linear prior information or hypotheses about

the parameters is utilized. In particular, a preliminary test estimator is

evaluated which permits the investigator to utilize both sam^^le and exact,

though slightly incorrect, information to improve the estimates when judged

by a quadratic risk function criterion over certain regions of the linear

hypothesis space. The mean and variance of the preliminary test estimator

is specified and the condition for which this estimator is better than the

conventional estimator, in a quadratic risk context, is derived in terms of

the non-centrality parameter, X, of a non-central F distribution. It is

shown that in order for the preliminary test estimator to be superior to the

conventional estimator that X < -r E -^ < -r, which contrasts with the
- 4 . - d, - 4

1-1 L

result found by Wallace when comparing the risk functions of the restricted

and unrestricted estimators. When the risk functions for the orthonormal

regrassors and conditional mean forecast cases are compared, the condition

for the preliminary test estimator to be superior is that ^ f x •

The choice of the level of the test, and hence the critical value, con-

ditions the relative gain or loss accruing to the preliminary test estimators

for various values of X and the d. . At this stage, the choice of an optimal

critical point, c, that would satisfy some criterion or lead to an optimum

decision rule remains to be resolved. Inasmuch as the advantage of the pre-

liminary test estimator over the usual unrestricted estimator occurs when X
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1
' 4'^

is confined to an interval (0,-7- Z -; ), a Bayesian analysis in which a
1=1 L

prior distribution is placed on X seems to be one natural extension of this

work. As noted in the introduction, Sclove et al_. , in an unpublished paper,

have studied estimation preceded by testing for the orthonormal regressors

case and reach conclusions compatible with those we have derived for the gen-

eral model. In addition, it has been shown that for comparable values, of c

and for K or J greater than 2 and for < c < 2(K-2)
]
(T+K) , the Stein-James

(1961) positive part estimator strictly dominates the preliminary test esti-

mator. These results should carry over for the general case and what remains

to be done is to contrast the risk functions for the two estimators for non-

comparable critical values c.

Another line of inquiry would be to alter the exact constraint into a

stochastic constraint and following the work of Theil and Goldberger (1961)

and Theil (1963), develop a preliminary test estimator for that model. A

third line of inquiry is to consider as a criterion a matrix of risk functions

rather than a risk function and thus extend the work of Toro-Vizcarrondo and

Wallace (196S) . The authors are developing these lines of inquiry in other

papers at the present time.
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Appendix A
Some Theorems and Lemmas

We now turn to Lemmas 1 and 2 to be used in Theorems 1 and 2.

Lemma 1 . If the random variable u is N(e,l), then

EI,_ ^s(u-)u^ = Pr(X-.2 < c) + e2pr(X^.2 < c)

.

^°''^
CV'3) (|-.5)

2 2
Proof: If u is ^^(9,1), then u is distributed as non-central X a2 • Thus,

2 2
u is distributed as central X^, -,„v where H is a random variable with a

q2
Poisson distribution with parameter -=-

The expectation,

^^(O.c)^"')"' = ^t^fl(0,c)(^h)^hl"=^" = Jo^[IcO,c)^V^h^-

2

h!

2
where t, is distributed as X.. j,..

3-^2h , -t
c 1 —

; t ^ e ^dt
rQ2^h

2 ^\ r

-}

3+2h
h!

5-1- 2h , -t

e
^

3+2h , -t
c -2— -1_ 2,^ -6^^2^h

e dt X
h=0

3+'2h

3+2h
h!

-(— + 2 E -

h=l
3+2h

3+2h
(h-1)!

Pr(X^ .2 < c) + e^Pr(X^.2 < c)

= ^^O.C)'^^ e^ ^ " ^"El^n ..(X a2 )

(^,3)
^°'^^

(^,5)
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which was to be shown.

The following proof is a variant of one used by Stein (1966) to obtain a

similar result.

Lemma 2 . If u is NCe,l), then

EI ,- .(.u^)u = eEI,. ,^(X^.2 ) = ePr(X^.2 < c).
(0,c) (0,c)

^^^3^ ^^^33

2 2
Proof: If u is ^(6,1), u can be expressed as a central Xq^-hI ^h®^® ^ ^^

distributed as Poisson

(-2, e
EI(o^,)(u)u

The expectation

-ii
2 "

2 (^ *Q")

/2. i ^O.c)t")"« ^"

2 . " ~ (^ +9u)

9' 6'

-^ ' le^«'^^^(o.c)f"'))>

-9' /'c,2^h

60
j^^Q h! (C.g)' (l+2h)

= 9e ^
{ E '

^

2^h-l

^^C0.c)^^(3+2rh-l))^-^
^1 (h-1)! 'C0,c)^'^C3+2(h-l))

ePr(X%,2 < c)

(—,ij

Q.E.D.

Using Lemma 1, we have:

Theorem 1 : If the (J x i) vector u is distributed as N(9,I), then

(^:-^,J+2) (^^.J+2)
2 2
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J
2

Proof: Let u = (u,,...,u-)' so u'u = Z u.. Conditioning on the u. 's,
"

j=l J

^f^o,c)fy'y^y^ -'^^^t^ti(o,c- zu2)("i)"ii"j'^^i > • • • »

E[E[I j_j (uj)Uj|u.,j?*J]]}'.

which by Lemma 2 gives

E[I(o;^^(u'u)u] = {e^E[I
J

(X\, )],...,9jE[I j_^ (XV )]]

CO.c- Z up C-7-,3) (0,c- Z up (4.3)
j=2 ^ ^

j=l ^

J J-1

(—3) J = 2

C-f.3)
^"^

Now, since the sum of independent variables with non-central chi square

distributions has a chi square distribution with a non-centrality parameter

which is the sum of the non-centrality parameters for the variables summed

and degrees of freedom equal to the sum of the degrees of freedom of the indi-

vidual variables,

C^,J*2) C^,J+2)

. Q.E.D.

Using Lemma 1> wfc have:

Theorem 2 : If u is a (J x l) vector distributed as N(6,I) and A is any

positive definite symmetric matrix, then

(=2^,J+2) C^.J+4)

= Pr(X^g,g < c)trA + Pr(X^Q,Q < c)6'A9.

(^,J+2) (^,J+4)





•33-

Proof: Let P be an orthogonal matrix such that PAP' = D =

dj ...

J^

where

the d. > are the characteristic roots of A. Define the (J x 1) vector w =

Pu. So w is distributed N(Pe,I). We then have

E[I^Q^^^.(u'u)u'Au] = E[I(o,c)^-'-^^'^^

2^ 2,
l d.E[E[I,. „ A»-)^ \v-,i^iU,

which by Lemma 1 can be expressed as

E {d.E[I
1=1

^ C0,c-Zw2)CX^,:e)2 )]*(p;§)'B[I(o,e. Ew?)Cx'(p!e)2

jH ^ (-4^—,3) j^i ^ c-4^-.

2 )]}.

5)

where g.' is the i row of P. Therefore,

J

E[
ico.c)^^'^^^'^^^ =.^^Vf^o,c)^^ e-e 5^ -^ ^t^o,c)^^ 9-9 )3>

= Pr(X^9,0 < c)trA + Pr(X^Q,g < c)e'A6

C~^,J+2) C^,J+4)

Q.E.D.

A theorem useful in evaluating the covariance matrix of B is

Theorem 5: If the (J x 1) vector u is distributed normally with mean vector 9

aiid covariance matrix I of order J, then

^-^0,c)ty''^)y'^' = ^f^(0.c)t>^(X.J*2))J^J * ^f^0.c)<,J*4)^J§^''

where X = 6'e/2.

Proof: Let u = (u, , . . . ,u,) ' , and determine the diagonal and off-diagonal

elements of EI,- „-)(y'u)yy'- The diagonal elements are of the form
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E[I,_ ,( Z u^)u^] = E[E[I,. ,(u^)u^|u^,j/-i]

2
(by Lemma 1 and letting c* = c- Z u.)

2r^

2 r. 2,T o2rrT r,2
= E[I

(^,3) ^^^
C-4'5)

^'^^
2'^ ^2

The off-diagonal elements, for i i^ j > have the form

= E[u 0.E[I CXe'a )lu,,k^i]]

U..3)
2

2
by Lernina 2 and where c* = c- Z u.. Furthermore,

(-^.3) ' e^,3)g;

^ ( E ^,3+J-2)
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2 2
Now interchanging u. and Xva2 , we have

e.E[E[I,- 2 (u^)u.|x^ ^2 ]]

( E -2-,J+l) d. 2 ,J+1)

by Lemma 2. The unconditional expectations of the off-diagonal elements are

(E -2-,J + l) i-J.S)

•^
2

where X = Z 9 /2.
i=l

^

Combining the diagonal and off-diagonal components, the matrix may

be written as

Q.E.D.
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Appendix B. Properties of Functions of the
Non-Central F Distribution

In this Appendix, a theorem is developed which permits the evaluation of

regions where the non-centrality parameter, X, of the non-central F distribu-

tion is either small enough to insure the risk function for 3 is less than

/\

that of b or large enough to insure that the risk function of § is larger

than that of b.

rf *

Theorem 1 : Let

h,W -=^nx\^^,^^y'^l^.^^ < cJ/T-K)

and

w
T-K

+ c

If T-K > 2, then h^(4)/h^C2) > w^,

Proof:

f^-1^ '^t^(X,J.^)/^rT-K) 5 fq<)
2 e ^ I^Pr

k=0 '^'

^(J-f£f2k) cJ_

y2 - T-K
^(T-K)

where

Pr
'^(J-f)l-*-2k) cJ__

2 - T-K
"^(T-K)

cJ_
T-K

J+il+2k-l

w dw

J+il+2k+T-K

P(—^
, -=-)(l+w)

1/

cJIntegrating the density by parts and defining c = =—jr yields
1 — K

-'^Lindgren (1968), p. 380.





(B.2)
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J+Jl+2k-l

,J+2,+2k, 2

2 /o ^-T—^^ dw

J+il+2k J + )i+2k+T-K ,

fjtii^. l^)(i*w) ^

J^+2k

»

J+£+2k
2

w

6(i
2

2k

j+;i4 2k+T-K

. ^D(i-w)
2

which can be written as

J^-Jl4-2k

-^+Z+2k+T-K,,, 2 ,,
g 2(- s ^jw dw

J+£,+2k+T-K '

^J*|*2k3g^JU*2k^ TMC^^^^^j

J+Jl+2k

(B.3) Pr
2

(T-K)

2 t = t

k4 (k+l).
J+il+2k+T-K '

„.J+£+2k T-K. ,, .6(— .-2-^(1*Cq)

Using (3.3) recursively.

00

J+£+2j_

c ^
( ^

)_o M-^£f2j-^

k+y j=k

P( ^
^ ,-~-)Cl+c^)

J-^£-t-T-K4-2j

since lim t, ,
= 0.

Letting the previous definitions of c and w mean that c

I
.—1_ = 1..W
1>C_ 0*

w.

1-w.
and

3+1*2) T-K

(B 41 t = Z
-^^^^^j

w- (1-w^)

^*J J=k 3(=^^.^
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It follows from using (B.4) in (B.l) that

J+£+2j J-t-Jl^-T-K-t-23

^,J+;+T-K+2i, 2 ,, , 2

• wo. ; -^aI ^
r( ^ ^.^ (i-w^)

Hence, J-^4->2j T-K

00 V 00 ^0- - 2
A v' ^

h f4l ^ ^FT^ rrJlil2i;!l)rfIli)

h7(2y J^2-*-2j T-K

e E T-r- E

k:o^^!j.k rc=^^:^^^2i^^^T^
2 '* ' 2

J-t-2j+2

CO ^ic » ,,^
2 r.J^2.T-K.23:3^Jl2^T;JWi^

. k--o^j'k -^7^^3 (JlipFl^

"o jH-2j-t-2 -

2 „,J+2+T-K+2j," ,k 00 w r( ^
i-)

since ^*I:~-t^^ > 1 whenever T-K > 2, which proves the theorem. Furthermore,

J-f 2fT-K-f2j _ CJ>2+T-K)^2j ^ Jf2-t-T-K

J+2+2J+2 " tJ+4)+2j - J+4 '

for j = 0,1,2, ... ; hence,

^'X^"*'^ ^ ,J+2+T-K, ,, T-K-2, ,, ^„ r V ^ 7
r-~7%r- < w (—=--;—

^) = U' (1 -!- ~y—

.

—
) , when T-K > 2.

h, (2) - o*- J+4 ^ 0^ J-^4 '^
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Appendix C — The Risk Function for 6

The evaluation of E (§-§)'(§-§) begins with text equation (2.7d)

(CO) £(§-§)• C|-3) = tr covarC§) + tr (bias §) (bias §)
•

and the covariance and bias terms are transformed using the transformations

described in Section 3a. By (2.7b), the covariance terra can be expressed as

(C.l) a^[trA - trQ(P""^)'Q'

0,

QCP'b'Q'],

= a [trA - tr
Oj

A]

Equation (C.l) can be expressed as

(C.2) = a^trA-

2^""^
(2)

,(2)where d. are the characteristic roots of A_ as defined subsequent to defi-

nition (3.7).

The bias term in (CO) i?

(C.5) tr S"'R' (RS"-^R')~-^o6'(RS"'^R')''^RS~-^

= tr[QPS'-^R'(RS'-^R')"^(RP'-^Q'QPe-r)]'Q(P"h'P"'^Q'

•[QPS"'^R' (RS"-^R')""^(Rp'-^Q'QPB-r)]

QPa-QPS~'^R' (RS"-^R') ^r]'A[
I

QPS-QPS"-^R' (RS''^R')"'^r]

We note that
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(C.4) QPS'-^R' (RS ^R')
^

QPS"-^R'(RS"''"R')"^

Substituting CC.4) into (C.S), we have

CC.5) tr S"-^R'CRS"-^R')"-^<S6'CRS"-^R')~'^RS"^

[QPC8-S'-^R'(RS"-^R')"-^r)]

A3 A2. .0 0.

•[QPC6-S"'^R'(RS"''-R')'-^r:)]

J
Z

i=l

= _Edf^(Cp^

where E,^ and d. ^ are defined in Sections 3a and 3b.

Cons^uently, using (0.2) and (C.5),

K-J J

CC.6) E(g-6) •(§-$) = a^ E dp^ -. Zdp^(£*)^
' ' j=l J i=l ^ ^
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Appendix D — Bias and Covariance for 6

In this Appendix, the bias and covariance matrix for |3 are determined.

Returning to the definition of 3 and its derived value in (2.11), and the

transformations of Section 3,

-1,
(D.l) § = b - I(o,c)^"^P Q'

^J^

(0 Oj
4

Therefore, the expected value of 3 is

^ = ^ - P"'Q'^(0,c)(")

(D.2) E§ = § - ap'^Q' E[I
^1^1 ^1

(0,c*) ^2 a ],

since c > u = --- -

^
and

"
< —=— = c* as shown in Section 3b.

Using Theorem 1 to evaluate the expectation in (D.2),

(D.3) E6 = $ - P Q'

loj
Di^

X
(X,J-t-2) ^ cJ

^(T-K)
T-K

Noticing that

p"iQ,
n, = P"^Q'

I

(0 OJ

[QP3-QPS"-^R'(RS"-^R')'-^(R6-5)],

as well as

,1I^

QPS"-^R'(RS"-^R')~-^6 = QP"-^R'(RS"-^R')"-^5,

CD. 4)
^ -1 -1 -1

E§ = B + S ^R'(RS R') 6 Pr
•(X,J-4-2) cJ_
,2 T-K
'(T-K)
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and the amount of bias depends on fi and the level of the test, a,- through c.

A small a implies a larger c and hence increases the probability that given

6 will be included in EB.

Turning now to the covariance matrix of 3, it can be written as

(D.5) Var(6) = £(§-3) (3-3)' - E(3-3)Efe-0)

'

f 2
/

= MSE3 - [Pr
"(X,J-^2) cJ_
2 T-K

^(T-K)

I

* rc'-'-D > rDQ~^Di \"
]*-[S"^R'(RS"-'R')'^5][6'CRS "R') *RS ^],^Df\'*DC"^l

but

QPS"-^R'CRS"'^R')"'^'S =

r

n.

so

(D.6) Var 3 = MSE6 - [Pr

X
(X.J-t-2) ^ Jc

T-K
•(T-K)

]V^Q'

r ' ^

DlDl
°

.
0.

QCP"-^)'.

From the definition of w = QP[b-S~ R' (RS~ R')' r]
,
given after (3.4),

the MSE§ is

(D.7) E(3-3)(3-S)' = E(b-3)(b-S)' - E[(b-3)I,^ , (u)w'Q(P"-^) 'R' (RS''^R')"-^RS"-^]

- £[r^y^,^(u)(S"^R'(RS'^R')"^RP"^Q'i^)(b-3)']

•! (S"^R'(RS~-^R')"-^RP''^Q'E[I, . (u)ww' ]Q(P"'^) 'R'
\.U,CJ

(RS'-'-R')"'^RS"'^)

(D.7')
2 ~y -1 l^J

°'

a^S ^ - P 'q'EI ^,,(u)(w-n)w'
-^

QCP"^)'

-1 '^J
^

[C Oj

EI^Q^^^(u)w(w-r,)'Q(P'^)'

+ P ^Q'
Elfo.c)^"^^^' Q(P'-^)'
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since

Q(P''^)'R'(RS"-R')"-^RP'-^Q' and S"-^ = P"-^(P"-^)' = P"^Q'Q(P"'^)«

Making use of the results of Section 3b, u = —-s— < c so
"

< —=— = c*.

Jo a o

r:2given a , we have for the second term of (D.7')

(Wj-n^wJ

(D.8) .P^Iqi

EI
CO,c*)

QCP'b'

A similar argument holds for the third and fourth terms of (D.7') so

(D.9) E(0-e)(8-3)' = a^s"-^-a^P"-^Q'

EI
CO,c*)

!i^
a o

"ii'h

2

+P"-^Q'

I?l'^O.c*)
f

^1

0.

.o'\

^
y?'\'-

EI
CO,c*)

r ' ^

^1^1
^iDi

.0

Q(P"b'

QCP"-^)'

Q(P"^)'.

Using Theorems 1 and 3 of Appendix A, the risk matrix of 3 is

^ As

(D.IO) E(6-6)(3-6)' = a'S
2.-1

-P""^Q' QfP"h
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or after taking the expectation over a ,

(D.ll) E(3-6)(§-3)' = a^s"^

-P'-^Q'

EI

fO'fe^

^

CT-Kj

f^ ^J^'3l^lE[I _j
(A^J+4)

^°'t:k>

+2n,niE[i

(T-K) ^

^CX.J+2)

'CT-K)
Q(P'^)'.

Combining equations (D.G) and (D.ll), the variance of 3 is

^ . ^^ 2-1-1 fhC2)a2i >hC4)nin;-2hC2)niD;
(D.12) EC3-Ee)(e-E3)' = a^S -P ^Q'

- ". - '
'K-J

QCP"^)'

P"-^Q'

h^{.2)i\^r\[

QCP'b'.

where r),n, and I, are (J x J) matrices, 0„ , is a (K-J) x (K-J) null matrix
-1-1 J K,-J

and the remaining null matrices are o^- the proper order for conformability

in multiplication.
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