
w-Cycles in Surface Groups

J. I. MacColl

A dissertation submitted in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy

Department of Mathematics

University College London

October 30, 2021



I, Jo MacColl, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has

been indicated in the work.

1



Abstract

For w an element in the fundamental group of a closed, orientable, hyperbolic

surface Ω which is not a proper power, and Σ a surface immersing in Ω, we

show that the number of distinct lifts of w to Σ is bounded above by −χ(Σ).

In special cases which can be characterised by interdependencies of the lifts of

w, we find a stronger bound, whereby the total degree of covering from curves

in Σ representing the lifts to the curve representing w is also bounded above by

−χ(Σ). This is achieved by a method we introduce for decomposing surfaces

into pieces that behave similarly to graphs, and using them to estimate Euler

characteristics using a stacking argument of the kind introduced by Louder and

Wilton.

We then consider some consequences of these bounds for quotients of ori-

entable surface groups by a single element. We demonstrate ways in which these

groups behave analogously to one-relator groups; in particular, the ones with

torsion are coherent (i.e. all finitely-generated subgroups have finite presenta-

tions), and those without torsion possess the related property of non-positive

immersions as introduced by Wise.

Impact Statement

The results presented here are, at a base level, further exemplification of how

those features of objects that we find visually pleasing or interesting can be

given precise meaning and utilised. Surfaces are easy to conceptualise as they

are described by visual features like genus and boundary components - here we

discuss algebraic systems associated with surfaces, and how these exact features

manifest as controls on those systems, showing that they obey specific and nat-

ural laws and prevent pathological behaviour from presenting in them. Having

greatly enjoyed opportunities to engage with the public in demonstrating how

fundamental concepts in group theory such as commutators can be realised in

intuitive physical problems throughout my studies, it is my hope that an im-

pact of this work can be to similarly aid in education of mathematics as a way

to precisely express a natural, visual, concept. The method of stackings which

we extend to surfaces here, as a geometric way to express how groups can be

ordered, and to reduce the complexity of geometric problems to just the pieces

of a stacking that can be seen from above or below, provides a good example
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of how a physically realisable system can impart an understanding of abstract

ideas.

More specifically within research on geometric group theory, the tool of a

rectangular decomposition developed here seems to be new, and a potentially

useful way to reduce problems involving mappings of surfaces with boundary

to those in which simpler graph-based arguments can be applied. Here for

example they are used to show how dependencies in systems describing the

adjunction of roots to subgroups of surface groups manifest in essentially the

same way as they do for free groups. Coherence, which is proven here for one-

relator surface groups with torsion, is also a useful property from an algorithmic

perspective, implying finite termination of combinatorial algorithms to list all

possible subgroups generated by any given finite set of group elements.
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1 Introduction

The aim of this thesis can broadly be stated as taking some results and meth-

ods in topological graph theory that have been developed over the last decade

and showing that they also hold for closed orientable surfaces. Going from 1-

dimensional to 2-dimensional objects is a natural direction of generalisation, and

while graphs and free groups are comparatively well-understood, 2-complexes

and their fundamental groups comprise too wide a class of objects for carrying

aspects of graph theory over to all of them to be a realistic goal in general. As

manifolds, surfaces inherently have nicer properties than generic 2-complexes,

so it is more reasonable to make such an attempt. A key part of the method we

use to prove our main theorem is to make use of the constraints on how 2-cells

making up a surface can connect with each other in order to exhibit certain

“graph-like” behaviours.

Beyond this practical reason for focussing on them, surfaces are of course

interesting in their own right, having played important roles in the develop-

ment of subjects across almost the entire range of pure mathematics. Even just

focussing on the area of geometric group theory they were foundational, pro-

viding some of the first motivating examples of one-relator groups, hyperbolic

groups abstracting the notion of negative curvature from classical geometry, and

small-cancellation theory, illustrating the power of such abstractions in reveal-

ing behaviours of groups which would otherwise not be at all obvious from their

concise combinatorial presentations [23, 55, 76, 62]. Furthermore, studying the

action of a hyperbolic surface’s mapping class group on its Teichmüller space

of metrics — aside from its huge impact in understanding the geometry and

topology of 3-manifolds — has helped provide a framework for the exchange

of topological and algebraic information that arises in more abstract examples

of groups acting on spaces, notably in the development of Culler-Vogtmann’s

Outer space for studying automorphisms of free groups, and later on automor-

phisms of other groups which have become important, such as right-angled Artin

groups as a recent example [22, 60].

As influential as surfaces have been in the development of modern geometric

group theory, there are still a variety of open questions relating to their fun-

damental groups and subgroups. It is interesting to attempt to answer these

questions for their own sake, surfaces being such tangible objects that they are
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attractive to investigate. But it is also interesting for what deeper knowledge

about the subgroup structure of their fundamental groups could possibly imply

for any of those myriad research directions that grew out of the earlier geometric

and topological studies of surfaces.

A lot of research into aspects of combinatorial group theory can be framed in

relation to the classical decision problems formulated by Dehn [23] — the word,

conjugacy and isomorphism problems — and related problems that have come

from them, such as the generalised word problem or the subgroup membership

problem. Although decidability is not much of a consideration in the work here,

we observe that our main result can be viewed in terms of a quantification of

the subgroup membership problem. We will give the precise meaning of the

terms below, but essentially a “w-cycles theorem” gives a bound on how many

ways a power of a group element w can appear in a given finitely-generated

subgroup, purely dependent on the subgroup rank and not on w itself. The

w-cycles theorem in free groups (Theorem 3.1) was proved in 2014 by Louder

and Wilton [52], and independently Helfer and Wise [35], and our Theorem A

gives the analogous result for surface groups.

A driving heuristic for the geometric approach to group theory has been

to explain solutions to combinatorial problems for certain classes of groups as

consequences of geometric and topological features of spaces that are intrinsi-

cally linked to those classes. The archetypal example of this approach comes

from Gromov’s work setting out a programme of research into hyperbolic groups

[32], for which the understanding obtained by seeing groups as negatively-curved

spaces has yielded solutions to Dehn’s original three problems and far more. It

was in an effort to find a similar geometric theory for the class of one-relator

groups that Louder and Wilton have recently developed the idea of “2-complexes

with negative immersions” [54], building on Wise’s idea of non-positive immer-

sions (Definition 1.4).

One of the more satisfying aspects of the methods used here is in the demon-

stration of Louder and Wilton’s idea of stackings being applicable to surfaces.

When they used graph stackings to prove the original w-cycles theorem, it was

the starting point for a thread of ideas that has revealed a great deal more about

subgroups of free groups and their one-relator quotients, with strong connec-

tions to the question of hyperbolicity of the latter class of groups. Although we
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do not yet have an analogue of the constructions related to negative immersions

for surfaces, it is still interesting to note that one of the core methods, estimat-

ing Euler characteristics using height data from stackings, can also be made to

work for surfaces. We obtain the beginnings of a geometric theory of one-relator

quotients of surface groups, as captured by the properties of non-positive im-

mersions and coherence.

1.1 Statement of Results

Here we state our main findings, together with the basic definitions required to

state them. We give our central definition and Theorem A in the topological

language that our proofs will go on to use, and defer further definitions and

discussion of the context of these concepts to Part I.

Definition 1.1. Call a topological space circular if it admits a deformation

retract onto S1.

Let

f : Y # X

be an immersion of compact spaces, and

w : S # X

an immersion of a circular space into X. Let P be the pullback of Y and S

along the maps f and w, and let S denote the collection of circular components

of P . We call any component of S a w-cycle in Y .

Finally, call an immersion A # B of topological spaces reducible if B contains

an interior point with at most one preimage in A.

Theorem A. Let Ω be a closed connected orientable surface such that χ(Ω) < 0

(where χ denotes Euler characteristic). Fixing a choice of hyperbolic metric on

Ω, let

h : Σ # Ω

be a boundary-essential immersion of a compact connected surface into Ω such

that the curves h(∂Σ) are geodesics in Ω. Let

w : S # Ω
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be a covering map from an annulus S which does not factor properly through

any other immersion of an annulus into Ω and with a core curve which is also

sent to a geodesic in Ω. Let S be the set of w-cycles in Σ associated to the

immersions w, f . Then the number of w-cycles in Σ is at most −χ(Σ) if the

induced immersion S # Σ is irreducible, and at most 1− χ(Σ) otherwise.

Our definition of w-cycle in Definition 1.1 is a generalised version of the one

Wise gave for graphs in [79], which was motivated by his study of a property

of groups which has yielded to investigation by topological methods in recent

decades:

Definition 1.2. A group is coherent if all of its finitely-generated subgroups

have finite presentations.

Finding a bound on the number of w-cycles in free groups was an attempt

to show that one-relator groups are coherent, answering a question of Baumslag

[5]. From the w-cycles theorem for graphs, Louder-Wilton [53] and indepen-

dently Wise [80] were able to show that one-relator surface groups that contain

torsion elements are coherent. Our work regarding w-cycles in surfaces gives

new information on an analogous class of groups:

Definition 1.3. Let Ω be a closed connected surface, and g an element of its

fundamental group. Denote by 〈〈g〉〉 the normal closure of g in π1(Ω). Then the

quotient

π1(Ω)/〈〈g〉〉

is called a one-relator surface group. We may call it a (non-)orientable one-

relator surface group reflecting the (non-)orientability of Ω.

These are of course two-relator groups, but, due to the special properties

surfaces enjoy compared to generic 2-complexes, they warrant separate discus-

sion. Various authors, in particular Hempel and Howie, have shown that the

theory of one-relator surface groups mirrors that of one-relator groups in many

fundamental ways [37, 41]. Our next result shows that this is also true of co-

herence:

Theorem B. Orientable one-relator surface groups with torsion are coherent.

Finally, we define another property introduced by Wise in relation to his

investigation of coherence of one-relator groups:
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Definition 1.4. A connected 2-complex X has non-positive immersions if, for

any compact connected 2-complex Y immersing into X, either χ(Y ) ≤ 0, or

π1(Y ) is trivial. We also say that a group has non-positive immersions if it has

a presentation 2-complex with non-positive immersions.

The above theorems will imply:

Corollary C. Every orientable one-relator surface group is either coherent, or

has non-positive immersions.

These two properties should not be viewed as a dichotomy but rather as part

of a larger picture of the structure of one-relator surface groups — Wise conjec-

tured that groups with non-positive immersions are coherent, with a recent and

extensive list of evidence connecting these properties given in [81]. The idea

of a geometric structure provided by non-positive immersions seems to give a

great deal of insight into subgroup structure, with immersions describing how

complexes representing subgroups of the fundamental group are able to sit in-

side the whole complex. From this point of view, information that non-positive

immersions gives towards coherence is not surprising, given that it makes a

statement about all finitely-generated subgroups.
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Part I

Background

2 Foundations

In this section we will discuss some of the general concepts in geometric group

theory that the ideas surrounding w-cycles grew out of — we will discuss the

aspects more specific to w-cycles in § 3, but also try to stick to concepts and

examples motivated by them here. We want to emphasise some of the tech-

niques that have developed in the last 50 years to express group-theoretic ideas

using topology, to motivate the constructions we will go on to make in Part II.

We start by recalling some basic definitions and constructions that will be used

ubiquitously in the later sections.

A 1-dimensional cell complex Γ is a graph, which we usually think of as

being made up of a set of vertices, V (Γ), and directed edges E(Γ), with inci-

dence functions ι, τ mapping edges to their initial and terminal vertices. The

fundamental group of a connected graph Γ is a free group whose rank is given

by

rk (π1(Γ)) = 1− χ(Γ)

where χ denotes the Euler characteristic, given for a general cell complex by

the alternating sum of cardinalities of its sets of cells in each dimension, in this

case

χ(Γ) = |V (Γ)| − |E(Γ)|

An immersion f of topological spaces is a locally-injective continuous map,

denoted f : Y # X. If f is a combinatorial map of cell complexes (meaning it

maps n-cells of Y homeomorphically to n-cells of X), this means it is an immer-

sion if it is injective on links. Similarly, an immersion of manifolds is a smooth

map which is injective on the tangent spaces at each point. The immersion f is

called essential if it induces an injective homomorphism on fundamental groups.

Given a pair of immersions with common target f1 : Y1 # X, f2 : Y2 # X,

the pullback of f1 and f2, which we denote Y1 ×X Y2, is the universal object

which forms the following commutative diagram:
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Y1 ×X Y2 Y1

Y2 X

p1

p2 f1

f2

and through which any pair of immersions from another space into Y1 and Y2

factors. For the spaces we consider, pullbacks of immersions can be given explicit

topological structure as fibre products:

Y1 ×X Y2 = {(y1, y2) ∈ Y1 × Y2 | f1(y1) = f2(y2) ∈ X}

and the immersions p1, p2 from the commutative diagram are induced by the

natural projection maps from Y1 × Y2 to Y1, Y2.

Surfaces are smooth 2-dimensional manifolds, possibly with boundary com-

ponents consisting of a disjoint union of embedded circles. They can always

be given the structure of a 2-dimensional cell complex, but in general we won’t

canonically associate them with a set of vertices, edges and faces as we would

a graph. We call surfaces closed if they are compact and have no boundary

components. An immersion of smooth surfaces can only fail to be essential if

the surface being immersed has a boundary component that is mapped to the

boundary of a closed disc in the target — to emphasise this, essential immer-

sions of surfaces may be called boundary-essential.

The classification of closed surfaces tells us that every closed surface can

be obtained from the 2-sphere S2 by taking connected sums with copies of the

2-torus T 2 and the real projective plane P 2. A surface is non-orientable if and

only if it has at least one P 2 summand; we note that there is the standard

relation for surfaces with three or more P 2 summands:

P 2#P 2#P 2 ' T 2#P 2

(where ' denotes homeomorphism). Fixing a cell decomposition on any con-

nected closed surface Σ, we can compute its Euler characteristic and categorise

Σ as:

• round, when χ(Σ) > 0, realised only by Σ = S2 and P 2

• flat, when χ(Σ) = 0, realised only by Σ = T 2 and P 2#P 2 =: K, the Klein

bottle
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• hyperbolic, when χ(Σ) < 0, realised by all other connect-sums of T 2 and

P 2

These names reflect the different types of curvatures that relate to the differ-

ential geometry of these surfaces, classically known to be constrained by Euler

characteristic via the Gauss-Bonnet theorem. They also separate the complexity

of the fundamental groups; in the round case:

π1(S2) = 1, the trivial group, π1(P 2) = Z2

in the flat case, we give the fundamental groups as combinatorial presentations

in terms of generators and relations:

π1(T 2) = 〈a, b | [a, b]〉 ∼= Z2, π1(K) = 〈a, b | aba−1b〉 ∼= 〈a′, b′ | (a′)
2

(b′)
2〉

where ∼= denotes group isomorphism, and [a, b] denotes the commutator of a and

b, that is, the element aba−1b−1. Fundamental groups of hyperbolic surfaces also

have two different types of combinatorial presentation, according to whether or

not they are orientable; for those that are orientable:

π1

(
g(#T 2)

)
=

〈
a1, b1, · · · , ag, bg |

g∏
i=1

[ai, bi]

〉

and for non-orientable hyperbolic surfaces:

π1

(
n(#P 2)

)
=

〈
a1, · · · , an |

n∏
i=1

a2
i

〉

So almost all closed surfaces are hyperbolic, and in general when we talk

about surface groups we are talking about groups of one of these latter two

forms; where we want to be more specific, we may call them orientable and

non-orientable hyperbolic surface groups, accordingly. For fundamental groups

of surfaces with boundary, we can obtain presentations from those of the corre-

sponding closed surfaces by adding a generator for each boundary component,

and appending the product of these generators to the given relation. How-

ever, since surfaces with boundary retract onto graphs, we know that these give

presentations of free groups, so we do not classify these as surface groups.
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2.1 Stallings’ Approach

Having introduced in § 1.1 the basic topological objects appearing in Theorem A,

we now briefly discuss a “dictionary” relating them to fundamental concepts in

group theory. In [73], Stallings laid out an approach for studying subgroups of

free groups by looking at immersions of compact graphs, and it gave powerful

ways to understand the theory of free groups. For instance, decidability of the

subgroup membership problem, and Howson’s theorem, that the intersection of

two finitely-generated subgroups is again finitely-generated [42], followed imme-

diately from Stallings’ techniques and elementary topological arguments. His

methods have informed the approach we take for studying w-cycles throughout

this work, being heavily used also in the literature surrounding w-cycles and

one-relator groups.

A starting point for these ideas is the familiar correspondence between sub-

groups of a space’s fundamental group and coverings of that space. Coverings

are local homeomorphisms, and so in particular are immersions. Generalising

by dropping the requirement of local surjectivity, we can study more interesting

ways that a group H can have a homomorphic image in a group G by specifying

immersions XH # XG, where XH , XG are appropriate spaces with fundamen-

tal groups H, G. Stallings showed that any map of compact graphs Γ → ∆

factors through an immersion Γ′ # ∆, with Γ′ obtained from Γ by a process of

“folding edges” — that is, identifying edges e1, e2 ∈ E(Γ) with the same image

in ∆, and such that either ι(e1) = ι(e2) or τ(e1) = τ(e2) (or both). In this way,

any finitely-generated subgroup of the free group π1(∆) can be represented by

an immersion, simply by taking a wedge of circular graphs describing the paths

of the subgroup generators in ∆ and folding edges together. This represents

the subgroup as the fundamental group of a graph whose local structure mimics

that of ∆, therefore meaningfully showing how the subgroup sits inside π1(∆).

This folding procedure has since been generalised to represent subgroups of fun-

damental groups of 2-complexes by immersions, see for instance [53, §4].

The next observation from Stallings’ paper that we will make heavy use of is

that topological pullbacks represent group intersections. More precisely, given

two essential immersions of connected graphs fi : Γi # ∆ (i = 1, 2), then fixing

a basepoint b ∈ ∆ and basepoints bi ∈ f−1
i (b), the connected component of the

fibre product Γ1 ×∆ Γ2 containing the point represented by (b1, b2) will have
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fundamental group isomorphic to

f1∗π1(Γ1, b1) ∩ f2∗π1(Γ2, b2) ≤ π1(∆, b)

since travelling round a loop in this component is the same as travelling round

loops based at bi in the Γi which project to the same loop in ∆. Making different

choices of basepoints corresponds to taking conjugates — so, for instance, if we

chose b′1 6= b1 ∈ f−1
1 (b), there would be a path connecting b′1 to b1 in Γ1 which

would map to a loop l based at b in ∆, and it follows that

π1(Γ1, b
′
1) = [l]π1(Γ1, b1)[l]−1 ≤ π1(∆, b)

(where we use square brackets to denote the homotopy class of an immersed

loop). But while these two subgroups are isomorphic, the pairs of paths based

at b1, b2 in Γ1, Γ2 with the same image in ∆ will generally be distinct from those

pairs of paths based at b′1, b2, and they will therefore correspond to a different

connected component of Γ1 ×∆ Γ2. So, taking all the connected components of

the pullback together gives the collection of conjugate intersections:

[l1]π1(Γ1, b1)[l1]−1 ∩ [l2]π1(Γ2, b2)[l2]−1, ∀[l1], [l2] ∈ π1(∆, b)

which we can express more succinctly as

[l]π1(Γ1, b1)[l]−1 ∩ π1(Γ2, b2), ∀[l] ∈ π1(∆, b)

These observations can be extended to more complicated spaces than graphs,

but some care must be taken to allow the statement that “pullbacks represent

intersection” to still hold, since a single element of the fundamental group can

have many different representatives in a space with more than one dimension.

For a pair of connected surfaces Σ1, Σ2 equipped with immersions f1, f2 to a

surface Ω equipped with a given metric, we can say that the pullback of the

immersions has components whose fundamental groups are the intersection of

π1(Σ2) with various conjugates of π1(Σ1), provided that the images of the fi

are geodesically convex with respect to the metric on Ω. This is the case in the

hypotheses of Theorem A

So, if Definition 1.1 looked strange at first glance, we can now understand

w-cycles for w an element of some group G as the generators of the intersection
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of a given subgroup of G with the cyclic subgroup 〈w〉. This will allow us to

translate Theorem A into the group-theoretic statement Theorem A’, after we

discuss how the property of reducibility manifests in systems of equations on

groups.

Remark 1. In the following sections we may interchangeably refer to w-cycles

in both these topological and algebraic contexts. In our case of w-cycles in

orientable surfaces, we fix the topological realisation of w to be an immersion

from an open annulus which covers Ω as stated in Theorem A. The image of

the core curve of this annulus generates 〈w〉 ≤ π1(Ω), and fixing the whole

covering annulus to take the pullback from allows these topological objects to

be unambiguously identified with the algebraic analogues.

Example 2.1. Figure 1 shows a simple picture of the graphs associated to the

rank 3 subgroup of F2 generated by even length words, and indicates the paths

traced in the folded graph for this subgroup by the w-cycles when w = a2b. The

subgroup is index 2, and so in particular is normal, so Stallings’ folding proce-

dure (starting in the picture from the wedge of cycles representing the generating

set {a2, ab, ab−1}) produces a regular degree 2 cover, but for general subgroups

H we could only guarantee that we get a graph ΓH immersing in Γ after folding.

For any index n < ∞ subgroup of π1(Γ, v), there will always be paths pro-

jecting to w between vertices of ΓH in the preimage of v when ΓH is constructed

this way. As a result, it is easy to see that there can be at most

n ≤ n · (−χ(Γ)) = −χ(ΓH)

w-cycles for such a subgroup (χ(Γ) < 0 for any graph representing a non-trivial

free group). This same reasoning can be applied to finite-index subgroups in

any group which can be realised as the fundamental group of a cell complex of

negative Euler characteristic (see Lemma 5.1), so in general we are interested

in bounding the number of w-cycles in infinite-index subgroups, and will want

to focus on the geometric characterisations of such subgroups.

2.2 Equations on Groups and Adjunction

The algebraic notion of a w-cycle that we gave above can be interpreted in terms

of an older idea of solving systems of equations on groups, where essentially, we

view the collection of conjugates of powers of some fixed w ∈ G as defining
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a b

1 2

fold

H

fold

cover

w=a2b
w2

..
.

..
.

S

Figure 1: An illustration of Stallings’ folding technique for the subgroup of even
length words in the 2-generator free group π1(∆), and an immersion of a circle
representing an element w ∈ π1(∆). The pullback of the pair of immersions into
∆ consists of a circle double-covering S, determined by following whole copies
of the edge sequence written around S, starting at either vertex of ΓH (both
giving the same w-cycle), until arriving back at the same vertex.
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the form of solutions we would like to obtain, and seeking a generating system

of solutions in the given subgroup H. This can also be viewed as a process

of “adjoining roots” to elements of H (the w-cycles), a process whose natural

topological realisation as a pushout we will touch upon here.

An equation on a group G is a declaration that G has elements satisfying

some constraint on their combinatorial form; as Culler put it in [21], letting

ω(x1, · · · , xm) be a word in the free group Fm, the formal statement:

g = ω

is an equation on G, for any g ∈ G. A solution to the equation is then any

group homomorphism Φ : Fm → G which maps ω to g. Many discoveries about

properties of groups can be associated with attempts to show that generic sys-

tems of equations given in this way have solutions; for instance, this question

of solvability motivated Howie’s results about locally-indicable groups in [39],

which lay the groundwork for the development of stackings.

Example 2.2. The Euclidean algorithm provides one of the earliest examples

of solving equations on groups — in this case, free abelian groups. In a basic

way, its underlying ideas relate to the process of finding w-cycles in free abelian

groups. This is not a particularly interesting problem, but we will discuss it

briefly here for completeness and illustrative purposes.

Start with the rank 1 case, G := Z ∼= 〈t〉. Then a subgroup H has the form

〈s〉 where s = th, and any w ∈ G has the form w = tk, for some h, k ∈ Z.

Existence of w-cycles in H is therefore equivalent to the existence of a pair of

integers m and n such that:

wm = sn, i.e. mk = nh

We see that 〈w〉 ∩H = 〈tl〉 where l is the lowest common multiple of k and h.

In other words, as long as neither w nor H are trivial, there is exactly 1=rk(H)

w-cycle in H, namely tl.
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Now suppose G = Z2 = 〈t〉 ⊕ 〈u〉. Then we write

w = a · t+ b · u

for some a, b ∈ Z, and there are two possibilities for H — either it has the form

〈j · t+ k · u〉 (“line”)

for some non-zero vector ~(j, k) in R2, or

〈j1 · t+ k1 · u〉 ⊕ 〈j2 · t+ k2 · u〉 (“lattice”)

for non-zero and linearly independent vectors ~(j1, k1), ~(j2, k2); see Figure 2. In

the line case, it is easy to see that there are w-cycles in H if and only if the

elements of 〈w〉 and H all lie on the same line in the (t, u)-plane, or equivalently,
a
b = j

k . In this case, whenever there is a common multiple am = jn, we also

have bm = kn, so we may choose m and n to produce simultaneously the lowest

common multiples of (a, j) and (b, k) and thus obtain the single w-cycle

m(a · t+ b · u) = n(j · t+ k · u)

in H. Indeed this w-cycle must be the generator of the cyclic subgroup H. When

the elements of H form a lattice in the plane, we find a w-cycle m(a · t+ b · u),

by finding the lowest value integer m satisfying the linear system:

n1j1 + n2j2 = ma

n1k1 + n2k2 = mb

for integers n1, n2. In both cases the number of w-cycles is bounded above

by the rank of H. It is easy to generalise to arbitrarily high ranks of free abelian

groups from this, but we can also simply observe that there is always at most

one w-cycle in a subgroup of a free abelian group. Indeed, conjugating has no

effect, and for any pair of integers m, n satisfying m ·w, n ·w ∈ H we also have

gcd(m,n) · w ∈ H.

We have included this special case of Z2, the fundamental group of the 2-

torus, by way of the above example, as a first illustration of w-cycles removed

from their original context of graphs. It provides the simplest example of an infi-

nite closed surface group, and the only such example where all possible w-cycles
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Figure 2: Visualising w-cycles for tori. At the top we have the universal cover,
with the blue line a lift of w. It projects to the blue embedded curves in
the intermediate covers, and these are core curves of the annular covers that we
identify with w-cycles in surface groups (see Remark 1). For the “line subgroup”
the w-cycle is exactly the intermediate cover shown; for the “lattice subgroup”
it is immersed in the shown torus.

20



are easily visualised, as pictured in Figure 2. While the pictures associated to

w-cycles in hyperbolic surface groups are not so different, their fundamental

groups being neither free nor abelian makes finding a bound on the w-cycles a

significantly different problem.

In [21], Culler observed that almost all successful attempts to solve equations

in free groups up to that point were achieved for quadratic equations, i.e. those

where the formal word ω ∈ Fm has each variable x1, . . . , xm appearing exactly

twice. Standard forms for such words reduce them to products of commutators

or products of squares, in other words, the relators for fundamental groups of

orientable and non-orientable surfaces respectively. This motivated an approach

to finding constraints on the number of solutions to quadratic equations in free

groups by an analysis of which surfaces can continuously map into a graph,

with the images of boundary components (which bound a disc attached along a

quadratic path in the 1-skeleton of the surface) representing the solutions. This

topological technique was powerful, and is still a core part of the modern study

of commutator length in a range of groups, with Bavard drawing on it directly

in the derivation of his famous duality theorem [7] (see also [14, 18]).

It also motivated Duncan-Howie in [25] to pose a decision problem, which

they were able to show solvable for groups built from locally-indicable subgroups:

Question 2.3. [25] Given a group G, an integer g and elements w1, . . . , wn ∈
G, can we determine when the equation

[x1, y1] · · · [xg, yg] =
(
v1w1v

−1
1

)
· · ·
(
vnwnv

−1
n

)
has a solution over G for some v1, · · · , vn ∈ G?

Or, given a collection [γ1], . . . , [γn] of based homotopy classes of loops in a con-

nected topological space X, can the minimal genus g of a surface with n bound-

ary components admitting a continuous map to X, such that the image of its

boundary is in the homotopy class of [γ1] · · · [γn] ∈ π1(X), be determined algo-

rithmically?

This genus problem immediately generalises two of the classical problems in

combinatorial group theory:

• The word problem for a group G asks if we can determine whether a finite

word w written in the generators of G is equal to the identity in G. This is
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equivalent to asking if a disc maps continuously to a presentation complex

for G, with boundary circle mapping to the homotopy class of w ∈ G —

in other words, it asks if the case g = 0 in the genus problem for a single

loop (n = 1) is solvable.

• The conjugacy problem asks whether two words w1, w2 are conjugate to

each other in G. This will be true if loops representing the words cobound

the image of an annulus in the presentation complex, so it is the genus

problem with g = 0, n = 2.

It is worth observing then that attempts to study equations in surface groups

would in a sense rule out these better-understood quadratic equations, since

they are trivialised by the surface group relator. Elements satisfying a non-

trivial quadratic relation in a surface group π1(Σ) will represent a generating

set for the fundamental group of a closed surface which covers Σ regularly and

with finite degree, and such a situation is generally easy to understand. Free

subgroups of surface groups are nevertheless represented by surface mappings,

and ideas that grew out of Culler’s approach are still very relevant to our later

sections.

When studying a system of equations over a group G given by words

ω1, . . . , ωn ∈ Fm

a fundamental object is the universal solution group, given by the relative pre-

sentation:

Gω =
G ∗ 〈x1, · · · , xm〉
〈〈ω1, · · · , ωn〉〉

There is a natural map induced by inclusion, G → Gω , and existence of solu-

tions to the equations is then equivalent to injectivity of this map. When n = 1

and G is free, this relates to Magnus’ famous Freiheitssatz [58] which states

that any proper subset of the generators of a one-relator group generates a free

subgroup. In [39, Theorem 4.3], a version of the Freiheitssatz for one-relator

quotients of free products of locally-indicable groups is obtained by represent-

ing Gω as a 2-complex and investigating its topological structure using a tower

argument of the kind we discuss in § 7.2.

These universal solution groups suggest a different type of question that we

can ask, namely, when does a given group inject into a group obtained from
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it by adjoining new generators and relations? This is generally known as an

adjunction problem, the exact nature of the problem depending on the form of

the relators being adjoined — for our purposes, the problem of investigating

w-cycles is linked with the problem of “adjoining roots” to subgroups. An early

example of this kind of adjunction problem can be found in work of Lyndon,

[57], who studied the equation

a2b2 = x2

on the 2-generator free group 〈a, b〉 — he found that the only way the equation

could hold for any a′, b′ in a free group is if a′ and b′ commute. As observed by

Louder in [51], this means that the solution group

〈a, b〉 ∗ 〈x〉
〈〈a2b2x−2〉〉

of the above equation (the fundamental group of 3P 2) in which a square root

is adjoined to the element a2b2, cannot surject a non-cyclic free group, and in

particular the two-generator group 〈a, b〉 does not inject.

The general problem of adjoining roots to elements in free groups can be

described by a “graph of groups” construction. This assigns groups to the

vertices of a graph, and to the edges isomorphic subgroups of their incident

vertex groups, whose elements are then identified in the fundamental group of

the graph of groups. So, if a vertex ν with cyclic group 〈w〉 is attached to a

collection of vertices with groups Hi, the edge groups will be cyclic subgroups

〈wni,j 〉, and w is adjoined as the ni,j-th root to collections of elements vi,j ∈ Hi

(note that multiple edges can join ν to the same vertex, as long as none of the

vi,j that it is adjoining roots to are conjugate). A recent result bounding the

complexity of a system of adjoined roots in free groups is:

Theorem 2.4. ([54], Theorem 1.16) Let H1, . . . , Hl be free groups, {〈vi,j〉}
a malnormal collection of non-trivial cyclic subgroups of Hi and ni,j positive

integers. Let ∆ be the associated graph of groups and let f : π1(∆) → F be a

surjective homomorphism to a free group with f |Hi
injective for each i. Then

rank(F )− 2 +
∑
i,j

ni,j ≤
∑
i

(rank(Hi)− 1)
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provided none of the Hi admits a free splitting with one of the 〈vi,j〉 as a factor.

This was proved by studying an adjunction space, essentially the graph of

groups viewed as a purely topological object. The idea of a “graph of spaces”

replacing vertex and edge groups from a graph of groups with classifying spaces

was not new, but Louder and Wilton studied its features as a 2-dimensional

complex with what Wise calls a “V H-structure” [11] in more detail than a single

graph decomposition shows. Taking graphs Γi that represent the collection of

free groups Hi, we get a collection S of subdivided circles representing the vi,j ,

immersing into Γi and also each covering a single circle S representing w with

degree ni,j . We obtain a 2-complex P by taking the product of S with an

interval, and identifying the copies of S at either end with their images in the Γi

and S. This P is the adjunction space, and for any free group which contains

as subgroups the Hi with adjoined roots vi,j = wni,j , there is a corresponding

graph ΓΩ and an induced map P → ΓΩ extending the natural maps from P to

({Γi}, S) and from ({Γi}, S) to ΓΩ to give the commutative diagram:

P S

{Γi} ΓΩ

w

vi,j

The collection S sits inside P as “horizontal slices”, and if we compare this

to the statement of our w-cycles Theorem A for surfaces, there is the dual situa-

tion, where, starting with given surface Ω and w, Σ with prescribed immersions

to it, we realise S as the pullback of these data and bound the number of com-

ponents of S by −χ(Σ). By realising the analogous objects for graphs as an

adjunction space, Louder-Wilton were able to prove a more powerful result in

the above theorem, effectively bounding the complexity of any graph ΓΩ that

can realise the adjunction arrangement by showing a dependency between the

rank of π1(ΓΩ) and the sum of the ranks of the Hi and the ni,j . Nevertheless,

at the heart of the proof of this dependence theorem was a method to break the

adjunction space down into simpler pieces and estimate the Euler characteristic

of each using a slightly more sophisticated version of the stacking argument that

we will use to prove Theorem A.

2.3 Independent Systems and Reducible Immersions

We now briefly focus on the notion of dependence for equations on groups,

and how this manifests in the topological immersions we work with later. In
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Theorem 2.4, the rank inequality held unless there was a free splitting of the

subgroups Hi separating off the elements that were having roots adjoined. Such

a splitting induces a free splitting of the universal solution group, in which case

we say that the corresponding system of equations is independent. The idea of

a “dependence theorem” is to find rank relationships on systems where it is not

possible to split pieces off from each other.

We can compare with standard linear algebra where a rank-n vector space

is generated by any system of n linearly independent vectors. In non-abelian

groups relations between elements become much more complicated but the no-

tion of independence as a quantifier for basis elements in some solution space

still applies:

Definition 2.5. [54] Let G be a group and X ⊂ G a set of elements generating

a malnormal family of cyclic subgroups (that is, for each x, y ∈ X,

〈x〉 ∩ 〈gyg−1〉 = {1}

unless x = y and g ∈ 〈x〉). We say that X is independent in G if it contains an

element x such that G admits a free splitting G = G′ ∗ 〈x〉, with each element

of X − {x} conjugate into G′. Otherwise we call X a dependent set in G. We

may also refer to the collection of cyclic subgroups generated by the elements

of X as dependent/independent as appropriate.

Since we represent subgroups as immersions of cell complexes it is convenient

to have a characterisation of independence in topological terms. As a first

example we consider the case of free groups represented by graphs.

Example 2.6. An element in a free group G can be represented by an immer-

sion of a circle into a connected graph, w : S # Γ. The element w represents a

basis element in a generating set of G if Γ contains an edge e traversed exactly

once by the image w(S). Indeed, in this case the image of w contains a simple

closed curve (which the once-covered edge e lies on) which can be identified

with a generator of π1(Ω) = G, and there is an automorphism of G sending

w to this generator. This can also be seen by Whitehead’s algorithm [77]; fix

a basis x1, · · · , xn of G represented by loops γ1, · · · , γn in Γ. Expressing w as

a product of these elements and their inverses, if e is covered only once in its

image then e is contained in exactly one of the γi (as long as each xi appears

in w — otherwise w already visibly lies in a free factor of G to which we can
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restrict our attention), and the corresponding xi appears exactly once in the

basis’ spelling of w. It follows that the Whitehead graph for the word w can

be disconnected by removing the vertex labelled either by xi or x−1
i , as each of

them contain only one edge connecting them to the rest of the graph.

More generally, a collection {w1, · · · , wm} is independent in G if Γ contains

an edge traversed once by the union of the images of their associated immersions

wi : Si # Γ. In [52], the immersion of the union of circles is called reducible in

this case.

Our definition of reducibility (Definition 1.1) is a generalisation of the one

for graphs, applicable to our study of immersions of surfaces. As we will see

in Proposition 7.7, when the map w′ specifying w-cycles in Σ is an irreducible

immersion of the components of S, we get a stronger bound than −χ(Σ) as given

by Theorem A. This is because the w-cycles correspond to a dependent system

of adjunction equations in this case, and so we get a bound more in line with

(although not as general as) Theorem 2.4. On the other hand, if we were to

take a free subgroup of π1(Ω) that is generated by a finite set of w-cycles, then

the number of w-cycles is exactly the subgroup rank, in other words 1−χ(Σ) if

Σ # Ω is an immersion representing the subgroup. While Proposition 7.7 gives

a more powerful bound, the most general form of our w-cycles theorem finds a

bound on the number of w-cycles when this situation of complete independence

is not realised; we can now state it using purely algebraic language. We let r̄(H)

denote the reduced rank:

r̄(H) := max{1, (rank(H)− 1)}

Theorem A’. Let w be an element of an orientable hyperbolic surface group

G such that w 6= up for any u ∈ G, p > 1, let H ≤ G be a finitely-generated

subgroup, and let x1, · · · , xk be a maximal set of representatives for the distinct

double cosets in H\G/〈w〉 that satisfy

H ∩ xi〈w〉x−1
i 6= {1}

Then, either k ≤ r̄(H), or the xi are independent in H.
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3 w-Cycles

In this section we give background information on some aspects of geometric

group theory and topology more closely linked to w-cycles. We aim to summarise

some of the factors that motivated Wise to conjecture the following, original,

w-cycles theorem for graphs, and some of the ideas behind its proof that we will

later adapt to the setting of surfaces.

Theorem 3.1. [52, 35] Let f : Γ′ # Γ be an immersion of connected compact

core graphs, and w : S # Γ an immersion of a circular graph which does not

properly factor through any other map from a circle to Γ. Then the number of

w-cycles in Γ′ is at most 1− χ(Γ′).

Denoting the set of w-cycles in Γ′ by S, since this is a collection of circles,

there is an induced covering map σ : S → S of finite degree, as well as an

immersion w′ : S # Γ′. By [52, Theorem 1.2], when w′ is irreducible, it is

not only the cardinality of S but in fact the degree of σ which is bounded, by

−χ(Γ′). This bound on the covering degree from the w-cycles to the original

representative of w was found by a reinterpretation of the following theorem of

Duncan-Howie, who formulated it as an isoperimetric inequality that could be

applied to solve instances of their genus problem (Question 2.3):

Theorem 3.2. [25, Theorem 3.3] Let h : Σ′ → Σ be an immersion of compact

orientable surfaces, each with non-empty boundary, such that every component

of ∂Σ′ maps to the homotopy class of some power of w ∈ π1(Σ), and let n denote

the sum of these powers over all of ∂Σ′. Then

n ≤ −χ(Σ′)

Since the target surface Σ has boundary, this is a statement about free

groups, which Louder-Wilton effectively translated to the language of graphs.

The original version of Theorem 3.2 is actually more general, where the surfaces

are decorated with some additional information letting them represent amalga-

mated products of locally-indicable groups — these are groups for which every

non-trivial finitely-generated subgroup admits a homomorphism onto Z. Free

groups are locally-indicable, and the topological implications of local-indicability

are crucially important to the proofs of Theorems 3.1 and 3.2 as we will describe

later in this section. First, we will expand on our Definitions 1.2, 1.4, and why

they motivated Theorem 3.1.
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3.1 Coherence and Non-Positive Immersions

A one-relator group is realised topologically as a graph Γ with a single 2-cell

attached along an immersion representing an element w ∈ π1(Γ). Subgroups

of π1(Γ)/〈〈w〉〉 are then represented by graphs immersing into Γ with 2-cells

attached along w-cycles. Wise first introduced w-cycles in [79] as part of an

ongoing effort to answer a question of Baumslag from the 1970s:

Question 3.3. [5] Are all one-relator groups coherent?

So far, there is no single geometrical notion that can be seen as characteris-

ing coherence. A related, but stronger, picture is given by the observation that

fundamental groups of compact cell complexes are finitely-presented; so if all

spaces with finitely-generated fundamental group immersing into a complex X

are either compact or retract onto a compact subcomplex, then π1(X) will be

coherent. This “compact core” approach was used by Scott in [68], and led to

the proof that fundamental groups of 3-manifolds are coherent. However, many

other groups for which compact cores cannot be constructed are known to be

coherent — a detailed overview is given in [81].

Almost all approaches to proving coherence have been firmly rooted in geo-

metric and topological techniques, with the key being an ability to describe all

finitely-generated subgroups, and so the problem is naturally more tractable for

groups that can be associated with nice geometric finiteness properties. The lin-

ear isoperimetric inequality satisfied by hyperbolic groups can be seen as such a

property, a basic fact being that it implies finite-presentability (see for instance

[2]), and therefore hyperbolic surface groups and free groups are immediately

seen to be coherent, as indeed are any hyperbolic groups whose finitely-generated

subgroups are again hyperbolic.

On the other hand, one of the first examples of an incoherent group is the

direct product of free groups F2×F2. This group was originally shown to be in-

coherent by Baumslag, Boone and Neumann [6], although the best-known proof,

generally attributed to Stallings, exhibits a surjective map F2 × F2 →→ Z whose

kernel is finitely-generated but not finitely-presented. This method uses a re-

sult of Neumann, saying that the amalgamated product of two finitely-generated

groups over an infinitely-generated subgroup is not finitely-presentable, and was

generalised by Stallings to produce other examples of incoherence and related
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phenomena, see for instance [71]. This idea has recently been used extensively

in work of Kropholler, Walsh and Vidussi to generalise the F2 × F2 example,

showing that semidirect products of hyperbolic surface groups with F2 are also

incoherent [45, 46]. Direct product structures obstruct the growth properties

that characterise hyperbolic groups, so it is not surprising that the geometric

ideas that prove coherence for certain hyperbolic groups do not carry over to

products of them.

Similar to the absence of a single geometric concept capturing coherence,

there is no complete geometric theory of one-relator groups. It is shown in

[54] that the topological property of “negative immersions”, a strengthening of

Definition 1.4, strongly constrains the subgroup structure of those one-relator

groups which possess it, and even further it is conjectured that it implies hy-

perbolicity. These properties appear to be closely linked to coherence, which

motivated the following:

Conjecture 3.4. [80, Conjecture 1.10] All groups with non-positive immersions

are coherent.

The basic intuition motivating this is that 2-cells make positive contribu-

tions to Euler characteristic, and represent relations in the fundamental groups

of 2-complexes, so if we can control the number of 2-cells in immersed complexes

representing subgroups, this should allow us to deduce finite-presentability. We

note that the presence of torsion elements is an obstruction to a group G having

non-positive immersions, since given such an element t of order p, the pre-

sentation complex for G has an immersion from the presentation complex for

Zp ∼= 〈t|tp〉, which has Euler characteristic 1 and non-trivial fundamental group.

However, we note that one-relator groups with torsion are also hyperbolic by

Newman’s spelling theorem [62], are coherent by [53, 80], and in general are

“better-behaved” than the torsion-free class.

An immediate corollary of Theorem 3.1 was that the torsion-free one-relator

groups have non-positive immersions, so we can see Conjecture 3.4 and these

related developments as closing in on a resolution to Question 3.3. It is this

line of ideas that our main results as stated in the introduction are intending to

carry into the setting of one-relator surface groups. This forms an interesting

emerging direction of study, where the investigation of coherence and attempts

to find an underlying geometric theory as suggested by non-positive or negative
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immersions are mutually informing each other.

3.2 Stackings and Right-Orderings

The main innovation in Louder-Wilton’s proof of Theorem 3.1 was their intro-

duction of the idea of a stacking of the word w. In this section we introduce some

of the ideas and terminology around stackings, ahead of our main construction

and application of stackings in surfaces which we will treat more rigorously in

Part II.

Definition 3.5. Let ρ : S # X be an immersion of cell complexes, with each

component of S circular. A stacking of ρ is a lift ρ̂ to an embedding in the trivial

line bundle over X — it yields the following commutative diagram, where πX

denotes the standard projection map to X:

X × R

S X

πX
ρ̂

ρ

If πR is projection to R, then for each x ∈ X, ρ−1(x) consists of a discrete set

of points in S, which are each sent to distinct values by πR ◦ ρ̂. We collect the

preimages sent to maximal and minimal values under this composition:

Aρ̂ := {x ∈ S | ∀y 6= x, [ρ(y) = ρ(x) =⇒ πR ◦ ρ̂(y) < πR ◦ ρ̂(x)]}

Bρ̂ := {x ∈ S | ∀y 6= x, [ρ(y) = ρ(x) =⇒ πR ◦ ρ̂(y) > πR ◦ ρ̂(x)]}

We call the connected components of Aρ̂ (resp. Bρ̂) max-height (resp. min-

height) regions of the stacking, and the ones that are simply-connected we call

max-height (resp. min-height) strips. We say that the stacking ρ̂ is good if each

component of S intersects both Aρ̂ and Bρ̂.

Good stackings let us compute the Euler characteristic of the underlying

space. As an analogy, we can compare the idea of a stacking to a one-dimensional

real vector field over the image of S in X, and the components of Aρ̂ and Bρ̂ in S
as neighbourhoods of its critical values from which an index-type calculation is

performed over the image ρ (S) ⊂ X. Figure 3 illustrates the idea of computation

from the maximal height regions of a stacking in the case of a graph. To start

to get a picture of how we can extract information on Euler characteristic from

good stackings, we note here the following elementary result:
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Lemma 3.6. If ρ̂ is a good stacking of an irreducible immersion, then all of

the max- and min-height regions are strips.

Proof. Suppose M ∈ π0 (Aρ̂) is a circular max-height region — M is then an

entire component of S. Since ρ̂ is good, M also intersects Bρ̂ in some open

subset U . It follows from the definitions of Aρ̂ and Bρ̂ that the image of U in X

is traversed exactly once by the image of ρ, but this contradicts irreducibility.

So the max-height regions must be strips rather than circular, and by the same

reasoning, the same holds for the min-height regions.

This means that for a good choice of stacking, the max-height regions piece

together to cover the image of ρ, with each piece making a contribution of −1

to the Euler characteristic, since they are contractible subsets of circular spaces

with a pair of contractible compact subsets (which are not maximal among the

preimages of their projection to X) removed from their boundaries. In the graph

case [52], this is emphasised by Louder-Wilton’s use of the term open arc to de-

scribe these regions; in a more general setting, these are replaced by open strips

which retract to arcs. So, taking all these regions together, we count exactly

(minus) the Euler characteristic of the image of ρ; we will make this idea precise

for surfaces in Lemma 6.6.

The following theorem of Farrell suggests the group-theoretic property that

corresponds to the existence of a stacking, namely, right-orderability:

Definition 3.7. A total ordering of a set X is a transitive, antisymmetric,

irreflexive boolean relation defined on all pairs of elements of X. We call a

total ordering < on a group G a right-ordering if it is invariant under right-

multiplication:

a < b =⇒ ag < bg, ∀a, b, g ∈ G

If G possesses a right-ordering, we say it is right-orderable. We can similarly

define left-orderings and left-orderable groups, and if (G,<) is left- and right-

orderable by the same total ordering <, we say it is bi-orderable.

Theorem 3.8. [26, Theorem 2.3] A regular cover E of a Hausdorff, paracom-

pact space X has right-orderable deck transformation group π1(X)/π1(E) if and

only if there is an embedding f of E into the product X × R such that the

following diagram commutes, where c denotes the covering map:
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Figure 3: A stacking of the word ab−1c2a−1cb−1 in the rank 3 free group,
represented by the graph with 1 vertex and 3 loop edges. The 2 maximal height
arcs each consist of edge sequences with the terminal nodes missing (where they
stop being maximal), and so their projections to the underlying graph contribute
−1 to its Euler characteristic. When pieced together these arcs cover the whole
graph of Euler characteristic −2.
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X × R

E X

πX
f

c

The theory of orderable groups has seen several interactions with low-dimensional

topology in recent years, as detailed in [20] for example. However, although Far-

rell’s theorem is older than many of those developments, the only application

known to the author is a (non-constructive) proof for the existence of stackings

associated to orderable quotients of fundamental groups of graphs and sur-

faces that we consider in this work. A useful characterisation of right-orderable

groups is that they embed in Homeo+(R), the group of order-preserving homeo-

morphisms of the real line. It is not clear who first formulated this property, the

standard proof making use of a well-known construction of Cantor [16], which

appears in the proof of Theorem 3.8.

The condition on w not factoring through any other immersions from circles

in Theorem 3.1 may seem unusual at first glance. As stated in Theorem A’ it

just means that the element w ∈ π1(Γ) is not a proper power (we will often

suppress the distinction between elements w and the immersions representing

them), and we call such immersions indivisible to reflect this. In a one-relator

group G = F/〈〈w〉〉, it is clear that if w = un is a proper power then G contains

torsion; Karrass-Magnus-Solitar showed that the opposite implication holds [44].

So, studying w-cycles for w indivisible in a free group is the same as studying

properties of subgroups of the torsion-free one-relator groups. Restricting to

torsion-free groups is important for the construction of stackings in light of

Theorem 3.8 and the following easy obstruction to orderability:

Fact. If a group G contains any torsion elements, it cannot be right-orderable.

We noted above that torsion is also an obstruction to a group having non-

positive immersions, and this is no coincidence. Although it is not immediately

apparent that right-orderability should play a key role in the theory of w-cycles,

it is less surprising when we consider their background as discussed in the pre-

vious subsection, and that non-positive immersions implies local-indicability by

[80, Theorem 1.3]. Local-indicability is known to imply right-orderability by a

theorem of Burns and Hale [13], and as a partial converse, bi-orderable groups

are locally-indicable [47]. Torsion-free one-relator groups are locally-indicable,

and hence right-orderable [12, 40]. Together with Farrell’s theorem, this makes

stackings a natural tool for proving Theorem 3.1.
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Example 3.9. Letting R2 be the “rose” graph, with a single vertex ν and 2

loop edges ea, eb in correspondence with a chosen generating set of a free group

F2 = 〈a, b〉, we can directly observe the equivalence between a right-ordering of

G := F2/〈〈w〉〉 and a stacking of an indivisible immersion to R2 representing w.

If n is the length of w, we let vi ∈ F2 be the ith prefix of w for i = 0, . . . , n; so

for w = [a, b] we would have

v0 = 1, v1 = a, v2 = ab, v3 = aba−1, v4 = aba−1b−1

Since w is not a power in F2, we can fix a right-ordering on the one-relator

group G. The n elements of G that the prefixes represent:

v̄0 = v̄n = 1, v̄1, · · · , v̄n−1

are distinct [40, Proposition 3.3], and can therefore be put in increasing order.

That is, there exists a permutation σ ∈ Sn of the numbers {0, 1, · · · , n−1} such

that

v̄σ(0) < v̄σ(1) < · · · < v̄σ(n−1)

We now translate this ordering into a stacking — w is identified with an im-

mersion

w : S # R2

where S is a circle subdivided by n vertices as shown in Figure 4, each of which is

sent to the single vertex ν of R2. Each vi is represented by the arc µi consisting

of the first i edges of S, which maps to a closed loop in R2 under w, with w(vi)

being obtained from w(vi−1) by appending a traversal of one of the edges ea, eb

in the appropriate direction. The ordering of the v̄i defines an injection of the

vertices,

w0 : S(0) ↪→ {ν} × R ⊂ R2 × R

to be precise, we can set it so that

τ(µσ(i))
w07−−→ (ν, i)

where τ denotes the endpoint of each directed arc µi ⊂ S. We now extend this

map over the edges of S by paths that monotonically increase/decrease in the

R-fibres over the edges of R2 according to whether or not v̄i < v̄i+1. We claim
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that this results in a stacking

ŵ : S ↪→ R2 × R

Indeed, suppose that two edges of S are mapped to crossing paths in ea×R, and

that these correspond to a±1 being appended to form the kth and lth prefixes

of w. If we identify the vertices

νi := ŵ (τ(µi)) ∈ {ν} × Z

so that the relative position of νi in {ν} × R is the same as that of vi in the

ordering of the prefixes, we can easily identify the ways in which this can occur.

In particular, if they lie in disjoint intervals of R, e.g.

νk−1 < νk < νl−1 < νl

then the paths joining them in the image of ŵ are also disjoint. If they are

interlinked, e.g.

νk−1 < νl−1 < νk < νl

then the monotonically increasing paths joining the vertices cross if and only if

they project down to traversals of ea in opposite directions, meaning, say,

vk = vk−1a, vl = vl−1a
−1

But then such an intersection would mean we must have

vk−1 < vl−1 < vk < vl

and right-invariance of the ordering would then imply that we also have

vk−1a = vk < vl−1a < vka < vla = vl−1

which produces a contradiction, since the order of vl−1 and vk has been switched

by the right-multiplication. The other possible arrangements that could lead

to self-intersections of ŵ(S) are easily enumerated and found to produce con-

tradictions in similar ways; we can also consider the case that the interval in

the R-fibre spanning νk−1, νk contains the one spanning νl−1, νl. Then, there

would be an intersection no matter what the direction of edge traversals. In the
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subcase shown in Figure 4, we would have

vk−1 < vl = vl−1a < vl−1 < vk = vk−1a
−1

and right-multiplying this chain of inequalities by a gives a new chain containing

vl−1a = vl < vk−1 = vka

which is a reversal of their previous order, again contradicting right-invariance

of <.

ν1

ν2

ν3

ν0

a b

ν0

ν3

ν1

ν2

Figure 4: A non-example of a stacking of the commutator [a, b] ∈ F2 — when
the lifts of the edges of S to R2 × R intersect this way, the ordering of the
prefixes of w as read by the vertex preimages cannot be right-invariant.

The observation of this example — that right-orderability is violated if the

obvious lift fails to be an embedding — is similar to the one used to prove [25,

Lemma 3.2]. We also note that the above example fixes an ordering and uses
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it directly, although such orderings are not really natural to work with in any

sense, we simply know that local-indicability implies they exist. In § 7.2, we

instead work with tower liftings to derive stackings, which are a somewhat more

intuitive way of working with the complexes involved, and indeed were the tool

used to prove that torsion-free one-relator groups are locally-indicable in the

first place.

3.3 The Hanna Neumann Conjecture

As noted above, Helfer-Wise [35] also gave a proof of Theorem 3.1, which ap-

peared at around the same time as [52]. We conclude our introduction to w-

cycles by briefly discussing the ideas surrounding their proof; although we do

not develop this viewpoint in the later sections, there are certainly interesting

connections with the ideas discussed so far.

Importantly, their proof also relies on orderability properties of free groups

and their torsion-free quotients. Where Louder-Wilton show that w-cycles con-

tribute arcs lying at the top of a stacking, which in turn contribute to Euler

characteristic, Helfer-Wise find a correspondence between the rank of any sub-

group containing w-cycles, and “bridges” — edges which are maximal in an

ordering inherited from the group elements, in the complexes they act on. The

idea of bridges in graphs representing generators of orderable groups originated

in the proof by Mineyev of Hanna Neumann’s famous conjecture:

Theorem 3.10. [61, 28] Let H, K be subgroups of a finitely-generated free

group F and let a1, . . . , an be a complete set of representatives of the double

cosets H\F/K. Then:

n∑
i=1

rank
(
H ∩ aiKa−1

i

)
≤ r̄(H)r̄(K)

The original formulation of this conjecture was made in attempt to quantify

Howson’s theorem that rank(H ∩K) is always finite, which as we noted in § 2,

was trivialised by Stallings’ introduction of folding techniques for graphs. It was

remarkable that it took well over half a century for a proof to be found, and the

independent proofs of Friedmann and Mineyev used machinery that was not

at all developed at the time of the conjecture’s formulation, as well as being

seemingly completely different methods of proof. Dicks [24] would later give
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a simplified version of Mineyev’s proof from which the methods of [35] can be

more clearly traced, based only on Bass-Serre theory and separation properties

of graphs.

The original formulation of the w-cycles conjecture in [79] was stated as

a “rank-1 version” of the Hanna Neumann conjecture (HNC). This is more

apparent in the algebraic formulation (compare with Theorem A’), giving an

analogous result when one of the groups in the intersection is cyclic since nei-

ther the original nor strengthened HNC says anything non-trivial in that case.

Moreover, Wise showed that truth of the HNC gave partial progress towards

classifying which 2-complexes had non-positive immersions.

We have not pursued a “bridge-based” approach to proving the w-cycles

theorem for surfaces, although it would not be surprising to find that such

a proof exists. We would expect similar obstacles to arise in attempting to

extend a graph-based argument over 2-cells as we detail in § 5 for the stacking

argument, but it is not clear whether our technique of rectangular decomposition

of the surfaces into graph-like pieces would help in this instance. We note

that [35] also introduced “slim and bi-slim 2-complexes”, similar to 2-complexes

whose 2-cells have irreducible attaching maps, but whose definition emphasises

desirable properties in their universal covers which relate to orderability of their

fundamental groups, abstracting the ideas of the Dicks-Mineyev HNC proof.

The connection between reducibility and slimness [35, §7] uses ideas that again

are similar to the style of argument that we sketched in Example 3.9. Slim

complexes were used to derive a version of non-positive immersions for one-

relator groups with torsion, bearing some similarities to the arguments used

in [53] and which we explore in § 9. In particular, the key inequality which

we derive for one-relator surface groups in Lemma 9.3, seems to appear for

one-relator groups in [35, Theorem 6.1].
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4 One-Relator Surface Groups

Our introduction to w-cycles has revolved heavily around their relevance in un-

derstanding one-relator groups. It is easy enough to formulate the analogue of

Theorem 3.1 for surface groups (that is, our Theorem A) from the point of view

of the topological objects involved, but taking into consideration the group-

theoretic ideas surrounding w-cycles, it is natural to also consider the analogue

of one-relator groups for surfaces, as introduced in Definition 1.3. When we

talk about one-relator surface groups, we will usually mean quotients of the

fundamental groups of orientable hyperbolic surfaces, and will state when we

are considering other types of surface.

The first notable appearance of one-relator surface groups came from Pa-

pakyriakopoulos’ formulation of conjectures about torsion-free quotients of sur-

face groups whose truth would imply truth of the Poincaré conjecture [64]. Since

then, a lot of research surrounding these groups has followed a theme of finding

parallels with the existing theory of one-relator groups. Of course this is excep-

tional behaviour when compared to arbitrary two-relator groups, corresponding

to the special position that surfaces occupy among 2-complexes — in this sec-

tion we try to highlight those aspects of this behaviour that will be relevant to

our proof of coherence for one-relator surface groups with torsion in Part III.

4.1 Hempel’s Trick

In reference to [37, Lemma 2.1, Theorem 2.2], Howie, in [41], uses the term

“Hempel’s trick” to mean a process that has allowed the study of one-relator

surface groups to utilise the existing theory of one-relator groups. Given G =

π1(Ω)/〈〈w〉〉, this is essentially achieved by finding a cover of Ω which has free

fundamental group, and to which w lifts. Since there are many cyclic covers

of a hyperbolic surface Ω (that is, coverings of Ω with deck groups isomorphic

to Z) which will accomplish this, this process is also naturally related to local-

indicability.

Lemma 4.1. ([37], Lemma 2.1) Let w be a loop in a closed surface Ω with

χ(Ω) < 0. Then there is a simple, non-separating loop γ in Ω with intersection

number:

〈[w], [γ]〉 = 0
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where 〈−,−〉 denotes the integral intersection pairing on first homology,

H1(Ω;Z)×H1(Ω;Z)→ Z

For completeness, we repeat the brief proof here, noting only that we have

removed the hypothesis that Ω is orientable, without changing the result or

argument, but have added the assumption that χ(Ω) < 0, which is the case for

all the surfaces we are interested in.

Proof. Since χ(Ω) < 0, we know

rank (H1(Ω;Z)) ≥ 2

and so we can find a pair of simple closed curves α, β ∈ π1(Ω) representing

generators of the first homology, and which intersect transversely in a single

point. Then α, β cannot cobound an immersed surface, and nontrivial linear

combinations satisfy

a[α] + b[β] 6= 0 ∈ H1(Ω), (a, b ∈ Z)

In particular, such combinations can be represented by a non-separating simple

closed curve (the (a, b)-slope on some connect-sum component of Ω homeomor-

phic to a torus or Klein bottle). We can now evaluate

〈w,α〉 := iα 〈w, β〉 := iβ

and find solutions (p, q) to the integer equation

piα = −qiβ

Fixing (p, q) to be the smallest coprime solutions, we can now find a loop γ in

the homotopy class of

αpβq

satisfying the required properties.

Taking the dual viewpoint, it is easily seen that this is just an explicit way to

construct a lift of w to a cyclic cover of Ω. Classes in H1(Ω;Z) are represented

by maps onto Z from C1(Ω;Z), corresponding to regular cyclic coverings of Ω.

For the loop γ we just constructed, the cohomology class dual to [γ] ∈ H1(Ω;Z)
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then corresponds to the infinite cyclic cover Ω∞ obtained by cutting Ω along

γ and gluing copies of the resulting surface together by identifying boundary

components. Its fundamental group is given by:

ker
[
〈−, [γ]〉 : π1(Ω)→ (π1(Ω))

Ab → Z
]

By construction, the loop w lies in this kernel, and therefore lifts to Ω∞. By

[39, Lemma 3.1], every map of compact cell complexes has a maximal finite

sequence of lifts over cyclic covers. Lemma 4.1 makes explicit that there is at

least one non-trivial level to the lifting whenever the map is an immersion of a

loop into a closed hyperbolic surface.

Now, Ω∞ has infinitely-generated free fundamental group, and contains, for

each d ∈ Z>0, copies of the compact surface Ωd obtained by gluing together d

copies of Ω − γ along their boundary components. Since w lifts to Ω∞, there

is a minimal d such that w lifts to Ωd ⊂ Ω∞, and π1(Ω) is then realised as an

HNN extension of the free group π1(Ωd), with the fundamental groups of two of

its subsurfaces isomorphic to Ωd−1 (which w does not sit inside) amalgamated.

This provides the conditions for the style of “rewriting” argument popularised

by Magnus and used to prove a great many results on one-relator groups (an

overview of the technique is given in [56, Chp. 4]).

4.2 Torsion Properties

For our purposes, probably the most significant application of Hempel’s trick

was also the first one he gave, as it implies that torsion-free one-relator surface

groups are right-orderable, and ultimately, that we can construct stackings of

indivisible words in surface groups:

Theorem 4.2. [37, Theorem 2.2] The following are equivalent:

1. The one-relator surface group G = π1(Ω)/〈〈w〉〉 is locally-indicable;

2. G is torsion-free; and

3. w is not a proper power of a non-trivial loop in Ω.

In the case that a one-relator surface group does have torsion, it presents in

the same way as in a one-relator group:
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Lemma 4.3. [41, Corollary 3.9] Let w ∈ π1(Ω) be indivisible, and n > 1 an

integer. Denote by w̄ the image of w in the one-relator surface group with

torsion:

G = π1(Ω)/〈〈wn〉〉

Then every torsion element of G lies in the normal closure 〈〈w̄〉〉.

The final property that we will make use of is that one-relator surface groups

are virtually torsion-free, long known to hold for one-relator groups [27]. This

will be important to construct “unwrapped covers” of their presentation 2-

complexes in § 9, as was done for one-relator groups in [53]. We certainly do not

believe that Lemma 4.5 is new, but having not found an explicit reference for

it, we will give a quick argument here based on the above discussion, Fischer-

Karrass-Solitar’s proof for one-relator groups, and the following nice result of

Allenby:

Theorem 4.4. [1, §4] Let A, B be free groups, c some element of the free

product A ∗B, and D the amalgamated product:

D := A ∗〈c〉 B

Then, for any non-trivial element x ∈ D and any positive integer k, there exists

a homomorphism ϕ from D onto a finite group Q such that ϕ(x) has order

exactly k in Q.

In particular, since hyperbolic surfaces all have non-trivial connect-sum de-

compositions, surface groups possess the property stated in the conclusion of

Allenby’s theorem, known as potency. Our desired property then follows easily:

Lemma 4.5. (see also [3, §6]) Let G = π1(Ω)/〈〈wn〉〉 be a one-relator surface

group with torsion, where w is not a proper power. Then G is virtually torsion-

free.

Proof. We use Allenby’s theorem to find a surjection to a finite group

ϕ : π1(Ω)→ Q

where ϕ(w) has order n. Then ϕ descends to the cosets of 〈〈wn〉〉, defining a

surjective homomorphism

ψ : G→ Q
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whose kernel is finite-index in G. It remains to check that ker(ψ) is torsion-free,

for which we appeal to Lemma 4.3. This tells us that any torsion element of

ker(ψ) has the form
(
gw̄g−1

)p
for some g ∈ G, p ∈ Z, with image under ψ equal

to the identity in Q. But this means that n|p, so that the supposed torsion

element in the kernel of f was trivial to begin with.

Remark 2. The results 4.2 and 4.3 that we have quoted in this section were only

proved for orientable surfaces, but as we observed, Lemma 4.1 applies equally

well to non-orientable surfaces, and so also should the consequent results about

torsion. Moreover, Antoĺın-Dicks-Linnell give algebraic proofs of Hempel and

Howie’s results in [3] which apply equally to non-orientable one-relator surface

groups, but we do not know of topological arguments covering them all yet.
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Part II

Constructions on Surfaces

5 Parsing w-Cycles for Surfaces

While ultimately our proof of Theorem A will be in the spirit of Louder-Wilton’s

proof of Theorem 3.1, there are obstacles which arise when trying to carry their

argument over directly to surfaces. Näıvely, we could fix the cell decomposition

on a closed surface Ω corresponding to the standard one-relator presentation of

its fundamental group, and express w as a loop in the graph Ω(1). The funda-

mental group of Ω(1) generates π1(Ω), so of course we can represent any element

of the group as an immersion of a circle w : S # Ω(1) and, as long as w is indi-

visible, use [52, Lemma 3.4] to lift this to an embedding in Ω(1) ×R. Then [52,

Lemma 2.4] shows that the number of open arcs of S lifted to maximal height

is −χ(Ω(1)) = 1 − χ(Ω). However, this is insufficient to bound the number of

w-cycles in an arbitrary subgroup of π1(Ω), due to the nature of the 2-cells in

the immersed surface Σ representing this subgroup.

Despite knowing the cell structure of Ω from the standard presentation of a

compact surface, once this is fixed, our choice to represent w using only the 1-

skeleton means we require an immersion h : Σ # Ω which is combinatorial with

respect to that cell structure, and we then have no control on the number of 2-

cells in the induced cell structure of Σ which gives the subgroup presentation. In

particular we do not know the degree of the covering map Σ(2) → Ω(2) onto the

2-cell in Ω. So, while we can estimate the degree of the covering map σ : S→ S

obtained by forming the fibre product Σ(1)×Ω(1) S and pulling back the stacking

of w, obtaining deg(σ) ≤ −χ(Σ(1)), it could be the case that

−χ(Σ) = −
(
χ(Σ(1)) + |Σ(2)|

)
<< −χ(Σ(1))

which does not give us the desired inequality of deg(σ) ≤ −χ(Σ).

To formulate our version of Theorem 3.1 for closed orientable surfaces, we

have therefore used circular covering spaces to define w-cycles in Definition 1.1.

This lets us replace an immersion of a circle into Ω — which as we have just

seen will not be sufficient to bound the number of w-cycles with a stacking
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argument — with an immersion of a circular surface into Ω, which can carry

the necessary information about the 2-cell structure. Since there is only one

non-trivial homotopy class of indivisible closed curve in a circular space, we lose

no generality in the group-theoretic results our topological methods produce

when we replace immersions of circles with immersions of circular spaces. The

only circular surfaces are annuli and Möbius bands, and since we restrict our

results here to orientable hyperbolic surfaces, we will be principally concerned

with immersions of annuli.

Throughout Part II, unless stated otherwise, we will assume that the circular

space S in Theorem A is a non-compact annulus which infinitely covers Ω.

Fixing a standard hyperbolic metric on Ω as in Theorem A, we denote by γ the

core curve of S, so that w(γ) is an immersed closed curve which we choose to

be the unique geodesic in the homotopy class of w ∈ π1(Ω). The covering can

be understood in terms of the map from γ to this geodesic representative — a

consistent choice of normal directions to γ, w(γ) allows generic points of S to

be mapped to Ω by considering where they sit in relation to γ. The data are

related by the commutative diagram:

S S

Σ Ω

σ

w′ w

h

where we recall that the w-cycles are represented by the circular components

S of the pullback of the immersions w, h, inducing the maps σ, w′. We will

further assume that the immersion h maps all boundary components of Σ to

geodesics in Ω with respect to the hyperbolic metric, so that we are in the set-

ting of Theorem A.

Before examining the geometric and topological constructions that will al-

low us to prove Theorem A we will eliminate some special cases where such

constructions are unnecessary.

5.1 Special Cases

For the moment, let

h : Σ # Ω
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be any essential immersion of compact connected surfaces, and

w : S # Ω

a covering map from a circular surface.

If Ω has non-empty boundary then so must Σ, and furthermore Ω retracts

onto a graph, say by a map

r : Ω→→ ΓΩ

whose fibres consist of compact arcs with endpoints on ∂Ω, say Ip for each

p ∈ ΓΩ. Each Ip has a discrete set h−1(Ip) of preimages in Σ, which are also

intervals since h is an essential immersion (in particular, h−1 (∂Ω) ⊂ ∂Σ), and

collapsing each of these intervals to a point then produces a graph ΓΣ with

induced immersion

h∗ : ΓΣ # ΓΩ

We can also pass from the image of the geodesic w(γ) ⊂ Ω through the retrac-

tion r to an immersed circular graph S # ΓΩ, at which point the situation is

reduced to Theorem 3.1.

If Ω were a sphere or projective plane then its fundamental group has no

non-trivial proper subgroups and the result is trivial. If Ω were a torus then its

fundamental group is free abelian, so we know there is at most one w-cycle in

Σ by the discussion in Example 2.2. In the case of the Klein bottle, the only

proper subgroups are either cyclic or Z ⊕ Z, so we can easily bound the num-

ber of w-cycles by similar considerations as for the torus. We therefore assume

that Ω is a closed, orientable hyperbolic surface, so that we have the hypotheses

of Theorem A; we discuss the case of non-orientable hyperbolic surfaces in §10.3.

Most obviously, if Σ is a disc, then it contains no w-cycles. If Σ is circular, it

contains at most one w-cycle, exactly when a power of a conjugate of w generates

π1(Σ) ≤ π1(Ω), in which case it is described by a reducible immersion (in

particular an embedding). These cover the cases when χ(Σ) ≥ 0 in Theorem A,

so we assume χ(Σ) < 0, and want to show that −χ(Σ) bounds the number of w-

cycles when they are represented by irreducible immersions. This will essentially

be achieved by Proposition 7.7, using the decompositions and stackings which

we construct in the next two sections. In particular, we will always want to
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assume in these constructions that Σ has non-empty boundary.

Lemma 5.1. Theorem A holds when Σ is closed.

Proof. When ∂Σ = ∅, the immersion h is locally a homeomorphism from a

neighbourhood of every point of Σ to its image in Ω. Since Σ is compact, it

follows that h is a finite covering map; let d be the covering degree. Then there

are at most d distinct lifts of w(S) to Σ, and we have

χ(Σ) = dχ(Ω) ≤ −d,

(with the last inequality following from our assumption that χ(Ω) < 0). These

lifts to Σ are exactly the w-cycles, so there at most

d ≤ −χ(Σ)

of them, as required.

We will therefore assume from now on that Σ has non-empty boundary

unless explicitly stated otherwise. This implies in particular that we are always

considering finitely-generated subgroups of the surface group π1(Ω) which are

free and therefore infinite-index (by [43], for example). We may still assume that

Σ is compact without loss of generality for the analogous algebraic statement,

since any surface whose fundamental group is finitely-generated retracts to a

compact core.

5.2 Geometric Structures on Surfaces

We need a way to decompose surfaces into pieces that are simple enough to allow

for a “graph-like” argument using stackings to be applied (based on the discus-

sion surrounding Lemma 3.6), but still see enough of the surfaces to compute

their Euler characteristics precisely. We do not have a canonical cell decompo-

sition on a given surface in the way that a graph is naturally identified with

its combinatorial description as a set of vertices and edges. However, there is

a rich theory of the geometric structures supported by hyperbolic surfaces that

we can draw on to find the decompositions that will suit our purposes, coming

from the ideas of measured laminations and foliations which have grown out of

Thurston’s work [75] in the last 50 years.
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We will make use of certain aspects of this theory in the context of our w-

cycles problem in §6. In particular, since we already know the w-cycles bound

to hold for finite-index subgroups, we will need to deduce how these structures

on closed surfaces appear when we pull them back to immersed surfaces with

boundary. We recall the relevant concepts from the literature here — the general

theory of laminations reaches far beyond what we will need for our construc-

tions, overviews being given in numerous texts, such as [17] and [15]. Our main

reference is Hatcher’s paper [34], where he expresses key aspects of Thurston’s

theory using purely topological ideas.

A geodesic lamination Λ on the surface Ω is a non-empty disjoint union of

simple geodesics comprising a closed subset of Ω. Each geodesic λ ∈ Λ is called

a leaf of the lamination, and a union of its leaves that is still closed in Ω is a

sublamination of Λ. If Λ has no proper sublaminations, we say it is minimal.

The closure of the components of Ω − Λ are called principal regions. If all of

its principal regions are simply-connected, we say Λ is filling, and the principal

regions in this case are ideal k-gons (k ≥ 3), isometrically embedded from the

universal cover Ω̃ ' H2, where the ideal vertices are identified with points on

the bounding circle at infinity.

The simplest geodesic laminations are disjoint unions of simple closed curves

in Ω which we call multicurves, each comprising a single leaf — multicurves are

never filling, nor minimal unless they consist of a single curve. Multicurves

can be extended to filling laminations using bi-infinite leaves whose ends spiral

towards closed curves, but such laminations are not minimal. The laminations

that will be useful to us are those that are both minimal and filling, consist-

ing purely of bi-infinite leaves, each of which is dense in Λ, and throughout its

traversal is adjacent to every principal region infinitely often. (Minimal and

filling laminations are often called “ending laminations”, and studied for the

information they give on the geometry of 3-manifolds whose “ends” consist of

hyperbolic surfaces [30, 74], but this is tangential to our use of these lamina-

tions.)

The set of laminations that Ω admits can be given the structure of a topolog-

ical space, denoted ML(Ω). In [34, Proposition 1.5], Hatcher describes homeo-

morphisms

ML(Ω) ' R−3χ(Ω) (?)
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by associating the laminations with measures on neighbourhoods transverse to

“train tracks” on Ω supporting them. These train tracks are closed subsets of

Ω that locally are just line segments except at finitely many branch points as

shown in Figure 5. There are many maximal sets of train tracks on Ω (that is,

sets of tracks that cut Ω into simply-connected regions), but each consists of

a finite set of minimal sub-tracks, on which the branch-matching equations as

indicated in Figure 5 are determined up to choice of −3χ(Ω) real-valued param-

eters. After fixing a choice T of maximal track, a “measured lamination” on Ω

is obtained by choosing values in R to assign to linear track segments such that

the matching equation at each branch point of T is satisfied.

x1

x2

x3

Figure 5: A train track on the closed genus 2 surface is shown in red, and the
local model of branch points is shown underneath. Assigning values xi to each
linear track segment such that they are additive on convergent tracks specifies
a measured lamination on Ω. For the model shown, this means we require
x1 + x2 = x3. We see that if each xi is a positive integer, taking xi arcs lying
parallel to the corresponding tracks and matching throughout Ω produces a
multicurve.

If we choose each of those assigned values xi to be an integer, then we can

take xi geodesic arcs running parallel to the corresponding linear track segments,

and the matching equations ensure that these can be joined at the branch points

to produce a multicurve in Ω. As described in [34, §2], generic measured lamina-
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tions on Ω are produced by replacing the xi ∈ Z arcs with fibred neighbourhoods

of measure xi ∈ R, where the measure is chosen on these neighbourhoods to

extend the intersection number of a line segment transverse to the track with

the finitely many geodesic arcs we had in the integer case. The rational points in

R−3χ(Ω) also canonically correspond to multicurves, those associated to the in-

teger point obtained by multiplying each xi ∈ Q by the lowest common multiple

of their denominators. Points with irrational coordinates in R−3χ(Ω) correspond

to laminations in ML(Ω) without closed leaves, but are identified under the

homeomorphism (?) with limits of sequences of those corresponding to rational

points.

Hatcher also describes the projectivisation of ML(Ω), denoted PL(Ω), ob-

tained by identifying any (non-empty) measured lamination with k parallel

copies of itself for every k ∈ R+. PL(Ω) has a polyhedral structure and is

homeomorphic to a (−3χ(Ω)− 1)-dimensional sphere, and a point in the cone

in ML(Ω) over a top-dimensional face of this polyhedron corresponds to a fill-

ing lamination in Ω. This is all to say, we can consider the laminations on Ω

which are minimal and filling to be generic among the laminations it admits,

since a lamination without closed leaves which is not minimal must have at

least two minimal sublaminations, corresponding to lower-dimensional faces of

the polyhedron, and its complement cannot then be simply-connected. Further,

a minimal filling lamination Λ ∈ ML(Ω) is identified with an irrational point

in R−3χ(Ω), and a sequence of rational points converging to it is then identified

with a sequence of multicurves approximating the image of Λ in PL(Ω).

In the next subsection we will start to show how the properties of minimal

and filling laminations will be useful for characterising w-cycles in subgroups

of π1(Ω). We will also apply the above idea of approximating such laminations

by sequences of multicurves when we use the related concept of foliations on

surfaces. These are decompositions of Ω into 1-dimensional subspaces, also

called leaves (although generally not geodesics), so that a neighbourhood of

a generic point in Ω is composed of a union of parallel arcs in leaves of the

foliation, and countably many points are singularities modelled on k-pronged

saddles (k ≥ 3), where regular leaves parallel to pairs of prongs become tangent

to each other. Many concepts in the theory of laminations can be mirrored in

foliations — Levitt [48] describes a form of duality between laminations and

foliations on surfaces, whereby leaves of foliations can be “straightened” into
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geodesics describing classes of leaves of laminations. In §6.1, we will explicitly

construct a foliation based on the properties of laminations we are about to

discuss, which will eventually give us a decomposition of the immersed surface

Σ that a stacking argument can be applied to.

5.3 Pulling Back Laminations

In passing between the topological and algebraic statements of Theorems A

and A’, we can make use of the correspondence between subgroups of π1(Ω)

and regular coverings of Ω, which can be retracted onto compact cores when

the subgroup is free. We can understand how laminations on Ω pull back to

a surface Σ immersing in it by using this correspondence to identify Σ with a

subsurface of a cover. As we will see in the proof of the following lemma, it is

not difficult to understand how laminations on Ω lift over finite covers, but the

cover corresponding to a free subgroup π1(Σ) ≤ π1(Ω) is of course infinite-index.

We can however factor these infinite covers through finite ones in a way

that will solve this problem, using an approach inspired by Hall’s important

theorem for free groups [33] which states that every finitely-generated subgroup

of a free group is a free factor in a finite-index subgroup. Topologically, this

implies that any immersion of compact graphs Γ # ∆ lifts to a finite cover of ∆

where Γ is embedded. Wilton [78] generalised Hall’s theorem to surface groups,

in fact limit groups; we do not need the full strength of this result, but we

note that it implies the property of subgroup-separability, or “LERF”. In [69],

Scott shows that surface groups are LERF, and as a preliminary step proves

that the aforementioned topological implication of Hall’s theorem also holds for

immersions of compact surfaces. This result only relies on the fact that surface

groups are residually-finite (RF), as shown by Baumslag [4] (see also [36]).

Remark 3. The remarks above apply regardless of whether Ω is orientable.

Indeed, in [69], the main result is first shown for the case when Ω is the closed

non-orientable surface of Euler characteristic −1 (the connect-sum of three pro-

jective planes), and then extended to other closed surfaces using the fact that

they are all finite covers of 3P 2. However, we do not yet have a proof of the next

lemma where we apply Scott’s technique to understand pullbacks of laminations

on Ω, in the case that Ω is non-orientable.

As noted by Reynolds in the introduction of [66], Scott’s results have con-
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sequences for pullbacks of minimal laminations along immersions of surfaces,

which can be applied in the setting of Theorem A. Since filling laminations cut

surfaces into simply-connected regions, our broad strategy will be to use them

to derive cell decompositions. The following lemma will have implications about

the nature of cell decompositions these laminations induce on Σ — essentially,

preimages of leaves will be seen as spans of 2-cells of a particular form, and

w-cycles in Σ will be encoded by their paths through the leaves. The basic idea

is sketched in Figure 6, and we formalise it in the next section.

Lemma 5.2. Let Ω, Σ, w be as in Theorem A, with ∂Σ 6= ∅. Let Λ be a minimal

filling lamination on Ω. Then every leaf λ ∈ Λ satisfies:

1. all intersections between λ and the collection of curves w(γ), h (∂Σ) are

transverse; and

2. all preimages h−1(λ) are compact arcs with endpoints on ∂Σ.

Ω

Figure 6: The preimages under h of leaves of the lamination Λ are arcs between
boundary components, and all components of (Σ− h∗Λ) are homeomorphic to
discs. This results in those discs being subdivided into regions spanned by
the pulled back leaves, and matching the regions up pairwise as the leaves are
crossed produces 2-cells which are “rectangular” (see Definition 6.1).

Proof. Letting H = h∗ (π1(Σ)) ≤ π1(Ω), there is a corresponding non-compact,

regular covering space ΩH
pH−−→ Ω, and a compact, essential subsurface Σ′ ⊂ ΩH
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homeomorphic to Σ whose image under pH is exactly h (Σ) ⊂ Ω. Then, since

π1(Ω) is RF, we can apply [69, Lemma 1.3] to find a finite-sheeted intermediate

covering

ΩH → Ω1
p1−→ Ω

such that the image of Σ′ in Ω1 is essentially-embedded, thereby identifying Σ

with a surface embedded in the finite cover Ω1. Then π1(Ω1) is a finite-index

subgroup of π1(Ω), and so contains a further finite-index subgroup which is

normal in π1(Ω) (to be exact, we can take this to be the intersection of conjugates

of π1(Ω1) by a complete set of coset representatives). In other words, there is a

further finite-sheeted cover

Ω2
p2−→ Ω1

p1−→ Ω

such that

p := p2 ◦ p1

is a regular covering map. Since such covers are easily understood, we will de-

duce minimality of the lifted lamination Λ2 := p−1Λ in Ω2, and thereby deduce

the same for Λ1 := p−1
1 Λ. It is immediate that since Λ is filling and p essential,

the complementary regions Ωi − Λi are all homeomorphic to discs, for i = 1, 2.

Taking a regular neighbourhood of Λ in Ω, we can reconstruct Ω by attaching

to it finitely many closed discs D1, . . . , Dk. If Λ2 were not minimal, we could

similarly take a neighbourhood of each of its minimal sublaminations and ob-

tain disjoint essential subsurfaces of Ω2, by attaching lifts of the Di to these

neighbourhoods. Since Λ itself is minimal, each minimal sublamination of Λ2

covers the entirety of Λ, and it follows that each of those essential subsurfaces is

homeomorphic to a union of fundamental domains for the cover p. But then Ω2

would be formed by gluing the boundaries of the subsurfaces along regions that

map into Ω− Λ, which is a contradiction as such regions must be discs. So Λ2

instead consists of a single minimal component, and so too does its continuous

image p2(Λ2) = Λ1 in Ω1.

Now, restricting to Σ embedded in Ω1, if Σ were to contain any infinite half-

leaf of the minimal lamination Λ1, since this leaf is dense in Λ1, then Σ would

also have to contain the entirety of Λ1, disjoint from its boundary. This forces

any boundary components of Σ to lie in complementary regions of the lifted

lamination, and therefore bound discs in Ω1, but this contradicts the fact that
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Σ is the image of the essential subsurface Σ′ ⊂ ΩH under a covering map. In

other words, we could only have non-compact leaves in Σ if Σ = Ω1 meaning

our subgroup H ≤ π1(Ω) was finite-index to begin with. Since Σ has boundary

it is therefore a proper subset of Ω1, and we then know that Λ1 restricted to Σ

must consist of compact arcs between its boundary components.

We have now seen that the second condition is satisfied. Since h is an

immersion and h(∂Σ) and the leaves of Λ are distinct geodesics in Ω (by the

hypotheses of Theorem A), all intersections of h(∂Σ) with Λ are transverse. Any

Λ can be viewed in the space ML(Ω) as the limit of a sequence of multicurves

comprised of simple closed geodesics whose lengths increase unboundedly as

they converge to Λ. Since the closed geodesic representative w(γ) has fixed

length in Ω, it follows that after finitely many steps any sequence of multicurves

converging to Λ does not contain w(γ), so that all of the intersections of w(γ)

with such multicurves, as well as with Λ, are transverse.
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6 Rectangular Decompositions

In this section we introduce a specific type of cell decomposition for compact

surfaces with boundary. Knowing that we have this type of cell structure will

allow us to perform an Euler characteristic computation from a combinatorial

stacking as was done for graphs.

Definition 6.1. Let Σ be a compact surface with non-empty boundary. We

call a cell decomposition of Σ rectangular if:

1. its 1-skeleton is the union of ∂Σ with a finite forest Φ whose leaf vertices

are exactly the 0-cells lying on ∂Σ;

2. each 2-cell contains exactly two edges of ∂Σ in its boundary.

We call Φ the interior 1-skeleton, and the 2-cells rectangles, each having its two

“parallel” arcs of ∂Σ spanned by arcs (linear sequences of edges) in a pair of

components of Φ. For each connected component T of Φ, we define its valency

∆(T ) as the total number of distinct 2-cells its edges are incident to.

Figure 7: Sketch of a rectangular decomposition on a surface Σ. The rectan-
gular 2-cell highlighted blue spans arcs on distinct components of ∂Σ, and the
component T of the interior 1-skeleton highlighted red has valency ∆(T ) = 4.

Example 6.2. It is not difficult to construct a rectangular decomposition for

any orientable compact surface with boundary (other than the disc D2). For

instance an annulus has a rectangular decomposition induced by a pair of dis-

joint edges both joining the two distinct boundary components. Similarly a disc
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with 3 holes can be decomposed into rectangles as shown in the upper-left of

Figure 8. The decomposition shown there generalises to discs with any number

n of holes, by making the vertex in the centre of the disc n-valent, connecting

to each of the holes, and the other parts of the interior 1-skeleton connecting

pairs of holes to each other as well as to the outer boundary of the disc staying

essentially the same.

Any compact surface with boundary can be obtained from a disc with some

positive number of holes by adding in 1-handles that connect pairs of boundary

components. The bottom-right of Figure 8 shows how, given a rectangular

decomposition on such a disc as shown, it can be extended to a surface with

genus (and fewer boundary components) by adding another edge to the existing

interior 1-skeleton, and one crossing the core of the 1-handle attached. Rather

than these generic decompositions, we will go on in the rest of this section to

find ones whose rectangles carry meaningful information about the w-cycles in

Σ.

1-handle

attachment

Figure 8: A disc with 3 holes can be decomposed into rectangles, with arcs
in boundary components (blue) spanned by pairs of arcs in the tree compo-
nents of the interior 1-skeleton (green). A method for extending the rectangular
decomposition over handle attachments is shown.

Rectangular decompositions provide our desired graph-like description of Σ,

with each tree T of the interior 1-skeleton (including its vertices) corresponding

to a single vertex in a graph, and the rectangular 2-cells behaving like thickened
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edges. Note that each such T has Euler characteristic equal to 1, and the rect-

angular regions (minus their boundary arcs lying in the interior 1-skeleton, but

including the arcs on ∂Σ) contribute −1 to the total Euler characteristic, being

homeomorphic to a disc with 2 disjoint closed arcs removed from its boundary;

so the components of a rectangular decomposition make the same contributions

to Euler characteristic as do vertices and edges in a graph.

We observe at this point that all the 2-cells in such a decomposition have the

same structure, as rectangles spanning two (non-adjacent) arcs in the boundary

of the surface. It follows that the interior 1-skeleton contains all the data of

the decomposition. We will go on to obtain rectangular decompositions from

pulling back the structure of foliations on a closed surface which, analogously,

can be specified just from the data of their singular leaves.

6.1 Foliations and Rectangles from Long Geodesics

Property (2) of Lemma 5.2 suggests how we can use a lamination Λ to derive a

decomposition on Σ satisfying Definition 6.1. Intuitively, we can think of form-

ing rectangles made up of parallel copies of the arcs of h−1Λ, and the interior

1-skeleton will contain the singularities which result when parallel copies of arcs

mapping to different principal regions meet; see Figure 6. In this subsection we

make this process exact using foliations, which will also help provide a frame-

work for our construction in §7.1.

Fix a minimal filling geodesic lamination Λ on the orientable surface Ω which

has length function l on curves induced by its hyperbolic metric. Recall from our

discussion in §5.2 that Λ consists of uncountably many bi-infinite geodesics, and

can be considered as a limit of points in the “rational” subspace of ML(Ω) ∼=
R−3χ(Ω) consisting of (geodesic) multicurves. As such, we now fix a sequence of

multicurves {Ci}i∈Z in Ω converging geometrically to Λ. In particular, we assume

that the lengths of these curves increase monotonically and unboundedly with

i. Given r ∈ R, we denote by ir the first integer such that:

l(c) > r, ∀c ∈ π0(Cir ) ⊂ Ω

Compare this with Lemma 5.2, which tells us that in the limit as Ci → Λ,

the preimages under h of the components of the Ci converge to finite length
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arcs between components of ∂Σ. We can lift l to l̃ on the degree d cover Ω1

from the proof of Lemma 5.2, measuring lengths of curve segments within each

fundamental domain just as we would in Ω. Restricting l̃ to Σ ⊂ Ω1, we then

have a well-defined supremum

M = sup{l̃(λ̃) | λ̃ a component of h−1Λ}

Then for all i > iM , the preimage

C̃i := h−1Ci

must similarly consist of compact arcs with endpoints on ∂Σ. Indeed, since

Λ ⊂ Ω, Λ1 ⊂ Ω1 are both minimal laminations, any leaf λ has a unique lift λ̃,

and the points of these two leaves are related by a length-preserving bijection, so

when i is sufficiently large, we can observe similar behaviour for the components

of Ci, C̃i as we would for the leaves of Λ, Λ1. The preimage of each component c

of Ci is a simple closed curve c̃ ⊂ Ω1 covering c at most d times. So if l(c) > M ,

then l̃(c̃) also exceeds the supremum M for each such preimage c̃ in C̃i, and

since we can assume c̃ ∩ Σ lies arbitrarily close to components of h−1Λ, its re-

striction to Σ also consists of a disjoint union of arcs spanning components of ∂Σ.

Now, we may assume each multicurve is maximal in the sequence (i.e. can-

not have another disjoint, geodesic, simple closed curve added to it and still

form part of a sequence converging to Λ). Since the limit Λ is filling, after a

finite number of steps, say I, the sequence stabilises to consist entirely of multi-

curves that cut Ω into pieces which have no topology other than their boundary

components. More precisely, since Ω − Λ is a union of discs, if, for some i, a

component of Ω − Ci contains an essential simple closed curve s in its interior

then this component cannot be a disc, therefore not contained in a principal

region and so arcs of leaves of Λ cut s. This means that for some j > i, Cj
contains an arc lying sufficiently close to such an arc of Λ to also cut s, so that

s 6⊂ Ω− Cj

So after I steps, the components of Ω−CI can only contain simple closed curves

which are either nullhomotopic or homotopic to products of their boundary

components (i.e. copies of the components of CI). This means the components

of Ω − CI are homeomorphic to spheres with some number of discs removed.
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The number of such components, and the number of boundary components of

each, is determined by the number of ideal polygons in Ω − Λ, and how many

sides each has.

We can now choose any i greater than the maximum of iM and I, and fix

C := Ci

a collection of simple closed curves cutting Ω into a collection of spheres with

various numbers of discs removed. In summary, translating Lemma 5.2 into a

statement about a multicurve that sufficiently closely approximates Λ produces:

Lemma 6.3. There exists a multicurve C ⊂ Ω such that:

1. Ω− C is homeomorphic to a disjoint union of spheres each with at least 3

discs removed; and

2. h−1C is a disjoint union of compact arcs with endpoints on ∂Σ.

With a choice of C now fixed, we consider some component:

X ' S2 − tki=1Di

of the closure of Ω− C, where each Di ' D2, and k ≥ 3. Taking parallel copies

of the boundary components of X, we can produce a foliation of X with two

k-pronged singularities. The smooth leaves are all circles and the singular leaf

is a graph containing the 2 singularities as vertices, and k edges joining the

prongs. Call the foliation induced on each component X in this way FX , and

denote the singular graph:

ΓX := FXsing, ∀X ∈ π0(Ω− C)

We can view X as the union of k annuli, each with one of its boundary compo-

nents identified with a component of ∂X, and the other with a simple loop in

ΓX , and these annuli are naturally foliated by parallel copies of such loops. See

Figure 9.

Since Ω is orientable, each boundary component c ∈ ∂X represents a 2-sided

curve in Ω, and there is some other boundary component c′ ∈ ∂X ′ (where X ′

could either be X or another component of Ω−C) which is identified with c when
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3-pronged singularities      pairs of pants:

4-pronged:

Figure 9: At the top we show two views of a “pair of pants”, S2 − t3
i=1Di. By

taking parallel copies of the boundary components of the pants and matching
the boundary components in pairs we form a foliated genus 2 surface. The
smooth leaves are shown in green, and their isotopy classes converge on the black
singular leaves. Below, we show a 4-holed sphere X decomposed as a union of
4 foliated annuli, producing a foliation FX with two 4-pronged singularities.
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recovering Ω. The annuli forming X, X ′ that had c, c′ as boundary components

then join to form a single foliated annulus whose boundary components are

identified with distinct simple loops in ΓX , ΓX′ . This extends the foliations FX

over all components of Ω − C, producing a foliation on the whole of Ω, which

we call FC . Then the collection of singular leaves,

FCsing =
∐

X∈π0(Ω−C)

ΓX

cuts Ω into a disjoint union of annuli.

We now come to our reason for constructing these foliations:

Lemma 6.4. Let C be a multicurve in Ω such that:

1. Ω− C is a disjoint union of spheres each with at least 3 discs removed

2. h−1C is a disjoint union of compact arcs with endpoints on ∂Σ.

If FC is the filling foliation on Ω induced by C, then

h−1
(
FCsing

)
comprises the interior 1-skeleton of a rectangular decomposition of Σ.

Proof. The immersion h preserves the local surface structure away from the

boundary; in particular, the smooth leaves of FC have smooth preimage in Σ.

Smooth leaves in Ω are all isotopic to one of the curves in C, so by our hypothe-

ses, the smooth leaf preimages are all compact arcs with endpoints on ∂Σ.

We similarly consider the singular leaves ΓX ⊂ FC , for X the components

of Ω − C as above. Each ΓX consists of 2 vertices of the same valency k ≥ 3,

containing k different simple loops isotopic to classes of smooth leaves in FX .

So, since none of those loops have closed curve preimages in Σ, the h−1 (ΓX)

consist of disjoint unions of trees in the interior of Σ, where we add leaf vertices

at the intersection points of the h−1 (ΓX) with ∂Σ. These leaf vertices together

with the k-valent preimages of the singular vertices, h−1
(

Γ
(0)
X

)
, form the 0-

skeleton of our decomposition of Σ. The edges of the trees will form the interior

1-skeleton, so we now denote

Φ := h−1
(
FCsing

)
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The rest of the 1-skeleton consists of the edges of the components of ∂Σ, sub-

divided by the leaf vertices of Φ.

We easily verify that the 2-dimensional regions obtained by cutting Σ along

Φ ∪ ∂Σ are all simply-connected, so that we really have obtained a cell decom-

position. Indeed, suppose that one of the regions contains a non-contractible

curve c; since h is π1-injective, c maps to a non-contractible curve in Ω−FCsing.

But the only non-contractible curves in Ω − FCsing are homotopic to products

of curves in C by construction, so this contradicts our hypotheses, and no such

c can exist.

It remains to check that the 2-cells of Σ have the rectangular structure spec-

ified by Definition 6.1. The boundary of each 2-cell consists of an alternating

sequence of arcs contained in components of Φ, and arcs contained in compo-

nents of ∂Σ, and we just need to confirm that there are just two of each type

of arc, describing the spans of a rectangle. This simply follows from the fact

that all the smooth leaves in any given component of Ω − FCsing are isotopic,

implying that the arcs between components of ∂Σ which comprise the interior

of any given 2-cell of Σ are all isotopic through such arcs. If any 2-cell contained

3 or more arcs of ∂Σ in its boundary, its interior would have to contain arcs of

h−1C spanning different pairs of arcs of ∂Σ, and so would contain more than

one isotopy class of arcs spanning boundary components.

Finally, we have:

Proposition 6.5. Let Ω, Σ, w be as in Theorem A, with ∂Σ 6= ∅. There is a

rectangular decomposition of Σ, whose interior 1-skeleton is transverse to the

core curves of the w-cycles in Σ.

Proof. That the decomposition exists follows from the fact that Ω admits min-

imal filling laminations and Lemma 5.2, as Lemma 6.3 then gives a multicurve

C satisfying the hypotheses of Lemma 6.4. Lemma 5.2 also allows us to assume

w(γ) is transverse to the leaves of an arbitrary minimal filling lamination Λ, as

well as to any multicurve approximating Λ sufficiently closely. Since Ω is foli-

ated by leaves parallel to C, we can therefore arrange all intersections of w(γ)

with FCsing to be transverse. Since the interior 1-skeleton of the rectangular

decomposition on Σ is h−1
(
FCsing

)
and the core curves of the w-cycles in Σ lie

in h−1 (w(γ)) (and since h is an immersion), all of their intersections are also

transverse.
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The statement regarding transversality to the w-cycles effectively means

that the w-cycles are carried by circular sequences of rectangles, directed along

paths in Σ determined by the pair of boundary components that they are moving

between at any given point in their traversal. This property will be used in the

next section, when we want to establish a correspondence between the w-cycles

and the max-height regions of a stacking of the rectangles, in order to apply

Lemma 6.6.

6.2 Structure of Components of S

Before showing how we use rectangular decompositions to compute χ(Σ) from a

stacking of the map w′ : S→ Σ describing the w-cycles, we briefly discuss here

the cell structure that we fix on the components of S to make w′ a combinatorial

map, given a rectangular decomposition of Σ. The circular components of the

pullback Σ ×Ω S are all homeomorphic to annuli with countably many closed

arcs removed from their boundary curves. The core curve generating each com-

ponent’s fundamental group covers γ, the core curve of S, finitely under the

induced map σ : S→ S.

We visualise the components of the pullback by first thinking of the uni-

versal cover of Σ, which is the hyperbolic plane minus countably many bigons,

bounded by segments of the ideal boundary and lines with endpoints on this

boundary, each line covering some component of ∂Σ. Each component of S is an

intermediate cover between the universal cover and Σ. Since they are circular,

we can visualise them by moving outwards orthogonally from the core curves

in σ−1(γ), and as we move out we see a similar recurring pattern of lifts of

components of ∂Σ as in the universal cover; see the component illustrated in

the top-left of Figure 10.

The components of S are non-compact but we are only interested in them

insofar as they describe the w-cycles in Σ, and this information can be captured

by restricting to compact subsets of each component. To make this precise in

our setting, we fix a rectangular decomposition on Σ with interior 1-skeleton Φ,

and we pull it back to S. That is, for any given component ψ ∈ π0(S), we fix a

cell decomposition of ψ with skeleta:

ψ(i) := (w′)−1
(

Σ(i)
)
, 0 ≤ i ≤ 2

63



(since the components of the pullback cover Σ, this is indeed a cell decomposi-

tion, with infinitely many cells, each mapping homeomorphically to cells of Σ).

Now the intersection of ψ with σ−1(γ) is contained in finitely many cells in this

decomposition. We delete the interiors of all 2-cells except for those intersecting

σ−1(γ), as well as all components of (w′)−1(Φ) ⊂ ψ(1) which contain no edge

adjacent to such a 2-cell, to obtain a compact circular 2-complex representing

each w-cycle. We have taken care to keep enough of ψ(1) intact from the original

pullback so that entire components of the interior 1-skeleton from the decompo-

sition of Σ lift to the truncated components and not just subsets of them — in

general this stops the truncated components from being surfaces, instead they

are “circular surfaces with trees hanging from the boundary”, but we want to

keep these trees for a technical point in the proof of Lemma 6.6. From this

point on, when we refer to the components of S we will assume that we have

restricted to these compact cores, unless stated otherwise.

Of course lifting the decomposition to S produces a cell structure that mim-

ics the one on Σ, but we take a little care to note that it does not strictly lift

to a rectangular decomposition on the truncated components in the sense of

Definition 6.1, even if we were to delete the extra trees attached to it. This

is because after we truncate as shown in Figure 10, the boundary of each of

these components will consist not just of edges in the preimage of ∂Σ, but also

edges in the preimage of the interior 1-skeleton of Σ that were in the bound-

ary of exactly one of the deleted 2-cells from the whole pullback. The 2-cells

essentially have a rectangular structure, but instead of having exactly 2 edges

of ∂S in their boundary, they have 2 subdivided boundary arcs possibly with

extra trees attached, and the analogue of the interior 1-skeleton of these circular

components is just a disjoint union of single edges crossed by the core curve.

Ultimately it will only be important that our decomposition of Σ satisfies

Definition 6.1 for our Euler characteristic computation in the next subsection.

Since w′ is a combinatorial map with respect to that decomposition, we do not

need to alter the cell structure on the components of S any further.

6.3 Computing with Stackings of Rectangles

To justify introducing this specific form of decomposition, we now show that

surface stackings which respect rectangular decompositions allow us to mimic
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TRUNCATE

S

w'

Figure 10: A component of S covering the core of S 3 times. We can truncate
the component to a compact core, by deleting the 2-cells that don’t intersect
σ−1(γ), i.e. the regions highlighted orange here. In the truncated component,
segments of the boundary that are in the preimage of ∂Σ are purple, and the
rest of the boundary, which is in the preimage of the interior 1-skeleton of Σ, is
blue. This figure shows a special case where all trees of Φ are trivalent.
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the argument of [52, Lemma 2.4], in order to compute the Euler characteristic

of the image surface.

Lemma 6.6. Let S be a disjoint union of compact circular 2-complexes, Σ a

compact surface with non-empty boundary, and

ρ : S→→ Σ

a surjective immersion which has a stacking

ρ̂ : S ↪→ Σ× R

Suppose also that Σ has a rectangular decomposition with interior 1-skeleton Φ,

with respect to which ρ is combinatorial and maps the preimages of components

of Φ onto the components of Φ homeomorphically. Then −χ(Σ) is equal to the

number of max-height strips of ρ̂.

Proof. We compute χ(Σ) from the rectangular decomposition: all vertices and

non-boundary edges are contained in the set Φ of connected components of the

interior 1-skeleton, and each of these trees has 1 more vertex than it has edges.

This gives ∣∣∣Σ(0)
∣∣∣− ∣∣∣Σ(1)

∣∣∣ = |Φ| −
∣∣∣(∂Σ)

(1)
∣∣∣

(we are using |Φ| here to denote the number of connected components of the

forest Φ). Since each rectangular face of the decomposition can be specified by

the pair of edges in the boundary that it spans, we also have∣∣∣(∂Σ)
(1)
∣∣∣ = 2

∣∣∣Σ(2)
∣∣∣

giving

χ(Σ) =
∣∣∣Σ(0)

∣∣∣− ∣∣∣Σ(1)
∣∣∣+
∣∣∣Σ(2)

∣∣∣ = |Φ| −
∣∣∣Σ(2)

∣∣∣
Each rectangular face similarly specifies a pair of arcs in components of Φ, so

that ∑
T∈Φ

∆(T ) = 2
∣∣∣Σ(2)

∣∣∣
from which we obtain

χ(Σ) = |Φ| − 1

2

∑
T∈Φ

∆(T ) =
1

2

∑
T∈Φ

(2−∆(T ))
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The result will be proven by comparing this formula for χ(Σ) in terms of

the data of the decomposition, with the data of our stacking of the surjective

combinatorial map ρ. Consider any tree T ∈ Φ, and the intersection of its

∆(T ) incident 2-cells with ρ (Aρ̂). Since the components of Aρ̂ are open in S,

and ρ surjective, it must be the case that two of the incident 2-cells to T are

contained in the image of a single max-height region crossing an edge of T , and

the interiors of the remaining ∆(T ) − 2 are in the images of other max-height

strips terminating at edges of T ; see Figure 11. This gives a bijection between

ends of the max-height strips and subsets of the rectangles incident at each tree,

so that the total number of strips is counted by

1

2

∑
T∈Φ

(∆(T )− 2) = −χ(Σ)

Remark 4. Essentially the same argument shows that −χ(Σ) is equal to the

number of min-height strips, from which we observe that these two quantities

are equal.
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πΣ

Figure 11: Self-intersections of ρ(S) in Σ come from rectangles which get sent
to distinct heights in Σ × R by the stacking ρ̂. The middle level in this sketch
is zoomed in on part of Σ× R, with Σ stretched (compared to how it is drawn
on the bottom) to emphasise the rectangular shape of the 2-cells carrying the
cores of components of S, and shading/dashed lines used to indicate subsets of
the image of S−Aρ̂. Each component T of the interior 1-skeleton has a unique

preimage T̃ in Aρ̂ — one of the edges of T̃ is adjacent to a pair of rectangles in
a single max-height region, and the remaining (∆(T )− 2) rectangles in contact
with T have preimages in Aρ̂ with R coordinates smaller than those of T̃ , and
therefore containing terminal edges of max-height strips.
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7 Surface Stackings

We will use stackings of the components of S which respect the rectangular de-

composition of Σ as discussed above to prove Theorem A. To show that such

stackings exist, we apply in this section the arguments of [39, Lemma 3.1] and

[52, Lemmas 3.3, 3.4] to the setting of surfaces. Since it will be useful in proving

Proposition 7.7, we will obtain the stacking of S in Σ × R as a pullback of a

stacking in Ω × R of the circular surface S whose core curve γ maps to the

geodesic representative of w in Ω.

Finding such a stacking is equivalent to putting discrete orderings on the

preimage sets of points in Ω under w that remain consistent with each other as

S is traversed, and this can be achieved by finding a sequence of covers of Ω

to which w lifts, and whose deck transformation group at each stage is isomor-

phic to Z. This will induce the orderings we need on point preimages from the

standard ordering of the integers, since points of S with the same image in Ω

will eventually lift to distinct points in the covers, and these points will then be

related by the deck transformations; this idea relates to our discussion in §3.2.

To guarantee that the sequence of lifts terminates, we require a finite amount

of data in the space we initially map from, so we begin by finding a suitable

compact subset of S to which we will restrict w.

Remark 5. As stated above, for the proof of Theorem A we will be assuming

that Ω is orientable, and the circular surface S an annulus. However, if there

was a proof of Proposition 6.5 that could guarantee a rectangular decomposition

carrying the w-cycles in Σ induced from some filling foliation when Ω is non-

orientable, the method we describe in this section for obtaining a stacking with

respect to this decomposition would work equally well. We will discuss the

minor differences that would arise from non-orientability in §10.3.

7.1 Constructing the Core

We will construct our compact core annulus, which we denote Sc ⊂ S, so that

it is naturally equipped with a cell structure that makes w into a cellular map

from Sc to Ω. Fixing a filling foliation FC as in Lemma 6.4, the singular leaves

cut Ω into a disjoint union of annuli. We can extend the graphs forming FCsing

to be the 1-skeleton of a cell decomposition by adding an edge to each annulus
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with an endpoint on a vertex of the singular leaf at each of its boundary circles.

To make this precise, we now consider w−1
(
FCsing

)
, the pullback of the sin-

gular leaves to S. Since w(γ) is transverse to the leaves, w−1
(
FCsing

)
contains

no closed curves, and so consists of a disjoint union of infinite trees embedded

in S, each one covering one of the graphs ΓX comprising FCsing. The core curve

γ passes through a single edge in a finite number of these trees, as shown in

Figure 12. These edges are met in a cyclic sequence by γ, and between any two

of them γ lies in a non-compact strip which is bounded by an “outer” sequence

of edges in the trees it is passing between, and which covers one of the circular

components of Ω−FCsing infinitely under the immersion w.

γ

OUTER

EDGES

w

Figure 12: Schematic illustrating the structure of S when FC is induced by a
pants decomposition of Ω. The singular leaves and their pullback are shown
in green, and core curve γ shown in red. The blue annulus in Ω, made up of
isotopic smooth leaves, has preimage consisting of non-compact strips in S, and
the boundary edges of these strips consist of sequences of edges in the trees
comprising w−1

(
FCsing

)
.

The 2-cells of Sc will eventually be constructed by truncating each of these

strips to obtain a specific compact neighbourhood of γ. Since we will want to
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pull back our stacking of Sc to the components of S, we need to ensure that

this neighbourhood is sufficiently large to contain the images under σ of all the

2-cells of S. So consider now a single component:

a ∈ π0

(
Ω−FCsing

)
The preimage h−1(a) consists of a finite union of the rectangular 2-cells of Σ,

and each of these 2-cells immerses in a, their intersection with ∂Σ mapping to

a pair of arcs with endpoints on FCsing. In S, the union (in general not disjoint)

of the preimages of these arcs from all the 2-cells of h−1(a) produces a cyclic

sequence which we see infinite periodic repetitions of in each of the strips com-

prising w−1(a); see Figure 13.

Taking the image of a 2-cell of S under σ, it will be contained in one of these

strips in S−w−1
(
FCsing

)
, with each of its edges that lie in (w′)−1 (∂Σ) mapping

to one of the periodically repeating arcs, one on either side of γ. Each of these

arcs in the image of σ has endpoints lying either on a vertex or between a pair

of vertices on some component of w−1
(
FCsing

)
, and we can roughly describe the

“width” of the 2-cell by the number of vertices lying on this component between

the arc endpoints.

We now consider all of the (finitely many) images of 2-cells of S that lie in

strips of w−1(a), and identify the corresponding arc endpoint at the furthest

distance from γ as counted by number of vertices on the strip boundary. Once

we have identified this endpoint, we continue outward from the core curve along

the strip boundary on until we reach the next vertex which we will call va, and

starting from va, count some positive integer number na of vertices between it

and γ. There may be in fact be several choices of va — all that matters is that

no rectangles of (h ◦ w′)−1
(a) ⊂ S have image in S extending further than na

vertices away from the core curve; see Figure 14.

We add an edge joining va to the vertex on the opposite singular leaf making

up the strip boundary, on the same side of γ as va, and also na vertices away

from γ. We call the image in Ω of this edge ea — if a is an annulus with boundary

components identified with loops in the graphs ΓX , ΓX′ (it is possible X = X ′,

but the loops will then be distinct), then ea stretches across a to join one of the
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Figure 13: The regions shaded blue indicate a chosen component
a ∈ π0

(
Ω−FCsing

)
and its preimages in Σ and S, and the darker regions

correspond to a specific rectangular 2-cell in Σ, with image in a and one of its
preimages in S highlighted. The images of the purple arcs in the boundary of
this rectangle cut across a, as do those from all other pairs of arcs in h−1(a)∩∂Σ
(another one is indicated in pink). Lifting these arcs from Ω to S, we see a se-
quence of arcs in each strip of w−1(a) which repeats periodically as we move
outwards from γ. On each of the strip boundary components shown in green,
moving past 2 lifts of the singular vertices roughly corresponds to a full rotation
around the core of a in Ω.
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Figure 14: Strips making up w−1(a) lie in S, where a is the component of(
Ω−FCsing

)
highlighted blue, and rectangular 2-cells of S map into these strips.

We have little control over the subset of each strip spanned around the core curve
(red) by the images of the rectangles, but we can count how many vertices we
have to travel out along each strip boundary from the core until we have gone
past the union of all of them. In this sketch, na = 7, and a choice of va is
indicated. We can then add na lifts of ea on either side of the core in each strip
and delete everything further out to get a subdivided compact subset of w−1(a)
that includes the images of all relevant rectangles.
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vertices of ΓX to one of those of ΓX′ . When Ω is cut along the graph

ΓX ∪ ea ∪ ΓX′

the result is that a is cut into a single disc. Doing this in each component defines

the 2-cells, and therefore the entire cell decomposition that we want to fix on

Ω.

The 1-skeleton of w−1(a) ⊂ Sc is then specified by all lifts of ea in each strip

of w−1(a) with endpoints on the first na vertices away from γ on both sides.

We delete any edges and vertices of w−1
(
FCsing

)
which are not adjacent to one

of these lifts of ea. The 2-cells of Sc ∩ w−1(a) are now specified in the obvious

way, by adding one to fill each region in the strips between all of the lifts of ea

that have been included in the 1-skeleton — each 2-cell we add maps to (a−ea)

homeomorphically under w.

Once we have done this for each a ∈ π0

(
Ω−FCsing

)
, the embedded graphs

of FCsing together with the collection of edges ea comprise the 1-skeleton of a

cell decomposition for Ω, with 2-cells being the complementary regions a− ea.

The immersion w restricted to Sc is now combinatorial with respect to this cell

structure on Ω. We also have a canonical inclusion map for the image under σ

of each 2-cell of S into Sc, although this map is not combinatorial.

7.2 The Loo-Roll Lemma for Surfaces

We will now construct a stacking of the core circular surface Sc in Ω×R, based

on [52, §3]. As we discussed in § 3.2, these methods are strongly connected

to right-orderability, with the existence of a stacking being equivalent to right-

orderability of the one-relator surface group π1(Ω)/〈〈w〉〉. This manifests in a

process of “tower-lifting” of maps, originating in Papakyriakopoulos’ methods

for proving the loop and sphere theorems for 3-manifolds [65] (see also [72]).

Definition 7.1. [39] Let f : Z → X be a combinatorial map between compact,

connected cell complexes. A cyclic tower lifting of f consists of the following

data:

1. A finite sequence of combinatorial maps between connected cell complexes:

Yn
in
↪−→ Xn

pn−→→ Yn−1

in−1

↪−−−→ Xn−1
pn−1−−−→→ · · ·Y0

i0
↪−→ X0 := X
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where each ij is an inclusion map and each pj a covering space map for a

cover of Yj−1 with deck group isomorphic to Z.

2. A collection of cellular maps fj : Z → Xj for 1 ≤ j ≤ n such that

Yj = fj (Z) ⊂ Xj ,

and

Y0 = f (Z) ⊂ X,

and such that the following diagram commutes:

Yn

Xn

...

Y0

Z X

in

pn

i0

fn

f

f

We call such a lifting maximal if f does not lift to any proper cyclic cover of

Yn.

In the rest of the section we discuss the arguments used to show the existence

firstly of maximal cyclic tower liftings and then stackings for w-cycles in surfaces;

our core circular surface Sc with the cell structure described in the previous

section will play the role of Z, and Ω the role of X, in Definition 7.1. First, we

present the following lemma to make explicit the structure of the top level of a

tower lifting of a circular complex.

Lemma 7.2. Let S be a circular surface, and f : S # Ω an essential combina-

torial immersion to a closed surface with a maximal cyclic tower lifting:

S
fn−→ Yn

in−→ Xn
pn−→ · · ·Y0

i0−→ Ω

Then Yn = fn(S) is circular.
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Proof. Every cover of Ω that has infinite deck group must have free fundamental

group, so either Yn = Y0 = Ω and there is no non-trivial lifting, or all the Xi, Yi

have free fundamental groups (except for X0 = Ω). The former possibility is

ruled out by the first application of Hempel’s trick discussed in § 4.1. In the

latter case, if Yn is not circular then π1(Yn) is a free group of rank at least 2,

so 〈wn〉 is a proper subgroup, whose normal closure is contained in the kernel

of a homomorphism

π1(Yn)→→ Z

(where wn = [fn(S)] ∈ π1(Yn)). However, this implies that there is a lift

of fn over a cyclic cover of Yn (again, compare with the discussion in § 4.1),

contradicting the maximality of the tower, so Yn must be circular.

A maximal cyclic tower lifting of w : Sc # Ω exists by induction on the

difference in size of 0-skeleta between Sc and its images at each step. If |S(0)
c | =

|Y (0)
0 |, then w would already be a π1-surjection onto its image in Ω, so could

not lift to any proper connected cyclic cover of Y0, and we would vacuously

have a maximal cyclic tower lifting to begin with (but this is not the case by

Lemma 4.1). Suppose now that we have a sequence of complexes

Ym
im
↪−→ Xm

pm−−→→ Ym−1

im−1

↪−−−→ Xm−1
pm−1−−−→→ · · ·Y0

i0
↪−→ Ω

providing cyclic tower lifts of w, and that w lifts to a proper, connected, cyclic

cover of Ym, so that

|S(0)
c | − |Y (0)

m | > 0

and we have a commutative diagram:

Ym+1

Xm+1

Sc Ym

im+1

pm+1

wm+1

wm

Then |Y (0)
m+1| ≥ |Y

(0)
m |, since pm+1 ◦ im+1 is surjective. In fact this inequality is

strict, as otherwise the image of Sc in Xm+1 would be a homeomorphic copy of

its image in Xm, and Xm+1 would fail to be a proper covering of Ym = wm(Sc).
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So we have

0 ≤ |S(0)
c | − |Y

(0)
m+1| < |S(0)

c | − |Y (0)
m |

and since the quantity |S(0)
c | − |Y (0)

j | can never become negative, we see that

the process of finding successive lifts of w to cyclic covers of its images must

terminate.

We now convert our maximal cyclic tower lifting into a stacking of w. This

is done by first finding a stacking of the image of Sc at the top level of the tower

— that is, an embedding

ŵn : Sc ↪→ Yn × R

such that πYn
◦ ŵn = wn — and then showing that this stacking can be pushed

down each level of the tower inductively, until we have the required embedding

in Ω× R.

To start, we have that by Lemma 7.2 Yn = wn (Sc) is circular. Now we can

use our assumption of indivisibility of w to observe that, since w factors as

(i0 ◦ p1 ◦ · · · ◦ in) ◦ wn : Sc → Yn → Ω,

then wn cannot be a proper covering map of circular surfaces, and Yn is simply

a 1-to-1 copy of Sc embedded in Xn.

So wn is already injective as a map into Yn ⊂ Xn, giving the stacking ŵn

of Sc into both Yn × R and Xn × R. Similarly, all the maps ij , 0 ≤ j ≤ n are

injective, so any stacking ŵj of wj into Yj × R immediately extends to:

Xj × R

Sc Xj

πXj
ŵj

wj

(we have slightly abused notation here to denote (ij× idR)◦ŵj by ŵj , extending

our map into Xj × R in the obvious way). It therefore remains to show that

stackings can be pushed down through the cyclic covering maps pj .

Consider then a stacking

ŵj : Sc ↪→ Xj × R
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and covering map

pj : Xj →→ Yj−1

Since we are working with cyclic covers, we have a right-action of

Z ∼= π1(Yj−1)/π1(Xj)

on Xj by deck transformations, and there is also the standard action of Z on

R by translations. So we can take the quotient of the trivial bundle Xj × R by

this Z-action on each factor (the diagonal action of Z on Xj × R), obtaining a

bundle:

Bj :=
Xj × R

{(x, r) ∼ (x · g, g · r), ∀x ∈ Xj , r ∈ R, g ∈ π1(Yj−1)}

where the action of π1(Yj−1) by path-lifting to Xj takes each x to some

point in the preimage set of pj(x), which is isomorphic as a set to Z, and

where g · r = ḡ + r, ḡ denoting the image of g in the identification of the

quotient π1(Yj−1)/π1(Xj) with Z. (To see why Bj is well-defined as a bun-

dle, we can appeal to the fact that the surface group π1(Ω) is right-orderable

(shown by Boyer-Rolfsen-Wiest to hold for all hyperbolic surfaces in [9]) and so

all the subgroups π1(Yj−1) are too, implying that they act faithfully on R by

orientation-preserving homeomorphisms. It is then standard that the diagonal

action produces a bundle over Yj−1 from this data, see for instance [29].)

When we consider some point x ∈ Xj and the image of the fibre {x} ×R in

Bj , we see that any point in the fibre is identified with integer translations of

the same point in the various fibres {x ·g}×R, all of these sitting over the same

point in Yj−1. Another way of looking at this is, if we consider a point y ∈ Yj−1

and the fibres over all points of p−1
j (y) together, each of these fibres can be split

into unit intervals, and each interval on a given fibre is identified with a unique

interval on every other fibre, resulting in a single fibre of equivalence classes

{y} × R ⊂ Bj . So Bj is identified with a trivial bundle Yj−1 × R, although the

quotient map

qj : Xj × R→ Bj

that we used to define it does not preserve the fibres in the natural way. Indeed,

restricting to just the image of Xj × (0, 1) in Bj , we see the different fundamen-

tal domains for Yj−1 that comprise Xj all sitting over Yj−1 but in distinct unit
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intervals of the fibre, since the fundamental domains are all related by distinct

deck transformations, equivalent to integer shifts.

In this way we obtain an embedding not just of the image of Sc, but all of

Xj × (0, 1) in Yj−1×R simply by restricting to its image under qj , and this will

allow us to push our stacking of wj down the tower. Indeed, letting

ψ : R '−→ (0, 1)

be a fixed orientation-preserving homeomorphism, we obtain a sequence of em-

beddings:

Sc
ŵn
↪−−→ Xn × R

idXn×ψ
↪−−−−−→ Xn × (0, 1)

qn|Xn×(0,1)

↪−−−−−−−→ Yn−1 × R

and our stacking ŵn−1 : Sc ↪→ Yn−1 ×R is therefore defined as the composition

of these embeddings. By pushing our trivial stacking of ŵn down the whole

sequence of tower lifts in this way, we obtain the required stacking

ŵ : Sc ↪→ Ω× R

In summary, we have demonstrated:

Proposition 7.3. (adapted from: [39, Lemma 3.1], [52, Lemma 3.4]) Suppose

that w ∈ π1(Ω) is not a proper power in a surface group represented by an

annular cover S →→ Ω. Then there is a stacking of the core surface Sc ⊂ S in

Ω× R, that is, an embedding ŵ making the following diagram commute:

Ω× R

Sc Ω

πΩ
ŵ

w

(where πΩ is the natural projection map).

7.3 Stacking the w-Cycles

The next step is to pull back our stacking of w in Ω to obtain a stacking of

the w-cycles in Σ, which will allow us to relate the number of w-cycles to χ(Σ)

using Lemma 6.6. We point out again that although w′ is a combinatorial map

with respect to the rectangular decomposition of Σ, the maps σ and h are not.

Our derivation of a stacking of the w-cycles will not depend on the intermediate
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levels of the tower lifting discussed in the proof above, just relying on the fact

that the map ŵ : Sc ↪→ Ω×R itself is an embedding. So, since we chose the core

Sc such that each cell of S has well-defined image in it under σ, we can forget

about the cell decomposition used to derive ŵ and obtain our stacking of w′

as a map that respects the rectangular decomposition instead, as required for

Lemma 6.6. The following three lemmas all apply to the setting of Theorem A,

where we have a fixed stacking as given by Proposition 7.3:

Lemma 7.4. The stacking ŵ pulls back to a stacking ŵ′ of S in Σ× R.

Proof. The desired map will come naturally when we consider the structure

inherited by pulling the trivial R-bundle over Ω back along h to give the diagram:

Σ× R Ω× R

Σ Ω

h̄

πΣ πΩ

h

where

h̄ := h× idR

Indeed, we already have maps w′ and ŵ◦σ sending S to Σ and Ω×R respectively,

so the universal property of the pullback implies that they both factor through

a map to the bundle Σ × R, and we will (pre-emptively) call this map ŵ′. At

this point we have the following commutative diagram telling us that ŵ′ is a lift

of w′,

Σ× R

S Σ

πΣ
ŵ′

w′

and so it remains to check that ŵ′ is injective. To this end, suppose we have

points x, y ∈ S such that ŵ′(x) = ŵ′(y). Then, since h̄ ◦ ŵ′ = ŵ ◦ σ and ŵ is

injective,

σ(x) = σ(y) ∈ Sc

But by the definition of S as a collection of components of the pullback of the

maps h and w, x and y are determined by a pair of points in the direct product

Σ×Sc. Since w′ = πΣ ◦ ŵ′, they project to the same point in Σ, and as we just

observed they also project to the same point in Sc. Therefore x = y, confirming

that ŵ′ is an embedding of S in Σ× R lifting w′.
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Next, we show the the maximal and minimal height data of the stacking ŵ

is respected when we pull it back:

Lemma 7.5. We have inclusions of sets σ−1 (Aŵ) ⊆ Aŵ′ , and σ−1 (Bŵ) ⊆ Bŵ′ .

Proof. We show the contrapositive; suppose we have a point p ∈ S −Aŵ′ , and

let x := w′(p) ∈ Σ. Then there exists another point q ∈ (w′)
−1

(x) ∩ Aŵ′ , and

we denote by x̄ the image in Ω:

x̄ := w ◦ σ(p) = w ◦ σ(q) = h(x)

Since p and q are distinct points in the pullback of h and w, they must project to

different points under σ, say p̄, q̄ ∈ S respectively, and these points are mapped

to distinct heights among the preimages of x̄ by ŵ — it suffices then to show

that

πR ◦ ŵ(p̄) < πR ◦ ŵ(q̄)

so that p 6∈ σ−1 (Aŵ). This is a direct consequence of the facts that ŵ′ is

obtained via the pullback of w′ and ŵ ◦ σ,

w′(p) = w′(q),

and

πR ◦ ŵ′(p) < πR ◦ ŵ′(q)

Indeed, by the commutativity of:

S

Σ× R Ω× R

Σ Ω

ŵ′

w′

ŵ◦σ

h̄

πΣ πΩ

h

we have ŵ ◦ σ = h̄ ◦ ŵ′, so

πR ◦ ŵ(p̄) = πR
(
h̄ ◦ ŵ′(p)

)
= πR ◦ ŵ′(p)

since h̄ = h × idR, and likewise πR ◦ ŵ(q̄) = πR ◦ ŵ′(q), giving the required

inequality.
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So, if p 6∈ Aŵ′ , then σ(p) 6∈ Aŵ, proving the first inclusion; the inclusion for

B follows similarly.

Lemma 7.6. The stackings ŵ, ŵ′ are good.

Proof. This is an immediate consequence of Lemma 7.5 and Definition 3.5. Since

Sc is connected, ŵ is automatically a good stacking, and therefore so is ŵ′, since

each component of S covers all of Aŵ and Bŵ at least once under σ.

Finally, we come to the main technical result that will be used to prove both

Theorems A and B. It is our analogue of [52, Theorem 1.2], and gives a control

on how many elements in a free subgroup of an orientable surface group can

have a root simultaneously adjoined in terms of the subgroup rank.

Proposition 7.7. Let Ω be a closed orientable hyperbolic surface and w ∈ π1(Ω)

an indivisible element with corresponding annular cover w : S # Ω, and let γ be

the core curve of S. Let h : Σ # Ω be an essential immersion from a compact

surface with non-empty boundary, and S the set of w-cycles in Σ, with induced

map σ : S→ S, which restricts to a degree D cover from their core curves to γ.

Then, either

D ≤ −χ(Σ),

or the pullback immersion w′ : S # Σ is reducible.

Proof. Fix a rectangular decomposition of Σ according to Proposition 6.5 and a

stacking of w′ according to Proposition 7.3 and Lemma 7.4. Since w is a covering

map to Ω and w′ is a pullback of w restricted to Sc which contains images of all

the 2-cells of Σ, w′ is surjective, so Lemma 6.6 asserts that −χ(Σ) is the number

of max-height strips of the stacking ŵ′. Then, if this number is less than D,

there must be an open disc U ⊂ S which intersects γ, and a pair of open discs in

a single max-height strip ξ of S which both map to U homeomorphically under σ.

The image σ(ξ) therefore completely covers γ, since every 2-cell of S inter-

sects its component’s core curve. In particular, σ(ξ) intersects Bŵ by Lemma 7.6.

By Lemma 7.5, there is an open disc in ξ∩Bŵ′ , and therefore in Aŵ′ ∩Bŵ′ , and

by definition (3.5), this is only possible if the image in Σ of this disc is covered

exactly once by w′. So, if w′ is not reducible, D ≤ −χ(Σ).
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Part III

Results

We are now ready to prove the our main results A, B and C stated in the intro-

duction. §8 is the proof of the main theorem, the w-cycles bound for indivisible

loops in orientable surfaces, for which we developed the tools of rectangular

decompositions and stackings in Part II. This will follow quickly from our last

Proposition 7.7. Then in §9, we prove the coherence of orientable one-relator

surface groups with torsion. This is another application of Proposition 7.7 anal-

ogous to Louder-Wilton’s argument for one-relator groups, although with some

changes to make it applicable to our setting of 2-complexes “built on surfaces”.

We will then end by considering some other possible applications of our results

in relation to the surrounding areas of geometric group theory — notably the

proof of Corollary C and the geometric structure that non-positive immersions

begins to suggest we can put on one-relator surface groups. We will also discuss

the missing step that would extend our results to non-orientable surfaces, and

finally, how rectangular decompositions and Proposition 7.7 could potentially

be used in the study of stable commutator length. The discussion in the final

three subsections of §10 is mostly speculative at this point, but we feel it is

worth pointing out how the tools we have developed could be applied in future

work.

8 Proof of Theorem A

Given the hypotheses of Theorem A, we have the diagram describing the w-

cycles:

S S

Σ Ω

σ

w′ w

h

By our treatment of the special cases in §5.1, we may reduce to the hypotheses of

Proposition 7.7. Then, since each w-cycle contributes at least 1 to the degree of

the covering map σ, if the pullback immersion w′ is irreducible Proposition 7.7

tells us the number of w-cycles is at most −χ(Σ).
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Suppose then that w′ is reducible, and that we are using the rectangular

decomposition of Σ given by Proposition 6.5. Then Σ contains a rectangular

2-cell R with at most one preimage in S. We may assume R has a preimage

by restricting to the image w′(S) ⊆ Σ, which we now denote by Σw — indeed,

we observe that Σw may be obtained from Σ by deleting rectangular 2-cells

with no preimage in S as shown in Figure 15. Each such deletion raises Euler

characteristic by 1, so it will suffice to show that the number of w-cycles is at

most −χ(Σw) ≤ −χ(Σ).

Figure 15: Deleting a rectangular 2-cell in the case that it spans two distinct
components of ∂Σ. In the other case one boundary component splits into two
but genus is reduced, so in both cases the Euler characteristic increases by 1.

Now we consider the component s of S containing the unique preimage of

R. Deleting R from Σw means that s, as a component of the pullback Σ×Ω A,

becomes a contractible strip rather than a circular 2-complex while the other

components of S are unaffected. Therefore we can pass to the surface

Σw1 := Σw − R̊

with immersion w′1 := w′|S−s of the remaining w-cycles. This satisfies both:

1. −χ(Σw1 ) = −χ(Σw)− 1; and

2. there is one fewer w-cycle in Σw1 than there is in Σw.

If the immersion w′1 is reducible, then it contains a rectangle with one preimage

among the w-cycles in Σw1 , so we can repeat this process to obtain a surface

Σw2 , again lowering both the quantities (−χ and #w-cycles) by 1. Since Σ

is compact and the rectangles are non-separating, iterating this process will

eventually leave us with a surface Σwn which is either contractible, or has an

irreducible immersion w′n of its w-cycles. In the former case, since properties
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(1) and (2) above hold for each deletion carried out, we have that

−1 = −χ(Σwn ) = −χ(Σw)−#{w-cycles in Σ}

thus satisfying the bound of 1 − χ(Σ) for the total number of w-cycles. In the

latter case, we appeal to Proposition 7.7 as in the case of w′ irreducible above

to see that the number of w-cycles in Σwn is at most −χ(Σwn ), and then observe

that Σ contains n additional w-cycles, and:

−χ(Σw) = −χ(Σwn ) + n

Remark 6. We note that in the case of irreducible w-cycles in infinite-index

subgroups dealt with in Proposition 7.7, the bound we attain is stronger than

the full generality of Theorem A, and strictly stronger unless each such cycle

covers w(A) in Ω with degree 1. The methods used in Lemma 5.1 and the above

proof allow us to show that other w-cycles contribute at most 1 to −χ(Σ), and

at least 1 to the degree of σ, but we cannot currently say more about the total

degree of σ in the general case.
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9 Proof of Theorem B

In this section we prove the coherence of orientable one-relator surface groups

with torsion. The basic idea of the proof is to study presentation 2-complexes

for the groups involved, realised in this case as surfaces with discs attached along

curves representing the additional relators (that is, the relators which did not

come from the product of commutators corresponding to the surface structure).

Attaching a disc along a curve representing w gives a complex representing a

quotient of the closed surface group, and the bound obtained in Proposition 7.7

on the number of w-cycles in certain subgroups provides a bound on the number

of such discs in the presentation complex of those subgroups, which can be used

to derive a finite presentation.

Louder and Wilton made note of the portability of their methods, in par-

ticular the potential for Euler characteristic computations via stackings to be

applied to groups other than the standard one-relator groups. As observed in

[53, §5], the key ingredients to showing coherence of quotients of a group by a

proper power of a single element are:

• an unwrapped cover of the quotient group’s presentation complex; and

• a good (“branched”) stacking of the root of the relator

The stackings we have constructed for surfaces are not exactly the same as

their branched stackings, but they serve the same purpose, and existence of

unwrapped covers can be seen as a topological consequence of a group being

virtually torsion-free, which Allenby’s Theorem 4.4 implies for one-relator sur-

face groups. So, Lemma 4.5 and Proposition 7.3 give heuristic justification for

our proof of coherence, with the full details in the following subsections.

9.1 Unwrapped Covers

The diagram relating the 2-complexes representing one-relator surface groups

and particular subgroups is essentially the same as the one at the heart of our

construction in §7:

S S

Σ Ω

σ

w′ w

h
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Here we still have h a boundary-essential immersion representing a sub-

group π1(Σ) ≤ π1(Ω), inducing a homomorphism h∗ on the fundamental groups

of these surfaces. But we can now view the vertical maps also as describing

attaching maps for 2-cells — if S is an annulus as before, we can attach a disc

to Ω by taking the image of the core curve of S as its boundary, resulting in a

2-complex X whose fundamental group is π1(Ω)/〈〈w〉〉. Similarly w′ can be seen

as the coproduct of attaching maps for a 2-complex Y , a collection of discs at-

tached to Σ along the images of the core curves of S (which could now represent

just a subset of the w-cycles in Σ). Commutativity of the diagram indicates

how h extends to a map Y → X, with the discs glued onto Σ covering the one

glued onto Ω, and so h∗ likewise extends to represent a homomorphism into a

one-relator surface group.

Our methods will only allow us to prove coherence in the case where our

one-relator surface group has torsion; the proof of Lemma 9.3 shows why, but

it is essentially because of the extra information we can gain by viewing this

extension of h∗ as a factor of a map to the associated torsion-free one-relator

surface group. We fix a group of the form:

G = π1(Ω)/〈〈wn〉〉, n > 1

where we assume that Ω is orientable and hyperbolic, and w is indivisible in

π1(Ω). In this case the attaching map

S
w−→ Ω

only accurately describes a presentation complex X for G if the 2-cell attached

by w includes a cone point of order n. We call the coned disc Dn, and note that

allowing the inclusion of it makes X an orbicomplex (since G is the orbifold fun-

damental group of X), rather than a genuine 2-complex. In general H = π1(Y )

then has torsion elements too, and, beyond the knowledge that they must be

divisors of n, we do not have any control a priori on the order of cone points of

the discs glued onto Σ.

However, in the case that H is torsion-free (so all of the discs attached by w′

are the nonsingular disc D2), we could use Proposition 7.7 to bound, in terms

of χ(Σ) and n, the degree of the overall covering map to the disc attached to Ω.
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We will be able simplify to this special case using the fact that all one-relator

surface groups are virtually torsion-free. We fix the normal, torsion-free finite-

index subgroup G0 = ker(ψ) as found in the proof of Lemma 4.5. Then, given

any finitely-generated subgroup H ≤ G, we have the exact sequence:

G0 ∩H ↪→ H →→ H/G0

describing H as a finite extension of G0 ∩ H. Tautologically, the finite group

H/G0 has a finite presentation, so if we could guarantee a finite presentation of

H ∩G0 we could combine them to obtain a finite presentation of H. A similar

argument shows that, since G is finitely-presented, so is any finite-index sub-

group H (this also follows from the Reidemeister-Schreier method [59, Chp. 2,

Corollary 2.8]), so we need only consider infinite-index subgroups.

We will now use Lemma 4.5 to construct the unwrapped cover of our or-

bicomplex X which will later be a useful intermediate space to factor maps

representing finitely-generated torsion-free subgroups through. First, we obtain

a 2-complex X ′ with the same fundamental group G = π1(X) by attaching a

disc D to Ω along a curve representing wn. Despite being a genuine 2-complex,

we don’t work with X ′ directly in the first place as we will want to bound

the number of relators in subgroups by considering the covering maps from

the boundaries of 2-cells representing them to a curve representing w, not wn.

The torsion-free finite index subgroup G0 ≤ G corresponds to a covering of

2-complexes,

X ′0 → X ′

The finite quotient Q = G/G0 is the deck group of this cover, so we know

that w acts as an order n deck transformation on the cells of X ′0. Each 2-cell

covering D in X ′0 is attached along a curve representing wn ∈ π1(Ω), and the

action of w by path-lifting results in an order n rotation, fixing each of these

curves setwise. So every such curve must bound n distinct 2-cells in X ′0 which

are related by the action of w, partitioning the preimages of D into families of

cardinality n. Define a 2-complex X0 with fundamental group G0 by retracting

each of these families onto a single representative 2-cell; this satisfies:

Theorem 9.1. ([53, Theorem 2.2], see also [10]) X0 is a finite-sheeted cover

of the orbicomplex X, called its unwrapped cover.
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9.2 w-2-Cells

An important point in the proof of Lemma 4.3 was Hempel’s trick as discussed

in §4, but it also requires analysis of the topology of classifying spaces for one-

relator surface groups constructed by Howie. In particular, [41, Theorem 3.5]

shows that the orbicomplex

X = Ω ∪w Dn

we introduced above is aspherical, and therefore a classifying space for G. Since

we are assuming H is torsion-free, it will have a classifying space which is

a genuine 2-complex Y , and there will then be a naturally-induced map of

classifying spaces,

f : Y # X

which maps some 2-cells of Y into Ω, and others to Dn ⊂ X via the map which

is a degree n cover, regular away from the cone point (modelled by the map

z 7→ zn in the unit disc of the complex plane). We will find it useful to make

the following distinction:

Definition 9.2. Let Y be any compact 2-complex and f : Y # X an immersion

to the presentation orbicomplex for G = π1(Ω)/〈〈wn〉〉 as above. We call the 2-

cells in Y which are attached along curves that cover, under f , a curve in Ω

representing w the w-2-cells in Y . We call the other 2-cells in Y surface 2-cells.

We will obtain bounds on the number of w-2-cells in the complexes repre-

senting subgroups of G using Proposition 7.7. A free edge in a 2-complex is a

1-cell not incident to any 2-cells. Generally, a free face is is any 2-cell whose

boundary contains an edge crossed exactly once by the union of the attaching

maps of all the 2-cells (this is how it is defined in [53]), but since we are inter-

ested in 2-complexes built by attaching w-2-cells to a surface with boundary,

we use a slightly altered definition. In this setting, we say that a w-2-cell is a

free face if either:

• its boundary contains an edge of Y not incident to any surface 2-cells and

it is a free face in the traditional sense; or

• its boundary is contained in the boundaries of surface 2-cells and there ex-

ists an arc with endpoints on boundary components of immersed surfaces

in Y , meeting the w-2-cell boundary exactly once.

The effect is the same for our purposes — free faces can be collapsed via a

homotopy equivalence, relating to our earlier discussion of reducible immersions
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and dependency, as the next lemma shows. Furthermore, if no w-2-cells are free

faces in the sense described here, then those whose boundaries lie on surface

2-cells can have their attaching map altered by a homotopy so that every point

in the boundary components of the immersed surfaces in Y is incident to a w-

2-cell, and this implies that Y has no free faces in the traditional sense. This

process is reversible, so the definitions are in fact equivalent, we have simply

chosen to phrase it this way here to emphasise that only w-2-cells can be free

faces, and not cells on the boundary of surfaces they are attached to.

Lemma 9.3. (adapted from [53, Corollary 3.2]) Let Σ be a connected compact

surface with non-empty boundary, and Z a 2-complex obtained by attaching

additional 2-cells to Σ. Suppose that there is an immersion f : Z # X from

Z to the presentation orbicomplex for G = π1(Ω)/〈〈wn〉〉 with Ω orientable and

hyperbolic, w indivisible and n > 1. If Z has no free faces and the image of

f |Z−Σ is contained in X−Ω, then the total number of w-2-cells in Z is at most:

−χ(Z)

n− 1

Proof. Since Z has no free faces, the attaching maps for the w-2-cells on Σ can

be identified with irreducible immersions from a collection S of annular covers

of Σ, obtained from the pullback of w : S # Ω and f |Σ as we considered in

Part II. Indeed, since the core curve of each component of S is at each point

running between a pair of arcs in lifts of components of ∂Σ (as illustrated in

Figure 10), there must be at least two points in S covering any point in Σ to

ensure that no arcs between components of ∂Σi cross the boundary of a w-2-cell

only once. We can now apply Proposition 7.7, telling us that the degree of the

map f restricted to the boundaries of the w-2-cells, as a cover of the boundary

of Dn ⊂ X, is at most

−χ(Σ) = #{w-2-cells} − χ(Z)

We denote this restriction by fw, and note that we also have

degfw = n ·#{w-2-cells}
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since each w-2-cell of Y covers Dn ⊂ X with degree n. Therefore,

n ·#{w-2-cells} ≤ #{w-2-cells} − χ(Z)

=⇒ #{w-2-cells} ≤ −χ(Z)

(n− 1)

as required.

9.3 Folding Subgroups

Stallings’ folding technique that we discussed in § 2.1 introduced the neces-

sary topological ideas to represent finitely-generated subgroups of free groups

as immersions of compact graphs, and the technique has since been extended

to fundamental groups of 2-complexes [53, 54]. Since folding is only defined

for genuine 2-complexes, and not orbicomplexes, we will focus on folding im-

mersions to the unwrapped cover X0 from Theorem 9.1. In [53, §4], a folding

procedure for studying subgroups of one-relator groups is laid out, which we can

also apply to one-relator surface groups. First, an application of Scott’s lemma

[68, Lemma 2.2] provides 2-complexes mapping into X0 whose images surject

each free factor of a given subgroup. If this immersion is not essential, then

there are discs representing additional subgroup relators that can be attached,

and the resulting 2-complex can then be folded, first by folding edges in the

1-skeleton, and then identifying 2-cells attached along the same folded paths

and with the same image in X0. We note that this preserves the distinction

between w-2-cells and surface 2-cells.

Using such 2-complexes to represent subgroups of one-relator surface groups

with torsion, and then bounding their complexity using Lemma 9.3, lets us prove

coherence:

Proof of Theorem B. Let H be a finitely-generated subgroup of a one-relator

surface group

G = π1(Ω)/〈〈wn〉〉

with Ω orientable, n > 1, w indivisible. Since finite extensions of finitely-

presented groups are again finitely-presented, we can assume that H is con-

tained in the torsion-free finite-index subgroup G0 ≤ G, and also that H is

infinite-index in G0. We will also assume for now that H is freely indecompos-
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able, which allows us to apply [53, Theorem 4.2]. Letting X0 be the unwrapped

cover from Theorem 9.1, this gives us an immersion of 2-complexes f : Y # X0,

where Y is compact, connected and aspherical with no free faces or edges, and

such that f∗π1(Y ) is conjugate to H in G.

We can now proceed as in [53, Lemma 4.3], obtaining a sequence of π1-

surjective immersions from 2-complexes without free faces,

Y0 # Y1 # · · ·Yi # · · ·X0

by attaching reduced disc diagrams one by one to Y that represent conjugacy

classes of elements of the kernel of f∗ and then folding the resulting complexes

until the induced map to X0 is an immersion, by [53, Lemma 4.1]. The direct

limit of the π1(Yi) is isomorphic to H by construction; the process is equivalent

to finding a reduced presentation written in generators of G, with relators all

conjugate to powers of wn.

The 2-complex Y0 is obtained by taking the wedge of Y with an interval, so

that the image of π1(Y0) in G is exactly H, not just conjugate to it. The Yi

may therefore have some edges that are not incident to surface 2-cells, but we

note that since the w-2-cells are attached along loops representing indivisible el-

ements in their fundamental groups, any given w-2-cell could only cross such an

edge once, and since they immerse in X0, distinct w-2-cells cannot be attached

to them. Therefore any w-2-cells attached to such edges would be free faces, so

we can assume that any edges not adjacent to surface 2-cells are in fact free,

and also non-separating, since we assume H is freely-indecomposable.

The proof of the theorem can be obtained quickly from the following:

Fact. (†) There is a uniform bound on the number of cells making up any of

the Yi in the sequence of immersions.

Indeed, given this fact, since X0 is finite this means there are only finitely

many types of combinatorial immersions from any Yi into X0. But the sequence

gives infinitely many factorisations:

Yi # Yj # X0, ∀j > i

so one of the maps obtained by first passing from Yi to Yj and then applying
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the immersion Yj # X0 must be the same as applying Yi # X0 directly, and

in fact there must be an i such that the immersion Yi # X0 repeats infinitely

often. But this means there is an infinite subsequence:

{Yσ(i)} ⊂ {Yi} (σ : Z→ Z strictly increasing)

such that every map Yσ(i) # Yσ(i+1) obtained by composition along the original

sequence of immersions is a homeomorphism. Therefore

H ∼= lim−→π1(Yσ(i)) = π1(Yσ(1))

meaning H has a finite presentation with loops in Y
(1)
σ(1) as generators and the 2-

cells of Yσ(1) as relators. This proves that the torsion-free, freely-indecomposable,

finitely-generated subgroups of G are finitely-presented.

We then also have finite-presentability for the case where H is torsion-free

and infinite-index but with multiple free factors. Consider the Grushko decom-

position of H into free factors:

H = H1 ∗ · · · ∗Hk ∗ F

where each Hi is freely-indecomposable, and F is a free group. Since each Hi

(and F ) is finitely-presentable, so too is H.

Proof of Fact (†) The w-2-cells in Y0 are attached to a compact (not neces-

sarily connected) surface with boundary immersed in Y . It follows that there is

a set of 2-complexes {Zk} each of the form of Z in Lemma 9.3, and an immersion∐
k

Zk # Y

whose image contains all of the w-2-cells in Y . We have that χ(Y ) = χ(Y0) is

no greater than the sum of the χ(Zk), so by Lemma 9.3, the number of w-2-cells

in Y is bounded above by ∑
k

−χ(Zk) ≤ −χ(Y )
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Further, since Y is aspherical, we have

χ(Y ) = 1− b1(Y ) + b2(Y ) =⇒ −χ(Y ) ≤ b1(Y ) = rank
(
π1(Y )Ab

)
so the number of w-2-cells can be bounded by the rank of π1(Y ), which we will

denote by R. The same observations can be applied to each Yi in the sequence,

but since the subsequent 2-complexes correspond to adding relators and not gen-

erators to the fundamental group, the number of w-2-cells is in fact bounded by

R uniformly in each Yi.

We now consider a decomposition of the Yi into subcomplexes:

• Y wi the union of the w-2-cells and the smallest essentially-embedded sub-

surfaces in Yi containing their boundaries, and

• ∆i = Yi − Y wi .

This gives Yi a graph of spaces structure, with “w-vertices” corresponding to the

connected components of Y wi , and “∆-vertices” corresponding to core surfaces

embedded in Yi with no w-2-cells attached; the free edges and vertices connected

only to free edges are embedded unchanged in the underlying graph Γi. The

edge spaces corresponding to edges of Γi which are not free in Yi are annuli

connecting boundary components of the core surfaces in w- or ∆-vertex spaces.

Note that the graph components of Yi where all edges are free are images of

those in Y0, so the total number of edges and vertices making them up can be

uniformly bounded by that of Y0, say G.

The total number of w-vertices in Γi is bounded above by R. The non-free

edges adjacent to them correspond to annuli with at least one boundary com-

ponent homotopic into loops consisting of sequences of arcs in the boundaries of

w-2-cells. Since all such loops are disjoint, and w-2-cells in Yi map homeomor-

phically to the ones in X0, the number of edges adjacent to w-vertices is bounded

above by (R·L+G), where L is the maximal boundary length of a w-2-cell in X0.

Any w-vertex space is made up of w-2-cells, the surface 2-cells adjacent to

their boundaries, and discs made up of surface 2-cells in Yi whose boundaries are

sequences of arcs in the boundaries of those w-adjacent surface 2-cells. There

are at most RL edges in the boundary of w-2-cells, and at most 2 surface 2-cells

incident to any such edge, so at most 2RL w-adjacent surface 2-cells. If M is
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the maximal boundary length of a surface 2-cell (which is bounded as they map

homeomorphically to surface 2-cells in X0), the length of the boundary of any

of the discs that make up the rest of the w-vertex spaces is bounded above by

2RLM . The discs are images of discs in Y0 contained in its underlying immersed

surface Σ0, which can be equipped with a hyperbolic metric such that distances

between points on surface 2-cells are non-increasing, and lengths of simple closed

curves preserved, throughout the sequence of immersions. The hyperbolic met-

ric satisfies a linear isoperimetric inequality (see for instance [8]), so there is a

constant K > 0 such that the number of 2-cells making up the non-w-adjacent

disc regions in the w-vertex spaces in any Yi is uniformly bounded above by

2KRLM . Overall, this gives a uniform bound on the total number of 2-cells,

and therefore also 1- and 0-cells, in any w-vertex space.

The remaining ∆-vertices and edges connecting them in Γi correspond to

connected surfaces embedded in Yi. Considering how the graph of spaces

changes along the sequence of immersions, new w-vertices can be created as

discs corresponding to relators of H are attached, either filling or splitting up

the previous ∆-vertex spaces. However the ∆-vertex spaces in Yi are always

images of subsets of ∆-vertex spaces in Y0, and so the total number of cells in

any ∆-vertex space in Yi is bounded by the maximal such number in Y0. The

same applies to the annuli that pass to edges connecting a pair of exclusively

∆-vertices in Γi.

Finally, we must find a uniform bound on the number of cells forming the

annuli that pass to edges adjacent to w-vertices in Γi. Since the number of

cells in every vertex space, and hence the number making up the boundary

of these annuli, is bounded, we just need to rule out the possibility that the

number of cells between boundary components can be arbitrarily large among

the Yi. The annuli in Yi are homeomorphic images of annuli in Y0 (although

they don’t need to appear as edge spaces for Γ0). As such, we can again use

the hyperbolic metric on the surface Σ0, which implies the existence of a δ > 0

such that geodesic triangles are δ-slim. Constructing such a triangle with two

vertices x, y diametrically opposed on one boundary component of an annulus

a and the third vertex z on the opposite boundary component, we have that if

the side (x, z) has length greater than δ, then every point on it further than δ

from x is δ-close to a point on (y, z). The longer a is compared to δ, the sooner

(y, z) must converge to (x, z), and so if a could be arbitrarily long it would have
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to have an arbitrarily short geodesic core curve, but the minimal length of a

simple closed geodesic in Σ0 is bounded away from 0 by the systole, sys(Σ0) > 0.

There is therefore a fixed D, the maximal distance between points on opposite

boundary components of edge spaces for edges in Γi adjacent to w-vertices,

only realised for annuli containing a core curve of length sys(Σ0). The surface

2-cells making up any of these annuli have a uniform minimal diameter, so there

is a uniform bound on the number of 2-cells forming any one of them. As we

observed above there are at most (RL+G) of them to begin with, giving a bound

on the number of 2-cells in annuli connected to w-vertex spaces throughout the

sequence of immersions.
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10 Further Directions

The final result that we stated in § 1.1, whose proof we give in the next subsec-

tion, is essentially just a combination of the previous two theorems, finishing an

analogue for surface groups of Louder, Wilton, Helfer and Wise’s original work

on w-cycles in free groups.

10.1 Proof of Corollary C

By Theorem B, we need only consider torsion free one-relator surface groups,

G = π1(Ω)/〈〈w〉〉

where as usual, Ω is orientable and hyperbolic and w is indivisible. Let X be

the presentation 2-complex

X = Ω ∪w D2

for G, and

f : Y # X

an immersion from a compact connected 2-complex. In the degenerate case

where Y is a graph, since it is connected either χ(Y ) ≤ 0 or Y is a tree,

hence contractible. Otherwise, we will assume that Y has no free faces, since

they could be collapsed without changing χ(Y ), resulting in a 2-complex with

induced immersion to X that f factors through. So, similar to the proof of

Theorem B, Y is made up of w-2-cells, regions of surface 2-cells, and free edges.

The regions of surface 2-cells are the image of a finite set of compact surfaces

{Σi} which are immersed in Y ,

h :
∐
i

Σi # Y

and the Euler characteristic of the image of h in Y is at most
∑
i χ(Σi), since

vertices or compact arcs in the boundary components of the surfaces may be

identified in Y .

Since there are no free faces, the w-2-cells are attached along w-cycles in

a subset of the Σi, and these w-cycles are mapped into the Σi by irreducible

immersions. Since G is torsion-free, the w-2-cells are homeomorphic to the

disc attached along w in Ω, and we can apply Theorem A directly to see that
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the number of w-2-cells attached to any of the Σi supporting them is at most

−χ(Σi). Since

−χ(Σi) ≤ −χ (h(Σi))

we have that the image of each such Σi together with the w-2-cells attached to

it makes a non-positive contribution to χ(Y ). Note also that if any Σi is closed,

it is a finite cover of Ω, so f |Σi is a local homeomorphism and there can be no

other surface components or free edges in Y . These finite covers are hyperbolic

as Ω is, so there is nothing left to prove.

It remains then, in the case that all the Σi have boundary, to show that the

images of the Σi that do not support w-2-cells, as well as the graph components

made up of free edges, in Y , do not make a positive contribution to χ(Y ). But

this is immediate, since any such Σi has Euler characteristic at most 1, when it

is a disc, and since h(Σi) is connected to the rest of Y via one or more vertices

or compact arcs in its boundary, the contribution to χ(Y ) coming exclusively

from Σi is at most 0. The same holds for the graph components — individually

they have characteristic at most 1, but attaching them to the rest of Y means

they contribute at most 0.

As observed above, torsion obstructs non-positive immersions, but if Con-

jecture 3.4 is true then coherence of all one-relator groups and orientable one-

relator surface groups will be known, answering the question that motivated

Wise’s definition of w-cycles. Beyond w-cycles then, we can ask what else the

property of non-positive immersions implies, and, since our methods so far have

followed Louder-Wilton’s, we are led to consider how their theory of negative

immersions could be developed for surfaces.

10.2 Towards a Dependence Theorem for Surface Groups

Proposition 7.7 bounds the total degree in a dependent system of equations

describing the adjunction of an element in an orientable surface group to a col-

lection of elements in a given subgroup. Dependence results such as Theorem 2.4

bound the rank of any free group surjected by a graph of groups that describes

an element being simultaneously adjoined as a root to a collection of elements

in free groups. Our results here do not apply to such a general situation; one

rather artificial setting in which Theorem A may be applied would be if we knew

a given group element w ∈ G had a collection of w-cycles in H ≤ G exceeding
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the rank of H, then G could not be an orientable surface group, but it would be

nice to have a more general statement about the dependency aspect of w-cycles

for surfaces.

In Part II, to bound the number of w-cycles in a given subgroup of π1(Ω),

we went through a process of pulling back certain topological structures that we

knew existed on the orientable surface Ω, and analysed how they would appear

on the annulus representing w and immersed compact surface Σ. In Theo-

rem 2.4 (which was actually proved via the purely topological statement [54,

Theorem 2.21]) similar ideas are involved, but — aside from the fact that the

objects involved are graphs instead of surfaces — an important difference lies

in how its proof matches structures between a circle S and collection of graphs

{Γi} to form an adjunction space and one-relator pushout from these data, a

graph through which all maps from the adjunction space to a target graph ΓΩ

must factor. By considering how the structures of the Γi and the circle S are

encoded in the pushout, Louder-Wilton estimated its Euler characteristic using

stackings, and this is what gives their dependence theorem.

While we now know how to compute Euler characteristics of surfaces by

stacking circular 2-complexes running through them, integrating such data into

a “one-relator surface pushout” is still not within grasp, and so neither is a

dependence theorem analogous to Theorem 2.4 for surfaces. More specifically,

an adjunction space describing the data of such a dependence theorem would

involve some circular 2-complexes S being used to glue subsets of some collection

of compact surfaces {Σi} around the annular cover S representing w. For Σi

with non-empty boundary, our method for relating −χ(Σi) to the degree of the

map to S requires that we use a rectangular decomposition of Σ, with respect

to which the map from S is combinatorial.

The images of the rectangles in S will overlap, as indicated in Figure 14; this

didn’t stop us from pulling back a stacking of w to a stacking of the w-cycles,

since we could restrict S to a core which contained the images of all the rect-

angles, and simply stack our Sc using the map to Ω which was combinatorial

with respect to a separate cell structure. But it does not seem clear how an

adjunction space containing these overlapping rectangles could be given a sin-

gle cell structure capturing all this information simultaneously, especially since

our rectangular decompositions are built around boundary components in an
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essential way, and the idea of a one-relator pushout would be to factor through

a combinatorial map to a surface Ω with no boundary. It would seem more

reasonable that a cohesive cell structure could be obtained if the Σi could be

replaced with non-compact surfaces with the same fundamental group, but in

that case we do not have a method for computing Euler characteristic as we do

in Lemma 6.6.

We believe that a precise combinatorial description of such an adjunction

space would allow Proposition 7.7 to be upgraded to an analogue of Theorem 2.4

for orientable surfaces. Theorem 2.4 was used to find powerful constraints on

the subgroup structure of one-relator groups [54, Theorem 1.5]. It would be

interesting to know if one-relator surface groups could be shown to mirror this

structure with a dependence theorem, given that many of the other core tools

used in [54] have found analogues for surface groups ([49, 50]).

10.3 Non-Orientable Surfaces

It is slightly regrettable that we do not have proofs of our main results in the

case that Ω is a non-orientable hyperbolic surface. We do not see any obvious

reason why the bound we obtained on the number of w-cycles should not still

apply, and indeed made note of points in our constructions that could be ap-

plied unchanged to non-orientable surfaces (Remarks 2, 3 and 5). Still, we have

not been able to guarantee the existence of a rectangular decomposition on any

surface Σ immersing into Ω which will carry the w-cycles, as we obtained for

orientable Ω in Proposition 6.5.

The obstruction to our method for obtaining rectangular decompositions for

non-orientable Ω lies in the fact that the lamination space ML(Ω) has some

notable differences in this case as described in [67, 31], with multicurves that

contain a finite collection of 1-sided curves playing a special role. In contrast

to laminations with no closed leaves being easily found in orientable surfaces,

Hatcher showed that such laminations are never dense in the lamination space of

a non-orientable surface. This creates a problem in trying to prove the analogues

of Lemmas 5.2 and 6.3, since if sequences of multicurves generically converge

towards laminations that contain isolated 1-sided curves of fixed length, we do

not have a guarantee that their pullbacks to Σ consist only of arcs between

boundary components.
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If some other method were found to obtain a version of Proposition 6.5 for

non-orientable surfaces, we believe that the rest of the work we have done in

proving Theorem A would still apply. In fact, we can outline how our method of

pulling back a foliation of Ω by parallel copies of a multicurve as in Lemmas 6.3

and 6.4 would still work if a multicurve C satisfying their conditions can be

found in Ω, even if C contains some simple 1-sided curves.

Any 1-sided curves of C would be core curves of Möbius bands embedded in

Ω, so cutting along these curves turns those bands into annuli, with both bound-

ary components double-covering the 1-sided curve. These annuli are identified

with the ones that make up the components X of Ω − C as discussed in §6.1,

with one end glued to a simple loop in a ΓX . To recover Ω, instead of gluing

the corresponding component, say c, of ∂X to another boundary component of

Ω−C, c is glued onto itself to form a cross-cap. When this is done, the foliation

FX extends to the non-orientable surface

X ∪cM

where M is a Möbius band, and c is identified with its boundary curve. Foliat-

ing in this way makes the 1-sided curves in C into distinguished leaves, half the

length of the 2-sided leaves converging on them (“non-primitive 2-sided curves”

in Papadopoulos-Penner’s terminology [63]), but still smooth.

When using the foliation FC to construct our core circular surface Sc as in

§7.1 (note that S could now be a Möbius strip), the components of Ω− FCsing

are still circular, and have preimages in S consisting of strips, so very little is

different. When extending FCsing to the 1-skeleton of a cell decomposition of Ω,

there are fewer choices for a Möbius band component of Ω − FCsing, as we al-

ways connect the two vertices on the singular leaf of FC containing its boundary

circle with an edge that crosses its core curve. Our procedure for determining

how large a neighbourhood we need to take around the core curve in each strip

would still work, as γ separates each strip forming S into two parts, even if S

as a whole is 1-sided. Nothing in §7.2 is specific to orientable surfaces, so, if

we were given a multicurve filling a non-orientable Ω, transverse to w(γ) and

pulling back to a collection of compact arcs between boundary components of

Σ, we should obtain Propositions 7.3 and 7.7 as before.
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So, even if it is impossible to avoid 1-sided simple closed curves in the multi-

curves we would like to use to decompose Ω, in general it doesn’t seem unreason-

able that we could find some that allow essentially the same methods we used

in Part II to work, and this would be an interesting question to investigate. The

most likely exception to this would be the case where Ω is the connected sum of

three projective planes. For any identification of this Ω with a once-punctured

torus whose boundary is attached to the boundary of a Möbius band, the core

of this band plays a distinguished role as the only curve c such that Ω − c is

orientable [67, Lemma 2.1]. We cannot guarantee that this c has no closed pull-

back to any surface Σ immersing in Ω, and unlike surfaces with higher genus,

there are no longer one-sided curves that we could hope to replace c with in the

type of “elementary move” described in [63]. Moreover, we note that the fun-

damental group of this surface is also special among the closed surface groups

as it is the only one with a square root adjoined to a single commutator. As we

mentioned in § 2.2, it can have no dependent systems of more than one equation,

and as another consequence, it the only hyperbolic surface group which is not

residually free. Taking into account our discussion in the following subsection,

this makes us even more sceptical that w-cycles would behave the same way in

3P 2.

10.4 Stable Commutator Length

The study of commutator length in groups, going back at least as far as [21],

relates to the work we have presented here, as computing commutator length

can be naturally phrased as a question about maps from orientable surfaces with

boundary, and trying to find the minimal absolute value of Euler characteristic

of those surfaces (as in Question 2.3, for instance).

Definition 10.1. Given a group element x ∈ G, the commutator length, cl(x)

is defined as the minimal integer g such that x can be expressed as a product

of g commutators,

x = [a1, b1] · · · [ag, bn] a1, b1, . . . , an, bn ∈ G

(by convention cl(x) =∞ if no such g exists). Equivalently, cl(x) is the minimal

genus of a surface Σ equipped with a continuous map f to a presentation complex
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X for G such that the image of the boundary of Σ represents x, i.e.

f∗ [∂Σ] = x ∈ π1(X)

We call such a surface Σ a realising surface for x.

We also define the stable commutator length:

scl(x) := lim
n→∞

cl(xn)

n

While extremely difficult to compute in almost all groups, studies into scl

have yielded a surprising number of deep connections to other ideas in algebra

and topology, as detailed in Calegari’s book [14]. Theorem 3.2 can be viewed

as an early result on scl in free groups, before much of the current viewpoint

on the subject was developed — in that setting, π1(Σ) is a free group F , and

if there is a map from a surface Σ′ with b boundary components to Σ whose

image restricted to ∂Σ′ represents some power wn ∈ F , it says that:

n ≤ −χ(Σ′) = 2 genus(Σ′) + (b− 2)

We can assume that as n increases, the number of boundary components of re-

alising surfaces for wn becomes negligible in comparison — in fact by a process

of joining boundary components with 1-handles, as in the proof of [14, Proposi-

tion 2.13], we do not lose any generality in assuming b = 1. In other words, the

commutator length of wn is proportional to n
2 , implying that for any element w

of the commutator [F, F ], we have

scl(w) ≥ 1

2

By the convention in Definition 10.1, as well as the fact that cl is sub-additive

(that is, cl(gn) ≤ ncl(g), implying that “limn→∞” can be replaced with “infn∈Z+”

in the definition of scl), this tells us that each element of a free group has stable

commutator length either 0 or uniformly bounded below by 1
2 , a feature known

as a gap in the scl spectrum of 1
2 . Spectral gaps in scl have been found for

various groups commonly studied in geometric group theory, including many

recent developments by Heuer and Chen [18, 19, 38].

One particularly interesting result, [38, Theorem 6.3], together with Bavard’s

duality theorem [7], finds that groups with presentations as amalgamated prod-
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ucts:

G = A ∗C B

have a 1
2 -gap in their scl spectra when the sets A/C and B/C of left cosets

possess left-invariant orderings. In particular this applies to orientable surface

groups, although a 1
2 -gap was already known to exist for them, and indeed for

any residually free group, by combining Theorem 3.2 with the fact that com-

mutator length is non-increasing under homomorphisms. As discussed in §3.2,

Duncan-Howie’s methods also rely on such orderability properties, and indeed

this was the basis for our derivation of stackings in §7. Since it follows for free

from that construction, we include here a more direct topological proof of the
1
2 -gap in scl spectrum for orientable surface groups.

The only difference that we really need to consider from the general setting

of Proposition 7.7 to apply it to commutator length is that we are interested

in lifts of powers of w from Ω to Σ that are all homotopic into components

of ∂Σ, since Σ is to be a realising surface for some power of w. This results

in components of the pullback with a slight cosmetic difference to the generic

structure illustrated in Figure 10. As shown in Figure 16, the core circular 2-

complexes representing the w-cycles each have a distinguished boundary circle,

which we denote by ∂w, that finitely covers both a component of ∂Σ, as well

as the core curve γ of S, so we have two covering maps of circles, generally of

different degrees:

∂wS γ

∂Σ Ω

σ

w′ w

h

Lemma 10.2. Let w be indivisible in the surface group π1(Ω), and suppose

h : Σ→ Ω

is an immersion from an orientable compact surface with non-empty boundary,

such that, for each boundary component c ∈ π0 (∂Σ),

h∗ ([c]) = wnc ∈ π1(Ω)
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for some nc ∈ Z, and let the sum of the nc be n, so that

h∗ ([∂Σ]) = wn

Then

n ≤ −χ(Σ)

Proof. Recall the immersion w′ induced on the w-cycles,

w′ : S→ Σ, h ◦ w′ = w ◦ σ

If w′ is irreducible, the result is just a rewording of Proposition 7.7 — each

boundary component is a w-cycle, contributing nc to deg σ ≥ n (it could be

that deg σ > n, when there are additional w-cycles independent of the boundary

components, but we can ignore these for the purpose of computing commutator

length). What’s more, the restricted form of the w-cycles in this case makes it

apparent that w′ is indeed irreducible: let R be any rectangle in a decomposition

of Σ as given by Proposition 6.5, then we want R to have at least two preimages

in the truncated components S of the pullback of h and w. There are two

edges of ∂Σ in the boundary of R, and since there is a component of S covering

each component of ∂Σ at least once, both of these edges have at least one

rectangle covering them in their respective boundary components’ traversals

(note that even if the two edges come from the same boundary component, the

same reasoning shows they still must be covered twice in each traversal). See

Figure 16.

As an immediate corollary, we can reprove:

Theorem 10.3. [25, 38] The fundamental group of any closed orientable hy-

perbolic surface Ω has a 1
2 -gap in its scl spectrum.

Proof. This is the same reasoning as outlined above. If wn ∈ π1(Ω) lies in

[π1(Ω), π1(Ω)], then it can be realised by a compact orientable surface Σ with

genus g and one boundary component mapping into Ω by an immersion h. We

have

χ(Σ) = 2− 2g − 1
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Figure 16: If wn is in the commutator of π1(Ω), there is a map from a sur-
face Σ with all boundary components representing w-cycles. Here we show the
components of S whose boundaries ∂w cover the purple and yellow boundary
components of Σ under the pullback immersion w′ — each must contain a preim-
age of the red rectangular 2-cell which has a purple arc and a yellow arc in its
boundary. Since the same occurs for every rectangle in a decomposition of Σ
carrying the w-cycles, we see that w′ is irreducible.
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so, using Lemma 10.2,

cl(wn) = g =
2− 1− χ(Σ)

2
≥ n

2

Therefore, in the limit we get

scl(w) = lim
n→∞

cl(wn)

n
≥ lim
n→∞

n

2n
=

1

2

for all w with non-trivial commutator length, as required.

It is possible that a similar approach could be used to study commutator

length using surface mappings to 2-complexes other than closed surfaces, but

this is conjectural at this point. In particular, the groups whose scl-spectra we

wish to investigate would need to have presentation complexes which can be

equipped with some topological structure that pulls back to give a rectangular

decomposition on Σ, in analogy with our constructions in Part II, and also admit

stackings of their indivisible elements (likely meaning they would have to have

locally-indicable quotients). Reynolds’ paper [66], which we drew on for our

proof of Lemma 5.2 to deduce the existence of compatible rectangular decom-

positions from geodesic laminations, showed that analogues of such laminations

exist in R-trees, so we might be able to derive rectangular decompositions on

realising surfaces for elements of groups acting on R-trees in a similar way. But

groups acting freely on R-trees are already known to be residually free by the

constructions of Sela [70], and we do not yet have any general method for obtain-

ing a rectangular decomposition on a realising surface when the target complex

is not also a surface. On the other hand, there are still many open questions

about scl in closed surface groups, for instance whether it is rational, where an

approach using rectangular decompositions may be useful.
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[3] Yago Antoĺın, Warren Dicks, and Peter A Linnell. Non-orientable surface-

plus-one-relation groups. Journal of Algebra, 326(1):4–33, 2011.

[4] Gilbert Baumslag. On generalised free products. Mathematische Zeitschrift,

78(1):423–438, 1962.

[5] Gilbert Baumslag. Some problems on one-relator groups. In Proceedings of

the second international conference on the theory of groups, pages 75–81.

1974.

[6] Gilbert Baumslag, WW Boone, and BH Neumann. Some unsolvable prob-

lems about elements and subgroups of groups. Mathematica Scandinavica,

pages 191–201, 1959.

[7] Christophe Bavard. Longueur stable des commutateurs. Enseign. Math.(2),

37(1-2):109–150, 1991.

[8] Brian H Bowditch. A short proof that a subquadratic isoperimetric inequal-

ity implies a linear one. Michigan Mathematical Journal, 42(1):103–107,

1995.

[9] Rolfsen Dale Wiest Bert Boyer, Steven. Orderable 3-manifold groups. An-

nales de l’institut Fourier, 55(1):243–288, 2005.
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