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Abstract 
 

The hippocampus is crucial for spatial navigation and episodic memory formation. Hippocampal 

place cells exhibit spatially selective activity within an environment and form the neural basis of 

a cognitive map of space which supports these mnemonic functions. Hebb’s (1949) postulate 

regarding the creation of cell assemblies is seen as the pre-eminent model of learning in neural 

systems. Investigating changes to the hippocampal representation of space during an animal’s 

exploration of its environment provides an opportunity to observe Hebbian learning at the 

population and single cell level. When exploring new environments animals form spatial 

memories that are updated with experience and retrieved upon re-exposure to the same 

environment, but how this is achieved by different subnetworks in hippocampal CA1 and CA3,  

and how these circuits encode distinct memories of similar objects and events remains unclear. 

To test these ideas, we developed an experimental strategy and detailed protocols for 

simultaneously recording from CA1 and CA3 populations with 2P imaging. We also developed a 

novel all-optical protocol to simultaneously activate and record from ensembles of CA3 neurons. 

We used these approaches to show that targeted activation of CA3 neurons results in an 

increasing excitatory amplification seen only in CA3 cells when stimulating other CA3 cells, and 

not in CA1, perhaps reflecting the greater number of recurrent connections in CA3. To probe 

hippocampal spatial representations, we titrated input to the network by morphing VR 

environments during spatial navigation to assess the local CA3 as well as downstream CA1 

responses. To this end, we found CA1 and CA3 neural population responses behave nonlinearly, 

consistent with attractor dynamics associated with the two stored representations. We interpret 

our findings as supporting classic theories of Hebbian learning and as the beginning of uncovering 

the relationship between hippocampal neural circuit activity and the computations implemented 

by their dynamics. Establishing this relationship is paramount to demystifying the neural 

underpinnings of cognition. 
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Impact Statement 
 

How do we remember? Why do we have problems accessing memories in conditions like 

dementia? How can we teach machines to learn? These are some of the most important 

questions of our time and have been the focus of intense study since the dawn of experimental 

cognitive science. By understanding how memory functions under normal conditions, we can 

better understand the mechanisms for dysfunction in disease. Through identifying the rules by 

which information is processed, stored, and recalled, we increase the possibility of harnessing 

this knowledge to solve memory access problems, and optimize learning. A distant possibility will 

be the augmentation of normal human abilities and restoration of lost function with synthetic 

assistance. Artificial intelligence (AI) and neuroscience research are synergistic, since 

understanding our own brain improves our ability to build better artificial ones, and vice versa. 

Hence the intersection between theory and experiments holds the key to unlocking a more 

complete understanding of how human brains learn and remember.   

 

To be able to achieve such advances, we need tools to read and write specific and precise 

patterns of activity into real biological neural circuits underpinning memory processing. To do 

this we can leverage cutting edge tools in optical biology, to investigate the hippocampus, a brain 

area involved in memory processing. We can build on the 2014 Nobel prize winning discovery of 

“place cells”, neurons whose activity patterns contribute to our brain’s positional system - our 

inner GPS. These cells provide distinct patterns of neural activity with a behavioural correlate and 

therefore make spatial navigation a tractable entry point into understanding cognitive functions 

such as memory. For the first time we can read neural activity and ‘know’ what the animal is 

‘thinking’ about where it is in space. 

 

Hippocampal subregion CA3 has been proposed to underpin memory recall (remembering), given 

its biological connectivity architecture resembles that of artificial network models with memory 

recall functions. Our new optical tools, applied to interrogating place cells, offers the opportunity 

to re-ignite collaborations between protagonists of artificial and biological intelligence. As such, 
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we are now in a position to probe these brain regions and test long standing theories of their 

memory functions. In this thesis I describe a novel surgical method to optically access CA1 and 

CA3 simultaneously and developed a miniaturized 2D virtual reality system to precisely control 

the virtual environment experienced by behaving animals on our all-optical set up. I then applied 

these developments to probe functional properties in different two hippocampal subregions 

simultaneously during spatial navigation. Together with recent work in the field, my work 

spearheads progress towards spatial memory becoming the first higher order cognitive function 

to be understood in mechanistic detail.  
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1.1  The cognitive revolution 

1.1.1 Bringing matters of the mind into the laboratory  

Psychologists have long been fascinated by spatial memory, but it was not until the middle of last 

century when a series of findings propelled its study into the domain of neuroscience and brought 

the cognitive revolution to psychology (Jeffery, 2018). In the 1800’s Herman Ebbinghaus 

pioneered the scientific study higher mental functions. He was the first to systematically study 

human learning and memory and determine early principles of memory encoding and recall 

(Ebbinghaus, 1885). The work of Ebbinghaus created the foundation for the quantitative study of 

memory in the laboratory. 

 

In parallel with this scientific study of human learning and memory, a new generation of 

experimental psychologists described many fundamental relationships between the 

environment and behaviour underpinning associative learning in animals. These behaviourists 

including Pavlov, Watson, Thorndike and Skinner - generally posit that complex behaviours are 

elicited by a cue functioning as a stimulus (S), that becomes progressively associated with a 

precise behaviour, the response (R), through obtaining rewards. Such associative explanations of 

learning and memory suggest spatial behaviour, i.e. navigation, is generated as a chain of 

rewarded responses to environmental stimuli, selected in a trial and error learning process 

(Thorndike, 1898). 

 

While behaviourism revolutionized psychological schools of thought, quantifying the observable 

and providing a logical explanation of behaviour, it avoided physiological descriptions given the 

intangible nature of neural activity at that time (Jeffery, 2018). Bridging memory theory, and a 

mechanistic explanation of this cognitive function, has not been technologically possible until 

recent years. In this section I introduce the idea of a cognitive map and research on the 

neurobiological substrate underpinning it. These key concepts have inspired our current 
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understanding of learning and memory in modern systems neuroscience and laid the foundations 

for memory to be the first higher-level cognitive function understood at the mechanistic level. 

1.1.2 Tolman’s cognitive map: flexible organization of knowledge  

While powerful in systematically quantifying the seemingly unquantifiable, behaviourist theory 

fails to explain the capacity of animals to perform flexible behaviour. The ability for animals to 

update choices rapidly and the influence of motivational factors clashes with the fixed S-R chain 

of events posited by the behaviourist paradigm. In his seminal work Tolman used a ‘sunburst 

maze’ to demonstrate that rats would preferentially choose the shortest path to the goal despite 

having never explored that path before (Tolman, 1948). Tolman concluded that navigation 

behaviour could be flexible. Tolman also noted that the information represented during a spatial 

experience can be retrieved in a subsequent exposure to the same environment; a process he 

thought to be dependent on recalling a previous memory, and part of a broad learning 

mechanism he defined as ‘latent learning’ (Tolman, 1948). Together, this classic series of 

behavioural experiments cemented the possibility of an internally stored representation of space 

that was allocentric or world-centered. The idea that animals possess a ‘cognitive map’, 

integrating multiple cues, that can be used flexibly, allowing adaptive navigation, subsequently 

became the foundational theory of spatial memory (O’Keefe & Nadel, 1978). Tolman’s cognitive 

map has been invaluable in enabling us to develop a framework to understand later seminal 

discoveries behind how animals navigate in the world (O’Keefe & Nadel, 1978). 

 

Tolman’s cognitive map was based on observation of an animal’s actions and makes no provision 

as to where such a complex system could exist in the brain. However, other theorists and 

experimentalists were beginning to make a deeper connection between the brain and the 

underlying architecture and computations driving outward displays of behaviour. Broadly, Karl 

Lashley showed that lesions in the cerebral cortex had predictable effects on behaviour in animals 

(Lashley, 1929, 1950). On a different level of understanding, Donald Hebb conceptualised ideas 

that account for complex brain functions at the level of neural circuits (Hebb 1949). Hebb’s notion 

of the cell assembly, the idea that information propagates through groups of neurons, connected 
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together (Hebb, 1949), propelled the investigation of behaviour from psychology into the domain 

of neuroscience. A concept which we will come back too later in this chapter. Both Lashley and 

Hebb insisted that studies of the brain were critical to understand behaviour, this now sounds 

obvious, but was originally a debatable question (Jeffrey, 2018). Lashley and Hebb both searched 

for a specific locus in the brain where information is stored but could not find one- instead, 

tentatively suggesting memory might be a more distributed system. 

 

1.2  The locus of memory processing 
1.2.1 Memory deficits and hippocampal damage  

In the following years, the search for such a brain structure largely responsible for memory 

processing continued. A pivotal turning point occurred when Scoville and Milner (1957) reported 

severe loss of memory in the tragic case of Henry Gustav Molaison, an epileptic patient who 

became known as patient H.M. H.M. suffered bilateral damage to two thirds of his anterior 

hippocampi during surgery to cure his epilepsy (Scoville & Milner, 1957). While partially 

successful, the surgery resulted in profound anterograde amnesia (an inability to form new 

memories; Scoville & Milner, 1957). H.M. could no longer recall recent memories, yet his long-

term memory and intelligence remained intact (Scoville & Milner, 1957). Other amnesiac patients 

with hippocampal lesions have shown a similar pattern of deficits; while their intelligence was 

spared, they become unable to encode episodic memories and their recollections of past events 

or spatial sceneries were schematic, and lacking contextual details (Rosenbaum et al., 2000). For 

example, patients with bilateral damage to hippocampal subregion CA3 had problems retrieving 

episodic memories (Miller et al., 2020). In addition to loss of function studies, Maguire and 

colleagues have shown London taxi drivers (who navigate all day) have an enlarged posterior 

hippocampus (Maguire et al., 2000). Collectively, these studies highlight the different types of 

memory function, and the crucial role the hippocampus plays in supporting declarative memory, 

localising the search for a neural substrate to the hippocampal formation, and inspiring a new 

era of hippocampal physiology (Eichenbaum, 2013). 
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Conscious or ‘declarative’ memories can be classified as semantic memories comprising of factual 

knowledge about the world (for example, Kensington is a borough in London), and episodic 

memories, that depict unique experiences (for example, your first time on the tube in London). 

Episodic memories associate items and events with the spatial and temporal context in which 

they were experienced (Eichenbaum, 2017). Memories must be first encoded as a permanent 

trace or ‘engram’, be maintained and consolidated over time and, finally become accessible to 

recall (Eichenbaum, 2017). Most studies discussed in this chapter focus on memories whose 

elements are organized in space. However, there is evidence to suggest that the neuronal 

mechanisms underlying spatial memories also apply to conscious memories organized in other, 

non-spatial for example, social (Tavares, Mendelsohn & Grossman & 2015) or conceptual 

domains (Aronov, Nevers, & Tank, 2017; Behrens et al., 2018; Constantinescu, O’Reilly, & 

Behrens, 2016). Therefore, spatial memory may hold the key to understanding the neural 

processes that organize knowledge in the complex, high-dimensional, non-spatial cognitive map 

that Tolman originally envisaged (Behrens et al., 2018). 
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1.2.2 Hippocampal anatomy and circuitry  

The hippocampal formation is a bilateral C-shaped structure with a complex 3D architecture, 

situated in the caudal part of the forebrain, over the diencephalon (Figure 1.1). The hippocampus 

is one of several brain regions that together comprise the hippocampal formation. The 

hippocampal formation is a prominent C-shaped structure bulging in the floor of the temporal 

horn of the lateral ventricle. The hippocampus proper consists of three major subfields Cornu 

Ammonis area 1 (CA1), CA2 and CA3, dentate gyrus (DG) and the subiculum. All of these regions 

have a trilaminar organisation, for which the nomenclature differs by region but the roles are 

fairly consistent: a deep layer, comprising a mixture of afferent and efferent fibres and 

interneurons; a more superficial cell layer, where densely-packed principal neurons are found; 

and the most superficial molecular layer which is predominantly cell-free (Figure 1.2; (Andersen, 

Bliss, & Skrede, 1971). In the DG, the deep layer (named the hilus) is enclosed in a ‘U’ shape by 

the principal granule cell layer and stratum moleculare. In the CA and subiculum regions, the 

deep layer is the stratum pyramidale, and then the molecular layer(s). The molecular layer of the 

CA regions are subdivided into additional layers. In CA3, the unique stratum lucidum, receives 

mossy fibre axon inputs from the DG; the stratum radiatum, contains the apical dendrites of 

neurons located in the CA3 pyramidal layer; and the most superficial stratum lacunosum 

moleculare, contains the apical tufts of the apical dendrites and perforant path fibres (Andersen, 

et al., 1971). The lamination in CA2 and CA1 is similar, except there is no stratum lucidum (Van 

Strien et al., 2009). 

 

A) Mouse coronal histological hippocampal section 

with DAPI (blue) labelling cell bodies and GCaMP6s 

(green): stratum lucidum (SL), CA3 pyramidal cell 

layer (CA3 pyr); (C) DG: outer and middle molecular 

layer (OML/MML), inner (DG-IB) and outer blade 

(DG-OB) of the dentate gyrus, hilus; (D) CA1: 

  

 

 
 

 
 

 

Figure 1-2 Trilaminar organisation of the rodent 

hippocampus. 
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stratum oriens (SO), CA1 pyramidal cell layer (CA1 pyr) and the stratum radiatum (SR). Scale bar: 500 µm. Authors 

own image. 

1.2.3 Hippocampal projection pathways  

Intensive investigation of circuitry in the hippocampal formation has enabled mapping of the 

connections inside (intrinsic connections) as well as brain areas outside of the hippocampal 

formation (extrinsic connections). The DG, CA3 and CA1 are interlinked by strong predominantly 

forward connections forming the canonical ‘tri-synaptic loop’. While an oversimplification of a 

much more elaborate and parallel input system within the hippocampus (Knierim et al., 2014), it 

provides a useful overview of information flow though this structure (Figure 1.3). The main input 

to the hippocampal formation originates in the superficial layers of the entorhinal cortex (ERC; 

layers II and III), with the majority projecting onto DG granule cells via the perforant path and a 

small input directly to CA1 (Witter, 1993). DG projects to CA3 pyramidal neurons via mossy fibres 

which provide a sparse but powerful connection, hence this synapse operates as a ‘detonator’ 

(typically producing depolarization and firing the post-synaptic neuron; Henze, Wittner, & 

Buzsáki, 2002; Vyleta, Borges-Merjane, & Jonas, 2016). Each CA3 cell receives ~46 mossy fiber 

inputs, so that the sparseness of this mossy fiber-CA3 connectivity is ~0.005% (Treves & Rolls, 

1992a; Rolls, Treves, Robertson, Georges-François, & Panzeri, 1998). CA3 also receives two 

further inputs, including one from ERC via the perforant pathway. By contrast, these inputs are 

more numerous, but weaker than mossy fibre input (Ishizuka et al., 1990). However, the largest 

number of synapses on the dendrites of CA3 pyramidal cells is provided by the recurrent 

collaterals of CA3 cells themselves (Amaral & Witter, 1989, 1995; Amaral et al., 1990; Ishizuka, 

Cowan, & Amaral, 1995; Amaral, 1993; Ishizuka et al., 1990; Witter, 2007), such that effectively 

the CA3 system provides a single network, with a connectivity estimate of 2% between CA3 

neurons (given that the connections are bilateral; Guzman et al., 2016; Rolls, 2013). Interestingly, 

the CA3-CA3 recurrent collateral system is more extensive in macaques than in rats (Kondo, 

Lavenex, & Amaral, 2009), suggesting that in primates, the CA3 network operates even more as 

a single network than in rodents, equipping them with a larger storage capacity (Rolls, 2013). 

Finally, the pyramidal cells of CA3 project on to pyramidal cells of CA1 via the Schaffer collateral 
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temporal DG  (Li, Somogyi, Ylinen, & Buzsáki, 1994), from CA1 back to CA3 and direct inputs from 

superficial EC to the understudied CA2 region (Chevaleyre & Siegelbaum, 2010), from which CA2 

axons then project to the superficial layers of CA1 and proximal CA3 (Mercer, Trigg, & Thomson, 

2007). In addition to these back projections, CA3 recurrent collateral show a particular 

organization along the septotemporal axis in that each neuron targets cells nearby (Sun et al., 

2017). The complexity of these connections has raised several questions about their putative 

functions which will be revisited later in this chapter. Furthermore, CA3 pyramidal neurons 

respond to perforant pathway stimulation prior to granule cell stimulation, suggesting that mossy 

fiber input may not initiate CA3 neuron activation (Do et al., 2002; Yeckel & Berger, 1990). These 

deviations to the propagation of intrinsic activity as described by the tri-synaptic loop suggests 

the hippocampus may be more likely arranged as a set of parallel microcircuit loops, where each 

loop is formed by a hippocampal subfield (Hainmueller & Bartos, 2020). 

 

1.2.4 Hippocampal subfield CA3  

As with other areas in the brain, cellular populations initially considered homogeneous have been 

subsequently shown to be comprised of distinct cell types with specific circuit structure and 

function, when investigated at sufficient resolution. This is certainly true for the hippocampus 

(interesting examples include mature vs immature DG granule cells, and thorny vs athorny CA3 

pyramidal neurons; Hunt et al., 2018; Toni & Schinder, 2016), but this should not be surprising 

given Lorente de No ́ (1934) originally divided CA3 into three further subregions (CA3a, b, c; Fig. 

1A) along the proximodistal axis (Lorente De Nó, 1934). Proximal CA3 (CA3c) lies closest to DG, 

whereas distal CA3 (CA3a) lies closest to CA2, with mid-CA3 (CA3b) interposed (Lorente De Nó, 

1934). This parcellation has been forgotten until recently. Despite the majority of theoretical 

literature treating CA3 as one homogenous entity, there is marked proximo-distal heterogeneity 

in CA3 pyramidal neuron dendritic morphology (Sun et al., 2017), axonal projections (Sun et al., 

2017; Tamamaki & Nojyo, 1995) and recurrent connectivity (Ishizuka, Weber, & Amaral, 1990). 

Given that neural architecture determines the computations possible, these intricacies suggest a 

functional gradient, potentially with intra-subregions serving different computational roles in 
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hippocampal processing (Lee & Kesner, 2004) and will be discussed in more detail later in this 

chapter.  

 

1.3  The cellular basis of learning and memory 
1.3.1 Associative learning 

Learning is the acquisition of skill or knowledge. Subsequently, memory is the storage and 

expression of what has been acquired. To understand how neural networks might implement 

learning changes on a cellular level, Hebb and other theorists working on mathematical models 

of the brain, created the concept of a ‘neural network’ (Amit, 1989; Hebb, 1949; Hopfield, 1982; 

Marr, 1971). This is a term synonymous with models of distributed connectivity in which neurons 

are abstracted to nodes and associated by changing modifiable connections (plastic synapses) 

based on learning rules (Hebb, 1949). Hebb postulated that a synaptic modification for learning 

and memory occurs as a consequence of coincident pre- and postsynaptic activity (Hebb, 1949). 

Experimental evidence for plastic synapses, a physiological correlate of Hebb’s rule, lagged 

almost 20 years, until the pioneering work of Bliss and Lømo and their discovery of long-term 

potentiation (LTP; Bliss & Lømo 1959). They found that repetitive high frequency stimulation 

trains (15Hz for 15 seconds) of the perforant pathway in rabbit hippocampal slices, resulted in a 

rapid and long-lasting increase in the strength of these synapses that could persist for many days 

(Bliss & Gardner-Medwin, 1971, Bliss & Lømo 1959; Figure 2). LTP involves both an increase in 

the synaptic response and an increase in neuronal excitability (EPSP-to-spike potentiation; Bliss 

et al., 2014). In contrast to LTP, long term depression (LTD) refers to an activity-dependent 

reduction in the efficacy of neuronal synapses (Bear & Abraham, 1996). LTD is induced by low 

frequency stimulation either alone or paired with a small postsynaptic depolarization (Dudek & 

Bear, 1993; Kirkwood & Bear, 1994; Linden & Connor, 1995; Mulkey, et al., 1992). Combined LTP 

and LTD allow activity-dependent bidirectional modification of synaptic strength and serve as 

promising candidates for the synaptic basis of learning and memory (Bliss & Collingridge, 1993; 

McCormack, Stornetta, & Zhu, 2006; Siegelbaum & Kandel, 1991).  
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Figure 1-4 The first example of LTP in the DG of the anaesthetized rabbit.  

 A-C. Anatomy of the hippocampus; A) population potentials from synaptic and granule cell body layers (B), and 

placement of stimulating and recording electrodes (C). The arrangement of the two stimulating electrodes in (B) 

allowed the rostral electrode (Test stim) to activate the perforant path while the second conditioning electrode 

(Cond stim) was placed to activate only fibres projecting to granule cells nearer the midline (experimental pathway). 

(B). High-frequency trains (15Hz for 15 seconds) were delivered at intervals to the experimental pathway (arrows in 

D) via the conditioning stimulating electrode (labelled Cond stim).  LTP of the population (field) EPSP in the 

experimental pathway (filled circles) but not the control pathway (open circles) following multiple episodes of high-

frequency stimulation. Adapted from Bliss & Lømo, (1973). 

 

To further support the role of activity induced synaptic plasticity in learning and memory, later 

work delineated the underpinning molecular mechanisms. Seminal research demonstrated that 

LTP in CA1 requires glutamate and sufficient post synaptic depolarisation to remove the voltage 

dependent magnesium block in the N-methyl-D-aspartate receptors (NMDARs; Collingridge, 

Kehl, & McLennan, 1983). This magnesium block means the NMDARs themselves are not 

sensitive to low levels of glutamate but their neighbouring AMPARs are, subsequently resulting 

depolarisation of the postsynaptic neurons (via AMPARs) removing the magnesium block, 

allowing calcium ions to pass into neurons via the NMDAR (Song et al., 1999). Three key 
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supporting expression mechanisms were found to implement these longer term structural 

synaptic changes. At potentiated synapses there is an increase in the probability of presynaptic 

neurotransmitter release, an increase in single channel conductance of AMPARs and an increase 

in the number of AMPARs (Song et al., 1999; Shi et al., 1999; Zhu, Qin, Zhao, Van Aelst, & 

Malinow, 2002). Collectively, these changes make these synapses more sensitive to glutamate 

(Bliss et al., 2014). Hence providing the molecular adaptations to support an activity plastic 

‘Hebbian’ synapse (Bliss, Collingridge, & Morris, 2014). 

 

To characterize the temporal requirements for the induction of LTP and LTD, Levy and Steward, 

(1983) varied the relative timing of a strong and a weak input from the ERC to the DG and found 

that synaptic modification depended on the temporal order (Levy & Steward, 1983). Potentiation 

occurred when the weak input preceded the strong input by < 20ms, and reversing the order led 

to LTD (Levy & Steward, 1983). Subsequent studies further demonstrated the importance of the 

temporal order of pre- and postsynaptic spiking in synaptic modification, delineating the critical 

window on the order of tens of milliseconds (Bi & Poo, 1998; Debanne, Gähwiler, & Thompson, 

1998; Magee, & Johnston, 1997; Markram, Lübke & Frotscher, 1997)  Such spike-timing-

dependent plasticity (STDP; Abbott, & Nelson, 2000) has now been observed at excitatory 

synapses in a wide variety of neural circuits (Boettiger, et al., 2001;  Feldman, 2000; Sjöström, et 

al., 2001). Compared with the correlational forms of synaptic plasticity, STDP captures the 

importance of causality in determining the direction of synaptic modification, which was 

originally implied in Hebb's postulate.  

 

To clarify this mechanistic understanding of neural circuit changes in response to experience, 

Goddard and colleagues formalized the concepts of co-operativity and associativity as defining 

characteristics of LTP: 

• Co-operativity refers to the need to activate a threshold number of inputs, which may serve 

to filter out non-salient information (McNaughton et al., 1996). 
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• Associativity refers to the property whereby a strong stimulus can enable a weak stimulus 

(that by itself is below threshold for LTP). To elicit LTP when the two independent pathways 

are co-activated in close temporal and spatial proximity (Barrionuevo & Brown, 1983) 

 
Research supports these processes during behaviour, for example, spatial memory task 

performance was disrupted by administration of pharmacologic agents that block NMDA 

receptors, preventing synaptic plasticity (Morris et al., 1986). This body of work supports a 

synaptic-plasticity theory of associative learning and memory formation (Bliss et al., 2014; Bliss 

& Collingridge, 2013, Martin, Grimwood & Morris, 2000; Morris et al., 1986). 

 

1.3.2 Encoding memories 

Hippocampal subregion CA3 has been implicated in the initial encoding and storage of memory, 

in part due to the theoretical notion that CA3 is thought to effectively operate as a single network 

given its recurrent collateral connections (Kesner & Rolls, 2015; Rolls, 2013). Therefore, it follows 

that CA3 can allow arbitrary associations between inputs originating from very different parts of 

the cerebral cortex (Kenser & Rolls, 2005). For example, object-place mnemonic function involves 

associations between information originating in the temporal visual cortex about the presence 

of an object, and information originating in the parietal cortex regarding its location (Kenser & 

Rolls, 2005; Rolls, 2013). Although CA3 recurrent connectivity is not fully uniform (Ishizuka et al., 

1990; Witter, 2007), the connectivity in CA3a and b is considered to have the properties of an 

interconnected auto-association network (Sun et al., 2017) and therefore associate diverse 

afferent inputs to CA3 as described above (Kesner & Rolls, 2015; Rolls, 2013). 

 

A simplified hypothesis of how the DG, CA3 and ERC circuitry works together to encode and store 

memories is as follows: DG granule cells acts as a competitive network (employing unsupervised 

learning) to produce the sparse yet efficient representation in CA3 neurons (Rolls & Kesner, 

2016). This non redundant representation is necessary for the autoassociation properties, 

namely the ability to re-activate or recall an existing stored memory pattern (also known as 
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pattern completion and discussed later in this chapter; Kesner & Rolls, 2015; Lee & Kesner, 2004; 

Rolls, 1990b, Treves & Rolls, 1992, 1994). To achieve this DG granule cells perform 

orthogonalization (or pattern separation), preparing the DG representations for the CA3 network 

(Kesner & Rolls, 2015; Lee & Kesner, 2004; McHugh et al., 2007; Rolls, 1989, 1990b, Rolls, Treves, 

Robertson, Georges-François, & Panzeri, 1998, Treves & Rolls, 1992, 1994). Given the small 

number of DG mossy fiber-CA3 connections, there is a randomizing effect on the representations 

created in CA3, such that representations are maximally different to each other, enabling storage 

of a large number of similar events (Kesner & Rolls, 2015; Lee & Kesner, 2004; Rolls, 1990b, 

Treves & Rolls, 1992, 1994) and minimizing interference between distinct memories (Hopfield, 

1982; Treves and Rolls, 1991; Rolls, 2008; Rolls, et al., 1998). After DG granule cells have recruited 

unique CA3 pyramidal cell groups during memory encoding, they become associated with the 

ERC input patterns (hetero-association) representing the new information and other CA3 inputs 

(auto-associations; Rolls, et al., 1998).  

 

Hence a single active DG granule cell could send a mossy fiber axon to CA3 targeting 10–15 

pyramidal cells with ‘giant’ mossy-fibre synapses and subsequently determine whether the set 

of connected CA3 cells become co-active, by combining the detonator properties with 

heterosynaptic and associative plasticity (Rebola et al., 2017). Strong mossy-fibre synapses at 

proximal pyramidal cell dendrites can elicit large dendritic events that support instantaneous 

reorganization of pyramidal cell place fields in CA1 and CA3 (Bittner, Health, & Grienberger, 2017; 

Diamantaki, et al., 2018; Diamantaki, et al., 2016). Hence, mossy fibre-mediated dendritic events 

promote heterosynaptic plasticity at perforant pathway and CA3 recurrent inputs (Buzsaki 1989; 

Rebola et al., 2017). Once synaptic plasticity has strengthened the intrinsic and extrinsic 

connections of these ensembles (Do, Martinez, Martinez, & Derrick, 2002; Tsukamoto et al., 

2003), perforant pathway inputs may serve to reactivate them, promoting recall of the associated 

memory without the need for mossy-fibres (Rolls, 2018). 

 

Within this framework for memory encoding, memories are stored at perforant pathway and 

recurrent CA3-CA3 connections (Rolls, 2018). Indeed, lesion studies suggest a functional 
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dissociation between the perforant pathway–CA3 and the perforant pathway–DG–CA3 paths 

(Lee & Kesner, 2004). Mossy-fibre afferents were required for memory acquisition but not for 

retrieval, whereas, perforant pathway afferents initiated memory retrieval from the CA3 without 

mossy-fibre input (Lee & Kesner, 2004).  Moreover, acute DG inactivation impaired memory 

encoding but not recall in most (Kheirbek, Drew, & Burghardt, 2013; Lassalle, Bataille, & Halley, 

2000; Madroñal, et al., 2016), but not all studies (Denny, Kheirbek, & Alba, 2014; Park, et al., 

2016). Notably, granule cell ensembles are reactivated during the retrieval of recent, but not 

remote, memories (Tayler, Tanaka, & Reijmers, 2013). Thus, DG granule cell activity may be 

required during initial encoding and early, intrahippocampal memory consolidation but can be 

dispensable for recall (Hainmueller & Bartos, 2020). Additional support for memory storage in 

perforant pathway-CA3 connections comes from the requirement of NMDARs in CA3 pyramidal 

cells neurons to enable single trial learning (Nakazawa et al., 2002, Nakazawa et al., 2003; 

Wagatsuma et al., 2017) and the ability to recall memories in the in the absence of mossy-fibre 

signaling (Tsukamoto et al., 2003). These findings support the hypothesis that memories in the 

CA3 are ultimately stored at perforant pathway and recurrent CA3 connections (Nakazawa et al., 

2002). 

 

1.3.3 Consolidating memories  

Stabilising CA3 ensembles, essentially consolidating memories is thought to occur through the 

reactivation of these ensembles during sharp wave ripples (SWRs; Buzsáki, 1989; Sasaki, Piatti & 

Hwaun, 2018). Once CA3 ensembles are stabilized, recall may become independent of mossy-

fibre inputs (Tsukamoto et al., 2003). SWR complexes are a prominent endogenous hippocampal 

activity pattern that occur during quiet behavioural states (Buzsaki, Horvath, & Urioste, 1992; 

Csicsvari & Hirase, 2000, Ólafsdóttir, Carpenter, & Barry, 2017) Massive synchronized excitation 

from CA3 pyramidal neurons discharges distributed subsets of CA1 pyramidal neurons and 

interneurons (Buzsaki et al., 1992). This collective activity results in high-frequency oscillations 

(150∼250 Hz ripples) in the CA1 pyramidal layer (Schomburg, Anastassiou, Buzsáki, & Koch, 2012; 

Ylinen et al., 1995). Ripple frequency is conducive for LTP induction, and selective disruption of 
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SWRs has been shown to result in spatial memory deficits (Buzsáki, 1989; Girardeau, 

Benchenane, Wiener, Buzsáki, & Zugaro, 2009). Hence, during SWRs, hippocampal cell ensembles 

reinstate previously encoded network activity patterns, a process that is key for memory 

consolidation (van de Ven, Trouche, McNamara, Allen, & Dupret, 2016).  

 

While the morphological hallmark of CA3 neurons is large thorny excrescences (complex spines) 

characteristic of giant postsynaptic mossy-fiber boutons, a new class of CA3 pyramidal neurons 

has been discovered. Whole-cell patch-clamp recordings from neurons in stratum pyramidale in 

acute mouse hippocampal slices, revealed a bimodal distribution of firing frequencies and 

subsequently two groups of CA3 pyramidal neurons with distinct morphological and physiological 

features (Hunt, Linaro, Si, Romani, & Spruston, 2018). Namely, regular-spiking neurons decorated 

with complex pines, and athorny neurons, lacking spines (Hunt et al., 2018). Athorny CA3 (10-

20% CA3 population) occupied a distinct cytoarchitectural position (deep-layer SP in CA3a and 

CA3b; Hunt et al., 2018), with a distinct physiological phenotype, in that their intrinsic busting 

initiated SWRs (Hunt et al., 2018). Thus, our current understanding follows that memory 

consolidation involves reactivation or replay of previous activity patterns during specific network 

states (SWRs) to consolidate those memories, and athorny CA3 pyramidal neurons likely initiating 

this process (Hunt et al., 2018). 

 

1.3.4 Recalling memories  

Recalling or remembering involves accessing and reactivating that stored activity pattern. 

Theories posit that such reactivation occurs through amplified activation in the recurrent CA3-

CA3 network (McNaughton et al., 1996; McNaughton & Morris, 1987; Rolls & Treves, 1990; 

Treves & Rolls, 1992a). While this has been difficult to test experimentally, there is evidence that 

CA3 plays a crucial role in memory recall. Nakazawa and colleagues (2002) ablated NMDA 

receptors in CA3 pyramidal neurons in mice trained in a Morris water maze task. The mutant 

mice acquired and retrieved the spatial reference memory but were impaired when performing 

with familiar cues removed (Nakazawa et al., 2002). These results suggest NMDA receptor-
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dependent synaptic plasticity mechanisms in CA3 are critical for auto associative memory recall 

(Nakazawa et al., 2002). However, all synaptic inputs onto CA3 pyramidal neurons are affected 

by inactivation of NMDARs, therefore it is not possible to predict which pathway the removal of 

plasticity is causal to behavioural deficits. Furthermore, loss of NMDA receptors likely also 

impacts spike transmission at mossy fibre–CA3 pyramidal cells (Hunt, Puente, Grandes, & Castillo, 

2013; Rebola, Carta, Lanore, Blanchet, & Mulle, 2011). Contradictory findings have shown that 

genetic removal of the NMDA receptor subunit GRIN1 from CA3 pyramidal neurons did not affect 

performance of mice when navigating to previously experienced platform locations (Nakazawa 

et al., 2003). However, their ability to rapidly acquire memory of a novel hidden platform 

locations was impaired (Nakazawa et al., 2003).  Hence, CA3 NMDA receptors play a crucial role 

in rapid hippocampal encoding of novel information (Nakazawa et al., 2003). The locus coeruleus 

in the brainstem is thought to provide CA3 with the novelty signal to enable this single-trial 

learning (Wagatsuma et al., 2017).  

 

While the synaptic mechanisms underpinning recall remain enigmatic, successful memory recall 

requires sufficient synaptic efficacy and network connectivity (Guzman, Schlogl, Frotscher, & 

Jonas, 2016). Recent work suggests initial estimates of CA3-CA3 macro connectivity are much 

sparser than previously thought. Simultaneous recordings of up to 8 CA3 pyramidal neurons, 

revealed that the connection probability was 0.92% (Guzman et al., 2016). However, Guzman and 

colleagues found the efficacy of unitary connections was high (Guzman et al., 2016). Therefore, 

coincident firing of a small number of presynaptic cells was sufficient to initiate action potentials 

in a postsynaptic cell (Guzman et al., 2016). These properties of recurrent CA3–CA3 synapses 

allow efficient information encoding by small neuronal ensembles (Guzman et al., 2016). Guzman 

et al., (2016) also demonstrated that real-size network models (with 330,000 neurons, 

representing CA3 in one hemisphere of a rat; Amaral, Ishizuka, & Claiborne, 1990) with a realistic 

connection probability of ~1% can recall stored activity patterns, when disynaptic connectivity 

motifs were included in the model architecture (Guzman et al., 2016). However, whether CA3 

network properties in vivo are consistent with these assumptions remains unclear and the 

mechanisms generating the connectivity motifs are unknown (Guzman et al., 2016). It is possible 
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these motifs arise from structural plasticity in synchronously active ensembles as discussed in 

Section 1.3. Ultimately, advanced neural circuit mapping during behaviour, combined with single-

cell electrophysiology is required to define the set of plasticity rules at play in identified CA3 cells 

to enable episodic memory encoding in CA3 circuits. 

 

1.4  Spatially tuned neurons in the hippocampal 

formation 
1.4.1 Place cells  

In 1971, O’Keefe and Dostrovsky made their landmark discovery that neurons in the rat 

hippocampus had spatial receptive fields. Using single unit electrophysiological recording in 

freely moving rats, they found single neurons (place cells) from the CA1 region are selectively 

active when the animal visited a particular location in the environment (O’Keefe & Dostrovsky, 

1971). Different cells had different place fields, such that collectively they formed a 

representation which tiles the environment (O’Keefe & Dostrovsky, 1971). In principle this 

enables the animal’s location to be inferred from the joint activity of a fairly small population of 

neurons. Given these observations and inspired by Tolman’s proposal that navigation is guided 

by internal cognitive maps, O’Keefe and Nadel (1978) suggested that place cells are the basic 

element of a distributed allocentric cognitive map of the animal’s environment, and form the 

neural substrate supporting spatial cognition (O’Keefe and Nadel, 1978).  

 

This notion that the hippocampus supports spatial cognition was becoming increasingly apparent 

through different behavioural measures making cognitive processes explicit and measurable. 

Evidence from hippocampally lesioned animals demonstrated that they could not solve a radial 

maze task (Olton & Samuelson, 1976) or other spatial tasks (reviewed in O’Keefe & Nadel, 1978). 

Nor could lesioned animals learn to find a hidden platform the Morris water task (Morris 1981) 

lacking local cues to location and therefore requiring integration of environmental allocentric 

cues. In a further line of support, since their discovery place cells have been found in all 
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hippocampal subregions (CA1, 2 and 3) and the DG (Lu et al., 2015; Mankin, Diehl, Sparks, 

Leutgeb, & Leutgeb, 2015; Muller & Kubie, 1987; O’Keefe & Dostrovsky, 1971), and have been 

identified across multiple species including, mice (Tonegawa et al., 1996) monkeys (Rolls et al., 

1989), bats (Ulanovsky & Moss, 2007; Yartsev & Ulanovsky, 2013), pigeons (Bingman, et al., 1996) 

and humans (Ekstrom et al., 2003). Such widespread, cross species findings suggest these cells 

are crucial for a universal function shared across animals.   

 

How place cells support spatial cognition is still an intense topic of debate. However it has been 

rapidly determined that the representation they form is not a pixel, but rather a population code, 

as a given place cell may have place firing fields in multiple environments (Alme et al., 2014) and 

place cells are non-topologically organised. Hence, for a particular location in space, only a subset 

of place cells will be active, and anatomically proximal cells do not necessarily have adjacent place 

fields in physical space, forming a distributed representation of the environment (Wilson & 

McNaughton, 1993; Fenton et al., 2008, Redish et al., 2001). Collectively, place cells represent 

spatially tuned neurons encoding the current position of an animal, such that sequences of place 

cells provide a distributed population code for past (replay) and future (preplay) trajectories 

though space (Diba et al., 2007; Foster & Wilson, 2006; Karlsson et al, & 2009; Pfeiffer & Foster, 

2013). 

 

1.4.2 Other spatially tuned cells  

A whole body of literature has since revealed a number of additional neurons encoding unique 

(or the conjunction of) information relevant for spatial navigation such as position, distances, 

objects, direction, geometry and speed (Grieves & Jeffery, 2017; Hardcastle, et al., 2017). Ranck 

and colleagues, reported the discovery of spatially sensitive neurons in the dorsal presubiculum 

(Ranck, 1984; Taube et al., 1990a, 1990b). These head direction cells did not have place fields but 

fired when the animal faced in a particular direction (Ranck, 1984). A key insight emerging from 

the head direction system was that activity across the neural population is coherent; the relative 

firing directions of the neurons was the same in every environment (Ranck, 1984). Directional 
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signals likely form the core of the spatial representation; however, one outstanding question is 

whether the place cell map is metric, that is, has explicit information about distance and 

direction, or whether it is just associative. Distance representation was not confirmed until the 

discovery of grid cells in the medial entorhinal cortex (MEC; Hafting et al., 2005). Grid cells have 

multiple regularly spaced place fields, in a triangular or hexagonal pattern, which repeats across 

the entire available space (Hafting et al., 2005). The scale of the grid increases from dorsal to 

ventral MEC (Brun et al., 2008). Collectively the discovery of place and gird cells won the 2014 

Nobel Prize in Physiology or Medicine for ‘discoveries of cells that constitute a positioning system 

in the brain’. 

 

It is clear that place and grid cells are part of a diverse and intermingled network of cell types, 

with distinct functions contributing to a cognitive map. Other spatially tuned cells include border 

cells which were found in the subiculum (Barry, Lever, Hayman, et al., 2006; Lever, Burton, 

Jeewajee, O’Keefe, & Burgess, 2009), social place cells, cells that encode the locations of other 

agents on the map (Danjo, Toyoizumi, & Fujisawa, 2018; Omer, Maimon, Las, & Ulanovsky, 2018) 

band cells (Krupic, Burgess, & O’Keefe, 2012) and cells that encode the vector relationships to 

borders (Solstad, Boccara, Kropff, 2008) objects (Høydal, Skytøen & Andersson, 2019), rewards 

and goals (Sarel, Finkelstein & Las, 2017; Figure 1.5). The discovery of these functionally 

specialized neurons in hippocampal–ERC circuit, with clear behavioural correlates, provides the 

possibility to uncover how cognitive processes, like memory arise (Fyhn, Hafting, Treves, Moser, 

& Moser, 2007) 

 

It is unclear how these differently specialised cell types interact on a local and population level. 

It is likely that individual place cells receive inputs from both grid and border cells, possibly with 

grid cells providing self-motion-based distance information and border cells providing position in 

relation to geometric boundaries (Bush, Barry, & Burgess, 2014; Zhang et al. 2014). It also seems 

plausible that the strongest input may originate from grid cells, which, in the superficial layers of 

the medial entorhinal cortex, are several times more abundant than border cells (Sargolini, et al., 

2006; Solstad et al., 2008; Boccara et al., 2010). In the majority of circumstances, the two input 
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classes are likely to be coherent and redundant, however if one is absent then the other might 

be sufficient to generate localized firing in the hippocampus. This perhaps explains why place 

cells are still found with disruption to the grid system or how animals can navigate when grid 

patterns become distorted (reviewed in Carpenter & Barry, 2016; Krupic, Bauza, Burton, & 

O’Keefe, 2016). The evidence collected in the last few decades has moved towards developing a 

mechanistic understanding of how the hippocampal system, forms, updates and retrieves a map-

like representation of space supporting navigation (Moser, Rowland, & Moser, 2015). 

Deployment of new and sophisticated tools including genetic manipulation and optophysiological 

methods for recording and manipulating neurons, will allow us to go further than just observing 

the distributed neural code underpinning Tolman’s cognitive map, to more completely 

understand how such a map might function (Jeffery, 2018). 
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Figure 1-5 Different cell types in the hippocampal formation represent different spatial variables. 

A) Anatomical location of the hippocampus (red) and entorhinal cortex (blue) across species. (B) Place cells are active 

when an animal is in a specific location (O’Keefe & Dostrovsky, 1971). Grid cells are active when an animal is in one 

of multiple locations on a triangular lattice (Hafting, Fyhn, Molden, Moser, & Moser, 2005). Social place cells (Danjo 

et al., 2018; Omer et al., 2018) are active in one animal when it observes that another animal is in a particular 

location. Head-direction cells (Jeffrey S Taube, Muller, & Ranck, 1990) are active when an animal’s head is facing a 

particular direction. Object-vector cells (Høydal et al., 2018) are active when an animal is in a particular direction 

and distance from any object. Reward cells (Gauthier & Tank, 2018) are active when an animal is in the proximity of 

a reward. Boundary vector cells (Lever et al., 2009) are active at a given distance away from a boundary in allocentric 

orientation. Goal direction cells (Sarel et al., 2017) are active when the goal (shown as a green G) of an animal is in 

a particular direction relative to its current direction. From Behrens et al., 2018.  
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1.4.3 The paradox of place cell remapping  

This thesis will focus more specifically on place cells given the relative ease of optically accessing 

the hippocampus and existing frameworks for identifying these cells. Years of 

electrophysiological studies have revealed descriptive place cell features. In most open field 

electrophysiological recordings only a subset (approximately 33%) of anatomically proximal 

pyramidal cells have place fields in a given environment, even though all cells are similarly active 

during short-wave sleep and antidromic stimulation (Thompson & Best, 1989, Henze et al., 2000). 

However, if place cells are active in a given environment, the stability of their representation is 

still debated, and dependent on multiple factors (Kentros et al., 1998; Cacucci, Wills, Lever, Giese, 

& O’keefe, 2007; Mankin et al., 2012). Early studies found that when an animal enters a new 

environment, new place fields form within a matter of minutes (Kentros et al., 1998, Thompson 

& Best, 1990) and can be stable for months (Thompson & Best, 1990). This apparent long-term 

stability of place fields implies that the spatial representation is recalled and not created de 

novo each time the animal enters a familiar environment, as expected for neurons of a spatial 

memory system (McNaughton et al., 1996). However, more recent work finding long-term 

instability in place fields (Kentros, Agnihotri, & Streater, 2004) has challenged this notion, raising 

the question: how can a changing spatial neural representation reliably retrieve the appropriate 

memory of a previously encountered environment? 

 

An interesting property of place cells is their propensity to remap. Remapping refers to any 

manipulation-induced changes in the firing of place cell. Hence, an individual place cell is part of 

many independent representations. Muller and Kubie investigated the effects of changing the 

most salient visual cues in a cylindrical environment and introducing various local cues (Muller & 

Kubie, 1987). Whether place cells remapped completely or only partially depended on the extent 

of the manipulations for example, changing the colour of a cue card to removal of the cue card. 

These manipulations induced changes to the firing of place cells and have since been defined as: 

1. Local remapping: Changes in rate coding with no change in the location of place fields, 

preserving the population code for space (Leutgeb et al., 2005). 
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2. Partial remapping: Changes in location of some but not all place fields, typically in fields near 

a specific manipulated cue (Muller & Kubie 1987; Bostock, Muller, & Kubie, 1991).   

3. Global remapping: Re-arrangement of place fields throughout the environment, resulting in 

changes in location of place fields, usually observed when comparing environments that 

differ in several features including shape, colour, texture, and location (Leutgeb et al., 2004; 

Fyhn et al., 2007). 

  

Local or global changes to the environments reflects a dual rate and position coding, such that 

each pyramidal neuron is active when an animal traverses a distinct location in space and its 

mean firing rate when in this location varies with contextual features (Leutgeb et al., 2005).  

 

Global remapping suggests different environments appear to be encoded by separate spatial 

maps (O’Keefe & Nadel, 1978), providing a unique population-wide neural code for context 

specificity (Plitt & Giocomo, 2021). In contrast, changes to contextual features like the colour or 

shape of surrounding walls (Leutgeb et al., 2005), odors (Anderson & Jeffery, 2003), or task (Allen, 

Nick, Rawlins, Bannerman, & Csicsvari, 2012) within the same space can elicit substantial changes 

in firing rates while the location of place fields is unaffected. Such rate remapping can affect 

behavioural decisions (Allen et al., 2012) and appears to reflect the presence of multiple context-

dependent memories stored within a single spatial map. Furthermore, the degree of familiarity 

of the environments to the animal might also account for an unstable cognitive map. While 

O'Keefe and Burgess (1996) found that the place fields stretched or compressed along with the 

aspect ratio of the environment, other findings suggest distortion of hippocampal maps might 

only occur when the manipulated environment is novel, as place maps might be more plastic 

during the initial exposures to an environment (Barry, Hayman, & Burgess, 2007). Collectively, 

results highlight that hippocampal maps are not rigid, and the environmental conditions 

underpinning their different forms of plastic modification are not fully understood.  The majority 

of the research on place coding comes from relatively small samples of CA1 neurons. To better 

understand the seemingly paradoxical nature of dynamic and stable representations we need to 

investigate larger populations in and beyond the CA1 subregion. 
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1.4.4 Orthogonalization of place maps  

The orthogonal nature of place-cell maps is not shared by any of the known spatial cell types 

upstream of the hippocampus, as any overlap between active subsets in two environments is not 

larger than expected by chance (Leutgeb et al., 2004). The apparent independence of the place-

cell maps contrasts with the functional rigidity of the grid-cell population (Hafting et al., 2005). 

For example, changes in the environment which lead to global remapping in CA1, induced 

changes in the firing locations of simultaneously recorded grid cells, except these changes were 

coherent among grid cells (Fyhn et al., 2007). Such that, for grid cells with similar spacing, the 

firing locations shifted in the X Y plane between environments, but the distance and direction of 

grid displacements were similar across the population (Fyhn et al., 2007). Similarly, internal and 

spatial coherence has been observed in head direction and border cells, respectively (Taube et 

al., 1990; Solstad et al., 2008; Taube & Burton, 1995; Yoganarasimha, Yu, & Knierim, 2006). The 

discovery of remapping and the uncorrelated nature of place maps, suggests multiple orthogonal 

representations, and therefore strongly implicates the hippocampus in the accurate storage and 

retrieval of declarative memories (Moser et al., 2015). The capacity of place maps stored in the 

hippocampus is not known, but if place maps are expressions of individual memories, this should 

be high, making remapping a necessity (Rolls, 2013). 

 

Furthermore, these observations suggest that remapping might not be generated in the ERC, but 

in the hippocampus itself. Given this line of thought, upstream hippocampal areas have been 

suggested as likely candidates (Latuske, Kornienko, Kohler, & Allen, 2018). Hippocampal 

subregion CA3 has received relatively little investigation, with the majority of experimental 

studies involving electrode recordings from CA1. Practically, CA1 is the first cell layer encountered 

in the rodent hippocampus during surgery advancing from dorsal surface of the brain. 

Furthermore, a wealth of knowledge exists for spatial memory coding in CA1, but CA3 remains 

relatively unexplored (Delatour & Witter, 2002; Gonzales, Galvan, Rangel, & Claiborne, 2001). 
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Despite this paucity of experimental knowledge, the connectivity in CA3 circuitry has inspired 

much theoretical work on its function. 

 

1.5  Neural network models memory function  
1.5.1 Emergent neural functions 

The notion that neural circuits are built for an emergent function is not novel and originates in 

the ideas put forward by Hebb and Marr (Hebb, 1949; Marr, 1971; Yuste, 2015). We now know 

most neural circuits in the brain have distributed connectivity, whereby each neuron receives 

inputs from many others and outputs to a large population. Therefore, the contribution of an 

individual neuron is overshadowed, as function is an emergent property of collective activity 

(Carrillo-Reid, Yang, Bando, Peterka, & Yuste, 2016a; Marr, 1971). As mentioned, Hebb proposed 

that information propagates by sequentially activating groups of neurons, or ‘Hebbian cell 

assemblies’ (Hebb, 1949). These neuronal ensembles display synaptic plasticity when they fire 

simultaneously (Hebb’s rule), enabling groups of coactive neurons to functionally bind together 

(Hebbian ensemble; Hebb, 1949). Hebbian assemblies (or groups of coactive neurons) have many 

properties considered to be signatures of an attractor network (Knierim & Zhang, 2012; 

McNaughton et al., 1996; Rolls, 2013). 

 

Attractor networks are a popular computational construct used to model different brain systems 

(Knierim & Zhang, 2012; Hopfield, 1984). An attractor is a convenient general concept for 

describing the stability of a dynamical system, whose state evolves in time (Amit, 1989). In an 

intuitive sense, an attractor refers to a collection of states that attract neighbouring states 

toward that collection (Knierim & Zhang, 2012). Conceptually this is illustrated by the point 

attractor, which is a single, stable, equilibrium state of the system (Figure. 1.7 top left). The basin 

of attraction refers this stable state which ‘attracts’ the activity of the circuit as it evolves over 

time (Figure 1.7; Knierim & Zhang, 2012). The simplicity and explanatory power of these models 

have been useful in conceptualising how distributed memory functions might work (Knierim & 
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Zhang, 2012). Moreover, there is similarity between attractor network architectures and 

hippocampal circuitry (McNaughton et al., 1996; Rolls, 2013; 1992; Rolls & Treves, 1990). Given 

the structure of network connectivity underpins processing and consequently shapes the 

functional properties of the network, it follows that these networks might share similar 

computational properties (Amit, 1989; McNaughton & Morris, 1987; Rolls, 2013).  

1.5.2 Auto-associative memory networks 

Auto-associative models allow arbitrary associations between often distributed inputs. They 

employ a recurrent neural architecture that implements a Hebbian learning rule whereby 

synapses are strengthened when there is correlated presynaptic and postsynaptic activity, and 

vice versa (Hopfield, 1982; Marr, 1971; Rolls, 2007). A well-known example is a Hopfield network, 

which allows multiple stable states or ‘attractors’, each corresponding to a stored memory 

pattern (Hopfield, 1982). Hippocampal mnemonic function has been modelled both as a point 

attractor neural network and as a continuous attractor network (Rolls, 2007; Rolls et al., 2013; 

Treves & Rolls, 1992; Tsodyks, 1999). The development of formalisms to describe ‘Hopfield nets’ 

have provided tools for analysing and understanding the properties of hippocampal memory 

networks (De Almeida, Idiart, & Lisman, 2007). The biological correlate of these models is 

generally considered to be the CA3 subregion, with its extensive recurrent connectivity (Amaral 

et al., 1990; Rolls & Kesner, 2006; Rolls, 2007) and Hebbian plasticity at CA3-CA3 synapses (Bains, 

Longacher & Staley, 1999). Hence, this plastic circuitry fits assumptions underlying the Hopfield 

formalism (discussed in detail below), providing reason to speculate that memory functions in 

CA3 might operate according to similar principles (Rolls, 2013; Samsonovich 2007) 

 

Theoretical analysis of Hopfield nets has revealed multiple properties of these memory 

networks. Marr (1971) formulated the idea that such a network is capable of a memory recall 

process known as pattern completion, the notion that a complete memory can be recalled using 

only a part of the memory as a cue. That is, if a memory is stored in a recurrent network as a 

distributed pattern of synaptic weights, the network can reinstate the full activity pattern even if 

the original input pattern is incomplete, degraded, or corrupted (McNaughton et al., 1996; 
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McNaughton & Morris, 1987; Rolls & Treves, 1990; Treves & Rolls, 1992a). Hence a memory cue 

is a subset of the cells that encode a memory. When this cue is presented to the network, it 

excites the corresponding cells, thereby reproducing a part of the memory activity pattern (Rolls, 

2013). Then, through the recurrent excitatory connections, these cells excite all the cells that 

represent the memory, notably including those that did not receive direct input from the cue 

(McNaughton et al., 1996; McNaughton & Morris, 1987; Rolls & Treves, 1990; Treves & Rolls, 

1992a). Such a process seems anecdotally important for human memory; for instance, the sight 

of a backpack (the cue) may evoke the view from the last hike. A second important property of 

Hopfield nets is that a memory, when activated, persists in its activity (Kesner, 2013). This occurs 

simply because the excited cells continue to excite each other (reverberation; Kesner, 2013). 

This persistence might be a mechanism of short-term memory (or working memory). Recordings 

from various brain regions revealed that reactivation of a memory can cause persistent firing 

even after the stimulus is removed (Wang, 2001). A third and critical aspect of Hopfield nets is 

their attractor property (De Almeida, et al., 2007). Once a memory becomes active, it can be 

perturbed by external or internal factors that cause errors in firing (Rolls, 2013). In some 

dynamical systems such a perturbation worsens over time (Deco & Rolls, 2003). However, if this 

were to occur in a memory system, the memory would eventually become unrecognizable and 

lost (De Almeida, et al., 2007; Deco & Rolls, 2003). In the case of attractor networks, however, a 

perturbation does not cause progressive worsening; rather, the firing pattern is restored 

(attracted) to its original state (Deco & Rolls, 2003). This repair process is possible because the 

memory is redundantly encoded, such that the cells that remain active can reactivate the cells 

that stopped firing (Deco & Rolls, 2003; Rolls, 2013; Rolls & Treves, 1990). Conversely, if the 

perturbation is strong enough, the firing pattern could potentially change to another memory 

pattern (Rolls, 2013). This abrupt, nonlinear response is a feature of attractor networks (De 

Almeida, et al., 2007; Deco & Rolls, 2003). Hence, a complementary idea to pattern completion 

is pattern separation, i.e., two similar input patterns are stored as more dissimilar patterns to 

reduce the probability of errors in recall (Rolls & Kesner, 2016). We can use these key functional 

properties of Hopfield networks, to address the potential of CA3 to function as an auto-

associational recurrent network (De Almeida, et al., 2007). 
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1.5.3 Resemblance between CA3 and autoassociative network 

architecture 

If the recurrent CA3-CA3 synaptic connectivity forms the subcellular substrate enabling 

symmetric memory recall; that is, the whole of the memory can be retrieved from any part 

(Guzman et al., 2016; McNaughton & Morris, 1987; Rolls, 2013), then multiple functional 

predictions exist to test this auto-association hypothesis. For example, we can assess the 

response of the CA3 network and animal behavioural in conditions of uncertainty. Training 

animals in different environments along a spectrum e.g. a square and a circular environment, 

tests the prediction that when presented with an environment ambiguous between these end 

points, hippocampal neurons will fall into an attractor state that represents one of the two 

previously learned environments, but not a mixture of these environments. Hence, potential 

attractor dynamics of CA3 will promote a sigmoidal relationship between changes in the inputs 

to CA3 and changes in the CA3 output representation (O'Reilly, & McCelland, 1994). These 

separate attractor states refer to independent spatial maps of the environments (O'Reilly, & 

McCelland, 1994). Such behaviour could reflect the ability of place cells to remap, changing their 

representation to that of a different environment (Foster & Wilson, 2006; Neunuebel & Knierim, 

2014; O'Reilly, & McCelland, 1994). 

 

Remapping has been interpreted as an example of attractor dynamics, supporting the notion that 

the hippocampus functions as an autoassociative memory system (Neunuebel & Knierim, 2014; 

Wills et al., 2005). To experimentally probe this, Wills et al. attempted to assess whether the 

boundaries between attractor states, survive manipulations to the external correlates (Wills et 

al., 2005). Parametric changes made to the geometry of the animals’ environment, as it was 

morphed between two familiar configurations, did not affect CA1 place cell activity until a 

threshold was reached, after which the entire network moved state (remapped), to represent 

the alternative configuration (Figure 1.7 top right; Neunuebel & Knierim, 2014; Wills et al.,2005). 

Similar results were also found in humans, where fMRI was combined with virtual navigation 

(Steemers et al., 2016). Linear morphing between familiar environments resulted in nonlinear 
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On contrast, Leutgeb et al. found that network inputs from environmental changes that varied 

progressively, did not result in sharp and coherent transition between pre-established (learned) 

representations (Leutgeb et al., 2005). Rather, correlations between encoded patterns led to 

linearized responses along the morphing sequence (Figure 1.7 bottom; Leutgeb et al., 2005). 

These linear and non-linear hippocampal responses to graded inputs can be reconciled by crucial 

differences between the two experiments. Namely, the degree of orthogonalization of the spatial 

representations originally established (whether complete remapping took place or not; Leutgeb 

et al., 2005). Leutgeb et al.’s morphing procedure was incremental, whereas Will’s used a semi-

scrambled sequence (Leutgeb et al., 2005; Wills, 2005). Pre-established representations might be 

more prone to plastic modification when the environment is changed gradually (Barry et al., 

2006), such that scrambled rapid discrimination and testing performed by Wills et al. could have 

countered the cumulative effect of gradual synaptic changes (Leutgeb et al., 2005). Similarly, the 

differences in the training procedure likely also resulted in different prior beliefs about the 

frequency of ‘intermediate’ world presentation, and subsequently distinct CA1 remapping 

patterns and is discussed later in Section 4 (Plitt & Giocomo, 2021). 

 

1.6  Recent methodological advances 
1.6.1 Optophysiology in CA1  

Unambiguously identifying the determinants of the different remapping types will provide new 

insights into how the hippocampus generates, stores and recalls multiple internal 

representations. A further restriction of earlier electrophysiological studies is their limited cell 

population size. To better understand emergent dynamics, we need to study the behaviour of 

more neurons (Yuste, 2015). Advances in optophysiology utilises the correlation between neural 

activity and changes in intracellular free calcium (Smetters, Majewska, & Yuste, 1999; Yuste & 

Katz, 1991; Baker, Hodgkin, & Ridgway, 1971). Two photon calcium imaging (2P imaging), 

combined with genetically encoded calcium indicators (GECIs) such as GCaMP, a single 
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fluorophore sensor used as a calcium indicator protein, can track the activity of neuronal 

populations of specific cell types (Chen et al., 2013).  

 

To understand the conditions underlying neural remapping behaviour, we need to carefully 

titrate inputs to the hippocampal subregions though better control of the animal’s external 

environments. Dombeck and colleges developed a virtual reality behavioural paradigm to allow 

head-fixed navigation along a 2D virtual corridor and were the first to optically identify place cells 

(see Chapter 2 for more details; Dombeck et al., 2010; Harvey et al., 2009).  

  

1.6.2 Precise virtual environment manipulation  

Another experimental advantage to navigating in a virtual world, is the ability to precisely control 

the environment of the animal. Consequently, VR opens the possibility to make parametric world 

changes and observe the neural responses. Recently, Plitt & Giocomo (2019) designed virtual 

worlds such that the dominant features of the world were morphed between two end points and 

recorded from thousands of CA1 pyramidal cells. They altered the frequency in which animals 

experienced the intermediate worlds, to assess how prior beliefs about stimulus frequency 

affects remapping of CA1 representations (Plitt & Giocomo, 2021). They found CA1 cells recorded 

in the infrequent condition maintained their representation until a threshold morph value and 

then coherently switched to a different representation, forming two discrete representations 

(Plitt & Giocomo, 2021). Whereas, CA1 cells recorded in the frequent condition formed a 

spectrum of representations for different morph values (Plitt & Giocomo, 2021). These results 

indicate that CA1 remapping represents an optimal estimate of the animal’s location in a 

multidimensional stimulus space, where environment representations are activated proportional 

to their probability (Plitt & Giocomo, 2021). Hence, hippocampal circuits represent location in 

physical space but also in abstract space where remapping might be a generalisation of this 

phenomenon (Behrens et al., 2018; Plitt & Giocomo, 2021). These results also offer a unifying 

explanation for the work mentioned earlier using morphed real environments (Leutgeb et al., 

2005; Wills et al., 2005). Whether dynamics emerge in CA1 or are inherited from an earlier stage 
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of processing remains unknown (Plitt & Giocomo, 2021). To fully understand hippocampal 

processing and where such dynamics originate, we need to access to large populations of 

neurons from other hippocampal regions.  

 

Recently a similar surgical procedure to the one developed in this thesis was published, enabling 

2P optical access for the first time to subregion CA3, along with the DG (Hainmueller & Bartos, 

2018). During virtual navigation of familiar and novel worlds, Hainmueller and Bartos (2018) used 

2P imaging to record from CA1, CA2/3 and DG populations. They found, surprisingly, that CA1-3 

showed context-specific representations and stronger remapping than DG granules cells. While 

this contrasts with the notion discussed earlier, in which DG neurons mediate pattern separation, 

amplifying small context differences (Allera, Posani, & Schmidt-hieber, 2019), there have been 

reports of a dissociation between mature and young DG granule cells, arbitrating pattern 

completion and separation, respectively (Nakashiba et al., 2012). These studies pave the way to 

for investigation of previously understudied hippocampal regions. Hence, combined VR and 2P 

imaging offers the opportunity to precisely assess whether the CA3 network is governed by 

nonlinear dynamic responses to input patterns. Therefore, the one of the aims of this thesis is to 

address this, by imaging genetically defined CA3 neurons during virtual navigation in familiar and 

novel environments, morphed along a 5-environment continuum. We also image adjacent 

processing areas simultaneously to directly compare CA1 and CA3 processing within the same 

animal. 

 

1.6.3 Simultaneous optical recording and manipulation in vivo  

As mentioned, a methodological goal in neuroscience to provide conclusive evidence of a link 

between distributed neuronal ensemble activity and behaviour. The need to selectively 

manipulate specific groups of neurons was noted decades ago (Crick 1979). However, with the 

advent of optogenetic tools, this has become a reality and today light is widely used to perturb 

neuronal activity by targeted expression of opsins in genetically identified neurons (Yizhar et al. 

2011). Microbial opsins confer light sensitivity to some species of bacteria or algae (Boyden et al. 
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2005). By harnessing the tools of molecular biology, we can deliver these genes to specific 

subclasses of cells allowing the experimenter to activate, or silence, populations of excitatory, 

inhibitory, or neuromodulatory neurons in specific layers or regions of the brain, a method now 

known as optogenetics (Boyden et al., 2005; Luo et al. 2018). 

 

While Hebb’s postulate has been difficult to directly test at single cell resolution in awake 

behaving animals, 2P microscopy and 2P optogenetic advancements have begun to open up 

these experiments (Boyden et al., 2005; Packer, Russell, Dalgleish, & Häusser, 2014; Rickgauer, 

Deisseroth, & Tank, 2014, Yuste 2015). The ability to perturb the circuit and record the local 

network response is necessary for causal conclusions (Packer et al., 2015). An ‘all optical’ strategy 

would support such conclusions, by combining simultaneous 2P imaging (readout) and 2P 

optogenetics (manipulation; Carrillo-Reid et al., 2016a; Emiliani, Cohen, Deisseroth, & Hausser, 

2012; Packer et al., 2015; Rickgauer et al., 2014; Zhang, Russell, Packer, Gauld, & Häusser, 2018). 

It requires two laser sources, paired with two probes with minimal cross-talk, to allow targeted 

manipulation of functionally defined cell populations (Emiliani et al., 2012; Packer et al., 2015) 

Combined, these developments facilitate the appropriate level of spatiotemporal control over 

circuit manipulations to provide detailed insights into the precise neural computations that 

support network phenomena such as pattern completion and associated behaviours (Emiliani et 

al., 2012; Packer et al., 2015; Yuste, 2015).  
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A schematic illustrating how targeting optogenetics can be used to probe the neural code in brain circuits. The figure 

highlights the close interplay between behavioural experiments, optical readout of patterns of activity, and replay 

of the same patterns in behaviourally relevant neurons using optogenetics. Hence, targeted optogenetics allows the 

precise membership of the neuronal ensemble, to be tested directly to investigate their importance for the neural 

code driving the behaviour.  

 

An all optical strategy has been used to probe neural circuits in vivo. Rickgauer and colleagues  

simultaneously measured and manipulated local hippocampal CA1 circuits in vivo, during virtual 

spatial behaviour (Rickgauer Diesseroth & Tank, 2014). Spatially defined activity, mirroring 

natural place field activity, was ‘imposed’ by stimulating single place cells or silent cells (cells with 

no spatially tuned firing) when the mouse traversed a virtual location, in the case of place cells, 

a location that preceded the cells natural firing field (Rickgauer et al., 2014). Furthermore, a 

similar all optical approach has also been used in layer 2/3 visual cortex to assess functional 

connectivity. Carilio-Reid et al. demonstrated single-cell photostimulation, after population 

photostimulation training (photostimulating the entire field of view; FOV; ~ 60 neurons), could 

reliably recall a specific group of neurons not coactive previously, and that these ‘imprinted’ 

ensembles reoccurred spontaneously over consecutive days (Carrillo-Reid, Yang, Bando, Peterka, 

& Yuste, 2016b). Therefore, photostimulation can drive neuronal activity to create artificial 

ensembles with similar properties to those occurring naturally (Carrillo-Reid et al., 2016b). While 

remarkable examples of manipulating neural dynamics, these studies are limited by the light 

delivery being restricted to single cells or large populations (Packer at al., 2015). To circumvent 

Figure 1-8 Targeted optogenetics closes the loop between neural activity and behaviour. 
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such limitations, a spatial light modulator (SLM) can be incorporated, to split the 

photostimulation laser into multiple beamlets (Packer et al., 2015). These beamlets can be 

individually directed to target multiple neurons for simultaneous photostimulation (Emiliani et 

al., 2012; Packer et al., 2015; Zhang et al., 2018). 

 

1.6.4 Functional manipulations at single cell resolution in vivo 

Recent investigations have demonstrated a link between neural ensembles and behaviour in 

visual cortex, providing the first causal evidence that ensembles implement internal 

representations of perceptual states (Carrillo-Reid, Han, Yang, Akrouh, & Yuste, 2019; Carrillo-

Reid & Yuste, 2020, Marshel, et al., 2019; Russell et al., 2019). Targeted activation of 

behaviourally relevant ensembles in layer 2/3 of mouse primary visual cortex improved 

performance on a go-nogo task and activating nonselective neurons decreased behavioural 

performance, demonstrating that neuronal ensembles can control a learned behaviour (Carrillo-

Reid et al., 2019). Similar results were found in the hippocampus in our own lab: Robinson et al., 

(2020), used targeted optogenetics and 2P imaging to selectively activate place cells encoding 

behaviourally relevant locations in a VR environment. Robinson et al. found that some place cells 

remap or shift their fields, and this was sufficient to bias licking behaviour during a spatial 

memory task (Robinson et al, 2020). This provides the first evidence of direct influence of place 

cell activity in supporting spatial navigation behaviour (Robinson et al, 2020). 

 

These ‘all optical’ methods have recently been developed further to enable deeper imaging over 

multiple planes, making it possible to perform volume photo-stimulation and volume imaging 

across cortical layers (Marshel, Kim, Machado, Quirin, Benson, et al., 2019; Russell et al., 2019). 

In part these advancements were made possible by new more sensitive, somatically targeted 

opsins, that have reduced concerns over heating/damage and off-target effects when accessing 

deeper areas (Podgorski & Ranganathan 2016, Picot et al. 2018). Russell et al. demonstrated that 

the behavioural effect of targeted activation of cortical ensembles depends on their functional 

identity, such that ensembles that normally represent the stimulus have the most potent effect, 
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either boosting or inhibiting detection behaviour depending on task difficulty (Russell et al., 

2019). Marshall et al. employed a similar method and showed that optogenetic targeting of 

orientation-selective ensembles elicited correct behavioural discrimination (Marshel et al., 

2019). They also found cortical layer–specific population dynamics emerging after optogenetic 

stimulation correctly predicted behaviour (Marshel et al., 2019). Collectively, these studies 

demonstrate that it is now possible map cell numbers, layers, and network dynamics, via the 

precise control of naturally occurring, widely distributed neuronal ensemble elements 

corresponding to neural representations (Marshal et al., 2019; Russell et al., 2019). These recent 

all-optical experiments signal that we are moving closer to the prospect of recording thousands 

of cells with single cell and single spike resolution while being able to stimulate with the same 

spatial and temporal resolution. 

 

Such technological advancements have made dream experiments of ‘playing in’ patterns of 

recorded activity in arbitrary spatiotemporal patterns while observing the behaviour a reality. 

Hence it is logical to consider extending these new methods to investigate deep structures like 

hippocampal subregion CA3. One could imagine an experiment where volume imaging and 

targeted stimulation enables access to neurons in CA3 ensembles, making it possible to directly 

probe the pattern completion properties of CA3 and simultaneously ‘read out’ downstream CA1 

activity. In addition, these methods would enable precise manipulation of spatial representations 

in CA3, such that eliciting an associated learned spatial behaviour could enable circuit dissection 

of conditions required to move from one attractor state to another. Work presented in this thesis 

has taken the first few steps towards this greater goal. 

 

1.7  Aims of this thesis 
This thesis will describe the development of a surgical protocol to optically access hippocampal 

subregion CA3, with CA1 remaining intact (Chapter 2). We then optimise a genetic approach to 

selectively express an activity indicator in a genetically defined population of CA3 pyramidal 

neurons (Chapter 2). Following this, we combine the latest optical manipulation advancements 
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to develop the first all optical strategy to functionally activate neurons in vivo in CA3 (Chapter 

2) and use this method to conduct a proof-of-principle all optical experiment to assess 

functional connectivity in CA1 and CA3 networks in vivo (Chapter 2). We also developed a new 

miniaturized VR hardware and parametrically morphed VR world designs to enable concurrent 

2P imaging and virtual navigation (Chapter 3). We then explore attractor dynamics in 

subregions CA1 and CA3 by performing simultaneous 3D imaging in both areas while 

parametrically manipulating the virtual environments during navigation (Chapter 4). Finally, we 

adapt the VR task to include a behavioural decision conditional upon different worlds to assess 

the extent to which neural activity matches spatial behaviour (Chapter 5).
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2  

 

Materials and Methods 
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2.1  Animals 
All surgical procedures were carried out under license from the UK Home Office in accordance 

with the Animal (Scientific Procedures) Act 1986.  

 

For imaging experiments:  

We used transgenic GCaMP6s mice (Emx1-Cre;CaMKIIa-tTA;Ai94 (Madisen et al. 2015) of both 

sexes aged between P40 and P73. Doxycycline treatment in drinking water from birth to P49 

prevented interictal activity in the Ai94 mouse line (Steinmetz et al. 2017). These mice expressed 

GCaMP6s in all excitatory neurons and therefore we used them as our CA1 and ‘dual area’ mice. 

We also used transgenic GCaMP6s (GRIK4-Cre;CaMKIIa-tTa;Ai94) of both sexes (P48 - P65) to 

selectively express GCaMP6s in CA3 pyramidal neurons (Nakawaza et al., 2002) as our ‘CA3 mice’ 

(see Chapter 2 for more details). 

 

For ‘all-optical iterrogation’ experiments: 

We used transgenic GCaMP6s mice (Emx1-Cre;CaMKIIa-tTA;Ai94 (Madisen et al. 2015) as 

described above and injected them with ChrMine (Table 1; see Section 5.2; Marshel et al., 2019) 

to co express opsin in GCaMP positive neurons. 

 

Mice were housed on a 12-h light–dark cycle in groups of 2–4 mice. No statistical methods were 

used to predetermine sample size. Experiments were not randomized, and investigators were 

not blinded to allocation during experiments and data collection. 
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Table 1 Calcium activity indicators and red shifted opsin dilutions. 

Various calcium activity indicator and opsins used in the current experiments and their dilutions with sterile buffer. 

Precise dilutions are listed. 

 

Activity indicators Dilution Red Shifted Opsins Dilution 

AAV1-Syn-GCaMP6f-WPRE-SV40 1:10 AAVdj-CaMKIIa-C1V1-TS-P2A-

mCherry-WPRE 

1:10 

1:8 

AAV1-CAG.Flex-GCaMP6s WPRE-SV40 1:20 

1:12 

AAV9-CAG-DIO-ChroME-mRuby3-

WPRE-SV40 

1:30 

1:40 

AAV1-Syn-GCaMP6s-WPRE-SV40 1:20 

1:16 

AAV9-CaMKII-ChrimsonR-Kv2.1-

mScarlet 

1:10 

1:20 

pGP-AAV1-Syn-GCaMP7f-WPRE  1:20 AAV2/9-CaMKII-C1V1-Kv2.1-mScarlet 1:10 

1:8 

Tg mouse: Emx1-Cre;CaMKIIa-tTA;Ai94- 

GCaMP 

- AAV8.CAMKIIa.ChRmine.mScarlet.kv

2.1.WPRE 

1:100 

AAV8-CaMKIIa-GCaMP6m-p2a-ChRmine-TS-Kv2.1 1:10 

 

 

2.2  Viral injections and head plate installation  
All surgical procedures were performed in a stereotactic apparatus under anaesthesia with ~2% 

isoflurane and analgesia using 0.1 mg kg−1 buprenorphine. A small (~0.5–1mm diameter) 

craniotomy was made over the hippocampus and 1µl of mixed GCaMP and opsin (see Table 1 for 

dilutions, exact GCaMP/opsin combinations used are listed in figures); were injected into CA1 

(bregma; A/P −2.0mm; M/L 1.4mm; D/V −1.2mm) or CA3 (bregma; A/P −1.8mm; M/L 1.9mm; 

D/V −1.8mm) and a rate of 100nl per minute.  In the same surgery session, the animal’s scalp was 

removed bilaterally from the midline to the temporalis muscles and they were implanted with a 

stainless-steel head plate (with a 5mm circular hole), fixed to the skull with dental cement (Super-

Bond C&B, Sun-Medical) and centered on the injection site. The head plate was oriented 

horizontally for CA1 imaging implantations and with ~5-15° lateral angle for CA3 implantations. 
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Mice recovered from surgery for at least 7 days before the next surgery. Postoperative analgesic 

treatment was continued with administration of 0.7μl ml−1 Rimadyl for 3 days. 

 

2.3  Imaging window implantation 
Cortical excavation and imaging window implantation were performed more than 7 days after 

the initial virus injection, according to published protocols (Dombeck et al., 2010). A craniotomy 

(diameter 3mm) was made cantered on the previous injection site. Parts of the somatosensory 

cortex and posterior parietal association cortex for CA3 access, and parietal cortex and parts of 

visual and hindlimb sensory cortex for CA1 access, were gently aspirated, while being irrigated 

with chilled saline solution. Aspiration continued until the external capsule was exposed. The 

outer part of the external capsule was gently peeled away, leaving the inner capsule and the 

hippocampus undamaged. The imaging window implant consisted of a 3-mm diameter coverslip 

(Coopers Needle Works) glued to the bottom of a stainless-steel cannula (1.2–1.9-mm height). 

The window was lowered into the craniotomy until the glass was in contact with the external 

capsule and then fixed to the skull using dental cement (Super-Bond C&B, Sun-Medical). Mice 

recovered from window implantation for 14 days with post-operative administration of 0.7μl 

ml−1 Rimadyl for 3 days. During imaging, the objective was tilted a similar amount (~0-20°), so the 

long-axis was perpendicular to the imaging window. 

 

2.4  Building VR worlds for use with 2P microscopy  
We used a virtual reality MATLAB engine (ViRMEN; Aronov & Tank, 2014) to design and run virtual 

worlds (Figure 3.1). The VR world was projected onto a mirrored arc which reflects this projection 

into a plastic dome, surrounding the mouse and providing an immersive 270° view of the virtual 

world. The mouse was head-fixed on a cylindrical treadmill (20cm diameter Styrofoam ball) 

floating on a column of air flowing through a custom designed, treadmill base to reduce friction 

during movement (Figure 3.1 A). Mouse movement was tracked using an incremental rotary 

encoder (Kuebler) to read forward ball speed. ViRMEN was used to render a closed loop visual 
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virtual reality environment based on movement input from the mouse running on the ball. 

Rewards were controlled by a TTL output from the virtual reality engine and were given at the 

end of the VR track. Each reward consisted of 1μl of water delivered via a custom made 

lickometer with a piezo-electric sensor. This behavioural set up enables head-fixed navigation on 

a virtual track enabling concurrent 2P microscopy (Figure 3.1; videos).  

 

2.5  Morphed 2D environments 
We designed 5 virtual 2D environments or worlds that included visual stimuli chosen so that the 

extremes of the stimulus distributions could be gradually and convincingly morphed together 

(Figure 4.2). The tracks did not change in length or the presence of salient landmarks. The aspects 

of the stimulus that did change were, i) the frequency and orientation of object textures (i.e., low 

frequency, oriented stripes to high frequency vertical stripes), ii) the non-monochrome colours 

of the objects (RGB values from green to blue), and iii) the colour of the background of the visual 

scene (green to blue), iv) x-y positioning of objects outside the main track corridor (Figure 4.2). 

Reward location was indicated with a grey and white star on Animals received a reward if they 

licked 3 or more times within this 30cm reward zone. However, for discrimination tasks, animals 

must lick 6 or more times in the ‘correct’ reward zone for that trial to initiate a reward (described 

below). 

 

2.6  Behavioural training & non-discrimination task 
Fourteen days post aspiration, we placed mice in the virtual environment for 10–30 minutes 

daily, with gradually increasing timespans. After 7-10 days of habituation, mice were placed on 

water restriction, maintained at 80% initial weight. Animal health and bodyweight was 

continually monitored to check for signs of distress/dehydration. Water rewards not obtained 

during a given testing session were given ad libitum post-session. During water restriction, 

behavioural training continued, and conditional rewards were obtained upon reward-related 

licking at the end of the track within the reward zone (500-520cm) marked by a white star cue. A 
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trial is defined as a single traversal of the virtual track from 0cm to >500cm. Correct trials resulted 

in a water reward conditional upon stopping in the reward zone. After reward collection, mice 

experienced a brief tone, 2s of darkness followed by virtual teleportation back to the beginning 

of the track for the next trial. Incorrect trials occurred when the mouse was stationary for >200 

seconds or failed to reduce running speed <5cm/s in the reward zone. Incorrect trials were 

punished with a 2s ‘whiteout’, followed by virtual teleportation to the beginning of the track for 

a new trial. Mice were imaged whilst navigating once they completed 10 training session and a 

minimum of 20 correct trials in 30 minutes. Most mice trained in the green world (world 1) first 

and a control group (n = 5) trained in the blue world (world 5) first. 

 

The experiment consisted of 6 consecutive days of imaging. Day 1: Imaging whilst navigating in 

world 1 with conditional rewards as described above. Days 2 and 3: included the presence of a 

novel, previously unseen environment (world 5) interleaved randomly for 2-6 trials, after 

approximately 10 ‘warm up’ trials in the original training world. Days 4-6; included the addition 

of 3 unseen intermediate environments. The trial structure was the same as previously stated, 

except the world presented was chosen at random for 2-4 trials. If performance deteriorated, 

defined as 5 or more consecutive incorrect trials then a manual reward was given in the reward 

location, to maintain motivation. Well-trained mice ran until they received around 0.8 - 1 mL of 

liquid (~200 rewards). 

 

Figure 2-1 VR behavioural set up. 

Photograph showing the VR set up including the Styrofoam running linear wheel, 

the 3-screen arrangement, and head mount. See Chapter 3 for further details. 
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2.7  Behavioural training & discrimination task 
For discrimination experiments mice followed the same behavioural training protocol as 

described above, except they also experienced an additional world (world 5) during the training 

phase, such that world 5 and world 1 were randomly interleaved for 2-4 trials. Moreover, for the 

discrimination task, all worlds had 2 reward zones (see Figure 4.12 A & B). During training mice 

in the R1 condition learnt that the reward was present in world 1 in the first reward zone and 

present in reward zone 2 in world 5. For the animals in the R2 condition, they experienced the 

flipped contingency to counterbalance rewarded location across animals, such that, in world 1, 

the reward was in reward zone 2 and in world 5 the reward was in reward zone 1. After 

approximately 10 sessions with at least 3 sessions of consistently achieving ~70% success, mice 

were imaged while completing the discrimination task. The following day they were imaged while 

completing this discrimination task and additionally presented with 3 intermediate world ‘probe’ 

trials interleaved.  

 

Probe trials involved the presentation of world 2, 3, and 4. In order to increase the number of 

trials in a session and avoid confounds, probe trials were unrewarded. Trial decisions were 

initiated by licking 6 or more times in one or the other reward locations. In the end point worlds 

(worlds 1 or 5), licks were either incorrect or correct, depending on the condition the mouse was 

trained in. Correct trials resulted in reward delivery, a blackout and teleportation to the start of 

the track for the next trial. Incorrect trials involved a whiteout (as described above) and 

teleportation for the next trial. For probe trials (worlds 2, 3, 4), there was no incorrect or correct 

responses per se, rather a decision was assumed when 6 or more licks were given in one or the 

other reward zones. This decision was not rewarded but did result in a 0.5s blackout and 

teleportation to the beginning of the track for the next trial. No decision was made if the animals 

ran off the end of the track, this resulted in a whiteout and teleportation to the beginning for the 

next trial. Additionally, if animals stopped in or out of the rewarded zones for more than 5 
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seconds, this too resulted in a whiteout and teleportation to the beginning of the track for the 

next trial. Probe trials comprised 16.5% of the total trial types. We pre-calculated the trial orders 

to ensure this trial frequency was presented.  

 

2.8  Two photon imaging  
Neural activity correlates with changes in intracellular free calcium (Helmchen, Imoto & 

Sakmann, 1996; Smetters, Majewska, & Yuste, 1999; Yuste & Katz, 1991; ,Baker, Hodgkin, & 

Ridgway, 1971). Calcium imaging utilises this property to track the activity of neuronal 

populations, combined with genetically encoded calcium indicators (GECIs). We performed two 

photon imaging of GCaMP6s dynamics with a resonant scanning microscope (Ultima II, Bruker 

Corporation) using a Chameleon Ultra II laser (Coherent) driven by PrairieView. A 16×/0.8-NA 

water-immersion objective (Nikon) was used for all experiments. GCaMP was imaged at an 

excitation wavelength of 930 nm (70-100mW average power at the sample depending on plane 

depth), and mRuby3, or mScarlett (conjugated to the opsin) was imaged at 765nm (~50mW 

average power at the sample). For some experiments, the imaging path was coupled with an 

electrically tunable lens (ETL; Optotune EL-10-30-TC, Gardasoft driver) to allow high speed 

volumetric imaging, spanning a 100μm range with 33.3 μm spacing between planes. Images (512 

× 512 pixels,∼800 × 800 μm FOV) were acquired at 29.9Hz for a single plane, and ~ 7Hz for 4 

planes (∼ 600×600μm FOV). An orbital nose piece was used to maximise imaging quality 

(Aliñanes et al., 2018) by calculating the tilt of the sample, relative to the microscope, and 

rotating the objective to be perpendicular to the implanted imaging window (Figure 6.1 A). 
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beamlet patterns in the sample were calculated via the weighted Gerchberg-Saxton algorithm 

(Zhang, Russell, Packer, Gauld, & Häusser, 2018). The targets were weighted according to their 

location relative to the center of the SLM’s FOV to compensate for the decrease in diffraction 

efficiency when directing beamlets to peripheral positions. We calibrated the targeting of SLM 

spots in imaging space by burning arbitrary patterns using the photostimulation laser in a 

fluorescent plastic slide, before taking a volumetric stack of the sample with the imaging laser. 

We manually located the burnt spots and the corresponding affine transformation from SLM 

space to imaging space was computed. For 3D stimulation patterns, we interpolated the 

transformation required from the nearest calibrated planes. Spiral photostimulation patterns 

(three rotations, 20μm diameter) were generated by moving all beamlets simultaneously with 

a pair of galvanometer mirrors conjugate to the SLM plane, to spiral scan the focus over the 

cell body of each neuron targeted (Carrillo-Reid et al., 2016; Packer et al., 2015; Zhang et al., 

2018). Power on sample for photostimulation was kept at 6mW per cell and evenly distributed 

across beamlets generated by the SLM (Packer et al., 2015). Imaging and photostimulation 

parameters were chosen to give sufficient imaging quality, as imaging at higher power or lower 

scan speeds and/or smaller FOVs could lead to photoactivation (Packer et al., 2015; Zhang et 

al., 2018). 

 

2.10 Subregion boundary mapping  
To image CA1 and CA3 in the same FOV, we manually drew masks around what we judged to be 

subregion CA3 (see Figure 4.1; ROIs coloured according to ROI size) using FIJI and custom scripts. 

Masked ROIs were considered CA3 and we discarded ROIs 100μm from the mask boundary to 

determine the remaining ROIs as CA1  

 

2.11 Photoresponsivity mapping 
To find photostimulation-responsive cells, we semi-automatically detected cell locations from 

expression images and stimulus-triggered average or pixel-correlation images. We then used a 
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novel high throughput photomapping protocol we devised to arranged in a 13x 13 pixel grid of 

target centroids over the image (Figure 4.2). We then grouped target sites into patterns of 10-30 

sites per patterns (depending on the total number of target sites making up the grid). Each 

pattern was numbered 1:max pattern number and randomly targeted with 6mW of spiralled 

photostimulation simultaneously at a stimulation rate of 20Hz, for 500ms for each pattern, and 

performed 8 trials (Russell et al., 2019; Figure 4.2). The phase mask, galvanometer positioning 

and Pockels cell control protocol were generated using custom MATLAB software (NAPARM, 

available: https://github.com/llerussell/Naparm) and performed by the photostimulation 

modules of the microscope software (PrairieView, Bruker Corporation) and SLM control software 

(Blink, Meadowlark). Photostimulation trials for the photoresponsivity mapping were triggered 

at a fixed rate from an output line on a DAQ card (National Instruments). For experiments, 

photostimulation trials were triggered manually through the stimulation software. 

 

2.12 Photoresponse metric  
To increase speed of data analysis immediately prior to the experiment we streamed the raw 

acquisition samples to custom software, that performed online registration and motion 

correction. To measure neuronal responses we extracted the mean fluorescence in a ~500ms 

window (4 frames) starting immediately after the photostimulation ended (due to the associated 

light artefact contaminating activity in those traces) and subtracted the mean fluorescence in the 

~ 1s baseline (7 frames) before photostimulation (Russell et al., 2019). We then divided this 

response by the std in that 1s of baseline to give a signal to noise metric. If on a given trial, for a 

given cell, this value was > 1,  the response was scored as a success (Russell et al., 2019). 

Photostim cells were those that showed successful activation on > 50% trials. 

 

2.13 Photostim ROI exclusion zones 
To reduce off-target photostimulation artefacts we excluded cells within a 30μm diameter 

cylinder (extending through the 4 axial planes) when analysing the network response to 
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photostimulation (Russell et al., 2019). We updated the target stimulation patterns based on the 

ROIs segmented by Suite2P within this 30μm lateral disk around each SLM target locations 

(Russell et al., 2019).  

 

2.14 All optical input-output experiment 
To select cells for photostimulation we first took a volumetric (4 plane) stack of our FOV which 

encompassed CA1 and CA3 and then manually selected all ROIs. We then performed a 

stimulation mapping experiment to filter the list of all ROIs to just the photoresponsive neurons 

(See Section 5.11). We then programmatically designed groups of random 1, 5, 10 and 20 neurons 

spatially clustered within 200um of each other. We selected cells on the bottom 2 planes of our 

volumetric stack to bias towards CA3 only patterns and the top 2 planes to bias towards CA1 only 

patterns. We selected a total of 6 patterns for each number of cells group in each FOV. During 

the experiment we stimulated each of the patterns with 6mW per cell at a rate of 20Hz for 500ms. 

We stimulated the next pattern after 5 seconds. The stimulation patterns were delivered in 

randomised order. In each recording block we repeated each pattern 10 times and repeated the 

recording blocks 3-5 times to collect 30-50 trials per each stimulation pattern. We post hoc 

filtered the stimulation by double-checking that the target cells responded (see Section 5.12) and 

additionally confirmed that the stimulated cells resided in the intended region (either CA1, or 

CA3, but not both) by referring to a post-hoc labelled area boundary image (see Section 5.10). If 

a stimulation pattern was made up of less than 80% of cells in one subregion, it was discarded as 

a contaminated pattern. Pattens were also discarded if the intended targets did not show 

significant responses to photostimulation. 

 

2.15 Pre-processing: Imaging frame registration, 

ROI segmentation and neuropil correction 
Analysis was performed using ImageJ and custom scripts written in MATLAB (2019). Raw imaging 

data was pre-processed using Suite2P (available at https://github.com/cortex-lab/Suite2P). 
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Briefly, Suite2P spatially registers all frames in the movie to each other, registration was sped up 

4-fold using a NVIDIA Quadro M5000 Graphical User Interface. Next, a clustering algorithm 

detects regions of interest (ROI) within the image. ROIs were manually curated through an 

interactive GUI to discard spurious ROIs. Suite2P also provides a neuropil estimation, as the 

fluorescence signals recorded can be contaminated by signals from another cell, or neurites 

(axons and dendrites). Given each pixel’s fluorescence trace is a sum of the ROI fluorescence plus 

the neuropil signal at that location, neuropil was subtracted from the fluorescence trace of each 

ROI. Change in fluorescence over average baseline fluorescence (DF/F) was calculated for each 

ROI. Baseline fluorescence activity was calculated by averaging activity across the trace and 

removing the lowest 20%. These processed calcium traces were used for subsequent analysis.  

 

2.16 Spatial analysis: place field identification 
Place cells were identified according to previously published methods (Plitt & Giocomo et al., 

2021). Briefly, only periods where mouse running speed was >5cm/s were included. Sessions 

during which mice exceeded 20 trials in 30 minutes with 80% correct trials were used for spatial 

analysis. To determine place cell identity for a given cell, we created a null distribution of S.I. 

scores for each cell from their circularly permuted time series (we shifted the position relative to 

the activity trace within each trial). We shuffled 1000 times per ROI and ROIs exceeding 99% of 

permutations were considered to be significant ‘place cells’ (see Giocomo & Plitt, 2021 for 

details). Following the SI shuffle procedure we applied an additional criteria in that place cells 

must have atleast one place field. These fields were identified as follows: for each ROI, we detect 

candidate fields by constructing an average place map, smoothing that map with a gaussian filter 

of width 20cm and identifying regions of the track on which the ROI has activity >20% of its 

maximum response on that track (Dombeck et al., 2010). These initial candidate fields must be 

at least 50 cm wide. Note the criteria of 20% max response and using gaussian smoothed DF/F 

traces (not deconvolved) means this is a lenient criterion. We then refine the definition of the 

fields. We ask if those fields have events on individual trials by applying a threshold of 2 SD 

(computed during baseline periods). If the ROI activity level is above 2 SD in the field on a given 
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trial that trial is considered responsive. Place field reliability is defined as the proportion of trials 

showing significant responses. The magnitude of the field response is defined as the maximum 

response on those significant trials.  We then compute the same reliability score on circularly 

permuted traces to build a null distribution using the activity statistics from the real data. We 

repeat this shuffle procedure 1000 times. We keep the place fields for each ROI that are 

associated with a reliability score greater than the 99th percentile of the individual shuffle 

distributions. 

 

2.17 K-means analysis  
In order to unbiasedly select the optimal population activity maps that represented the two 

familiar endpoint worlds (W1 and W5) we used K-means clustering to cluster all single trial place 

maps, across all worlds, into two clusters (see Low et al., 2020 for details). Briefly, we constructed 

single trial place maps for all cells by averaging DF/F values per each position bin. We then 

selected only those cells that displayed place modulated activity (place cells, in any world of the 

recorded session) and selected the middle portion of the track where the representation was 

most divergent across worlds (see Figure 4.11). This resulted in a 3D array of place maps where 

the dimensions of the array were cells by position by trial. All trials, in all 5 worlds were included. 

We min-max normalised all activity for each cell to range between 0 and 1. We then used the k-

means clustering algorithm to cluster this array of trial maps into 2 clusters, along the ‘trials’ 

dimension. This resulted in two centroids in this 3D space that represented two average place 

maps (two arrays of cells by position) that by definition were maximally different from one 

another. These two cluster centroids allowed us to classify single trials as belonging to one of the 

two clusters, and thus specify which map a given trial was using. We renumbered clusters so that 

the most frequently used cluster map for W1 was map 1, allowing comparison across recordings. 

We then split the trials according to the real word identity (W1 through W5) and averaged the 

number of trials in a given world which were classified as using the optimal most frequent W1 

map. For Figure 4.19, we repeated this same analysis but at the single cell level instead of the 

population, allowing each cell to have different ‘optimal’ W1 and W5 maps. 
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2.18 Spatial information score calculation  
A spatial information (SI) score was calculated by adapting this measure from a traditional 

method of SI assessment typically used in electrophysiology work (Skaggs, McNaughton & 

Markus, 1993) and imaging (Hainmueller  & Bartos, 2018). Here the mean DF/F for each bin was 

calculated and used to approximate spikes in that position. SI was then calculated using: 

∑ λ!𝑙𝑛
"!
"
𝑝!#

!$%  where λ!  and 𝑝!  are the average DF/F and fraction of time spent in the ith bin 

respectively. λ is defined the overall DF/F and N is the number of bins on the track. Hence, the 

amount of SI is inferred from differences between the calcium activity (reported as bits per 

event).  

 

2.19 Data presentation & statistical analysis 
No statistical methods were used to predetermine sample size. The experiments were not 

randomised and investigators were not blinded to allocation during experiments and outcome 

assessment. Data are presented as mean ± SD or S.E.M (see Figure legend) unless otherwise 

indicated. Statistical analyses were performed using independent two-sample t-tests or two-

way ANOVAs (stated in text). 

 

2.20 Histology and confocal microscopy  
During the characterization of our transgenic mouse models and following the end of 

experiments, mice were deeply anaesthetized with ketamine and perfused transcardially with 

4% paraformaldehyde (PFA) in phosphate-buffered saline (PBS). Collected brains were fixed by 

4% PFA in 0.1M PBS and 24 hours later, processed using a vibratome in 100µm sections, 

mounted on slides, and coverslipped with Vectorshield mounting medium with DAPI 

(Vectorlabs). Sections were imaged using a Zeiss LSM 700 confocal microscope with a 20x 
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objective, using Zeiss Zen Black software. Processing of confocal images was performed with 

ImageJ (https://imagej.net/Fiji/) 
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3  

 

CA3 ‘all optical’ approach  
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3.1  Introduction 
 

Memory encoding results from durable changes in the activity of synaptic circuits that lead to the 

storage of neural activity patterns in sparsely distributed neural ensembles (Hebb, 1949; Rebola 

et al., 2017). Early hippocampal anatomical studies and connectivity mapping revealed the 

unique rich internal architecture of the CA3 subfield (Amaral & Witter, 1989, 1995; Amaral et al., 

1990; Ishizuka, Cowan, & Amaral, 1995; Amaral, 1993; Ishizuka et al., 1990; Witter, 2007). This 

subsequently motivated theorists to draw parallels between the artificial network architecture 

of recurrent memory models and connectivity in the CA3 circuit, resulting in the proposition that 

the hippocampal CA3 circuit architecture might function similarly (Knierim & Zhang, 2012; Treves 

& Rolls, 1992, 1994; Rolls, 2007, 2013; Rolls & Kesner, 2006 Samsonovich 2007). 

 

3.1.1 Methodological limitations and limited exploration of CA3 

Despite heavy theoretical interest in CA3, most experimental work has focused on hippocampal 

subregion CA1 (Rolls, 2007, 2013; Rolls & Kesner, 2006). Consequently, the functional properties 

of CA3 remain enigmatic (Delatour & Witter, 2002; Guzman et al., 2016). Much of the neural 

behaviour observed in CA1 is assumed to be inherited from earlier stages in the hippocampal 

processing loop, in particular CA3 inputs via the Schaffer collaterals (For more details see Chapter 

1; Plitt & Giocomo, 2018; Leutgeb et al., 2004). If we are to make progress in understanding 

hippocampal function at a systems level, it is imperative that we are able to record from and 

ideally manipulate ensembles in other hippocampal areas beyond CA1 (Hainmueller & Bartos, 

2020).  

 

The sparsity in experimental investigations of CA3 is due to the relative difficulty in accessing this 

subregion and dissociating the subregion neuronal identity (Leutgeb et al., 2004; Leutgeb et al., 

2005; O’Keefe & Dostrovsky, 1971). Electrophysiological studies recording from CA3 do exist, but 

are limited and involve significant intra hippocampal damage due to the insertion of a recording 
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electrode(s) from the dorsal surface of the brain, accessing a relatively small number of CA3 

neurons, typically <40 (Gold & Kesner, 2005; Lee & Kesner, 2003; Leutgeb et al., 2004; Leutgeb 

et al., 2005; Leutgeb et al., 2007). Moreover, electrophysically recorded CA3 neurons are mostly 

from CA3c, given the curved hippocampal structure and difficulty separating neurons from 

neighbouring CA2. While genetic selection of CA3 cells exists, it has typically been used in 

selective loss of function studies (Nakazawa et al., 2002, Nakazawa et al., 2003). To capture 

dynamics in sparsely distributed ensembles, we need access to larger populations of genetically 

identified CA3 neurons.  

 

3.1.2 Advancements in optics and genetics to target CA3 

In addition to observing the CA3 neural population, it is favourable to manipulate defined 

neurons in CA3 and observe the response of the local network. Such ‘reading and writing’ of 

neural activity would permit causal conclusions and conclusive statements on CA3 function in 

vivo (Carrillo-Reid et al., 2019; Marshal et al., 2019; Packer et al., 2015; Russell et al., 2019; Zhang 

et al., 2018). Advancements in all-optical technology, particularly the advent of new red-shifted, 

soma-targeted opsins (Marshal et al., 2019), multiplane simultaneous photostimulation and 

recording enabling deep imaging (Marshal et al., 2019; Russell et al., 2019), suggest that all-

optical control of CA3 neural populations is within reach (see Section 1.6.3). 

 

At the time of our methodological developments, to the best of knowledge, there were no 

published 2P in vivo CA3 imaging studies investigating CA3 function. Therefore, we aimed to: 

develop a transgenic CA3 mouse model, similar to the mouse models used in Nakazawa and 

colleagues (2002, 2003) and combine this with the surgical “excavation” techniques developed 

initially for CA1 optophysiology (Dombeck et al., 2010; Harvey et al., 2009). This combination 

enables 2P optical access to genetically defined CA3 pyramidal neuron populations in vivo.  

We also aimed to characterise our 2P CA3 FOVs, by identifying consistent morphological and 

anatomical markers of CA3 to allow dual hippocampal area recordings, from subregion CA1 and 

CA3 within the same animal. Finally, we aimed to extend the recent optical manipulation 
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developments to CA3 and create the first ‘all optical’ CA3 mouse, enabling simultaneous ‘reading 

and writing’ of neural activity in CA3, opening the possibility to directly probe CA3 dynamics 

during behaviour. 
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3.2  Results 
 

3.2.1 Developing a CA3 mouse model 

To target expression of calcium indicator and opsin in CA3, we developed a mouse line based on 

the GRIK4 gene. GRIK4 is a gene coding for a glutamate receptor subunit of the kainate type. 

GRIK4 is expressed in specific populations of neuronal cells in the cerebellum and all layers of the 

frontal and parahippocampal cortices (Knight et al., 2012). In the hippocampus, strong GRIK4 

expression is found in the stratum pyramidale and stratum lucidum of CA3, in cell processes in 

CA1 in polymorphic cells including mossy fiber neurons in the hilus, and DG granule cells (Knight 

et al., 2012; and demonstrated in our axial section in Figure 1.2). While high levels GRIK4 may 

play a role in behavioural phenotypes such as autism, it has been used to specifically identify 

subregion CA3 (Azahara et al., 2020; Knight et al., 2012; Nakazawa et al., 2002, Nakazawa et al., 

2003). 

 

To develop a CA3 mouse model in our laboratory, we restricted expression of GCaMP6s to CA3 

pyramidal neurons by crossing a GRIK4-Cre driver line expressing cre-recombinase to CA3 under 

the GRIK4 promoter, with a cre- dependent GCaMP6s reporter line (Nakazawa et al., 2002). We 

characterised our mouse model and found GCaMP6s to be selectively expressed in CA3 (Figure 

2.1, A) and sometimes CA3 and DG (Figure 2.1 B). Interestingly, we found expressing GCaMP6s 

under a CAMKII protomer yielded dense expression in CA3 pyramidal neurons, whereas our initial 

attempts expressing GCaMP6s under a Rose26 promoter yielded sparse CA3 expression. Given 

our experimental questions rely on recording from a large population of confirmed CA3 neurons, 

we sought it necessary to have our CA3 population densely labelled.  

  



 

79 
 

3.2.2 Optically accessing CA3 

Next, we developed a novel surgical procedure to optically access CA3. We took inspiration from 

CA1 excavation surgeries and removed the cortex overlaying the hippocampus (Dombeck et al., 

2010; Harvey et al., 2009). We chose a rostral cannula placement in dorsal hippocampus where 

CA3 cell population are closer to the dorsal surface of the brain (Figure 2.1 A).  Our cortical 

excavation and cannula positioning enabled optical access to CA3 in 84% of animals (n = 270 

attempted experimental CA3 mice). Our procedure leaves CA1 intact and also optically accessible 

(Figure 2.1 C). No intra-CA3 subregion specific genetic labelling was attempted, but given 

microscopy limitations (focal length), imaging was likely restricted to CA3a/b (Figure 2.1). We 

characterised our CA3 pyramidal neurons in vivo by two-photon volumetric imaging. The 

principal constituents of the CA3 recurrent network are typically defined by their anatomical 

signature, the presence of thorny excrescences (mossy fiber synapses; Sun et al., 2017; Gonzales, 

Galvan, Rangel, & Claiborne, 2001; Lauer & Senitz, 2006;  Lorente De Nó, 1934), although not all 

CA3 pyramidal neurons share this morphology (Hunt et al., 2018). Closer inspection of our CA3 

pyramidal neurons revealed these classic subcellular components (Figure 2.1 D, inset, white 

arrows), providing clear landmark features of CA3 (video 5). To increase the size of the population 

we had optical access to, we used an electronically tuneable lens (ETL) to change the axial focus 

of the imaging laser, allowing 3D volumes of tissue to be imaged (Russell et al., 2019). This 

microscopy modification enabled an additional 3 axial planes though CA3, extending the FOV up 

to 400μm deeper without needing to lower the objective (Figure 2.1 E). Using the ETL, we were 

able to observe the unique CA3 anatomical feature- stratum lucidum (shown in Figure 2.1 E, Plane 

4, by the absence of cells).  
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Figure 3-1 Accessing and visualising genetically identified pyramidal neurons in CA3. 

A) Coronal histological sections of dorsal hippocampal proceeding rostrally (lower image). GCaMP (green) 

expression is restricted to CA3, with some low levels of expression in DG and processes projecting to CA1. White 

track line inset, zoom in of CA3 neurons in the transgenic (GRIK4-Cre;CaMKIIa-tTa;Ai94) mouse. DAPI (blue) 

labels cell bodies.  

B) Axial confocal section of dorsal hippocampus from a GRIK4-Cre mouse expressing Cre-dependent GCaMP6s. 

GCaMP expression is restricted to CA3 resulting in a ‘band’ of neurons visualised axially. DAPI (blue) labels cell 

bodies. The trilaminar hippocampal structure is labelled, indicating stratum oriens (ori.), stratum pyramidale 

(pyr.), stratum radiatum (rad.), stratum lucidum (in CA3 only), and in the DG, the hilus (hil.), granule cell layer 

(g.c.l.) and molecular layer (m.l.) are labelled.  

C) Coronal histological hippocampal section with CA1, CA3, and DG labelled, white track lines outline cortex 

excavated for canula implantation, GCaMP6s (green) and DAPI (blue).  

D) Representative  in vivo FOV in a GRIK4-Cre mouse expressing cre dependent GCaMP6s and showing angled 

pyramidal neurons. White inset, subcellular resolution visualising, apical and basal dendrites, with large 

boutons, a CA3 marker (scale bars 50μm & 25μm, respectively). 

E) Representative 2P in vivo 800μm x 800μm FOV of 4 planes spaced 33μm apart axially, track line border outlines 

striatum lucidum on plane 4, a unique feature of CA3 (Witter, 2007). 

 

3.2.3 Co-expression of GCaMP and opsin in CA3 

Next, we tried to express optogenetic actuators (opsins) with GCaMP in the same CA3 neurons. 

Co-expression of opsin and GCaMP has never been attempted in CA3 to our knowledge. We 

therefore tested various combinations of red-shifted opsins and GCaMPs to optimise the 

expression level (Table 1). We used red-shifted opsins to minimise optical cross talk by minimising 

overlap in absorption spectra (Zhang et al., 2011). All opsins employed the Kv2.1 sequence tag to 

ensure soma-targeting, and reduce off target opsin expression in cellular processes, enhancing 

the ability to map connectivity with single-cell resolution (Russell et al., 2019). We tried multiple 

dilution combinations of different animal genotypes (Table 1). 
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bolus injection directly into CA3. Among the co-expression strategies we tested, we found co- 

expression of ChrMine and ChroMe with GCaMP in 28.14% of animals in which CA3 was 

successfully surgically accessed (n = 76/270 animals), whereas we failed to co-express the 

Chrimson and C1V1 with GCaMP in all of our attempts. We experienced two main issues affecting 

the reliability of opsin/GCaMP co expression, namely, expression of one probe or the other probe 

(Figure 2.3 bottom two rows) or expression of both probes but not co expressed in the same cells 

(Appendix Figure 7.2). To circumvent these co-expression reliability issues, we tried a bicistronic 

construct, providing a single integrated ST-ChRmine/GCaMP6m virus (Table 2 in Methods & 

Materials). While this dual opsin/GECI construct solved our issue, GCaMP6m was difficult to 

visualise in most of our animals (Figure 2.4). This construct was only tagged with GFP, and the 

low fluorescence rendered dynamics in our FOVs difficult to detect, consequently making motion 

correction during behavioural experiments error prone. We subsequently tried multiple dilution 

combinations of the bicistronic construct (Table 1) and injecting ST-ChrMine with trangenically 

expressed GCaMP6s (Table 1). Independently injecting ST-ChrMine and GCaMP6s improved 

GCaMP visibility issues, but to fully assess the success of our co-expression strategy, we tested 

opsin functionality. 

 

 
Figure 3-2 Surgically targeting hippocampal subregion CA3. 

Top left) Computer generated surgery targettting in sagittal, coronal and axial hippocampal sections, doral (d)- 

ventral (v), medial (M)-lateral (L) and left (Le)- right (Ri) oreintations labelled (generated using 

www.connectivity.brain-map.org. Top right) Coronal histological section showing injection target in pink (DiI) in a 

wild-type (WT) mouse. DAPI labels cell bodies. Scale bar 500μm. 
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Figure 3-3 Co-expression of activity indicators and optogenetic actuators in CA3 in vivo. 

Two photon FOVs showing expression of opsin (red), GCaMP6s (green) and co-expression (yellow; merge) in CA3 of 

multiple mice (genotype listed in top left corner, first panel). Top left inset) ST-ChroME is a nuclear localised opsin 

and therefore not expressed in cellular processes and the fluorophore is not expressed in the somatic membrane. 

Upper two rows, opsins we successfully co expressed (ChroMe & ChrMine) and bottom two rows opsins we failed 

to co express with GCaMP (C1V1) and opsin (Chrimson). All scale bars 200μm. 

 

3.2.4 All-optical evaluation of co-expression strategies 

Next, we assesed co-expression strategies functionality by photoactivating groups of CA3 

neurons with two-photon holographic stimulation while recoding their response with two-

photon calcium imaging in awake mice. (Packer et al., 2015). To do this we photoactivated our 

FOV using a novel NAPARM protocol descibed in Methods & Materials (Figure 2.4 top). Briefly, 

this high throughput photomapping protocol involved sequentially simultating groups of target 

sites arranged in a 13x13 pixel grid (Figure 2.4). We quantified the responsivity of target sites to 

our NAPARM photostimulation protocol using our response metric (Russell et al., 20019; in 

Materials & Methods), We found 28.36 % (n = 19/67 animals) of co-expressing animals that were 

photostimulated showed neural responses that met our criteria (neural response metric in 2.21). 

We found ST-ChrMine and ST-ChroME responded to the NAPARM protocols, activating targeted 

cells above our threshold for responsivity. We also found these opsin/GCaMP combinations to 

be unreliable, in that co-expression often failed (Figure 2.3) and in the case of successful co 

expression, photoresponsivity often failed (27% success n = 19/70; see Appendix). Taken 

together, most strategies yield a small number of all-optically addressable neurons, but we had 

the most functional success activating neurons infected with the bicistronic ChrMine construct. 

However, dim GCaMP dynamics during endogenous activity meant we preferred our second most 

functionally successful strategy of independently injecting AAV’s GCaMP and ChrMine.  
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B) Activity throughout the mapping protocol showing 8 trials for each stimulation pattern for all target sites.  

C) Photo stimulation triggered average trace for target sites. Blue line outlines the 50ms response window used 

for subsequent analysis. Stimulation laser light artefact shown.  

D) Target sites are coloured by average response to photo stimulation and sorted by the pattern number and 

response size.  

E) Histogram of the average response sizes of all sites photoactivated. Unfilled bars = all sites, filled bars = 

photoresponsive sites.  

F) Summary plot of the proportion of responsive sites as a function of expression strategy. Mean Std (black) 

individual experiments (grey rings). Mean ± Std responsive sites: bic-ChrMine + GRIK 0.098 ± 0.26, bic-ChrMine 

+ WT 0.38 ± 0.32, ChrMine + EMX 0.20 ± 0.30, ChrMine + GRIK 0.002 ± -0.003, ChroME + GRIK 0.12 ± 0.29, 

ChroME + tg-GRIK 0.11 ± 0.13,. ChroMe+ WT 0.19 ± 0.219 (total n = 70).  

G) Summary plot of the expression strategies where co-expression of an opsin/GECI combination was achieved. 

Proportion of animals defined as having responsive ROIs in CA3 (i.e. > 20% target sites respond and meet our 

neural response metric) as a function of expression strategy. Mean: bic-ChrMine + GRIK 0.15, bic-ChrMine + WT 

0.63, ChrMine + EMX 0.38, ChrMine + GRIK 0, ChroME + GRIK 0.15, ChroME + tg-GRIK 0.28. ChroMe+ WT 0.29 

(total n = 70).  

H) Summery plot showing the total number of CA3 animals attempted (n = 321) and the number of animals with 

(n = 70) and the number with photoresponsive neurons in CA3 (n = 19). 

 

3.2.5 All-optical experiment 

Finally, we conducted a proof of principle experiment, probing the network input-output function 

in hippocampal subregion CA1 and CA3 within the same animals (n = 6; see Material & Methods 

for details on subregion segmentation within animal, Figure 2.6 C). Briefly, for this experiment 

we selectively photoactivated groups of 1, 2, 5, 10 or 20 cells in one subregion and simultaneously 

recorded activity in that that region as well as in the other subregion (see Figure 2.6 A & B). We 

quantified the response in all neurons in a 500ms window after the photostimulation offset and 

sorted cells by subregion and into directly photostimulated target (Figure 2.6 D targets) and the 

non stimulated background (bg; Figure 2.6 C & D). We defined the network response as the 

average response across all non stimulated neurons either within or across the stimulated 

subregion (274 ± 133 nonstimulated CA1 neurons, 197 ± 50 non stimulated CA3 neurons, n = 6 

animals). 
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Following CA1 photostimulation, we found no response on average in the local CA1 network (-

0.005 ± 0.050 ∆F/F, P = 0.349, Wilcoxon signed rank test; Figure 2.6 G). However, surprisingly 

activity in CA3 networks were suppressed by CA1 stimulation (-0.018 ± 0.042 ∆F/F, P = 0.002. CA1 

vs. CA3, P = 0.0001, Wilcoxon signed rank test, Figure 2.6 G). As we increased the number of 

stimulated cells in CA1, we saw a trend whereby the CA1 network became less suppressed while 

the CA3 network became more suppressed (Figure 2.6 G). Conversely, as a result of stimulation 

delivered to CA3, we found that the CA1 network responses were suppressed across all numbers 

of stimulated cells (CA1 network response: -0.017 ± 0.033 (∆F/F), P = 0.012. CA3 network 

response: 0.004 ± 0.058 (∆F/F), P=0.439. CA1 vs CA3 P = 0.006, Wilcoxon signed rank test; Figure 

2.6 H). As we stimulated more CA3 cells, the local CA3 network response switched from 

suppressed to facilitated with the response increasing with increasing number of 

photostimulated CA3 cells (Figure 2.6 H). This increasing excitatory recruitment was seen only in 

CA3 cells when stimulating other CA3 cells, and not in CA1, perhaps reflecting differences in 

network connectivity, particularly the greater number of recurrent connections in CA3 serving to 

amplify excitation.  
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B) Example FOV showing 1 planes from a 4 -plane volume stack of CA1 and CA3 neurons expressing GCaMP6s 

(white). Photostim targets are ringed (pink) and brighter rings indicate targets on that particular imaging plane. 

C) Photostim heatmaps showing neural activity (∆F/F) across ROIs in CA1 (above the black line) and CA3 (below 

the black line), before, during and after photostimulation (pink lines) of 5 ROIs. Warmer colours = higher 

responses). 

D) Same as in C) but for 5 CA3 ROI photostim targets within that example animal in C). 

E) Photostimulus triggered average traces during stimulation of 10 CA1 cells, averaged across all experiments. Top 

row: target cells. Bottom row: non stimulated background cells. Right: average responses (∆F/F) across all cells 

in that population. 

F) Same as in E) but for CA3 stimulation. 

G) Input output function for CA1 stimulation. Average response (∆F/F) in the non stimulated network (purple = 

CA1, pink = CA3) following increasing number of cells stimulated in CA1. 

H) Same as in G) but for CA3 photostim. 

Grey shaded areas and error bars = S.E.M. Coloured shaded areas = confidence interval of linear fit. Red-pink lines 

indicate the photostim window. Thicker solid lines = means. All *s indicate Wilcoxon rank sum tests (n.s. non 

significant, *P < 0.05 **, P < 0.01, ***,  P < 0.001). 
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3.3  Discussion 
 

Understanding the functional connectivity between neural circuits in the hippocampus has been 

well studied, but not in vivo at the systems level, given limited experimental tools. With the 

advent of hippocampal imaging and advances in optical manipulation techniques, we were able 

to develop and combine our CA3 transgenic mouse model, new surgical methods and optimised 

optics to optically access CA3 while leaving CA1 intact. We achieved 3D 2P imaging of genetically 

and anatomically defined CA3 populations in vivo. Moreover, our 2P characterisation defined 

clear subregion unique features for identifying CA3 neurons in non transgenic animals and 

opened up the possibility for us to simultaneously image both CA1 and CA3 subregions. Our proof 

of principle all optical, dual subregion experiment demonstrates the potential of the all optical 

approach beyond CA1 and outlines the feasibility of probing the input-output function of multiple 

hippocampal subregions at single neuron resolution. 

 

3.3.1 Optical access to defined CA3 neural populations  

We were able to develop a novel surgical approach to optically access CA3 with CA1 intact. 

However, recently two other groups have published similar surgical methods after the 

development of our protocol (Hainmueller & Bartos, 2018; Rashid et al., 2020; Schoenfeld et al., 

2021). However, Hainmueller and Bartos, did not target genetically defined CA3 neurons, instead 

defining their FOV based on the angle of the neurons and hence inclusion of CA2 neurons is likely. 

Rashid and colleagues used a similar GRIK-4 mouse model to ours but with sparse GCaMP 

expression in CA3 pyramidal neurons (Hainmueller & Bartos, 2018; Rashid et al., 2020). These 

studies provide support for our surgical method, confidence in our 2P CA3 FOV and also 

addressed procedural concerns regarding disrupted neurophysiology and behaviours. For 

example, Bartos and Hainmueller assessed the impact of their similar CA3 surgical procedure and 

found no difference in the physiology of CA3 neurons in vitro, and in vivo, and behavioural 

measurements before and after cannula placement (Extended Data Figure. 3 in Hainmueller & 
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Bartos, 2018). Moreover, we were able to define our CA3 neurons morphologically, providing 

confidence in non-genetic identification of CA3 using visible mossy fiber boutons and large 

pyramidal neurons soma diameters. This enabled us to identify CA3 ‘online’ and subsequently 

imaging multiple subregions in the same animals for the first time. 

 

3.3.2 All optical access to defined CA3 neural populations  

We successfully co-expressed 2 opsins (ChrMine and ChroMe) with GCaMP combinations and 

activated targeted neurons in CA3. However, much work is required to optimize expression 

strategies in terms of co expression reliability and functional activation in deep brain structures. 

Our preparation had a number of uncontrolled variables that might have affected the success of 

the all optical strategy. Cre expression in CA3 is variable in transgenic animals, and low copies of 

the gene could have resulted in dim GCaMP expression. CA3 is a small deep substructure, difficult 

to target and therefore our targeting success could have been improved with an electronic 

stereotaxic frame. Moreover, we relied on viral spread to of our opsin/GCaMP combinations to 

infect the target area, however, it is possible the range of spread is affected by the titres of opsins, 

which are batch dependent and changed regularly given these molecular biology tools were also 

under development. Furthermore, the proportion of successful targets reported in this chapter 

may be a conservative quantification of the photoresponsive network in each mouse. Our high 

throughput pixel grid was wider than expression in our FOV (even with the exclusion criteria) and 

therefore a large number of photstim targets were included in the photoresponsivity analysis but 

did not target cells. 

 

Other groups within our lab and outside our lab have had similar issues with opsin/GECI co 

expression to those discussed here. There are a number of future steps to take to begin to control 

some of these variables. The most optimal long-term solution would be to create an ‘all optical 

mouse’ where the opsin and GCaMP are transgenically expressed. While this would require 

significant investment in molecular techniques and mouse breeding, an alternative long-term 

strategy would be to design a new bicsistronic virial construct in which the GCaMP is brighter, 
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this would reduce the main problems with co expression and GCaMP visualisation. Despite these 

drawbacks, we provided proof of principle evidence extending the all-optical tool kit into 

hippocampal subregion CA3.  

 

3.3.3  All optical exploration of CA1 and CA3 network function  

To demonstrate the utility of our CA3 all-optical approach, we probed the local and long-range 

functional connectivity of two hippocampal subregions in vivo. Our results suggest CA3 recurrent 

collaterals can be activated to increase excitation in the network, but also pose a challenge to 

the long-standing view of information flow through the trisynaptic pathway. This notion assumes 

a unidirectionally excited chain (see Chapter 1.2.3), regulated by local inhibitory circuits and 

overlooks the complexities of intrahippocampal circuitry.  

 

It is possible that reduced CA1 suppression and increased CA3 inhibition in response to CA1 

photostimulation, could result from increasing activation of long-range, cross-regional 

interneurons. Studies have shown that the spread of excitation is not only controlled by local 

circuit inhibitory interneurons, but CA1 inhibitory neurons exist and project back to CA3 and hilar 

regions (described in Sik, Ylinen, Penttonen, Buzsáki, 1994; Harris et al., 2018). These inhibitory 

neurons with widespread longitudinal and inter-regional projection fields might play a role in 

precise population activity synchronization by timing the occurrence of action potentials in the 

principal cells and hence contribute to the coordinated induction of synaptic plasticity in 

distributed networks (Sik et al., 1994). 

 

Moreover, our all-optical results also suggested that photostim in CA3 increased the CA3 network 

response, which as mentioned is likely a function of the known recurrent CA3- CA3 network 

connectivity amplifying excitation. Interestingly, CA3b, which we assume our 2P FOV includes, is 

known to receive the strongest net excitation from recurrent collaterals (Sun et al., 2017). It is 

less clear why the CA1 network response was suppressed during CA3 photoactivation, given the 

traditional view that excitatory CA3 Schaffer collaterals innervate CA1 targets and propagate 
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excitation into CA1 circuits (Ishizuka et al., 1990). Recent evidence suggests excitatory (CA1 

pyramidal) and inhibitory (CA1 parvalbumin-positive) neurons are innervated by the same 

presynaptic inputs (CA3 Schaffer collaterals; Kwon, et al., 2018). It is likely the particular 

connection motifs and connection strength differs, possibly resulting in a net inhibitory response. 

Although quantitative descriptions of connectivity motifs and network architectures, especially 

of excitatory and inhibitory neurons innervated by the same type of cell remain elusive and much 

work is needed to clarify our understanding of the precise excitatory- inhibitory balance within 

and between hippocampal subregions (Kwon, et al., 2018). 

 

However, it is known that electrical or optogenetic stimulation of the Schaffer collaterals in vitro 

causes rapid monosynaptic excitation of CA1 pyramidal cells followed by delayed, disynaptic 

inhibition. This ‘canonical EPSP-IPSP sequence’ is emblematic of feedforward inhibition (Alger & 

Nicoll, 1982; Lovett-Barron et al., 2012; Miles, 1990; Pouille & Scanziani, 2001; Schwartzkroin, 

1975) and it is possible that the relatively slow GCaMP kinetics and imaging speed miss this initial 

excitation, resulting in our recording CA1 network inhibition. Collectively, our efforts represent 

the first steps towards all optical investigation into hippocampal subregion CA3 and the first 

evidence of in vivo inter hippocampal subregion functional manipulation in an attempt to probe 

functional connectivity.  
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4.1  Introduction 
 
The location-specific firing of hippocampal place cells during navigation represents a salient 

neural correlate of spatial information in the mammalian brain (O’Keefe & Dostrovsky, 1971). A 

wealth of subsequent work has defined and refined our understanding of place cell properties 

(see Chapter 1). To better understand this neural code, we need access to large numbers of cells 

to observe their emergent dynamics and collective neural behaviour. Two-photon microscopy 

enables us to achieve this goal by using calcium indicators as a proxy for neural activity in 

populations of defined cell types (Dombeck et al., 2010; Yuste 2015).  

 

4.1.1 2P Imaging in the hippocampus  

Initially, optically accessing the hippocampus for 2P microscopy was challenging given the limited 

working distance of the objective and subcortical position of the hippocampus (Dombeck et al., 

2010). To solve this problem Dombeck and colleagues developed a novel surgical approach to 

unilaterally removing part of the cortex (including parietal cortex and parts of visual and hindlimb 

sensory cortex) overlying the hippocampal external capsule (Dombeck et al., 2010). By implanting 

a ‘sunken’ imaging window they were able to optically access subregion CA1. This cortical lesion 

initially raised concerns that cellular and network properties within the hippocampus may be 

altered. However, spatial properties of CA1 place cells measured electrophysiologically in 

lesioned and un-lesioned mice were similar, possibly because the excavated cortical regions do 

not provide strong direct projections to the hippocampus (Dombeck et al., 2010).  

 

There have also been concerns regarding differences between optophysiologically and 

electrophysiologically recorded place cells. While similar to classically identified place cells, 

optically identified place cells do show some differences. Notably they have larger mean place 

field widths, lower spatial information scores and represent a smaller proportion of the overall 

population of cells when compared to electrophysiologically identified place cells (Dombeck et 
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al., 2010). These properties are perhaps not surprising given the reduced vestibular input 

received by a head-fixed mouse and given the non-linearity of calcium indicators thresholds 

activity signals. When the vestibular input of rats was temporally knocked out through injection 

of tetrodotoxin, tetrode recordings showed a temporary decrease disruption in location-specific 

firing of CA1 place cells (Stackman, Clark, & Taube, 2002), hence, reducing the ability of the 

hippocampus to function as a spatial map. Overall, these drawbacks are outweighed by the ability 

to study larger subsamples of genetically defined hippocampal populations during navigation 

with 2P imaging (Chen et al., 2013; Dombeck et al., 2010). 

 

4.1.2 Imaging during behaviour in VR 

The use of 2P microscopy to assess spatially tuned cells presents a paradox because high 

resolution 2P microscopy requires no sample motion while simultaneous requiring navigation-

based behaviour. Harvey and colleagues developed a solution to this problem by creating a 

method for virtual navigation in head fixed animals (Harvey et al., 2009). They projected a 

computer-generated virtual environment into a dome and positioned a head fixed but freely 

moving mouse on a polystyrene ball, essentially allowing navigation thorough virtual space 

(Harvey et al., 2009). Virtual navigation is increasingly becoming a widely adopted method in 

conjunction with opto- and electro-physiology to investigate spatial behaviour (Aronov & Tank, 

2014). However, it has been typically conducted with a ‘dome’ (toroidal screen; Dombeck et al., 

2010; Harvey et al., 2009; Robinson et al., 2020; Schmidt-Hieber & Hausser, 2013) or large screen 

set up (Hainmueller & Bartos, 2018; Plitt & Giocomo, 2021), to provide an ‘immersive 

experience’. Ceiling texture i.e. the surface above the mouse, is considered particularly important 

given the positioning of rodent eyes and their large field of view (Harvey et al., 2009; Hölscher, 

et al., 2005). However, due to space limitations on our microscope configuration, the positioning 

of essential hardware (ETL; to enable volume imaging), prevents the use of a dome, top ceiling 

screen or large screen set up. Therefore, we sought to miniaturise a custom VR and hardware to 

fit onto our microscope. We aimed to use mini-VR to flexibly manipulate different world 
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parameters for our various experiments and interface with our microscopy software to assess 

rodent spatial behaviour 

4.2  Results 
4.2.1 Hardware 

Our mini VR system was constructed using the following hardware to connect 3 screens 

arranged in an arc (picture 1 and 2, Figure 3.1): 

3 x 1024 x 600 HD Raspberry Pi screens 

1 x UBS hub for power with power supply 

1 x HDMI/DisplayPort hub 

3 x HDMI cables  

Custom removable screen holder on a magnetic base (see picture insert in Figure 3.1 A) 

 

4.2.2 Software  

We used ViRMeN, a free opensource MATLAB-based software package for designing and running 

rodent VR experiments (Aronov & Tank, 2014). ViRMeN provides an inbuilt graphics engine that 

performs 3D rendering of virtual environments on a computer monitor and a Matlab toolbox for 

programming experimental logic and manipulating environments in real time (Aronov & Tank, 

2014). We used NIDAQ tools to interface the digital signals controlling the delivery of rewards 

through a custom build lick port, trigger ‘stim’ TTL pulses in stimulation experiments, and detect 

lick events. 

 

4.2.3 World design 

To design our virtual environments we took inspiration from previous VR worlds and in-house 

experience. We also wanted to maximise optic flow and contrast, therefore decided to use a 
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narrow-2D textured corridor (Figure 3.1 B). We used monochrome, blue and green colours given 

mouse bi-chromatic vision, making it difficult for them to perceive red hues (Goymer, 2007). Our 

2D textures and simple colours enable easy parametric morphing (Figure 3.1). The rewarded area 

is marked on the floor and walls with a monochrome ‘X’ (Figure 3.1 B after ‘END’). 

 

4.2.4 Experiment logic 

We used the ViRMeN MATLAB toolbox to implement our experimental logic. That is, 

teleportation upon ending a trial, blackout and whiteout for reward and punishment, 

respectively, and delivery of water reward upon reaching a specific marked location on the track. 

This is similar to Robinson et al., (2020) which is consistent with other previously reported rodent 

VR systems (Alegra et al., 2019; Dombeck et al., 2010; Harvey et al., 2009 Hainmueller  & Bartos, 

2018; Plitt & Giocomo, 2021; Schmidt-Heiber & Hausser, 2013). The main difference with our VR 

system is that we do not punish licking outside the reward zone as this was not an issue for our 

expert mice (Figure 3.2 ‘Expert’), possibly due to our longer track length and delivery of 

unsweetened water (Robinson et al., 230cm; our track 480cm). We also made our VR software 

capable of initiating stimulation and delivering predefined trial structures. We built a GUI that 

enables the experimenter to change the upcoming trial, deliver manual rewards and switch 

experiment conditions therefore allowing ‘in experiment’ changes if necessary. 

 

 

 

 

 

 

 

 

 

 





 

102 
 

textures and different objects, to improve optic flow. D) Our modular library of objects and textures enables 

flexible construction of novel worlds and controlled changes to specific features. 

 

4.2.5  Single mouse 

To assess the animal’s ability to navigate in our VR system, we investigate their run and lick 

behaviour as a measure of learning the navigation task. We defined correct behaviour as reducing 

speed to < 5cm/s and licking 3 or more times in the rewarded area to initiate a water reward. All 

mice learned the task defined above, and 70.4% (n = 19/27) met our experimental behaviour 

standards of running a trial per minute, in addition to the 80% correct trials per session.  

 

4.2.5.1 Naïve vs expert mouse behaviour  

Initially mice typically lick at most positions along the virtual track (black dots Figure 3.2 A) and 

run slowly, often < 5cm/s completing few trials in a 30-minute session. Over time their running 

speed increases and ‘expert mice’ run directly to the reward zone, indicated by a smoother grey 

trajectory in Figure 3.5 B > 35cm/s. Subsequently, mice complete more trials, with shorter 

durations in longer training sessions (session 1: 58.58 ± 22.34s, n = 31, session 10: 58.58 ± 22.34s 

average trial duration n = 19; Figure 3.3). If the mice make mistakes, they often self-correct after 

only a few incorrect trials (Figure 3.2 B). Expert mice also show preparatory run behaviour, in that 

running slows before entering the reward zone having learn that this location is rewarded (Figure 

3.2 velocity decreased upon entry into the shaded reward area and increases after mice have 

received the reward before the next trial). Lick behaviour also shows marked changed in expert 

mice. After learning the reward location mice lick almost exclusively in this zone, except a small 

number of pre-emptive licks prior to entering the reward area (Figure 3.2).  
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Figure 4-2 Lick and run behaviour in the naïve and expert mouse in mini VR. 

A) Naïve mouse (top). Run trajectory (grey line) through virtual space as a function of time (seconds). Green lines 

indicate correct trials and teleportation to the beginning of the track. The above black dots about the trace 

represent licks and blue rings correspond to rewards. Initially the mouse is auto rewarded irrespective of lick 

B 

A 
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initiation. Naïve mouse middle trace) Grey line represents average running speed (cm/s) as a function of time 

over the duration of the session. Yellow threshold is draw at 5cm/s for later place cell analysis, where < 5cm/s 

is excluded. Naive bottom) Histogram of trial wise mean lick count (pale pink) along binned positions down the 

virtual track (5cm position bins). Grey shaded area marks the reward zone. Licks increase in the reward zone 

upon delivery of the reward. Overlaid is trial wise mean velocity (lilac; cm/s) along virtual position (lilac track 

lines = ± 1SD). Expert (below).  

B) Expert mouse. Same as for naïve mouse but more trials and longer overall sessions. Naive top) red lines here 

indicate incorrect trials.  

 

4.2.6 All mice 

4.2.6.1 Run behaviour  

To quantify the changes from naïve to expert mice across animals, we trained 31 mice of both 

sexes in our VR system. We found that the changes described in Figure 3.2 were robust across 

most animals, with all animals showing some degree of these learning changes over time. Run 

behaviour increases in speed (session 1; mean ± std 8.90 ± 2.7 cm/s, n = 31) up to session 10 

(mean 12.63 ± 3.20 cm/s, n = 19), after which there is a plateau for subsequent sessions (Figure 

3.3). We quantified run behaviour changes as speed change into the reward zone. This metric 

enables us to detect ‘correct’ run behaviour, and not animals who increase their speed over 

sessions, but do not slow down in the reward zone and therefore do not display ‘correct’ run 

behaviour. We found that with training there is a decrease in speed change into the reward zone 

(mean 2.70 ± 1.98, n = 31, session 1, vs, mean -0.10 ± 0.69, session 10, n = 19), reflecting that as 

the mice learn, they slowdown in anticipation of receiving the reward (Figure 3.3). Again, this 

change plateaus after 10 sessions. 

 

4.2.6.2 Lick behaviour 

We quantified licking specificity across sessions for all animals. We found a general decrease in 

the number of licks outside the reward zone as the number of sessions increases, until session 

10 when this change in licking plateaus (Figure 3.3; session 1: 31.59 ± 22.27, n = 31 vs. session 

10: 10.14 ± 8.39, n = 19; Figure 3.3 B). Although the data is noisy and confounded by the possible 

delivery of manual rewards during early training sessions (see peaks of > 100 licks). We also 
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assessed lick behaviour by quantifying mean licks in the reward zone. Mice showed a general 

increase up to session 10 in mean licks (session 1: 9.33 ± 6.32 licks, n = 31; session 10: 19.32 ± 

9.43, n = 19; Figure 3.3 B top). To measure the specificity of licking, i.e. to create a metric to detect 

‘correct’ licking, defined as licking in the reward zone and withholding licking outside the reward 

zone, we measured lick fidelity. We compute lick fidelity as licks in reward zone minus licks outside 

reward zone, as a proportion of the total licks. Hence, on average, initially mice licked more 

outside the reward zone (indicated by -vr lick fidelity; -0.47 ± 0.37, n = 31; Figure 3.3. bottom), 

gradually decreasing, until session 10, where lick fidelity plateaus (+ve lick fidelity indicates more 

licks in the reward area; Session 10; 0.38, ± 0.36, n = 19; Figure 3.3. bottom).  

 

4.2.7 Task engagement   

To ensure our animals are actively navigating in the VR, we increased the task difficulty by moving 

the rewarded locations on each trial (Figure 4.4 A right & left). We structured trials such that the 

reward zone was randomly positioned in one of three possible locations for a randomly selected 

number of trials (2-6 trials; arrows in Figure 4.4 A). The navigation task was the same as described 

previously, and we used two versions of this task; one version where the reward zone was moved 

by larger amounts (at positions 225, 347, 430 cm along the track; pink in Figure 4.4) and another 

version where it was moved by smaller amounts (390, 430, 470 cm; yellow in Figure 4.4 left). We 

found that all animals tested (n = 14 and n = 6) were able to complete the task with few 

differences between run and lick behaviours on trials in each of the reward locations (Figure 4.4 

C & D).  We found no significant difference in the trial outcomes (% correct) for each of the 

rewarded locations in each version of the task (Figure 4.4 C & D bottom: Wilcoxon rank sum test 

with Bonferroni correction, P > 0.05/3). This suggests that our mice are actively engaged in the 

navigation task with flexible behaviour, rather than internally tracking distance. 

 







 

108 
 

Figure 4-4. Mice are actively engaged during virtual navigation and use visual cues to complete the task. 

A) Track schematics with labelled rewarded locations (coloured arrows) for each version of the task. Numbers 

identify the reward zone.  

B) Example run (grey trajectory) and lick (pink dots) behaviours for 13 trials in one session. Green lines indicate 

correct trials and grey shaded areas represent the rewarded. Left) Run trajectory (grey line) through virtual space as 

a function of time (seconds). Green lines indicate correct trials and teleportation to the beginning of the track. Grey 

shaded areas indicate the reward zone position (1, 2, or 3).  

C top) Mouse running speed (cm/s) before the reward zone (left) and in the reward zone (right). C middle) Mouse 

licking behaviour (lick count), before the reward zone (left) and in the reward zone (right). C bottom) Trial outcome, 

defined as proportion of trials correct for each of the reward zone locations. N = 14.   

D) Same as in C, except the rewarded locations were in different location, spread along the track (see A). N = 6. Black 

bars are mean values and coloured lines represent data from individual mice. All Wilcoxon rank sum tests with 

Bonferroni correction were not significant (n.s.;  p > 0.05/3). 

 

4.2.8 Place cells  

For our mini VR system to be useful experimentally, we need animals to not only be able to 

navigate in experimenter controlled virtual worlds, but we also need to be able to detect location 

specific activity in the hippocampus. Hence, we used 2P imaging to record from > 21 animals in 

CA1 and CA3 (Chapter 4). As a proof of principle, we were able to detect place cells as defined by 

criteria similar to those used by other authors (Dombeck et al., 2010; Bartos & Hainmueller , 

2018). We identified 500 ROIs and found 69.4% (n = 347/500) met our place cell criteria (Figure 

4.5). We define place cell criteria as those cells with place field width ≥ 20cm, place fields on ≥ 

50% trials, and a mean in field response that is 2 x greater than the mean out of place field 

response (Dombeck et al., 2010). Cells that did not pass all 3 criteria were not defined as place 

cells. We found place cells mapped our virtual track and were more numerous at salient locations 

i.e. the end of the track (Figure 4.5 B). For a more detailed quantification of optically identified 

place cells see Chapter 5. 
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Figure 4-5 Optically identified place cells from navigation in a mini VR. 

A)  Top: Heat map of ΔF/F traces for all detected ROIs (n = 500) across an hour recording. Lighter colour represent 

increased fluorescence and traces are sorted according to their peak preferred location. Purple square outlines 

the zoom in area below. Below) same as above but with running trajectory (blue) and lick behaviour (pink rings) 

overlaid.  

B) Heat map of ΔF/F traces for all detected ROIs (N = 500) sorted by place field preference along the 500cm virtual 

track. Warmer colours represent increased fluorescence. ROIs are also sorted according to the place cell criteria 

they meet (see white dividing lines), from those ROIs meeting 0 criterion (top; 000) to those meeting all 3 criteria 

(bottom; 111). Field size, response ratio (in field vs our field reliability, (% trials with response; Dombeck et al., 

2010). 

C) Randomly selected place cells ROI 290, ROI 368. Top: Heatmap of normalized ΔF/F traces from that ROI across 

trials. Warmer colours represent increased fluorescence. Bottom) Single trial normalized DF/F traces (grey) with 

averaged traces (black) as a function of virtual position (cm). 
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4.3  Discussion 
We developed a miniaturized VR system, capable of flexibly fitting on our microscope 

configuration (see photo in Figure 3.1 A) with the hardware (Figure 3.1 A insert). We found high 

variability in our 31 trained animals in both their run and lick behaviour, but on average an 

animal’s performance plateaus after 10 sessions. This session threshold was similar to that 

previously reported (Harvey et al., 2009) and enabled us to create a training time scale, (10 

sessions). We were also able to define expert behaviour along two metrics; as lick fidelity and run 

speed change into the reward zone. We found that our task was learnable for all animals, with 

most reaching experimental utility.  

 

We were also able to optically identify place cells, in animals concurrently imaged during virtual 

navigation. These place cells were defined according to existing criteria and are similar to other 

studies (Dombeck et al., 2010; Hainmueller & Bartos, 2018; Robinson et al., 2020). Identification 

of place cells combined with task engaged behaviour indicate our animals are actively ‘navigating’ 

in our virtual world. Therefore, head-restrained mice can perform visually guided spatial 

behaviours in a mini VR environment. Our miniature system offers an affordable, space efficient 

alternative to typical more immersive VR configurations. It is modular and useful for a number of 

experiments beyond those described in this thesis. Full code is available opensource, for others 

in the science community to use and amend to their experimental needs.  

 

Code repository: https://github.com/BNutbrown/mouseVR 
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5.1  Introduction 
 

The heterogenous hippocampal subregions differ in their anatomical inputs, in addition to their 

internal circuitry. Together these differences in architecture support context-dependent learning 

and episodic memory. Although these differences, notably the recurrent connections between 

CA3 pyramidal neurons, have inspired multiple theoretical models of differential processing 

capacities of these regions, differences in the spatial properties of place cells in CA1 and CA3 in 

behaving animals are less well described. Electrophysiological recordings of CA3 population 

activity responded more coherently than activity in CA1 when real environment manipulations 

resulted in local-global reference frame conflicts (Lee et al., 2004). Simultaneous single unit 

recordings in CA3 and DG during a similar behavioural protocol found the CA3 representation of 

the altered environment was more similar to the familiar environment, compared to its DG inputs 

(Neunebel & Knierim, 2014). These results suggest that CA3 produced an output pattern closer 

to the originally stored representation than the degraded input patterns from the DG in the cue 

conflict environment, providing evidence for pattern completion of degraded inputs in the DG-

CA3 circuit (Neunebel & Knierim, 2014). 

 

5.1.1 Population properties in CA1 and CA3 networks  

Pattern completion is generally considered to be a property of an attractor network (Rolls et al., 

2013). Briefly, it refers to the network’s ability to reinstate a previously stored pattern of activity 

from activation when cued with partial or degraded input. Coherent population dynamics, 

indicative of pattern completion have also been observed in CA1 during real world navigation in 

environments morphed between two end points (Wills et al., 2005). However, Leutgeb et al. 

found conflicting results suggesting gradual and abrupt changes to neural representations coexist 

in simultaneously recorded CA3 populations, such that progressive representation 

transformations were more likely when environments were manipulated incrementally. These 

studies highlight the impact of different training protocols, specifically whether morphed worlds 
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were presented incrementally or in a random order. Hence, the specific features of contexts 

driving remapping are debated. New work suggests that a more general principle for remapping 

of neural representations.  

 

Other factors contributing to this apparent contradiction in CA3 attractor dynamics may stem 

from intra CA3 heterogeneity. Leutgeb et al. recorded from a small number of CA3 neurons (n = 

38), from multiple CA3 intra-subregions, with most data likely from CA3c given the advancement 

of electrodes from the dorsal surface (Leutgeb et al., 2005). The opposing proximo-distal 

gradients of decreasing mossy fibre excitation (Claiborne, Amaral, & Cowan, 1986) and increasing 

excitation from cortical inputs (Ishizuka et al., 1995), combined with more abundant recurrent 

synaptic connections in distal CA3 (CA3a and CA3b; (Ishizuka et al., 1990), are consistent with the 

notion that direct cortical drive, recurrent excitation, and weak mossy fibre excitation, enables 

distal CA3 to participate in pattern completion (Lee & Kesner, 2004; Sun et al., 2017) 

Furthermore, models suggests weakly recurrent networks are less subject to attractor collapse, 

as population activity tends to track ongoing inputs, resulting in linear transitions along a 

morphing sequence (Papp, Witter, & Treves, 2007). Hence, it remains uncertain whether 

hippocampal assemblies can exist along continua, with stable or intermediate states emerging 

when incoming input is incongruent with stored representations. CA3 circuits, at least in CA3a 

and b have the anatomical attributes to serve encoding and retrieval of memory (Rolls, 2013).  

 

To experimentally assess the interpretation that CA3 functions as an associative attractor 

network, we must probe recall properties, through titrated input to the network and assess the 

local as well as downstream CA1 responses. To this end, we will record from a large population 

of genetically defined CA3 neurons and CA1 neurons in animals trained to navigate in a virtual 

world. We will assess CA1 and CA3 network responses (simultaneously in some animals) during 

navigation in a novel world, in addition to intermediate environments precisely morphed 

between these end point (familiar and novel) worlds, to probe different hippocampal subregion 

spatial representations to different degrees of overlap in input patterns. 
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5.2  Results 

 
5.2.1 Defining hippocampal subregions  

To assess the possibility of non-linear response dynamics in different hippocampal subregions, 

we used 2P volume imaging to record hippocampal neurons transgenically expressing GCaMP6s 

in subregion CA1 (n = 5, CA1 mice) and CA3 (n = 7 CA3 mice) in vivo during virtual navigation. We 

also imaged CA1 and CA3 simultaneously in a subset of animals (n = 5 dual area mice; see Figure 

4.1 B & C for example dual FOV). To define our ‘dual area’ FOV we used the morphological 

characteristics of CA3 neurons (characterised in Chapter 2) to identify this subregion and 

positioned our FOV such that extending 400μm axially over 4 planes, it included that CA3 FOV 

and subregion CA1 on the more superficial planes (Figure 4.1 A). We manually curated our FOVs 

into separate the two subregions (Figure 4.1 C – white tack lines). We excluded a 150μm 

boundary region and found that the average somatic CA3 ROI size in ‘dual’ FOV animals was 

similar, but slightly smaller to that of genetically defined CA3 neurons (mean ± STD; dual: 

17.71μm ± 1.11 vs. CA3 transgenic; 22.06μm ± 2.67, P = 0.005, Wilcoxon rank sum test, Figure 

4.1 D). For dual area mice, we included these curated CA1 and CA3 ROIs to their respective areas 

for subsequent group analysis. The somatic diameters of CA3 ROIs were significantly larger than 

those in CA1 (CA1: 14.98μm ± 0.68 vs. CA3: 20.25μm ± 3.06; Figure 4.1 E). We recorded from 

more CA1 than CA3 neurons (mean ROIs per animal in CA1 mice 2188.1 ROIs ± 617.47, CA3 mice, 

315.5 ROIs ± 169.23; Figure 4.1 F), given the angled nature of CA3 anatomy relative to the imaging 

plane (Chapter 2.2.2; Bartos & Hainmueller, 2018; Schoenfeld et al., 2021). 
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5.2.2 Experiment 1: Single World. 

5.2.2.1 Comparing the spatial properties of neurons in CA1 and CA3 within and between 

animals 

There were no marked differences in the level of performance between the three groups of mice 

(Figure 4.4 A) in terms of trial durations (CA1 mice = 50.88s ± 13.48 vs. CA3 48.98s ± 14.23, vs 

dual mice = 64.78s ± 38.83, P = 0.89, Wilcoxon rank sum test, Figure 4.4 C). The animals also 

exhibited no statistical differences in behavioural performance, a correct trial was defined as the 

mouse slowing down and licking in the reward zone to initiate the reward (CA1 mice: 94% trials 

correct ± 1.2 vs. CA3 93 ± 0.06, vs Dual 0.91 ± 0.05, P = 0.89, Wilcoxon rank sum test; Figure 4.4 

D). Interestingly, we found mean CA1 place cell population activity was positively correlated with 

running speed, whereas CA3 place cell population activity was negatively correlated (CA1, r = 

0.06 ± 0.03, CA3, r = -0.04 ± 0.03, P < 0.001, Wilcoxon rank sum test; Figure 4.3), suggesting that 

at higher running speeds, the CA3 population is less active and vice versa in CA1. 

 

To classify place cells - neurons with clearly defined spatial modulation - we created a null 

distribution of spatial information scores for each cell from their circularly permuted time series 

(we shifted the position relative to the activity trace within each trial). We shuffled 1000 times 

per ROI and ROIs exceeding 99% of permutations were considered to be significant ‘place cells’ 

(see Giocomo & Plitt, 2019 for details). Additionally, those ‘place cells’ were required to have at 

least one clearly defined place field (see Methods & Materials) in order for them to be included 

in our subsequent analyses (see Figure 4.4 for example place maps [E] and place cells[F]).  
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D) Mean trial outcome (% correct) for each mouse group (CA1 [purple], n= 5, CA3= [pink] n = 7, dual [yellow] 

n = 5). All Wilcoxon rank sum tests were non-significant (n.s.;  P > 0.05). 

E) Example place maps for each mouse category (CA1 left, CA3 middle, dual right). Plots show all ROIs detected 

in an example animal. Grey dotted line dividing (above) ‘non place cells’ and (below) ‘place cells’. Each row 

in the heatmap indicates mean ΔF/F of that cell as a function of position in virtual space, traces are sorted 

by place cell peak preferred location on the track.  

F) Example mean ΔF/F trace (right: CA3, left CA1) as a function of position (dark purple line) overlaid on a 

normalised ΔF/F heatmap per trial for that ROI (warmer colours indicate higher ΔF/F).  

 

Using our place cell detection method, we identified more place cells as a proportion of total 

recorded ROIs in CA1 compared to CA3 (0.58 ± 0.14 vs. 0.47 ± 0.16, P < 0.05, Wilcoxon rank sum 

test; Figure 4.5 A). Place cells in CA1 and CA3 mapped the track, with different place fields 

preferring different locations along the virtual track (Figure 4.5 B). Although the ends of the track 

were overrepresented by CA3 place cells (Figure 4.5 B), i.e., fewer CA3 place cells had place fields 

in the middle of the track than at the beginning or end of the track. To quantify this we took the 

mean proportion of cells with fields at the ends (the first 5 cm spatial bin from each end) and 

compared that to (by subtracting from) the proportion of cells with fields in the middle of the 

track (middle 15 cm; CA1, 0.01 difference in proportion of end-vs-middle place cells ± 0.03, CA3, 

0.12 ± 0.13, P < 0.005, Wilcoxon rank sum test; Figure 4.5B, insert plot). CA1 and CA3 place cells 

were also similar in that they mostly had one place field (CA1: 97.4% ± 1.56, CA3: 98.1% ± 1.46 

place cells have 1 place field, P = 0.07, Wilcoxon rank sum test; Figure 4.5 C) with only a few 

having multiple fields (CA1, 2.58% ± 1.54 CA3, 1.30% ± 1.46 place cells have 2 place fields, P = 

0.07, Wilcoxon rank sum test; CA1, 1.37 ± 2.91, CA3, 0, place cells with 3 place fields, P = 0.07, 

Wilcoxon rank sum test).  

 

When averaging within each subregion (CA1 and CA3) across animals, we found no statistical 

differences in the average place field width, reliability or magnitude between subregions (Figure 

4.5 D-F). However, when pooling all cells across animals we observed that CA3 place cells had 

slightly smaller place field widths, compared to CA1 place cells (CA3, 21.46cm ± 7.09, CA1, 

22.50cm ± 6.83, P < 0.001, Wilcoxon rank sum test; Figure 4.5 G) but larger field amplitudes (CA3, 

2 .27 ΔF/F ± 1.56, vs. CA1, 1.68 ΔF/F ± 0.92, P < 0.001, Wilcoxon rank sum test; Figure 4.5 H). We 
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found CA3 place cells to be less reliable (less spatially stable) than CA1 place cells, defined as the 

correlation between the place cell preferred position in the first half of the trial vs. the second 

half of that trial. CA3 place cells were present on a lower proportion of trials (CA3, 0.34 r ± 0.2, 

CA1, 0.38 r ± 0.23, P < 0.001, Wilcoxon rank sum test; Figure 4.5 I). Although spatial information 

scores (see Methods & Materials 5.17 for calculation details) were not statistically different 

between CA1 and CA3 place cells (CA1, 0.08 bits per event ± 0.05, CA3, 0.09 bits per event ± 0.05, 

P = 1, Wilcoxon rank sum test; Figure 4.5 J).  

 

Finally, to investigate the spatial clustering of functionally similar place cells in order to assess 

the potential for topographic place maps, we looked at pairwise correlations of place cell activity. 

We found CA3 place cells to be more correlated with neighbouring cells, whereby the mean 

pairwise correlation between the closest cells is highest and declines with distance (CA1, r = 0.05 

± 0.01 vs. CA3, r = 0.15 ± 0.09, P < 0.001, Wilcoxon rank sum test; Figure 4.5 K insert plot) 

although, the fall off is slower in CA3. To quantify this, we fitted an exponential curve to the 

correlation vs distance profiles and compared the full width at half maximum (FWHM) of these 

lines (CA1, 1.43μm ± 0.05, [n = 10], CA3. 1.54μm ± 0.12, P < 0.01, Wilcoxon rank sum test; Figure 

4.5 K inset plots). 
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G) Cumulative frequency distribution as a function of ROI field width for CA1 (purple) and CA3 (pink). 

H) Cumulative frequency distribution as a function of place field ROI response magnitude for CA1 (purple) and CA3 

(pink). 

I) Cumulative frequency distribution as a function of place field ROI reliability across trials for CA1 (purple) and 

CA3 (pink). 

J) Spatial information (SI) scores presented as box-and-whisker plots displaying median (line), mean (dot) 

interquartile (box) and 90% ranges (whiskers) for each subregion. 

K) Mean pairwise correlation of place maps as a function of distance from neighbouring ROIs, inset 1) Mean 

pairwise correlation averaged across all distance bins for each subregion, inset 2) full width at half maximum 

(FWHM) per subregion. 

Grey track lines label dual mice in each subregion category (n = 5). All scale bars are 200μm. All *s indicate Wilcoxon 

rank sum tests (n.s. non-significant, *P < 0.05 **, P < 0.01, ***, P < 0.001). 

 

 

5.2.3 Experiment 1: Two Worlds. 

5.2.3.1 Comparing the spatial properties of neurons in CA1 and CA3 in the familiar and a novel 

environment. 

 

When introduced to a novel distinct blue world (W5), that was different from W1 in colour, 

texture and object locations, changing the visual properties of the environment but not the size 

or reward location (Figure 4.6 A), animals’ behavioural performance was not affected. Animals 

had no statistical differences in trial durations (CA1 W1: 51.41s ± 16.03 vs CA1 W5: 46.76s ± 20.78, 

P = 0.43,  CA3 W1: 53.65s ± 16.50, vs CA3 W5: 50.38s ± 23.52, P = 0.44, CA1 W1 vs CA3 W1,  P = 

0.60, CA1 W5 vs CA3 W5 P = 0.80, Wilcoxon rank sum test, Figure 4.6 B) and trial outcomes (% 

trials correct; CA1 W1: 90.60% ± 6.04, CA1 W5: 86.06% ± 10.88, P = 0.45, CA3 W1: 91.17% ± 5.66, 

CA3 W5: 85.20% ± 10.01, P = 0.15, CA1 W1 vs CA3 W1, P = 0.87, CA1 W5 vs CA3 W5 P = 0.95 

Wilcoxon rank sum test; Figure 4.6 C). 
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F) Example trial-wised average (ΔF/F) trace as a function of position in world 1 (green line) and world 5 (blue 

line) for the same CA1 ROI across worlds.  

G) Same as in C but for CA3 ROIs. 

 
We recorded neural activity in CA1 and CA3 while animals where navigating through the two 

worlds (W1 and W5) in a random interleaved trial structure. We constructed average place 

activity maps for the population activity in each of the two worlds, and when we sorted one 

world’s map by the peak activity locations in the other world. We observed the activity in W5 

appeared qualitatively different to in W1 for both CA1 and CA3 populations (see Figure 4.6 D & 

E). To explore this, we found a higher proportion of ROIs detected to be place cells in CA1 than 

CA3 in both W1 and W5 (CA1 W1: 55% ± 9, CA1 W5: 39% ± 12, CA3 W1: 29% ± 13, CA3 W5: 24% 

± 14. 2-way ANOVA main effect of area F(1,1) = 29.9, P < 0.001. Figure 4.7A) and both subregions 

had a higher proportion of place cells in W1 than in W5 (2-way ANOVA main effect of world F(1,1) 

= 7.7, P = 0.009; Figure 4.7 A). However, the cumulative proportion of place cells detected 

increased in W5 for both CA1 and CA3 animals (CA1 W1: 55% ± 9, CA1 W5 69% ± 9, CA3 W1: 29% 

± 13, CA3 W5: 43% ± 16. 2-way ANOVA main effect of world F(1,1) = 50.4, P < 0.001; Figure 4.7 

B) indicating that W5 is represented by a different, or at least additional, population of place cells 

(see Figure 4.8 for further analysis). 

 

We found CA3 place fields overrepresented the beginning of the virtual track, whereas CA1 place 

fields uniformly tiled the whole track (Proportion of place cells preferring locations <= 50 cm; CA1 

W1: 6% ± 1, CA1 W5: 7% ± 2, CA3 W1: 11% ± 7, CA3 W5: 12% ± 6; Figure 4.7 C). These place field 

coverage distributions were consistent between novel (W5) and familiar (W1) worlds (Figure 4.7 

C). The average S.I. scores across all neurons in each subregion were not statistically different 

between worlds and region (CA1 W1: 0.11 bits per event ± 0.05, CA1 W5: 0.11 ± 0.06, CA3 W1: 

0.11 ± 0.05, CA3 W5: 0.10 ± 0.04; Figure 4.7 D). Taken together, these findings suggest that the 

novel world (W5) is potentially represented with a similar fidelity.  

 

However, at the level of single cells, we found CA3 place fields to be less reliable than CA1 place 

fields, in addition to lower reliability scores in both subregions in the novel world (CA1 W1: 38% 
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E) Cumulative frequency distribution as a function of place field ROI reliability across trials for CA1 (purple) 

and CA3 (pink). CA1 W1 n = 12,222, CA1 W5 n = 9,066, CA3 W1 n = 1,130, CA3 W5 n = 786 neurons. 

F) Cumulative frequency distribution as a function of place field ROI response magnitude for CA1 (purple) and 

CA3 (pink). CA1 W1 n = 12,222, CA1 W5 n = 9,066, CA3 W1 n = 1,130, CA3 W5 n = 786 neurons. 

G) Cumulative frequency distribution as a function of ROI field width for CA1 (purple) and CA3 (pink). CA1 W1 

n = 12,222, CA1 W5 n = 9,066, CA3 W1 n = 1,130, CA3 W5 n = 786 neurons. 

Shaded areas and error bars = S.E.M. Track lines = individual animals. Thicker solid lines in top row = means. A-D all 

*s indicate 2-way ANOVA main effects. E-G all *s indicate Wilcoxon rank sum tests (n.s. = non-significant, *P < 0.05 

**, P < 0.01, ***, P < 0.001). 

 

To further investigate the extent to which CA1 and CA3 populations represented the novel and 

familiar worlds distinctly, we quantified the proportion of cells defined exclusively in each world; 

cells that were only active in W1, only active in W5 or active in both. As before CA1 had more 

place cells than CA3 and we found there were more W1 (familiar) preferring cells than W5 (novel) 

preferring cells (Figure 4.8 A & B; 2-way ANOVA main effect of world: F(1,1) = 9.8 P < 0.001, main 

effect of area: F(1,1) = 20.6 P < 0.001). We next asked if cells that were active in both worlds were 

active in the same location (Figure 4.8 C for an example). We found only a weak correspondence 

between the preferred firing locations in W1 and in W5 for both CA1 and CA3 (correlation of CA1 

W1 field locations with W5 field locations: 0.20 r ± 0.04, CA3 W1 with W5: 0.26 r ± 0.12; Figure 

4.8 D & E).  

 

To look at this in another way, we identified the preferred firing locations in W1 and looked at 

each cells’ activity in that same location in W5 (Figure 4.8 F for examples). We found the response 

magnitude of CA1 place cells averaged across all laps (trials) was larger than that for CA3 place 

cells (response in W1 fields in W1 CA1: 0.31 ΔF/F ± 0.13, CA3: 0.19 ± 0.10; 2-way ANOVA W1 field 

locations main effect of area F(1,1) = 7.9, P = 0.008; Figure 4.8 G & H; response in W5 fields in W5 

CA1: 0.27 ΔF/F ± 0.12, CA3: 0.16 ΔF/F ± 0.12; 2-way ANOVA for responses in W5 field locations 

main effect of area F(1,1) = 6.12, P = 0.018; Figure 4.8 G & H), which is explained by the greater 

reliability of CA1 place cells (CA1 W1: 0.38 ±0.22, W5: 0.33 ±0.18 vs CA3 W1: 0.41 ±0.24, CA3 W5: 

0.34 ±0.20, proportion of trials with significant response) despite the larger in-field responses of 

CA3 cells (CA1 W1: 1.56 ±0.84, CA1 W5: 1.84 ±0.98 vs. CA3 W1: 1.96 ±1.41 CA3 W5: 2.33 ±1.55, 
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ΔF/F on significant response trials; see Figure 4.7 E). Both CA1 and CA3 place cells were not active 

in the same location across worlds (response in W1 fields in W5 in CA1: -0.01 ΔF/F ± 0.04, CA3: -

0.04 ΔF/F ± 0.05. Response in W5 fields in W1 in CA1: -0.00 ΔF/F ± 0.04, CA3 W1: -0.02 ΔF/F ± 

0.04. 2-way ANOVA for response in W1 field locations main effect of world F(1,1) = 110.5, P < 

0.001; Figure 4.8 G & H).  

 

To quantify the degree of similarity of the world population representations, we correlated all 

single trial place maps with the trial-averaged map from W1 and W5 (Figure 4.8 I). Again, we 

found that both CA1 and CA3 formed distinct place map representations of the two worlds 

whereby the W5 trials were distinct from the W1 map and vice versa (average correlation for W5 

trial maps with W1 average map, CA1: 0.07 r ± 0.06, CA3: 0.09 r ± 0.03. Average correlation of 

W1 trial maps with W5 average map, CA1: 0.08 r ± 0.06, CA3: 0.09 r ± 0.03. 2-way ANOVA for 

correlations with W1 average map F(1,1) = 110.4, P < 0.001). We found no difference in spatial 

representation similarity between CA1 or CA3 (2-way ANOVA for correlations with W1 average 

map, no main effect of area F(1,1) = 2.1 P = 0.15). We also developed a metric to assess the 

probability a given trial is more similar to the W1 representation than W5; on each trial we 

computed the correlation of that trials place map to the average W1 map, and from that 

subtracted that trials correlation to the average W5 map. From this difference, trials with values 

greater than 0 are more similar to the W1 representation, and scored as 1 (i.e. they are using the 

W1 map), and values less than zero are more similar to the W5 representation, and scored as 0 

(i.e. using the W5 map). We then average these binarized trial scores to get an overall probability 

that trials in a given world have a neural representation more similar to the W1 world or the W5 

world. We term this metric the ‘binarized end-point similarity’ and in our implementation it can 

be thought of as akin to a world ‘decoder’. We found that areas respond similarly (2-way ANOVA 

no main effect of area F(1,1) = 0.2, P = 0.77; Figure 4.8 L), in that as worlds become more dissimilar 

from W1, the probability that the neural representation matches W1 decreases (2-way ANOVA 

main effect of world F(1,1) = 10027.4, P < 0.001; Figure 4.8 L).
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Figure 5-8. Both CA1 and CA3 hippocampal networks form distinct neural representations of different virtual 

worlds. 

A) Pie chart to visualise averaged overlapping place cell populations in CA3 (right) and CA1 (left) animals. Grey 

represents ROI detected that do not meet place cell criteria. Colour represents ROIs that meet place criteria 

in W1 only (green), W5 only (blue) or are present in both W1 and W5 (yellow). 

B) Mean proportion of cells determined to be place cells in world 1 only, both W1 and W5 and W5 only in CA1 

(purple) and CA3 (pink). 
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C) Scatter plot of ROI peak location in W1 as a function of the same ROI’s peak location in W5, for all ROIs 

(grey dot) and place cells (black dot). Linear fit (yellow line), shaded is the 95% confidence interval. 

D) Cross validated correlation of W1 place field locations with place field location in W1 and W5 for CA1 

(purple), and CA3 (pink). 

E) Same as in D) but cross validated correlations of W5 place fields.  

F) Example trial averaged mean ΔF/F trace as a function of position for the given ROI in world 1 (green line) 

and world 5 (blue line). 

G) Magnitude of response (ΔF/F) of W1 field locations in W1 and response in the same location in W5 

H) Same as in G) but for magnitude of response in W5 place field locations. 

I) Analysis schematic to demonstrate how we quantify the similarity of single trials in a given world to the 

average W1 (or W5) place map. 

J) Correlation of trial-averaged W1 population place map with all single trial population place maps in W1 and 

W5. 

K) Same as in J) but with correlation of trial-averaged W5 population place map. 

L) Proportion of trials using W1 map (defined as trials with a larger correlation to the W1 average map than 

to the W5 average map) in W1 and W5. 

Shaded areas and error bars = S.E.M (except C). Track lines = individual animals. Thicker solid lines = means. CA1 

(purple), n= 10, CA3 (pink) n = 12. All *s indicate 2-way ANOVA main effects. (n.s. non-significant, *P < 0.05 **, P < 

0.01, ***, P < 0.001). 

 

5.2.4 Experiment 1: Five Morphing Worlds. 

5.2.4.1 Comparing CA1 and CA3 responses to parametrically morphed worlds 

 

After experiencing the novel world for 2 days (2 sessions), animals became familiar with both W1 

and W5. With ‘end point’ worlds established, we introduced 3 intermediate worlds (W2-4; Figure 

4.9 A) that were proportional linear morphs of the end point worlds. Thus, this allowed us to 

investigate how each subregion represents gradual changes to environmental inputs. We found 

no significant difference in animal behaviour across W1-5 in terms of average trial duration and 

trial outcome (2-way ANOVA no main effect of world, F(4,1) = 0.5, P = 0.755; Figure 4.9 B & C). 

Although, CA3 animals had a shorter trial duration on average than CA1 animals (2-way ANOVA 

main effect of area, F(4,1) = 5.8, P = 0.018; Figure 4.9 B).  
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E) Same as D) but for CA3 activity traces. 

Error bars = S.E.M. Track lines = individual animals. Thicker solid lines = means. All *s indicate 2-way ANOVA main 

effects. tests (n.s. non-significant). 

 

Interestingly, in both subregions we found a higher proportion of ROIs were classified as place 

cells in W1 and subregion CA1 to have an overall higher average proportion of place cells across 

worlds than CA3 (2-way ANOVA main effect of world, F(4,1) = 5.7, P < 0.001. Main effect of area 

F(4,1) = 49.5, P < 0.001; Figure 4.10 A). The cumulative proportion of place cells in both 

subregions increase as we considered more worlds, suggesting new place cells are recruited to 

represent each world (2-way ANOVA main effect of world, F(4,1) = 7.4, P < 0.001; Figure 4.10 B). 

We found no significant differences in these place cell populations across worlds and subregions 

in terms of their average spatial information scores (2-way ANOVA, no main effect of world or 

area; Figure 4.10 C). 

 

To begin to assess graded place cell response changes in different worlds, we first looked at the 

average response in a given location across worlds (Figure 4.10 D & E). To do this we identified 

each cell’s preferred firing location in W1 and measured the response in that location across all 

worlds. We saw, as worlds become more dissimilar, activity in the W1 field location was reduced 

in both CA1 and CA3 (2-way ANOVA of responses in W1 fields, main effect of world F(4,1) = 39.1, 

P < 0.001; (Figure 4.10 F & G). Consistent with the notion that different place populations 

represent different worlds, we also found a decrease in the correlation between place cell peak 

firing locations in W1 with their peak firing locations in the other worlds as those worlds became 

less similar to W1, for both CA1 and CA3. We found the same relationship when comparing the 

peak firing locations to their preferred location in W5 (2-way ANOVA of correlation with W1 field 

locations, main effect of world F(4,1) = 81.3, P < 0.001; Figure 4.10 H & I). 
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Shaded areas and error bars = S.E.M. Track lines = individual animals. Thicker solid lines = means. All *s indicates 2-

way ANOVA main effects (n.s. non-significant, *P < 0.05 **, P < 0.01, ***, P < 0.001). CA1 (purple), n= 10, CA3 (pink) 

n = 12. 

 

 

As before, we sought to assess the degree of similarity of each world’s representation relative to 

a reference of the average W1 or W5 map. Here, for each animal we correlated the activity of 

the entire neural population in a given world, position bin by position bin to build to a profile of 

similarity to the end points tracks, across distance down each track (Figure 4.11 A-D). We found 

that spatial representations were most similar at the start of the track but diverged as animals 

advanced along it (Figure 4.11 A-D). For this reason, we excluded the beginning of the track (0 to 

40 cm) from subsequent analyses in order to focus on the maximally different representations of 

the tracks.  

 

To quantify the overall similarity between world representations at a population level, we 

correlated all single trial place maps across worlds with the average map in W1 or W5 (Figure 

4.11 E). We found that single trial average place map correlations to the end point maps (W1 and 

W5) decreases across worlds, suggesting decreasing similarity in neural representations as world 

similarity decreases for both subregions (2-way ANOVA for correlation to W1 map, main effect 

of world F(4,1) = 71.4, P < 0.001. 2-way ANOVA for correlation to W5 map, main effect of world 

F(4,1) = 50.1, P < 0.001; Figure 4.11 F & G). We then used our metric (discussed earlier) to assess 

the probability a given trial is more similar to the W1 representation than W5. We found that 

CA1 and CA3 respond similarly (2-way ANOVA main effect of area F(4,1) = 0, P = 0.97; Figure 4.11 

H), in that as worlds become more dissimilar from W1, the probability that the neural 

representation matches W1 decreases (2-way ANOVA main effect of world F= 157.7, P < 0.001). 

Notably, while this decoding approach revealed a relatively linear response in CA3, CA1 responses 

appeared to be non-linear.  
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5.2.5 Experiment 2: Two Worlds  

5.2.5.1 Context discrimination task 

We reasoned that having animals actively discriminate their environment may strengthen the 

differences between neural representation when it is behaviourally important to treat the 

environments differently. In order to link neural activity to behaviour, we developed a task to 

provide a behavioural read out from which we could infer which world the animal perceived itself 

to be present in (Figure 4.12 A & B). In each of the training worlds (worlds representing the two 

extremes of the morph continuum) there were two reward zones (Figure 4.12 C). Animals were 

taught to lick (for a reward) in only 1 of the 2 reward zones for a particular world contingency 

(see Methods & Materials 5.7). We found no statistical difference between behavioural 

performance of CA1 and CA3 animals in terms of trial duration and trial outcomes across worlds 

(2-way ANOVA no main effect of world, F(1,1) = 1.5, P = 0.23 or area F(1,1) = 0.2, P = 0.68; Figure 

4.12 D & E). We found that animals were able to discriminate between worlds in order to select 

the appropriate reward zone (rather than licking in both), as we found significantly more mean 

licks in the world appropriate reward zones for both CA1 and CA3 mice (W1 appropriate zone: 2-

way ANOVA main effect of world, F(1,1) = 9.9, P = 0.004; Figure 4.12 G and W5 appropriate zone: 

F(1,1) = 11.6, P = 0.002; Figure 4.12 F). 
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Thicker line represents the mean lick count as a function of position across trials. Blue rings indicate rewards 

received. Grey bars indicate reward zones. 

D) Average trial duration for each mouse category (CA1 [purple] n = 8, CA3 [pink] n = 7), defined as the time 

taken (in seconds) to run one lap of the virtual track for a water reward. Dual area mice are included in both 

CA1 and CA3 categories.  

E) Same as in E) but for trial outcome, defined as % trials correct.   

F) Mean licks in appropriate zone for W5 (Licks after reward delivery were discarded). 

G) Same as F) but for appropriate licks in W1 

Reward zones marked in grey. Error bars = S.E.M. Pale lines and track lines = individual animals. Thicker solid lines = 

means. Blue rings indicate water rewards received. All *s indicates 2-way ANOVA main effects (n.s. non-significant, 

*P < 0.05 **, P < 0.01, ***, P < 0.001). 

 

We recorded neural activity from CA1 and CA3 populations whilst animals performed this 

discrimination task and saw place modulated activity (Figure 4.13 B). We found some place cells 

were exclusively in W1 (CA1, w1: 0.19 ±0.10 vs. CA3, w1: 0.14 ±0.08), or W5 (CA1, w5: 0.20 ±0.10 

vs. CA3, w5: 0.16 ±0.10) and some cells that had place fields in both worlds (CA1, w1+5: 0.18 

±0.13 vs. CA3, w1+5: 0.09 ±0.07; Figure 4.13 A). We quantified the proportion of place cells 

present in W1 and W5 and found no differences between worlds (2-way ANOVA main effect of 

world, F(1,1) = 0.1, P = 0.79; Figure 4.14 C) but CA3 animals had significantly lower proportions 

of place cells overall in both worlds (2-way ANOVA main effect of world, F(1,1) = 11.6, P = 0.002; 

Figure 4.13 C). We found no statistical differences in CA1 and CA3 place cells spatial information 

scores across subregions and worlds in terms (2-way ANOVA main effect of world, F(1,1) = 0.1, P 

= 0.8; main effect of area, F(1,1) = 0.1, P = 0.81; Figure 4.13 D). Importantly, as before in 

Experiment 1, the presence of world exclusive place cells and the low similarity of W5 trial maps 

to the W1 average place maps suggests the two worlds have distinct neural representations in 

both CA1 and CA3 (2-way ANOVA main effect of world, F(1,1) = 0.1, P = 0.8; main effect of area, 

F(1,1) = 0.1, P = 0.81; Figure 4.13 E & F). 
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Figure 5-13. CA3 and CA1 hippocampal neurons form distinct neural representations of different virtual worlds 

with different behavioural contingencies. 

A) Top: Example trial trajectories per animal over time, coloured by world presented (W1 = green, W5 = blue). 

Below: Heatmap of neural activity per ROI over time (lighter colour = higher activity; normalised mean 

ΔF/F), grouped by world preference and sorted by preferred place field in W1 

B) Pie chart to visualise averaged overlapping place cell populations in CA3 (bottom) and CA1 (top) animals. 

Grey represents ROI detected that do not meet place cell criteria. Colour represents ROIs that meet place 

criteria in W1 only (green), W5 only (blue) or are present in both W1 and W5 (teal). 

C) Mean proportion of cells determined to be place cells in W1 only, both worlds and W5 only in CA1 (purple) 

and CA3 (pink). 
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D) Example place maps for each mouse category (CA1 top, CA3 bottom). Plots show all ROIs detected in an 

example animal. Black line divides (above) ‘non place cells’ and (below) ‘place cells’. Each row in the 

heatmap indicates mean ΔF/F of that cell as a function of position in virtual space, traces are sorted by place 

cell peak preferred location on the track in W1 (left two plots) and W5 (right two plots). 

E) Proportion of ROIs defined as place cells across W1-5 for subregion CA1 and CA3. 

F) Same as in C) but for average SI scores for each subregion In W1 and W5. 

G) Correlation of trial-averaged W1 population place map with all single trial population maps in W1 and W5. 

H) Same as in E) but for correlation with average W5 place map. 

Reward zones marked by grey track lines. Error bars = S.E.M. Pale lines and track coloured lines = individual animals. 

Thicker solid lines = means. All *s indicate 2-way ANOVA main effects (n.s. non significant, *P < 0.05 **, P < 0.01, 

***, P < 0.001), CA1 [purple] n = 8, CA3 [pink] n = 7. 

 

5.2.6 Experiment 2: Five Morph Worlds 

As before, we introduced parametrically morphed worlds (W2-4) as probe trials where the two 

reward zones were present but not rewarded (Figure 4.14 A). W2 was designed to be most similar 

to W1, W3 was designed to be as ambiguous as possible between W1 and W5, while W4 was 

designed to be most similar to W5. Animals’ licking was recorded but not rewarded in the 

intermediate environments - yielding a behavioural readout of their beliefs contingent on prior 

training (W1 and W5; Figure 4.14 A). We recorded behaviour and neural activity when animals 

were introduced to these intermediate worlds on a subset of trials (Figure 4.2; 17.5 % 

intermediate trial types). We found no significant difference between animals behavioural 

performance in terms of trial duration (2-way ANOVA main effect of world, F(4,1) = 1.4, P = 0.27; 

no main effect of area, F(4,1) = 0.6, P = 0.45; Figure 4.14 B) and trial outcome (restricted to only 

rewarded worlds; 2-way ANOVA no main effect of area, F(4,1) = 1.3, P = 0.26; Figure 4.14 E).  Both 

CA1 and CA3 mice showed no statistical differences in licking behaviour, as intermediate worlds 

became more different from W1 the animals licked less in the W1 associated reward zone (2-way 

ANOVA main effect of world, F(4,1) = 49.2, P = 0.000; no main effect of area, F(4,1) = 0.0, P = 0.98; 

Figure 4.14 D), and more in W5 reward zone (2-way ANOVA main effect of world, F(4,1) = 60.2, P 

= 0.000; no main effect of area, F(4,1) = 0.6, P = 0.46; Figure 4.14 C).   
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Figure 5-14. Animals show graded behavioural responses to intermediate virtual worlds. 

A) Example behavioural performance across W1 (green) through to W5 (blue). Top row: VR position over time in 

trial (s; W1-W5 [green to blue)). Middle row: number of licks across the track. W1 and W5 were rewarded 

contingent on licking in the correct location for that world and W2-4 were probe trials, no reward was given 

(see Chapter 4 for details). Thicker line represents the mean lick count as a function of position across trials 

Bottom row: Animal speed along the virtual track per trial, thicker line represents mean speed over the track. 

Grey shaded bars = rewarded locations. Blue rings indicate rewards received (only in W1 and W5). 

B) Average trial duration for each mouse category across W1-5, defined as the time taken (in seconds) to run one 

lap of the virtual track for a water reward. Dual area mice are included in both CA1 and CA3 categories.  

C) Mean licks in appropriate zone for W5 (zone 1 here. Licks after reward were discarded) for CA1 and CA3. 

D) Same as E) but in appropriate reward zone in W1 

A 

B C D E 
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E) Mean trial outcome defined as % correct trials. W1 and W5 were the only rewarded trials i.e. W2-4 were probe 

trials and not rewarded. 

Reward zones marked by grey bars. Error bars = S.E.M. Pale lines and track coloured lines = individual animals. CA1 

[purple], n= 6, CA3= [pink] n = 5. Thicker solid lines = means. All *s indicate 2-way ANOVA main effects tests (n.s. 

non-significant, *P < 0.05 **, P < 0.01, ***,  P < 0.001). 

 

 

We found the greatest proportion of place cells in W1 for both animal groups, and as before, the 

proportion of ROIs determined to be place cells was greater in CA1 across all worlds (2-way 

ANOVA main effect of area, F(4,1) = 12.8, P = 0.001; Figure 4.15 A). Similarly, the cumulative 

proportion of place cells was greater in CA1 than in CA3 and increased for both areas over worlds 

suggesting distinct populations of place cells might represent each world in each area (2-way 

ANOVA main effect of world, F(4,1) = 7.1, P = 0.000 and main effect of area F(4,1) = 33.6, P = 

0.000; Figure 4.15 B). We also found the mean magnitude of responses in W1 place field locations 

decreased over worlds for both CA1 and CA3 regions (W1 field preferences: 2-way ANOVA main 

effect of world, F(4,1) = 26.5, P = 0.000 and no main effect of area F(4,1) = 0.0, P = 0.93; W5 field 

preferences: F(4,1) = 46.6, P = 0.000 and no main effect of area F(4,1) = 0.0, P = 0.89; Figure 4.15 

E & F) hinting at a cellular-level remapping of place field firing. 
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we did not observe a difference in terms of how CA1 or CA3 represented the morphed 

intermediate worlds (similarity to W1: main effect of area F(4,1) = 0.4, P = 0.52; similarity to W5: 

main effect of area, F(4,1) = 0.7, P = 0.40; Figure 4.16 D & E). 
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Figure 5-16. CA1 and CA3 place cells show similar modulation of spatial representations over 5 morphed virtual 

worlds. 

A) Example trial by trial correlation matrix of population place cell activity. Warmer colours = higher 

correlations (R). 

B) Example neural activity correlation (R) with average place map in W1 (green) and W5 (blue) across trials. 

Trials are sorted by world number and not in the order presented during the experiment.   

C) Schematic to demonstrate the analysis method of correlating single trial maps to the average map in W1 

D) Correlation of trial-averaged W1 population place map with all single trial population place maps in W1-5 

E) Same as in D) but with correlation of trial-averaged W5 population place map. 

F) The difference between D) and E) i.e. the difference in correlation to the W1 and W5 average place map 

across worlds 1-5 

G) Proportion of trials using W1 map (defined as trials with a larger correlation to the W1 average map than 

to the W5 average map) across W1-5. 

Error bars = S.E.M. Dotted lines = individual animals. Thicker solid lines = means. CA1 [purple], n= 6, CA3= [pink] n = 

5. All *s indicate 2-way ANOVA tests (n.s. non-significant, *P < 0.05 **, P < 0.01, ***,  P < 0.001). 
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5.2.7 Experiment 2: 5 Morph Worlds 

5.2.7.1 Linking neural activity to behaviour 

Next, since we had simultaneous access to the animals’ behaviour and neural activity, we 

examined how these covaried in the morph environments. First, comparison of licking zone 

preference with the relative neural similarity of intermediate environments to endpoint worlds 

revealed a clear relationship. Behaviour at reward zones reflected the activity patterns seen as 

the animal was traversing the track prior to that point (Figure 4.17 A & B). We found when the 

neural representation most closely resembled one of the end point worlds, the animal 

preferentially licked in the corresponding (contingency appropriate) reward zone. Conversely in 

intermediate worlds, with ambiguous neural representations (less similar to either of the end 

points), the behaviour too was ambiguous (Figure 4.17 A & B). We found this activity-behaviour 

relationship took the form of a steep sigmoid function, in that small increases or decreases in the 

similarity of the neural representations, relative to the learned endpoints, caused large increases 

or decreases in the animal’s behaviour, in the same direction as the learned associations in those 

end point worlds. This steep relationship persists even when we exclude the end point worlds 

from analysis and focus only on intermediate worlds (Figure 4.17 C). While we did not observe a 

difference between CA1 or CA3, we did find a direct link between activity in the hippocampal 

circuit and the ultimate reward-seeking navigation behaviour of the animal.  
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Figure 5-17. Animals’ spatial behaviour in parametrically morphed virtual worlds drives the neural 

representation of those worlds in CA1 and CA3. 

A) Top: Relationship between licks in reward zone 1 and the correlation of the average W5 map. Bottom) Same as 

in A top but for licks in reward zone 2 and plotted as a function of correlation with the average place map in W1. 

B) Relationship between the lick difference between reward zone 1 and 2 and the difference in place map  

correlation to the W1 and W5 average place maps. Solid line represents the sigmoid fit for CA1 (purple) and CA3 

(pink). The steepness parameter estimate = CA1: 3.25 (CI: 2.31 4.19), CA3: 4.25 (CI: 3.15 5.88).Each point 

represents 1 of the 5 worlds per animal (animals are connected by the track lines) and end point worlds (W1, 

W5) are indicated by the open black circles. Purple = CA1. Pink = CA3. 

C) Same as in B) but for intermediate worlds only (end point worlds excluded). Black line = linear fit, grey shading 

= 95% confidence intervals.  

CA1 [purple], n= 6, CA3= [pink] n = 5. 

 
The average activity maps we use to compare all single trials maps to in the previous analysis may 

not be the true representations animals use, for example if population drift occurs or the 

representations are unstable. To combat this, we employed a new approach utilising K-means 

clustering to extract two maximally different average place maps. These maps by definition are 

the two most distinct representation seen throughout the recordings and we then used them as 

reference maps for assessment of the single trial maps. By projecting single trial activity into the 

C 
B A 
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space of the k-means clustered, maximally distinct, maps we were able to ask on a given trial 

which map is the current activity most similar to (Figure 4.18 A). We then averaged the 

proportion of trials using a given map in a given world and aligned the maps relative to the 

endpoint world most frequently using them in order to enable comparison across animals.  

 

When looking at the proportion of trials across each world that used the W1 dominant activity 

map, we noted a nonlinear function on average, whereby the frequency map 1 is used decreases 

across the worlds. CA3 animals tend to use the world 1 map more frequently than CA1 animals 

(Fig 4.18 B; 2-way ANOVA main effect of area, F(4,1) = 5.8, P = 0.02, main effect of world, F(4,1) 

= 7.8, P < 0.001). We noted that some animals show very steep relationships while for others it 

was shallower (track lines in Figure 4.18 B). This suggests heterogeneity in terms of how individual 

animals are representing the intermediate worlds relative to the learnt familiar end points.  

 

To quantify the level of attractor dynamics, we assessed how well a sigmoid function explains the 

neural representation across worlds. We devised a method to quantify the goodness of fit of a 

sigmoid, relative to a simple linear fit which we termed the sigmoid score (Figure 4.18 C). 

Surprisingly, we found that on average CA3 is no different from CA1 in terms of how it binds 

similar worlds into similar representations (Figure 4.18 D; CA1 population sigmoid score (AIC 

sigmoid fit – AIC linear fit): -98.36 ±110.45, n=6. CA3 population sigmoid score (AIC sigmoid fit – 

AIC linear fit): -28.42 ±57.48, n=5; P = 0.177 Wilcoxon rank sum test). However, we did observe a 

range of sigmoid scores, highlighting that some individual animals display pronounced attractor 

dynamics, while others do not. To explore the factors governing this, we related the average 

sigmoid score to various variables of interest. We looked animals’ behaviour including how long 

the animals were trained for and how fast the animals were traversing the tracks but found no 

relationship (Figure 4.18 E-H). However, when we looked at the potential fidelity of how the 

population was representing the environments, we discovered a relation to the strength of the 

attractor states. As the populations were made up of more place cells (and to a lesser extent, 

better encoding place cells) and so as the encoding quality increased so too did the degree of 

binding to the familiar end points (R2 = 0.66, P= 0.002, n = 11 animals). Although this relationship 
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5.2.7.2 Heterogenous single cell world representations  

After finding varying degrees of non-linearity of world representation at the neural population 

level, and concluding that the proportion on place cells in the network determined the degree of 

population sigmoid strength, we next explored the composition of those populations. We 

investigated how single cells behaved in terms of how similar their representation across worlds 

was relative to their optimal maps for the end point worlds (Figure 4.19A). We found a 

heterogenous population (Figure 4.19 B) in that some place cells are best described by a sigmoid 

fit (Figure 4.17C; 24.1 ± 7.3 % of place cells classed as sigmoidal in CA1 (n=6), 20.9 ± 7.4 % in CA3 

(n=5). P = 0.329 Wilcoxon rank sum test), indicating an abrupt switch whereby some worlds were 

most similar to W1, and others most similar to W5. Other place cells were best fit by a linear fit 

(Figure 4.19 D; 17.7 ± 8.1 % of place cells classed as linear in CA1 (n=6), 11.1 ± 6.5 % in CA3 (n=5). 

P = 0.637 Wilcoxon rank sum test), indicating a gradual change in representation across worlds. 

We did not observe any significant difference in single cell composition of population between 

subregions. We noted that with increasing numbers of place cells in the population, more of 

those place cells were sigmoidal in their world representation behaviour (Figure 4.19 E). Finally, 

to relate the sigmoidal character of single cells back to the population average nonlinearity, we 

investigated the relationship between the two. We observed that with increasing numbers of 

sigmoidal single cells, the population nonlinearity increases (Figure 4.19 F). 
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Figure 5-19. The proportion of single cells with nonlinear response profiles determines the population level 

nonlinearity.  

A) Example heat map of all place cells in one session, where colour indicates which map (W1 or W5) each cell is 

using across worlds. Cells are sorted by those that are best fit by a sigmoid, or a linear fit or not fit by either. 

B) Examples of the fitting procedure, where the proportion of trials a single cell is using the optimal map 1 across 

worlds is fit by a straight line and a sigmoid. yellow line = linear fit, pink line = sigmoid fit. Top= a cell that is not 

fit by either, middle= cell that is fit by a linear fit bottom = cell that is fit by a sigmoidal fit. 

C) Percentage of place cells defined as sigmoidal within each animal for each subregion. Open circles = animals, 

closed circles with S.E.M error bars = average across animals. 

D) Same as in C) but for cells defined as linear. 

E) Relationship between the percentage of significant sigmoidal cells in an animal and percentage of place cells in 

that animal. 

F) Relationship between the population sigmoid score (Figure 4.18 D) and the percentage of significantly sigmoidal 

cells in that population 

Grey shaded area & Error bars = S.E.M. grey lines in C & D = dual animals. CA1 [purple], n= 6, CA3= [pink] n = 5.   
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5.3  Discussion 
 

How are distinct memories formed and used for behaviour? To probe this question, we titrated 

the external environmental inputs by parametrically morphing virtual worlds and recording from 

large populations of CA1 and CA3 neurons. We related neuronal and behavioural discrimination 

during memory formation in virtual worlds. Our data describe similarities and differences in CA1 

and CA3 place cell properties within the same animals for the first time. We show that both CA1 

and CA3 neural population representations of the external world can be characterised by a non-

linear relationship to gradually changing environmental inputs at both a neural population and 

single cell level. We provide evidence of a direct link between activity in hippocampal CA1 and 

CA3 circuits and reward seeking navigation behaviour, suggesting non-linear hippocampal place 

codes drive spatial behavioural discrimination.  

 

5.3.1 Comparing CA1 and CA3 response properties in W1 

5.3.1.1 Relationship between running speed and neural population activity in CA1 and CA3 

While striking, our finding that animal running speed is positively correlated with network activity 

in CA1 and negatively correlated with CA3 network activity might be expected given evidence for 

an opposite relationship between population oscillations in CA1 and CA3 and running speeds 

(Czurko et al., 1999). Hippocampal network states include rhythms at theta (5–10Hz) and gamma 

(40–100Hz) frequencies. Standard models of hippocampal function posit that these two states 

are associated with distinct memory functions: encoding and consolidation, which occur during 

periods of either activity (encoding, Chapter 1.3.2) or quiescence (consolidation; Chapter 1.3.3). 

Running speed modulates the frequency of hippocampal gamma oscillations, notably slow (∼20–

50 Hz) and fast (∼50–100 Hz) gamma frequency ranges in CA1 correspond respectively to CA3 or 

ERC coherence with CA1 (Ahmed & Mehta, 2012; Colgin et al., 2009; Kemere et al., 2013). 

Specifically, as running speeds increases, CA3 firing rates reduce, and ERC firing rates increase, 

suggesting that CA1 transitions from CA3 inputs to ERC inputs as running speed increases (Colgin 

et al., 2009). While we do not have the temporal resolution to resolve the frequency of such 
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events using 2P imaging, we were able to show changes in population activity in thousands of 

cells that would be consistent with supporting this interpretation. 

 

Furthermore, this interpretation is in line with slow and fast gamma rhythms reflecting 

functionally distinct states in the hippocampal network. During slow gamma, hippocampal place 

cells tend to represent spatial locations separate from the current location (Zheng et al., 2016). 

This can occur as part of the sharp wave-triggered reactivation process (Carr, Karlsson, & Frank, 

2012) or as maps of upcoming locations are activated during exploration (Bieri, Bobbitt, & Colgin, 

2014). As running speed increases, animals likely rely more on self-motion cues, conveyed by 

MEC (Jacob, Poucet, Liberge, Save, & Sargolini, 2014; McNaughton et al., 2006; Van Cauter et al., 

2013), to accurately keep track of where they are. Under these conditions, MEC spiking increases, 

and MEC-driven fast gamma becomes the dominant gamma activity in CA1. Hence, fast gamma 

frequency increases with running speed, allowing place cells to accurately keep track of rapid 

transitions across spatial locations (Jacob, et al., 2014; McNaughton et al., 2006; Van Cauter et 

al., 2013). 

 

5.3.1.2 CA1 & CA3 assemblies  

The manner in which environments are mapped by neural circuit is influenced by local variations 

in network structure, given connectivity determines the spatial arrangement of postsynaptic 

activation. Hence, pairwise activity correlations between neurons captures much of the statistical 

properties of a single neuron and provide a measure for studying the properties of population 

activity (Dettner, et al., 2016; Helias, Tetzlaff, & Diesmann, 2014). Weak pairwise correlations can 

give rise to emergent spatiotemporal structures in population activity (Halliday, 2000; Renart et 

al., 2010; Schneidman et al., 2006; Kriener et al., 2009; Yu, Hendrickson, Song, & Berger, 2018) 

and therefore we characterised the topographic organisation activity correlations in CA1 and 

CA3. Our finding of a similar spatial structure of pairwise correlations in CA1 and CA3 but higher 

neighbour correlations in CA3 fits with the notion that CA3 pyramidal neurons are more bursty 

than pyramidal neurons in CA1 (Hunt et al., 2016; Rauš Balind et al., 2020). While both CA1 and 

CA3 pyramidal neurons exhibit burst discharges for example, associated with the theta rhythm 
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and SWRs (Buzsáki, 1989; Csicsvari et al., 2000), it is known that CA3 neurons exhibit more spikes 

per burst, greater spike frequency, and larger amplitude spikes than CA1 neurons (Dong & 

Sheffield, 2021; Sneider et al., 2006). In line with this, we also found CA3 place cells had larger in 

field response amplitudes. These results support recent work that showed large calcium events 

are associated with complex spike bursting (Schoenfeld, Carta, Rupprecht, Ayaz, & Helmchen, 

2021), and might lead to plasticity in the recurrently connected CA3 network to support the 

formation of functional engrams (Rauš Balind et al., 2019; Schoenfeld et al., 2021). The 

emergence of co-active CA3 ensembles and their relevance for hippocampus-dependent 

behaviours warrant further investigations using longitudinal calcium imaging (Schoenfeld et al., 

2021) or functional manipulation (Carillo-Reid et al., 2018; Packer et al., 2015; Russell et al., 2019; 

Robinson et al., 2020). 

 

5.3.1.3 Place coding in CA1 and CA3 

Place cells have been found in all hippocampal subregions and regional specific differences in 

their coding properties have already been documented (Oliva et al., 2016; Jung & McNaughton, 

1993, Leutgeb et al., 2007, Kjelstrup et al., 2008; Skaggs et al., 1996). Most notably Oliva et al, 

(2016) performed large-scale silicon probe recordings simultaneously across all layers in CA1, 

CA2, and CA3 in rats during real world spatial navigation (Oliva et al., 2016). While most of our 

findings agree, in that we both found fewer principal cells displayed space-dependent responses 

in CA3 than in CA1, and bigger place field sizes in CA3, we found opposing results on other spatial 

properties (Oliva et al., 2016). Notably, we found similar spatial information scores between CA1 

and CA3 place cells, whereas Oliva et al. found CA3 place cells code more spatial information 

(Oliva et al., 2016). This might be explained by differences in our recording sites. On closer 

inspection, Oliva et al. found CA3a and b and proximal CA1 (CA1 closest to CA2) to have similar 

spatial information scores and it is likely that these are the parts of the subregion we had optical 

access too rather than distal CA1 and CA3c (Figure 1 A & K Oliva et al., 2016).  

 

Moreover, we used different methodologies (electro- vs opto-physiology), and recently other 

optically identified place cells in CA1 and CA3 have been shown to be similar in their spatial coding 
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(Hainmueller & Bartos, 2018). It is possible that more heterogeneity in spatial tuning of place 

cells within subregions exists and is not detected using optophysiological methods as we 

currently do not consider hippocampal layers differences (Cherubini & Miles, 2015) and ignore 

the known proximo-distal gradients (Chapter 1.2.4; Lu et al., 2015). Hence, while similar to the 

other optically identified place cells, our between subregion comparisons were also similar given 

the existing proximodistal hippocampal gradients (Lu et al., 2015). Given the high spatial 

resolution provided by 3D 2P imaging, our future work could include mapping cells spatial 

position in the imaging volume to reconstruct the layers in the subregion and investigate 

subregion place coding at a finer spatial resolution. Ultimately, whether different behavioural 

correlates of these place cell properties exist across subregions was a point of interest for our 

later comparisons. 

5.3.2 CA1 and CA3 response properties in a novel environment  

5.3.2.1 Place cell properties in novel environments  

The reorganization in the place field locations results in unique population-wide representations 

for different environmental contexts (Colgin, Moser & Moser, 2008). However, how different 

hippocampal subregions remap has not been fully explored. In line with previous work, we found 

a higher number of place cells on the familiar track than on the novel track (Hainmueller & Bartos, 

2018). As many neurons were active in both contexts, we investigated whether active neurons 

were likely to have a place field in both contexts and found place cells appeared to form 

independent subgroups within the active cell population. This was similar to previous reports of 

place cells in CA1 and CA3 (Hainmueller & Bartos, 2018; Figure 1f) indicating that a separate 

place-code or representation exists for each context. Further comparison of spatial coding 

properties revealed both subregions similarly coded spatial information in both novel and 

familiar worlds. This differs from recent work, where an increase in spatial coding was found in 

novel worlds for both subregions, (Hainmueller & Bartos, 2018). 

 

Notably in our experiments, CA3 place cells were less reliable (spatially stable) than CA1 place 

cells in novel contexts, which is surprising given some models of CA1 place field formation require 
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spatially tuned presynaptic inputs from CA3 (Bittner et al., 2017; Magee & Grienberger, 2020). 

Spatially tuned CA3 inputs coincident with ERC inputs generate dendritic plateau potentials in 

CA1 cells to drive synaptic potentiation (Bittner, et al., 2015). However, recently Dong and 

Sheffield (2021) found in a novel context, CA1 instantly forms a well-organized map with 30% 

place cells remapping on the first track lap, whereas CA3 forms a new population representation 

gradually with experience, with only 9% CA3 place cells remapping instantly (Dong & Sheffield, 

2021; Figure 1h, i; Extended Data Fig. 2c, d). Hence, delayed CA3 place fields might explain our 

reduced trial-wise CA3 place cell reliability measures. Following this, instant CA1 place fields 

might not be formed through the mechanism previously described, but instead might form 

through other direct ERC inputs or inputs from Nucleus Reunions (Dolleman-Van Der Weel et al., 

2019). Dong and Sheffield (2021) suggest, delayed CA3 place fields might form through a process 

of local dendritic spikes that occur on the initial laps in the absence of somatic firing (Sheffield & 

Dombeck, 2019; Sheffield et al., 2017; Sheffield & Dombeck, 2015; Bittner et al., 2017), 

potentiating a local clusters of synapses that become strong enough to drive firing, and possibly 

plateau potentials after a delay to ultimately form novel place fields (Sheffield & Dombeck, 2019; 

Sheffield et al., 2017; Sheffield & Dombeck, 2015; Bittner et al., 2017). These interpretations 

suggest CA1 does not simply inherit spatial information from CA3 during this form of spatial 

learning and suggests that CA3 place fields are less stable than CA1 place cells, contrary to the 

traditional assumption.  

 

5.3.3 Morphing worlds  

5.3.3.1 Gradual and abrupt transitions at different points along the morph sequence  

Pattern completion and pattern separation are two algorithms thought to be implemented in the 

hippocampus (Chapter 1.5.2). How information undergoes such transformations between 

downstream (CA3) and upstream (CA1) areas is little understood beyond theoretical predictions 

(Rolls et al., 1998; Rolls 2007). According to current attractor network theory (Hopfield, 1984; 

Marr, 1971; Rolls et al., 1998; Chapter 1.5.2) discrete attractor dynamics for contextual memory 

are expected to manifest as an abrupt shift in the neural representation due to pattern 
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completion properties, as one context is morphed into the next, as is the case for global 

remapping (Colgin et al., 2008). We found non-linear response dynamics, indicative of attractor 

behaviour in both CA1 and CA3 networks. Hence, in familiar and novel environments that are 

sufficiently different, both CA1 and CA3 population activity shows separate neural 

representations of these worlds. However, in similar worlds (intermediate worlds), CA3 and CA1 

representations were more coherent with the end point world they most closely resemble. 

Although we noted heterogeneity in the remapping response non-linearity between different 

animals. 

 

The heterogeneity in neural representation dynamics we reported reflects the debate 

(mentioned in Chapter 1.5.3) between conflicting evidence suggesting average population 

activity transitions gradually (Leutgeb et al., 2007) or abruptly (Wills et al., 2005) from one 

familiar context to the next similar context. These contradictory results confuse the 

interpretation of network properties associated with the stored representations (Leutgeb et al., 

2007). Interestingly, at the level of individual CA3 cells Leutgeb et al. showed a mix of gradual 

and abrupt representation transitions at different points along the morph sequence (Leutgeb et 

al., 2007). They also found some cells displayed hysteresis, a signature of attractor dynamics. 

While with calcium imaging we do not have the temporal resolution to resolve such dynamics, 

we were also able to show heterogeneity in representation transitions at the level of single cells, 

suggesting sub populations of cells likely drive non-linear population events. 

 

Moreover, theoretical work has developed neural network models of CA3 with attractors for both 

position (continuous) and discrete contexts, to account for the possibility that CA3 memories 

might consist of local attractor states embedded in a continuous spatial map (Leutgeb et al. 2017; 

Solstad, Yousif, & Sejnowski, 2014). Solstad et al. found, position-dependent context attractors 

made transitions at different points along the morph sequence (Solstad et al., 2014). 

Subsequently, smooth transition curves arose from averaging across the population, while 

heterogeneous responses were observed on the single cell (Solstad et al., 2014). In contrast, 

orthogonal memories led to abrupt and coherent transitions on both population and single unit 
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levels as experimentally observed when remapping between two independent spatial maps 

(Solstad et al., 2014).  

 

5.3.3.2 Similarity in neural population behaviour in subregions CA1 and CA3 

Surprisingly, we found population activity in both subregions to be similar in that both CA1 and 

CA3 neural representations showed non-linear response dynamics to morphing VR worlds. We 

found this neural behaviour to more apparent in CA1 populations, contrary to our hypothesis 

that CA3 neurons would show a more abrupt transition in population activity given the 

differences in connectivity between subregions, in particular the abundant recurrent collaterals 

in CA3 and the functional properties such an architecture endows (Chapter 1.5.2; Rolls, 2007; 

Rolls et al., 2013; Treves & Rolls, 1992; Tsodyks, 1999). Our results are inconsistent with previous 

electrophysiology studies that showed CA3 population activity was less sensitive than CA1 

activity to subtle environmental cue alterations, evidenced by a more coherent population 

representations between environments in CA3 than CA1 (Lee, Yoganarasimha, Rao & Knierim, 

2004). Hence, Lee et al. concluded that CA3 displayed more homogeneity in the ensemble 

response to a subtly different novel environment than CA1 (Lee et al., 2004). It is possible, given 

their recording sites extending from the dorsal surface through CA1, tha Lee and colleagues 

target CA3c, whereas our work records from CA3a and b. Anatomical differences along the CA3 

transverse axis may serve different computational roles (Chapter 1.5.3; Lu et al., 2005; Sun et al., 

2017). Specifically, a functional gradient exists making CA3c maximally different from CA1 (Lu et 

al., 2005).  

 

The functional gradient within CA3 is important, as more recent work has shown using a local-

global cue mismatch (double-rotation) experiment, recordings from CA3c have revealed these 

place cells remapped (become silent or gain a new place field), whereas CA3a and b cells rotate 

their place fields to follow the local cues (Neunuebel & Knierim, 2014; Knierim & Neunuebel, 

2016). Hence CA3c, where recurrent collaterals are weakest, showed behaviour reflective of the 

pattern separation property of the DG (Allegra et al., 2020; Neunuebel & Knierim, 2014; Knierim 

& Neunuebel, 2016). Whereas CA3a and b, where recurrent collaterals are strongest, maintained 
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coherent representations resembling the classic attractor network system (Neunuebel & 

Knierim, 2014; Knierim & Neunuebel, 2016). Hence, when considering the intra subregion 

recording sites, and the global environmental changes, it is less surprising Lee et al., found that 

‘CA3’ remaps. These results highlight the importance of considering behavioural variables and 

functional heterogeneity within subregion when interpreting findings from these brain areas. 

 

Furthermore, recent optophysiology studies have also found evidence of attractor behaviour in 

CA1 networks. Allegra, et al. (2019), used 2P imaging during virtual navigation of familiar, familiar’ 

(similar) and novel environments. They found place cell correlations between similar 

environments were higher in CA1 than in the DG, suggesting that CA1 minimised and the DG 

amplified small context differences, providing functional evidence of pattern completion in CA1 

and pattern separation in DG in vivo (Allegra et al., 2020). Adding to this, Plitt and Giocomo (2021) 

found that activity in CA1 is strongly driven by the animal’s prior beliefs about the frequency of 

certain context. They recorded CA1 activity during a similar morphing experiment to ours and 

found the more familiar animals were with the intermediate morph worlds, the more gradual the 

neural representation transition (Plitt & Giocomo, 2021). Whereas the less familiar animals were 

with the intermediate morph worlds the more their neural representations showed non-linear 

dynamics (Plitt & Giocomo, 2021). These findings help contextualise and explain our own results. 

Our experimental procedures (Figures; 4.2, and 4.12), particularly in experiment 2, were most 

similar to Plitt & Giocomo’s rare morph condition in which 50% of trials were in the end point 

(maximally different) worlds and the other 50% split between the intermediate worlds. It follows 

that we would be more likely to see non-linear neural response dynamics under these conditions 

and that such network effect are also expected in CA1 populations (Plitt & Giocomo, 2021). 

 

5.3.4 Neural discrimination drives behavioural discrimination during 

virtual spatial navigation  
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5.3.4.1 Linking hippocampal activity to behaviour  

While place cells have long been assumed to form the neural basis of a cognitive map of space, 

the direct influence of place cell activity on spatial navigation behaviour has only recently been 

demonstrated by our lab (Robinson et al., 2020). Using an ‘all-optical’ approach (Chapter 1.6.4), 

we identified and selectively activated place cells that encode behaviourally relevant locations in 

VR. Remarkably, targeted optogenetic stimulation of a small number of place cells was sufficient 

to bias the behaviour of animals toward that associated with the location of their place fields 

during a spatial memory task (Robinson et al., 2020). These findings demonstrate a causal role 

for place cell activity in guiding spatial navigation (Robinson et al., 2020), thereby providing direct 

support for long-standing theories about the behavioural function of the hippocampal cognitive 

map (O’Keefe and Nadel, 1978; Eichenbaum et al., 1999; McNaughton et al., 2006). 

 

Following on from Robinson et al.’s (2020) demonstration of place cells driving behaviour, we still 

know relatively little about how other subregions encode distinct memories of similar objects 

and events (Danielson et al., 2016) and more specifically how these distinct representations are 

used for behavioural decisions (Leal, & Yassa, 2018). How information undergoes 

transformations between downstream (CA3) and upstream (CA1) areas is little understood. 

Supporting Allgera et al., (2020) we found a close relationship between behavioural and neural 

discrimination in CA1. We also found a similar relationship between CA3 neural discrimination 

and behaviour. In light of recent work, these data are compatible with the notion that 

behavioural relevance and saliency (given the rich nature of our VR environment) might trigger 

formation of new representations in CA3/1, perhaps driven by decorrelated information from 

the DG (Allgera et al; 2020). It follows that attractor dynamics in CA3 transition from pattern 

separation to completion (reflecting heterogeneity found within subregion), possibly as the 

differences in subregion inputs exceed a threshold (Plitt & Giocomo, 2021). CA1 then integrates 

CA3 inputs as well as other inputs from ERC and surrounding areas and the final representation 

in CA1 is then used by downstream neocortical circuits to guide learning and drive behavioural 

decisions (Frankland & Bontempi, 2005; Guzman et al., 2016; Hasselmo et al., 1995; Marr, 1971; 

McNaughton and Morris, 1987). 
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Collectively, our findings show single cells display non-linear neural dynamics in response to 

parametrically morphed virtual environments, and this activity likely underpins the non-linear 

neural population dynamics and also explains the variability in linearity. Furthermore, the 

similarity in response dynamics between CA1 and CA3 networks suggests the hierarchy of 

information flow in the trisynaptic loop model of the hippocampal may not be as pronounced as 

previously assumed. We show that activity in CA1 and CA3 reflects discrimination behaviour and 

hence, this decision-making information must already be present in CA3, again supporting the 

notion that rather than a trisynaptic chain, the hippocampus may be organised as a set of parallel 

loops. Hainmueller and Bartos (2020) suggest each loop could be  formed by a hippocampal 

subfield receiving direct PP synapses and inputs from upstream hippocampal areas (Hainmueller 

& Bartos, 2018; Hainmueller & Bartos, 2020 Fig. 1c; McNaughton et al., 1989; Kitamura, et al., 

2014), as there are multiple instances where correct memory storage and retrieval is achieved 

based on the PP–CA1 or PP–CA3–CA1 loop alone (Hainmueller & Bartos, 2020). 
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6  

 

 General Discussion  
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The neural firing of hippocampal place cells often strongly correlates with an animal’s current 

spatial location in an environment, providing a neural basis for the brain’s code for space O’Keefe 

& Dostrovsky, 1971; O’Keefe & Nadel, 1979). Between environmental contexts, place cell firing 

fields can reorganise in phenomena collectively referred to as remapping. The extent to which 

different hippocampal subregions remap and under which environmental contexts has been an 

area of intense debate (Chapter 1.4.3; Kentros et al., 1998; Cacucci, et al., 2007; Mankin et al., 

2012).  Different hippocampal subregion connectivity suggests specialised subregion 

computations (Rolls, 2007). However, methodological difficulties in accessing large neural 

populations across subregions and challenges in precisely controlling environmental inputs has 

limited experiments assessing this question. In this thesis we devise novel methods and 

experiments to probe questions arising from this body of work. 

 

6.1.1 Summary of thesis  

This thesis describes new methods that: 

1) Contribute to founding the emerging field of in vivo 2P calcium imaging of CA3 pyramidal 

neurons, by establishing a method for imaging genetically defined CA3 pyramidal neurons in 

vivo in a 3D volume of hippocampus, optically accessing the largest population of CA3 cells 

reported to date. 

2) Demonstrate the first protocol for dual hippocampal subregion imaging based on unique 

markers for CA3 pyramidal cells and differences in soma size, opening up cross subregion 

imaging experiments within the same animals. 

3) Provide the first demonstration of an all optical approach involving simultaneous 2P imaging 

and 2P photoactivation of neurons in subregion CA3, demonstrated in (Russell et al., in prep). 

4) Provide open source material to quickly build an affordable and space efficient mini modular 

VR systems, simplifying complex experiments. 

 

This thesis also describes experiments using these methods that suggest the following scientific 

findings: 
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1) CA1 and CA3 network properties are differently modulated by brain state. Increased 

running speed increased CA1 network activity and vice versa for the CA3 network.  

2) Fewer principal cells displayed space-dependent responses in CA3 than in CA1, but place 

cells in CA3 had bigger place field sizes, despite similar spatial information scores.  

3) CA1 and CA3 place cell networks behave similarly demonstrating non-linear neural 

response dynamics during virtual navigation through parametrically morphed VR 

environments. 

4) Non-linear neural population behaviour in CA1 and in CA3 drives behavioural 

discrimination during spatial navigation. 

 

6.1.2 Future perspectives  

6.1.2.1 CA3 and dual subregion 2P imaging   

At the time of project conception (2016) there were no reported 2P studies of subregion CA3, a 

testament to the difficulty in accessing this region with an imaging objective. However, recently 

a few imaging studies have been conducted in CA3 and use a similar method to ours (Bartos & 

Hainmueller, 2019; Schoenfeld et al., 2020). The similarity in our FOVs, and findings reflect the 

robustness of the surgical method developed. One limitation of the current published CA3 

imaging studies is that they access a relatively small population of neurons given the angled 

nature CA3 anatomy. We circumvented this limitation by using volume imaging to access 3 

additional imaging planes and thus access a much larger subsample of CA3 neurons. One future 

direction might include identifying layers in CA3 (Amaral et al., 2007). For example, by imaging at 

subcellular resolution (see Figure 2.3), the recently identified athorny CA3 cells, known to exist 

deep layer SP in CA3a and b in vitro (Hunt et al., 2016) could be confirmed in vivo. Athorny CA3 

cells are bursty (Hunt et al., 2016) and thought to play a key role in triggering slow waves, hence 

establishing this function in vivo is paramount.  

 

The new dual hippocampal subregion imaging protocol demonstrated in this thesis opens up 

opportunities to study the propagation of information between downstream (CA1) and upstream 
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(CA3) regions. While much is known regarding the information flow around the trisynaptic loop, 

it is only recently we have been able to study at the level of large neural populations the different 

subregions individually (Dombeck et al., 2010; Bartos & Hainmueller, 2018) and our method 

represents the first time two subregions were recorded simultaneously in vivo. Although exciting, 

our approach does have caveats as it ignores the smallest subregion, CA2 (Lorente De Nó, 1934; 

Dudek, Alexander, & Farris, 2016). Although, there is debate over whether CA2 is truly a distinct 

region from CA3 (Gaarskjaer, 1986). CA2 has been implicated as fundamental to social memory 

processes and olfactory cues, given CA2’s non-spatial information inputs from ERC (Chevaleyre, 

& Siegelbaum 2010; McHugh et al., 2007;  Mankin et al., 2015; Dudek et al., 2016; Smith et al., 

2016). It has also been suggested that CA3 neurons closest to CA2 have firing properties more 

similar to those in area CA2 than to the rest of the CA3 (Caruana, Alexander, & Dudek, 2012; 

Dudek et al., 2016). Hence, to exclude CA2 neurons in our dual subregion preparations, we use 

an exclusion boundary between subregions, but we cannot be absolutely certain we are not 

imaging some CA2 cells in our dual region experiments. CA2 cells would be difficult to identify 

using our current method, given CA2 pyramidal cell bodies are larger than those in CA1, and 

similar in size to CA3 pyramidal cell bodies (Caruana et al., 2012). One solution would be to post 

hoc identify CA2 pyramidal neurons using a Purkinje cell protein 4 (PCP-4) stain (San Antonio et 

al., 2014). However, this too could be difficult given the challenge in identifying reconstructed 

imaging FOVs. Hence, an exclusion zone between boundaries, even with its caveats should suffice 

and similar exclusion methods have been used to sperate other cross region imaging cortical 

preparations.  

 

6.1.2.2 All optical activation of CA3 neurons in vivo 

In this thesis we demonstrate the first all optical activation of CA3 pyramidal neurons. While the 

reliability of our expression strategy remains an area of continued work, our efforts contribute 

to the development of this strategy from initially photoactivating neurons in superficial cortex 

(Packer et al., 2015), to deep cortex, (Russell et al., 2019) to subcortical areas (CA1), and now to 

deeper subcortical areas (CA3; Russell et al., 2021 in prep). This all-optical method (see Russell et 

al., 2021) offers the ability to record from thousands of neurons in multiple brain areas and probe 
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network function at single cell resolution, combined with behavioural read outs. The extension 

of  this methodology to deep subcortical regions described in this thesis, takes us closer to being 

in a position to crack the hippocampal neural code, linking different subregion circuit function 

directly to behaviour. 

 

The notion that CA3 networks endowed with recurrent connectivity and function as an attractor 

network was an idea put forward decades ago (Bhatia, Moza, & Bhalla, 2019; Marr, 1971; Rolls, 

2007). Work in this thesis utilised our novel all optical approach to assess CA3 circuit function 

with single cell resolution and provides the first demonstration of potential attractor dynamics 

in CA3 in vivo (Chapter 2.3.3). While neural circuits are the substrate for information processing, 

their dynamics are governed by a complex interplay between input activity and the responses of 

excitatory and inhibitory neurons (Bhatia et al., 2019). Thus, the organization of patterns of 

synaptic connectivity is an important determinant of the dynamics, and therefore one of the main 

caveats of our experiment is that we were not able to resolve connectivity motifs in vivo. We 

could only infer that our boosted network response is the result of CA3-CA3 recurrent 

connections. 

 

Furthermore, we have similar issues clarifying our interpretation of suppressed CA1 responses to 

CA3 stimulation as indicative of feedforward inhibition reflecting the canonical EPSP-IPSP 

sequence  (Alger & Nicoll, 1982; Lovett-Barron et al., 2012; Miles, 1990; Pouille & Scanziani, 2001; 

Schwartzkroin, 1975). To confirm this, we need to resolve underlying connectivity motifs to 

reveal monosynaptic excitation and disynaptic inhibition (Guzman et al., 2016). This has not yet 

been demonstrated in vivo, but recent work developing in vivo voltage imaging (Adam et al., 

2019; Knöpfel & Song, 2019) and improvements in somatically restricted opsin expression 

(Marshel et al., 2019) could potentially make connectivity mapping at this resolution a real 

possibility in the near future. Nevertheless, experimentally linking neural microcircuit function to 

emergent properties of the brain requires fine-scale manipulation and measurement of neural 

activity during behaviour, where each neuron’s coding and dynamics can be characterized 

(Carrillo-Reid et al., 2020). Our proof-of-principle experiments takes the first steps towards this 
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goal by demonstrating all optical manipulation of subcortical hippocampal circuits in subregion 

CA3 (Russell et al., 2021 in prep). 

 

6.1.2.3 Population activity and spatial coding differences between CA1 and CA3 networks 

One stark contrast between CA1 and CA3 circuits is their population activity correlation with 

behavioural state, specifically running speed. Our findings reflect the notion that there is 

continuous modulation of information processing in the hippocampal circuit as a function of 

behavioural state, transitioning from strong CA3 drive of CA1 activity at low running speeds to 

ERC drive of CA1 activity at higher speeds. It would be interesting to probe the impact of 

environment novelty on this correlation (Kemere et al., 2013). Typically, as the environment 

become more familiar to the animals, they run faster, hence speed modulation should be 

stronger in novel environments. Such a finding would strengthen our interpretation that CA3 

inputs predominate at slow gamma where place cells tend to represent spatial locations separate 

from the current location. In contrast, at fast running speeds animals likely need to rely on self-

motion cues, conveyed by MEC (McNaughton et al., 2006; Van Cauter et al., 2013; Jacob et al., 

2014), to accurately track position. Under these conditions, MEC spiking increases, and MEC-

driven fast gamma becomes the dominant gamma activity in CA1 (Zheng et al., 2015). Hence, fast 

gamma frequency increases as running speed increases, enabling place cells to accurately keep 

track of rapid transitions across spatial locations (Zheng et al., 2015). 

 

The present pattern of results regarding spatial properties of place cells in CA1 and CA3 highlight 

the importance of considering the subregions beyond homogenous entities. As mentioned 

throughout this thesis (Chapter, 1.2.2, Chapter 6.1.2.1), molecular, (Vogel et al., 2020) 

connectivity (Qiongling et al., 2020) and functional gradients in place cell properties across 

subregions exist (Colgin et al., 2010; Lee et al., 2015; Lu et al., 2015). Our work presented in this 

thesis neglects these subtleties. However, future work could use alternative methods for 

example, a GRIN lens (Moretti et al., 2016) or excavating CA1 to image deeper CA3 areas (CA3c 

and DG). These differences in methodological approaches might be useful in revealing differences 

between CA1 and CA3(c) that are more comparable with traditional electrophysiological studies 
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that compare and contrast these specific subregions. While such methods would enable a 

comparison of CA3c to CA1, they are not without their own caveats, most notably increased 

damage to the hippocampus than the methods we used. A better understanding of the specific 

part of the subregion imaged would enable a deeper understanding of the conditions in which 

subnetworks, specifically the CA3c – distal CA1 ‘non-spatial’ network and the proximal CA1 - 

CA3a/b ‘spatial’ networks are recruited to comprehend how information is processed in the 

hippocampal network (Beer et al., 2018). At present, performing recording simultaneously across 

subregions still remains a major challenge for both electrophysiological and optophysiological 

studies since the coordinates of the proximal and distal parts of CA1 and CA3 vary greatly along 

the transverse axis of the hippocampus due to its folding (Beer et al., 2018). Our work takes the 

first steps to opening up cross subregion imaging and combined with the alternative methods 

discussed, will begin to unpick circuit functions at a level not previously possible. 

 

  
6.1.2.4 Manipulating environments to probe hippocampal subregion dynamics  

To clearly represent similar objects and events that have different behavioural significance, the 

hippocampus must transform similar inputs into well-separated neuronal memory 

representations (Allgera et al., 2020). The input region of the hippocampus, the DG, is thought to 

implement this by orthogonalizing cortical inputs through sparse firing activity patterns (Gilbert 

et al., 2001; GoodSmith et al., 2017; Leutgeb et al., 2007; McNaughton & Nadel, 1990; Neunuebel 

& Knierim, 2014; O’Reilly & McClelland, 1994; Rolls & Treves, 1998; Treves & Rolls, 1992). In 

contrast, the downstream circuits CA3 and CA1 are thought to retrieve memorized patterns from 

incomplete or degraded input via attractor dynamics and to transfer these memory 

representations to the neocortex, where they are processed to drive behaviour (Frankland & 

Bontempi, 2005; Guzman et al., 2016; Hasselmo et al., 1995; Marr, 1971; McNaughton & Morris, 

1987). Our findings support these interpretations. While average population activity in CA3 was 

reported to transition nonlinearly from one familiar context to the next, suggesting some 

attractive forces associated with the two stored representations (Leutgeb et al., 2005), although 

this finding was less abrupt than predicted based on attractor network theory (Chapter 1.5; Rolls, 
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2007). It is possible that a mix of gradual and abrupt network transitions occur at different points 

along the morph sequence and might underpin this result (Solstad et al., 2014).  

 

Alternatively, it is possible that our intermediate VR worlds were not as similar as we assumed 

them to be to the end point worlds. Our parametric morphing procedure involved arbitrarily 

choosing maximally different features (e.g. blue vs. green) to morph; as a result the intermediate 

worlds created might be more different from the end point worlds than optimal. To probe how 

subregions truly discriminate very similar inputs and account for this caveat, one could make an 

additional 5 morph worlds using the 3rd intermediate world as one end point world, thus creating 

more subtly morphed worlds, that would ultimately be more similar. Finally, it is also thought 

that CA1 representations might diverge over time, Lever et al. (2002) found CA1 place cell 

representations, after repeated expose to two subtly differently shaped environments, gradually 

and incrementally diverged (Lever, Burgess, Cacucci, Hartley, & Keefe, 2002). In this thesis, we 

have only considered representations at one point in time and thus it is possible that CA1 spatial 

representations diverge over repeated exposure to the intermediate worlds, such that each 

world is represented differently. Perhaps this would result in a more seemingly gradual transition 

in CA1 spatial representations between the end point worlds, fitting the initial predictions from 

attractor theory (see Chapter 1.5). However, much work is needed to dissect the role of specific 

hippocampal subregion place cells after place field emergence, and how the place field properties 

(position, width, shape) evolve with familiarization. Studying these dynamics is a proxy for 

studying the synaptic plasticity mechanisms supporting experience-dependent activity patterns 

in the hippocampus at a system level  

 

 

6.1.2.5 Neural discrimination behaviour underlies behavioural discrimination behaviour for both 

subregions  

By correlating the behavioural readout of which world the animal thought itself to be in with the 

neural representation, we were able to investigate the extent to which behaviour reflects neural 

activity patterns seen as the animal was traversing through the track prior to the reward point. 



 

171 
 

While not the first example of place activity in CA1 driving behaviour, given we showed that 

targeted stimulation of specific place cells was sufficient to bias behaviour towards that 

associated with the location of their place fields (Robinson et al., 2020). Our current findings are 

the first example of CA3 neural representations reflecting behavioural discrimination and take 

the first steps towards suggesting a causal role for CA3 place cell activity in guiding spatial 

navigation and decision making. Further work is needed to confirm this statement, ideally 

through direct manipulation of CA3 place cell activity (see below 6.1.3). 

 

Alternatively, an interesting future avenue would be to assess the role of neuromodulators such 

as acetylcholine that can reconfigure neural networks (Hasselmo, 2006; Prince, Tsaneva-

Atanasova, Clopath, & Mellor, 2017). Acetylcholine has been proposed as a filter or gate 

mechanism to select which experiences should be encoded (Hasselmo et al., 1995). Acetylcholine 

is thought to promote encoding of novel information by facilitating NMDA receptor function and 

induction of synaptic plasticity (Buchanan, Petrovic, Chamberlain, Marrion, & Mellor, 2010; 

Dennis et al., 2016; Marino, Rouse, Levey, Potter, & Conn, 1998; Markram & Segal, 1992) and 

also selectively suppressing recurrent activity representing stored information, in favour of feed-

forward activity representing novel information (Hasselmo, 1995). Hence, salience is indicated 

by increasing the release of acetylcholine in the hippocampus (Dayan & Yu, 2006). In light of our 

experiments, optogenetic acetylcholine release could be used to increase the saliency of the end 

point worlds, potentially improving their encoding as two distinct worlds. It follows then, that we 

might find a more abrupt shift in the neural representations such that intermediate worlds are 

represented as more similar to one or the other end point worlds. This is particularly true if 

acetylcholine release is also blocked during presentation of intermediate worlds to reduce the 

suppression of recurrent activity potentially containing the stored end point world 

representations. Manipulating this neurotransmitter would enable us to probe its function and 

it provides testable predictions for population dynamics under uncertain conditions (subtle 

environment changes). This would enable us to strengthen our interpretation of neural 

population activity driving behavioural decision making. 
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6.1.3 A dream experiment  

The hippocampus shows three main classes of rhythms: theta (∼4–12 Hz), sharp wave–ripples 

(∼150–200 Hz ripples superimposed on ∼0.01–3 Hz sharp waves; SWs) and gamma (slow and 

fast∼25–100 Hz; Colgin et al., 2016). Sharp wave/ripple (SWR) events in the hippocampus are 

thought to coordinate the reactivation of stored memory traces and direct their reinstatement 

in cortical circuits (O’Niell et al., 2010; van de Ven et al., 2016) and the planning of future 

behaviours (Foster & Wilson 2006; Ólafsdóttir et al., 2018; Pfeiffer, 2020). SWs originate from 

the CA3a and CA2 regions and are observed in a diverse range of mammalian species from 

primates to rodents (Csicsvari et al., 2000). These phylogenetically conserved rhythms that occur 

during periods of quiescence, and slow-wave sleep (Colgin et al., 2016). SW attractor states 

reflect pattern completion computations vital to memory function (Hunt et al., 2018; Rolls 2007). 

Evidence in support of this relationship comes from the observation that cellular activity patterns 

occurring during recent experiences are reactivated in temporally compressed synchronous 

epochs (SW replay; Ólafsdóttir et al., 2018). In the context of our findings, information about cell 

assembly patterns stored at recurrent synapses can be reactivated during SWs when driven by 

internally generated or extrinsic partial patterns, (readout of these partial patterns might be 

performed by athorny cells; Hunt et al., 2018) promoting pattern completion that manifests as a 

SW attractor. Hence one could imagine an experiment, similar to those described in Chapter 4, 

but combined with an all-optical approach to enable user controlled optogenetic activation of 

part or the complete neural representation of one of the end point worlds when the animal is in 

the intermediate world. This approach would enable us to potentially bias behaviour and 

demonstrate the functional relevance of neuronal ensembles containing spatial information 

underpinning behavioural decisions. Ultimately, an experiment like this would allow us to 

understand and probe the neural code for spatial memory. 

 

This dream experiment would also enable us to assess the functional relevance of attractor 

behaviour by activating part of known neural representations and read out the network response 

while simultaneously recording conditional spatial behaviour. While exciting, these types of 
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experiments would be technically difficult on multiple levels. Firstly, not all neurons in the 

ensemble are ‘pattern completing’ neurons (Carrilo-Reid et al., 2019; see below), and therefore 

we would need to select neurons best positioned to elicit reactivation of their functionally 

connected neighbours, particularly if we hope to drive behaviour with these inputs. Secondly, 

these experiments would also enable us to probe the precise number of neurons in a functional 

unit required to drive behaviour. While proponents of emergent network theory (Chapter 1.5.1) 

believe in the distributed yet collective activity underpinning cognitive functions, it would be 

experimentally challenging to capture such distributed populations or titrate the number of 

neurons needed to drive behaviour, particularly when connectivity motifs are not known. While 

challenging, these experiments are not out of reach, as recently similar studies to those described 

above have been conducted in visual cortex (Carrilo-Reid et al., 2019; Carrilo-Reid et al., 2020; 

Marshel et al., 2019; Russell et al., 2019). With our imaging protocol giving us access to CA3 neural 

populations, we are in a prime position to extend these experiments to the hippocampus. A 

particularly interesting step given the wealth of computational literature suggesting the CA3 

circuit functions as an auto associative network (Chapter 1.5.2), that has yet to be directly 

experimentally probed with sufficient resolution (Knierim & Zhang, 2012; McNaughton et al., 

1996; Rolls, 2007).  

 

One factor outstanding in these dream experiments is provision for the temporal resolution of 

neural activity, both at a macro level (population oscillations) and a micro level (firing rates). 

While 2P imaging has slow kinematics, other recent examples of artificially activating neurons 

with 2P optogenetics has been shown to drive behaviour (Carrilo-Reid et al., 2019; Carrilo-Reid 

et al., 2020; Marshel et al., 2019; Russell et al., 2019). In light of population dynamics, if network 

wide oscillations could be detected, it is possible behaviour change might be more likely during 

these events (Colgin et al., 2016; Csicsvari et al., 2000). Hence if we could detect SW using the 

LFP, then activate some cells from a stored memory representation, we might be more likely to 

see pattern completion than if we were to activate the same cells at a different point in time. 

While the functional relevance of network wide oscillations has been shown particularly during 

replay, in light of the functional consequences of disturbed replay, it has not been experimentally 
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linked to network dynamics like pattern completion beyond theory or demonstrated to directly 

to link to behaviour. Adding this layer of complexity to the experiment would be technically 

difficult given the combination of electrophysiological and optophysiological methodologies and 

interfering electrical artefacts. However, the combination of LFP detection, to select potentially 

more plastic periods of concerted network activity during large-scale imaging and to then use 

these times to inform artificial stimulation in vivo, would be key in confirming the role of neuronal 

ensembles or groups of coactive neurons, as the functional building blocks of cortical circuits and 

units of the neural code (Carrilo-Reid et al., 2020). 

 

6.1.3.1 Future experiments summary 

The notion that recurrently connected ensembles of neurons work as functional units was 

developed by Hebb, who argued that these “cell assemblies”, arise from synaptic learning rules 

where pre and postsynaptic cells would be coactive, and could be used to implement associative 

memories (Hebb, 1949; Chapter 1.3). Hopfield subsequently provided a mathematical foundation 

for these ideas, arguing that recurrently connected neural circuits settle on dynamical 

“attractors”, i.e., stable states of network activity, (Chapter 1.5; Hopfield, 1982). The settling 

dynamics endow these attractors with pattern completion properties, i.e., activation of a few of 

the neurons could trigger the entire pattern. These stable states implement memory 

representations. Collectively these pioneers predicted essentially the same idea: that the neural 

code is written with multicellular units, built by the coordinated activity of groups of neurons 

(Carrilo-Reid et al., 2020).  

 

Combining our advancements in imaging with the all-optical approach provides the first 

opportunity to experimentally assess Hebbian learning in the hippocampus and specifically in 

subregions CA3 where attractor behaviour has been extensively theorised. Recent results using 

holographic optogenetics have demonstrated that activation of ensembles, by activating 

individual pattern completion neurons, can control visually evoked behaviour (Chapter 1.6.3; 

Carrillo-Reid et al., 2019; Marshel et al., 2019). Stimulation of  as few as two pattern completing 

neurons was sufficient to change the behaviour (Carrillo-Reid et al., 2019; Marshel et al., 2019), 
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providing a causal link between neuronal ensemble activity in V1 and behaviour (Carrillo-Reid et 

al., 2019). These results have also demonstrated that targeting neurons with pattern completion 

capabilities can be an effective strategy to control behaviour through indirect recruitment of 

functionally connected neurons (Carrillo-Reid et al., 2016; 2019). Although the idea of recalling a 

learned behaviour by the stimulation of single neurons is not new (Brecht et al., 2004; Houweling 

& Brecht, 2007; Romo et al., 1998) the precise targeting of neurons paves the way to 

understanding circuit mechanisms underlying different behaviours with single cell precision. In 

light of these recent experiments and work demonstrated in this thesis, understanding the 

functional unit of cognitive behaviours is within reach. We have the experimental tools, and can 

build on preceding work to finally probe Tolman’s proposition that the hippocampus functions 

as a cognitive map. 
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Figure 7-1. Experimental workflow for all optical experiments. 

Stages involved in setting up and running an all-optical experiment. For full details see Russell et al., 2021. Taken 

from Russell et al., 2021 in prep). 
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Figure 7-2. Co-expression problems for activity indicators and optogenetic actuators in CA3 in vivo. 

Two photon FOVs showing expression of opsin (red), GCaMP6s (green) and co-expression (yellow; merge) in CA3 of 

multiple mice (genotype listed in top left corner, specific opsin/GECI listed bottom right). Top row) GCaMP 

expression with failed opsin expression, Middle row) opsin expression with failed GCaMP expression. Bottom row) 

epxression of both GCaMP and opsin but mostly not co expressed in the same cell. Scale bars 200 or 100 μm as 

listed. 



 

179 
 

 
 

 



 

180 
 

Figure 7-3. Non photoresponsive FOVs in CA3. 

CA3 FOV in various mice (genotype listed top left corner), expressing GCaMP6 (green) and opsin (red; specific 

opsin/GECI combination listed bottom right corner and showing failed photostimulation responses. Next, ROIs 

selected for photostimulation (white rings). Next, target sites were grouped into different patterns of 20 cells each 

and targeted for sequential photostimulation to confirm responsivity. Pixel intensity indicates the change in 

florescence caused by photostimulation. Colour corresponds to the photostimulation cluster (numbered – left)  

which caused the largest change in activity (all scale bars, 200μm). 
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Figure 7-4. K-means based identification of optimal world maps reveals nonlinear mapping of world 

representations. 

A) Schematic to demonstrate the k-means method of unsupervised identification of maximally different 

representations (clusters). 

B) The proportion of trials using map (cluster) 1 across worlds and by subregion 

C) Example to demonstrate the simple linear (blue) and sigmoid (red) fitting procedure for data points 

(proportion of trials using k-means map 1) across worlds per for one animal.  

D) Sigmoid score for each subregion, defined as AIC of the non-linear minus the AIC of the linear fit. Open 

circles = animals, closed circles with S.E.M error bars = average across animals  

E) Relationship between the average sigmoid score and the number of training days per animal. Grey 

connecting lines = dual mice, i.e. area CA1 and CA3 are from the same animal. 

F) Same as in E) but for trial duration  

G) Same as in E) but for proportion of place cells 

H) Same as in E) but for average S.I. 

Grey shaded area & Error bars = S.E.M. Pale track coloured lines = individual animals. Thicker solid lines = means. 

CA1 [purple] n= 6, CA3 [pink] n = 5. 
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