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Abstract

This thesis comprises of five investigations and focuses on the use of risk prediction modelling
from a computational statistics and machine learning perspective, with applications in subject
(e.g. gym user, patient) analytics in a time to event setting. The work was conducted in col-
laboration with eGym and UCL Hospitals (UCLH). A variety of computational statistics (e.g.
logistic lasso) and machine learning based risk prediction methods are applied ranging from
kernel methods, ensemble methods and decision trees from both a classification and survival
perspective. The thesis is concerned with modelling gym user behaviour and predicting treat-
ment times and types. The underlying goal of this thesis is to develop generalizable and useful
models to predict gym user behaviour and patient treatment times. This is what leads us to
our methodological work in chapter 6.

This thesis conducts the following investigations.

1. Weibull full likelihood implementation

The first investigation involves conducting an implementation of a Weibull full likelihood
survival model in R. The aim of this investigation is to build the Weibull distribution
proportional hazards model, which is formulated via the log likelihood. Then we apply
this model to simulated data to see whether the model can reveal the real pattern of the
data. The results prove that from the synthetic data the model we build in R can unearth
the parameters and the coefficients from which we generate the data.

2. Predicting gym user behaviour through churn and visits

The second investigation consisting of two sub-investigations considers the use of time to
event models to predict gym user behaviour and churn. The data set has been provided
by the Gym Equipment manufacturer eGym. The first sub-investigation considers if it
is possible, we can predict whether or not a user will churn, using a range of methods
across computational statistics and machine learning, from logistic regression to survival
random forests. Our findings indicate that with demographics alone we are unable to
produce machine learning models that outperform a baseline learner. This tells us that we
are unable to predict right at the beginning, whether or not a user will churn. However,
when we apply machine learning based survival models including elastic net Cox and
Cox Boosting, we are able to outperform the baseline. This sub-investigation serves as
an introduction to considering gym user churn in a time to event setting through both
classification and survival models. In the second sub-investigation, we then apply risk
prediction modelling in predicting gym user visits via a moving window model, we find
we are marginally able to outperform the majority vote baseline in some settings.
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3. Predicting patient treatment times and treatment types for patient rehabilitative care

The third investigation, also consisting of two sub-investigations, concerns the use of
time to event modelling to predict patient treatment times and treatment types for patient
rehabilitative care. The underlying goal is to help design treatment plans aimed at helping
patients return to work by predicting the required combination of treatment time and
treatment types required for each patient. The data has been provided by UCLH. All
patients in the data set have been eventually discharged from the treatment programme.
The aim of the first sub-investigation is to predict how much treatment time the patients
required before they were discharged and which patients are more likely to take longer.
We model this problem using regression and survival analysis, methods used range from
generalized additive models to Cox boosting. Our results show that, using demographic
variables we are able to outperform the baseline. In the second sub-investigation, we utilise
risk prediction models, such as logistic regression and Adaboosting to predict treatment
types based on demographics. We are able to outperform the baseline for some treatments
in a deterministic setting but not in a probabilistic setting.

4. Regularization problems in gym user/patient setting

As alluded, in both our application settings our model performances are mixed. Our
aim therefore is to investigate how we can potentially improve our model performance
and usefulness. This is what motivates our methodological studies: improving our model
performance via hyper-parameter tuning based on the relevant loss function. We begin
our investigation by using F1, Brier score and net benefit as the scoring functions for
parameter tuning to build LASSO models. We then run the models on the gym user
data and hospital data and compare the performance outputs from modelling. We find
we are able to outperform the conventional LASSO models in terms of F1, Brier score
and net benefit when using them as tuning functions, respectively. The different LASSO
models provide different variable selections and insights. Then we use the integrated
Brier score to turn the parameters of Cox proportional hazards LASSO models in a
survival setting. Compared with the conventional performance measure - Concordance
index, the integrated Brier score reflects better the error measure overall time. We find
that by tuning parameters for the integrated Brier score we are able to obtain better
integrated Brier score performance and different variable selections. We also examine
whether the integrated Brier score is not only useful for improving survival performance
at all times but at specific times too. We apply the Cox proportional hazards LASSO
models with integrated Brier score and Concordance index as the scoring functions to
the gym user and hospital data sets. The results show the models can better perform
on the corresponding loss functions but the integrated Brier score LASSO model doesn’t
guarantee better performance at a specific time. Finally, we extend our methodology to
more modern machine learning methods such as support vector machines. We use F1
score, Brier score and net benefit as scoring functions to turn the parameters γ and C
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of SVMs and run the models on the gym user data and hospital data. The results show
they only slightly outperform the conventional model and are specifically poor in the
deterministic setting due to the data imbalance.

Contributions to Science

This thesis makes the following contributions to science.
1. Applies logistic regression, linear discriminant analysis, support vector machines and random
forests to predict the gym user attendance and churn.
2. Introduces the idea of comparing gym user prediction models to a majority vote baseline.
3. Introduces moving window prediction models for gym user visit prediction.
4. Discovers the relationship between patient demographics and rehabilitative care treatment
times.
5. Introduces machine learning and computational statistics to predict patient treatment times
and types for neurological rehabilitation patients.
6. Introduces the use of the F1, Brier score and in particular the net benefit LASSO models to
a gym user churn prediction and a treatment type prediction.
7. Introduces the use of the integrated Brier score for tuning Cox LASSO models.
8. Extends the idea of parameter turning via the F1, Brier score and net benefit to modern
machine learning methods.
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Impact Statement

Analytics is transforming wellbeing and healthcare. The context for impact of time to event
models in a health and wellbeing setting is driven by the explosion in data collection capabil-
ities. This can range from data collected by wearable technologies (Dinh-Le et al., 2019) and
electronic health records (Kalra & Ingram, 2006). Often such data sets enable us to extract
events of interesting in healthcare such as a time to relapse of cancer (Zeng et al., 2019) or
the injury of an athlete (Zadeh et al., 2020) whilst also providing predictive variables for the
models. These can be seen as time to event problems. The thesis addresses both healthcare as
well as methodological impacts. From an applied perspective this thesis contributes gym user
analytics and rehabilitative patient treatment prediction. The gym user analysis introduces a
wide variety of machine learning based strategies that can be applied not only to gym user
behaviour but any exercise app that records attendance. Our second application impact is to
introduce machine learning to modelling rehabilitative care for neurological patients. From a
methodological perspective we introduce two new tools for improving the utility of risk predic-
tion models. The net benefit LASSO enables us to build a risk prediction model that weighs any
potential costs of false positives or false negatives. The integrated Brier score LASSO allows us
to tune survival LASSO models over time.
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Chapter 1

Introduction

This chapter provides an introduction to the research topic. We start by giving a motivation
to both the research area and the applications. We then proceed to motivate the research by
describing the two data sets which this thesis is based on.

This thesis examines the application of machine learning based risk prediction modelling to
patient analytics.

1.1 Research Motivation

The context for studying time to event models in a health and wellbeing setting is driven by
the explosion in data collection capabilities. This can range from data collected by wearable
technologies (Dinh-Le et al., 2019) and electronic health records (Kalra & Ingram, 2006). Often
such data sets enable us to extract events of interest in healthcare such as a time to relapse of
cancer (Zeng et al., 2019) or the injury of an athlete (Zadeh et al., 2020) whilst also providing
predictive variables for the models.

The motivations for this thesis are both methodological and applied. From an applied per-
spective we are seeking to use risk prediction to improve health and well-being firstly through
analysing exercise behaviour when a user uses a gym and secondly creating effective treatment
plans to help patients get back to work.

The first problem we are interested in is to encourage an active lifestyle. To achieve this, we

16



must be able to understand and predict gym user behaviour. This involves predicting both
whether or not a gym user will stop attending the gym completely - churn, and also whether or
not a gym user will attend a gym in a given time.

The second problem of interest stems from helping patients cope with long-term health con-
ditions and return to a better-quality lifestyle. Neurological conditions often have long-term
effects and therefore patients not only need treatment for their condition but also treatments to
help them return to work. Such treatment programmes often require a wide range of different
types of treatments and rely on a wide range of factors.

Both problems provide motivation for the methodological research in this thesis. We want
to develop methods that are generalizable and can be reproduced on future data set. In the
modelling process, we use the existing data to build our models. The data not only contains
information representing the real data pattern and also contains a certain noise. Therefore, we
aim to ensure that our models only fit the real data pattern with the minimum effect of noise.
In addition, we want to build models that are interpretable and provide better insights into the
data. This is achieved through our methodological work on regularized models.

This thesis addresses risk modelling motivated by two data sets. The first data set is in the
area of user behaviour and concerns gym user attendance and therefore the event of interest
will be whether or not a gym user attends the gym. The second data set lies in the healthcare
domain and concerns a rehabilitative care treatment programme and the event of interest is the
point at which the patient is discharged. This thesis comprises five investigations and focuses
on the use of risk prediction modelling from a computational statistics and machine learning
perspective, with applications in user/patient analytics in a time to event setting. The work is
conducted in collaboration with eGym and UCL Hospital (UCLH). A variety of computational
statistics (e.g. logistic lasso) and machine learning based risk prediction methods are applied,
ranging from kernel methods, ensemble methods and decision trees from both a classification and
survival perspective. The thesis is concerned with modelling gym user behaviour and predicting
treatment times and types. The underlying goal of this thesis is to develop generalizable and
useful models to predict gym user behaviour and patient treatment times. This is what leads
us to our methodological work in chapter 6.

1.1.1 Motivating Data Set and Applications 1: eGym Data Set

The data set is provided by a German Gym equipment manufacturer - eGym. When a gym user
uses their machines or mobile app first time, the user must create an account that collects the
user’s demographic information. Thereafter every time they use the machines they must sign
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in. This produces a data set containing over 1 million users with their demographic information
and a time series of gym sign ins. The event of interest is therefore whether or not a user will
visit the gym. This motivates us to develop models to predict gym user behaviour. The data
set contains the following variables:

Demographic Variables: age, gender, gym location, subscription level,

Attendance: time series for sign ins.

1.1.2 Motivating Data Set and Applications 2: UCL Hospital (UCLH)
Data Set

This data set is provided by the UCLH neurological ward who have implemented a neurological
rehabilitation programme. The events of interest are to whether or not patients require a certain
treatment and the time at which a patient is discharged. The data set contains 442 users with
the following variables:

Demographic Variables: age, gender, ethnicity, marital status, education level,

Work-Related Variables: occupation type, pre-injury work status, pre-injury work hours, initial
work hours, initial work status,

Questionnaire Responses: self-care, mobility, pain, usual activities, anxiety,

Treatment Times: total treatment time, time for face to face with psychologist, time for face
to face with occupational health therapist.

The aim is to use patients’ demographic and work-related information to predict how long the
treatment time and what type of treatment a patient requires.

1.2 Research Objectives

This section details what we hope to achieve through our investigations.
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1. Our first objective is to examine how we can optimize a full log likelihood proportional
hazards model using a R library with an assumed distribution. The distribution we chose
is the Weibull distribution for its versatility and simplicity. Our aim is to examine the
‘quality’ of the implemented model by testing how well the log likelihood optimization is
able to fit the Weibull simulated data. This will enable us to examine the feasibility of
using this function to conduct our proposed future work of optimized penalized likelihood
functions.

2. Our second objective is to investigate the feasibility of applying risk prediction models to
predict gym user behaviour. The goal is to see whether or not risk prediction models can
outperform a simple ‘majority vote’ model in predicting gym user behaviour.

3. Our third objective is to examine whether or not we can use machine learning methods to
help build better treatment plans for rehabilitative care. The goal is to examine whether
or not risk prediction models can help predict how much treatment time a patient requires
and whether or not a specific treatment is required.

4. Our last objective is to investigate whether we can improve the gym user churn prediction
and patient treatment type prediction by using F1, Brier score and net benefit LASSO.

1.3 Research Investigations

This section provides a summary of the investigations conducted along with our findings.

1.3.1 Weibull Full Likelihood Implementation

The first investigation involves implementing a Weibull full likelihood proportional hazards
survival model in R. As the full log likelihood in the Weibull proportional hazards model is
differentiable, we use Quasi-Newton method (also known as a variable metric algorithm) as the
optimization algorithm. The performance of the implementation is studied on Weibull simulated
data. We first test the performance on a simulated data set of a fixed sample size. We find
that the model is able to fit well onto the simulated data. We then simulate the data sets on
varying sample sizes and look at the mean squared error. We find that the mean squared error
and its standard deviation decrease as sample size increases. This is consistent with the law of
large numbers and the properties of variances. The results demonstrate that the Quasi-Newton
algorithm is a viable option for fitting differentiable likelihood functions.
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1.3.2 Predicting Gym User Behaviour through Churn and Visits

The second investigation, which consists of two sub-investigations, considers the use of time to
event models to predict gym user behaviour and churn. The data set has been provided by a
German gym equipment manufacturer - eGym.

1. Predicting gym user churn: This investigation considers whether or not we can predict
if a user will churn, i.e. the user stops attending the gym completely. We predict churn
from a classification and survival perspective. In the classification setting we use logistic
regression, linear discriminant analysis, random forests and support vector machines. We
find that based on demographics information in the data set, we are unable to produce
machine learning models which outperform a baseline learner, i.e. the majority vote. This
tells us that we are unable to predict right at time when a user signs up, whether or not
a user will churn. Even when we applied the same models with visit information as an
additional variable, we are still unable to outperform a baseline learner. However, in the
survival setting, when we apply machine learning based survival models including elastic
net Cox and Cox Boosting we are able to outperform the baseline learner.

2. Predicting gym user behaviour: In this investigation we then apply risk prediction models
in the context of predicting gym user visits. By applying the same classification methods
used in the churn prediction setting, we find we are able to outperform the majority vote
baseline in some models in terms of accuracy, log loss and Brier scores but not others.

1.3.3 Predicting Patient Treatment Times and Treatment Types for
Patient Rehabilitative Care

The third investigation involves the use of computational statistics and machine learning based
risk prediction models to help create treatment plans. The investigation introduces machine
learning models to patient rehabilitative care in a neurological setting. Again, this investigation
consists of two sub-investigations.

1. Modelling treatment times: The aim is to determine which demographic factors help
determine treatment times. We achieve this by applying stepwise selection and LASSO
models from both a survival and regression modelling perspectives. Our next step is to
see if we could apply survival and regression models to predict treatment times. We apply
generalized linear models, elastic net models, generalized additive models and compare
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the performance against a featureless baseline model (model without any covariates and
just an intercept). Our models are able to perform better against a baseline model. In
the survival setting we apply Cox boost, Cox proportional hazards and the elastic net
Cox. Our models are able to outperform the baseline model.

2. Predicting treatment types: In this investigation we apply risk prediction models to
predict treatment types based on demographics. We use logistic regression, linear dis-
criminant analysis, random forests and support vector machines to predict whether or
not a patient will require a specific treatment type. We find that our models are unable
to identify whether or not the patient requires a specific treatment.

1.3.4 F1, Brier Score, Net Benefit and Integrated Brier Score for Pa-
rameter Turning

Having tried to predict gym user churn and patient treatment, we explore ways in which we
can improve our prediction models and gain better insights by using more interpretable models.
This investigation comprises three sub-investigations.

1. F1, Brier score and net benefit LASSO logistic models: The aim of this investigation is
to investigate the properties of alternative tuning strategies for logistic LASSO models
using different loss functions. The goal is to compare their performance and properties
to determine whether there are any potential benefits of such approaches. We run these
models on the gym user and hospital data sets and find that using the F1, Brier scores
and net benefit for parameter turning in LASSO modelling we are able to obtain better
performances and alternative interpretations.

2. Integrated Brier score Cox LASSO model: The purpose of this investigation is to intro-
duce the integrated Brier score into Cox LASSO modelling to see whether we can improve
the model performance. We build the Cox LASSO model with integrated Brier score as
the scoring function to turn the parameter λ and apply the models to the gym user and
hospital data sets. The results show the integrated Brier score LASSO Cox model is able
to outperform the conventional Concordance index LASSO Cox model.

3. F1, Brier score and net benefit SVM models: In this investigation, we extend our explo-
ration to more modern machine learning models. Using support vector machines as an
example, we use F1, Brier score and net benefit as the scoring function to turn parameters
γ and C for SVM models. We apply the models to the gym user and hospital data sets
and the results are mixed and even poor in deterministic measures. This is because the
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data sets we use are severely class imbalanced. In addition, the performance of the models
is likely to have been impacted by the quality of data - lack of explanatory variables that
can fully explain the observed phenomena and large amounts of missingness in the data.

1.4 Methodological Questions to Address

1. Performance measure optimization through parameter tuning: The first methodological
question to answer is to investigate whether we can optimize a performance measure by
tuning using that performance measure. We focus on two classification methods - logistic
LASSO and support vector machines. For the logistic LASSO the central question is -
can the logistic LASSO performance be improved for a given loss function if we tune using
that loss function. The loss functions of interest are the F1, Brier score and net benefit.
We then aim to extend this question to the parameter tuning of support vector machines
(SVMs).

2. Censored performance measures in survival LASSO models: The second methodolog-
ical question is to investigate how the performances of survival LASSO models tuned
via performance measures that account for censoring perform compared to performance
measures that do not account for censoring, on heavily censored data. The aim is to focus
on the Cox proportional hazards LASSO and the use of two loss functions the Concor-
dance index (which cannot account for censoring) and the Integrated Brier Score (which
accounts for censoring).

3. Possible extensions:

Both methods could be extended by considering alternative models and loss functions.
For the first methodological question the most obvious extension would be to use ridge
or elastic net models in addition to the LASSO models. For the second methodologi-
cal question, alternative models such as full likelihood proportional hazards models and
accelerated failure time models can be used. These models would have the additional
benefit of being computationally easier. Alternative loss functions include the integrated
log loss or the Kent and Quigley R squared measures.

1.5 Contributions to Science

This section summarizes the contributions to science.
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1. Methodologically this thesis investigates the use of the optimization function available
in R to help fit full likelihood survival models. Using the Weibull survival model as an
example we find that the full likelihood Weibull model we build from the log likelihood
equation is able to uncover the underlying patterns from a simulated data.

2. This thesis investigates the viability of applying machine learning risk prediction models
to predict and understand gym user behaviour. This consists of two parts. Firstly, we
examine the feasibility of predicting if a user will stop visiting the gym. The second part
of this investigation aims to understand how we can predict whether or not a gym user
will visit. Again, we find that outperforming a majority vote baseline is difficult. We find
we are able to outperform the majority vote baseline in some settings but not others.

3. In our second application setting we are able to develop models to help create better
treatment plans. We find that we are able to use feature selection to find the relevant
variables that help determine treatment times. We are also able to create models that
can outperform an intercept only model. We then aim to predict different treatment
types. We found that since for each treatment the majority did not require it, predicting
whether or not a patient would require a specific treatment is difficult, even with machine
learning methods.

4. This thesis introduces the use of the F1, Brier score and net benefit LASSO in a clinical
prediction setting.

5. This thesis extends the idea of optimizing for the net benefit for other machine learning
models.

6. The research work in this thesis contributes to the open source library by providing an
implementation of Weibull full likelihood proportional hazard model, F1, Brier score and
net benefit LASSO models, integrated Brier score LASSO Cox proportional model and
F1, Brier score and net benefit support vector machine models.

1.6 Thesis Structure

Chapter 2 Research Questions and Methodology Review begins by describing the risk pre-
diction framework from both a qualitative and quantitative perspective. We also provide an
introduction to the concept of overfitting and regularization to provide the motivation for my
future work. We then proceed to give a literature review in risk prediction in the various set-
tings across a variety of domains. Finally, we end by giving a review into the different ways to
evaluate the performance of risk prediction models.
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Chapter 3 Weibull Full Likelihood Implementation provides an in depth review of survival
models - one of the various risk prediction approaches introduced in chapter 2. We describe
the various types of survival models and the various ways in which they can be fitted. We then
proceed to implement a Weibull survival model using the inbuilt optimizer in R. We evaluate
the performance of our model using simulated data.

Chapter 4 Predicting Gym User Behaviour through Churn and Visits describes the investiga-
tion of section 1.3.2 Predicting Gym User Behaviour through Churn and Visits. The chapter
begins by giving an overview of the problem. We then proceed to data cleaning and data
processing. Afterwards we carry out exploratory analysis of the cleaned data sets. Finally,
we conduct predictive modelling, using logistic regression, linear discriminant analysis, random
forests and support vector machines.

Chapter 5 Predicting Patient Treatment Times and Treatment Types for Patient Rehabili-
tative Care details the investigation of section 1.3.3 Predicting Patient Treatment Times and
Treatment Types for Patient Rehabilitative Care. The chapter begins by describing the research
question. We then proceed to conduct variable selection to find the variables that impact treat-
ment times. Finally, predictive models are applied to the data set from both a regression and
survival modelling point of view.

Chapter 6 Regularization Problems in a Gym User/Patient Setting narrates the investigation
of section 1.3.4 F1, Brier Score, Net Benefit and Integrated Brier Score for Parameter Turning.
We start by discussing potential benefits of using the F1, Brier score and net benefit as scoring
functions in logistic LASSO modelling. Next, we introduce the integrated Brier score into the
Cox proportional hazard LASSO model for parameter turning. Finally, we extend the F1, Brier
score and net benefit for parameter turning to support vector machines. We build these models
and apply them to the gym user and hospital data sets and analyse the results.

Chapter 7 Conclusion and Future Work details Methodological Questions to Address.
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Chapter 2

Research Questions and Methodology
Review

This chapter provides an overview of the risk modelling framework. We begin by giving a qual-
itative overview of risk modelling. Next, we will give a mathematical formulation of the three
main approaches to risk prediction. We will then proceed to review the literature surrounding
risk prediction models. Finally, we will give an overview of the major performance evaluation
methods in risk prediction.

2.1 The Risk Modelling Framework

In this section we will give the descriptions and motivations of the risk modelling approach. We
start describing the data sets. A typical data set in a risk modelling study contains observations
from a number of units where the primary interest is in making predictions about a particular
event - often in a practical setting this is either an adverse event or a desirable event which one
wants to avoid or pursue. An example of an event of interest could be a patient being diagnosed
with a disease or a machine breaking down. This event of interest is usually measured over a
predetermined length of time for which the data are observed. In addition to the event status,
each unit may have observed characteristics that are measured which may or may not be related
to the risk of the event of interest. Over the predetermined time interval, the characteristics
could be static, for example the genetic markers associated with a disease, or time varying, such
as the blood pressure readings of a patient taken at various time intervals.
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The main aim of risk modelling is to make predictions about whether the event will occur in
the predetermined time period (and potentially how many times), the probability of the event
happening, or the time until the event happens. From a methodological point of view, the first
two types of prediction can be classed as deterministic and probabilistic classification problems
respectively, whereas the latter is an example of survival analysis.

2.2 Approaches

In this section we begin by describing mathematically the data setting. Next, we give a moti-
vation behind the supervised learning approach to risk prediction, then we proceed to outline
supervised learning and finally we give the mathematical formulation of the three main ap-
proaches to risk prediction that we outlined previously, namely deterministic classification,
probabilistic classification and survival modelling. The notation in this section is inspired by
(Hastie et al., 2009).

Consider a data set which containsN units, for each individual unit i we observe p characteristics
that can be observed either statically or over time. The measurements for the characteristics
for each individual i are stored in a vector of length p known as xi, xi can contain static and
non-static variables. We refer to this vector of characteristics as our covariates/variables. We
also observe the individual i event status δi {0,1}, where 1 is if the event happens, 0 otherwise
in a predetermined time interval. Finally, we observe a time to event - Ti if the event happens
for i. On the other hand, if the event doesn’t happen in the predetermined length of time we
define unit i to have been censored and we observe a time to censoring Ci for i. The time to
censoring is the time from which the unit i was first observed to the end of the observation.
Every unit will therefore at least have a ti which we define as the time to event or censoring,
whichever happens first. Depending on the risk prediction task in question, the event status or
the event status plus time to event or censoring will be our yi. The purpose of risk prediction
modelling aims to predict the risk of such an event so that in our domain of interest, the risk for
an adverse event can be mitigated or the probability for a desirable event can be strengthened.

As mentioned before, there are multiple approaches to how we predict risks. In addition to
the multiple approaches, for each approach there are a wide variety of methods we can use.
Irrespective of which method and approach we use, building a risk prediction model involves
finding a function that maps the relationship between the input variables xi and the event
status (and time to event if applicable) yi. Given the multiple methods for each approach, we
also need to be able to choose the best method for the risk prediction problem in question.
When choosing which specific method to use, we want to choose the method that has the best
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performance on unseen data. The importance of evaluating our methods on unseen data is to
ensure that we choose the method that is the most generalizable so that in the future we can
apply this method to help mitigate the adverse event or ensure the desirable event in question.
This leads to the supervised learning framework.

2.2.1 Building a Supervised Learning Task

For a risk prediction problem on a small dataset we are only able to determine the relationship
between the covariates and the event of interest. However, when having larger data-sets with
more observations available we are not only able to determine the relationship but also verify
whether such relationship exists on new data. In addition, a data set with a large number
of observations/examples also allows to potentially use alternative methods to discover more
complex relationship between the covariates and event of interest. Both these factors provide
motivation to consider risk prediction as a supervised learning task. The idea of supervised
learning is to estimate a function that maps from the inputs (in our case the covariates) onto
an output (in our case the event status). As detailed previously, we want to find a function
that is the most generalizable and enables us to apply this function on future new data sets,
i.e. unseen data. Therefore, we are interested in estimating the generalization or test error -
the performance of the mapping function on unseen data. This is defined mathematically later
on in this chapter. Let us formulate mathematically the data setting for our prediction task.
Consider a set of N units with 〈(x1,y1), . . .(xN,yN)〉, where xi is the vector of the covariates
of unit i and yi are the target variables of unit i. The definition of yi is dependent on the
approach in question. As defined in the approaches section yi is the event status or the event
status plus time to event or censoring. In addition, we let xi ∈ X and yi ∈ Y where X, Y are our
input and output spaces respectively.

As detailed in the earlier subsection we need to find appropriate function mappings from X to
Y and evaluate their performance on unseen data. Therefore, in a given data set of N units
we need to save a part of our data to be unseen whilst allowing the rest of the data set to be
used to derive the appropriate function mapping. The set of units from which we derive the
appropriate function is known as the ‘training’ set. Let this set be of size m, the remaining
N−m units which are used to evaluate the performance of each method is known as the ‘test’
set. We will use index i to refer a unit in the data set and use j or k to refer a unit in the training
set or the test set respectively. For any method we use, irrespective of the task, the supervised
learning process is to learn a suitable mapping functions to map input X to our output space
Y. The mapping function can be one that directly maps X onto Y or a function that gives the
probability of obtaining the output in Y. Let G be the set of such functions g that are able to
do such a mapping where
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g : X→Y. (2.1)

We have ĝ ∈G, mapping xi to ŷi. Given the outcomes Y and ĝ we can calculate a loss function.
A loss function L is a measure of how good a prediction model ĝ is in terms of mapping input
X to output Y. A mathematical formulation of a loss function is formulated in section 2.4.2
Performance Measures and Loss Functions. Using the loss function L we are able to calculate
the test error,

TestError=
1

N−m

N−m∑
k=1

L(ŷk,yk). (2.2)

This is the average of the loss function over unseen data i.e. a test set. We choose the function
with the lowest test error. The nature of the function g and the loss function L are dependent
on the risk prediction approach chosen.

2.2.1.1 Deterministic and Probabilistic Prediction

In the deterministic setting, for each individual unit j in the training set, we attempt to predict
an appropriate event status ŷj given the variables xj. Let our g take the form f be a mapping
function from a family to map X→ Y where X is our input covariates and Y is our event status.
This can be seen as statistical classification as introduced by (Fisher, 1936). The deterministic
classifier therefore takes the form,

ŷj = f̂(xj), (2.3)

where f̂ is chosen from a family of functions f from a specific deterministic classification method.
The way f̂(xj) is fitted on the training set is dependent on the method used.

On the other hand, when we want a risk of event to be predicted, the probabilistic classification
is appropriate where our g is a probability. Probabilistic classification returns a probability in
the form,
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P̂(yj = 1 | xj). (2.4)

Like deterministic classification, P̂ is chosen from a family of probability functions P of a specific
probabilistic classifier. Whilst, probabilistic classifiers map to a probability value in [0,1], they
can still be seen as a mapping X→ Y where Y is our event status since we can map the probability
value onto Y via thresholding.

The deterministic and probabilistic settings are classification tasks. They can range from clas-
sical statistic methods such as logistic regression (Cox, 1958) to more modern machine learning
methods such as kernel methods, ensemble methods and deep neural networks. Some classifica-
tion methods, such as logistic regression, are naturally probabilistic, they can be converted to
deterministic classifiers via thresholding. Others, such as support vector machines, are naturally
deterministic classifiers. They can be converted to probabilistic classifiers via a method known
as Platt Scaling Platt (1999).

2.2.1.2 Classification in a Time to Event Setting

Whilst classification as described above only takes the event status into consideration, we can
also use classification for time to event modelling. The idea is rather than simply predicting
the event, instead we aim to predict not only whether the event will happen but also whether
it will happen within a defined time period. However, one issue that arises is censoring. For
example, a unit may drop off the study before the event has happened and the observation time
for the unit is shorter than the predetermined time period. Therefore, we must remove these
units. We only keep units for which either the event happened within the defined period or
where the event didn’t happen in the defined period but the unit has been part of the study
for at least the defined period. For example, if our aim is to predict whether a patient will
relapse within five-years based on cancer patient annual check-up records after initial treatment
we would subset our data in the following way. We keep records of patients who relapse within
predetermined time - five years or those who have five-year records without relapse and we
remove records of patients who stopped coming for check-up within five years or have less than
five-year records. Once we take a subset of the data, we are able to consider this as a standard
classification task.
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2.2.1.3 Survival Models

In this section we will first begin by introducing survival modelling. We will then proceed to
describe the two main functions central to survival models - hazard and survival functions.
Survival models aim to predict whether an event will happen at a certain time for an individual
unit given its covariates. Survival models usually model two types of functions, either the
hazard functions or the survival functions. This is a framework introduced by (Cox, 1972). The
definition of a hazard function is the probability that an event will happen at time t given that
it has not yet happened before t. On the other hand, the aim of a survival function is to find
the probability that an event has not yet happened before t, i.e. the unit has ‘survived’ until t.

Consider a unit i with time to event Ti and starting time t = 0, at time t we can model the
probability that the unit will survive to time t by,

S(t|xi) = P(Ti > t|xi). (2.5)

We denote the probability that the event will happen before time t by,

F(t|xi) = 1−S(t|xi) = P(Ti 6 t|xi). (2.6)

The probability density function of the event will happen at time t is,

f(t|xi) = F
′(t|xi) = −S ′(t|xi). (2.7)

Most survival models are modelling the hazard rate which is the probability that the event will
happen in the next time interval given that it has not yet happened before t,

h(t|xi) = lim
∆t→0

P((t6 Ti < t+∆t | Ti > t) | xi)
∆t

= lim
∆t→0

P(t6 Ti < t+∆t | xi)
P(Ti > t | xi)∆t

= lim
∆t→0

P(Ti < t+∆t | xi)−P(Ti 6 t | xi)
P(Ti > t | xi)∆t

= lim
∆t→0

F(t+∆t | xi)− F(t | xi)

P(Ti > t | xi)∆t

=
f(t | xi)

S(t | xi)

= −
S ′(t | xi)

S(t | xi)
.

(2.8)
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From the hazard function 2.8 we can derive S(t | xi) and f(t | xi). First, we introduce cumulative
hazard function, denote Λ,

Λ(t | xi) =

∫t
0
h(u | xi)du, (2.9)

then solving the above differential equation 2.8 we have,

S(t | xi) = exp
(
−Λ(t | xi)

)
. (2.10)

From the equation 2.8, we have the following,

f(t | xi) = h(t | xi)S(t | xi). (2.11)

Survival models range from simple non-parametric models such as Kaplan Meier models (Kaplan
& Meier, 1958), proportional hazards models (Cox, 1972) (parametric and semiparametric),
accelerated failure time models (Wei, 1992a) to black box/machine learning models, such as
survival random forests (Ishwaran et al., 2008) and Cox boosting (Binder & Schumacher, 2008).
Apart from Kaplan Meier Models, all these models are able to incorporate covariates. Models,
such as the Kaplan Meier estimator, compute the survival function whilst proportional hazards
models compute the hazard function. The process of fitting survival functions via maximum
likelihood estimators as well as the various other survival models are detailed in chapter 3.

2.3 A Review of Risk Prediction Models

In this section, a review of various approaches to Risk Prediction modelling is provided. Much of
the risk modelling literature comes in the form of domain specific research, where each domain
models specific ‘events’ of interest. Events of interest can be unforeseen events in a natural or
social setting, examples include the default of a loan or the onset of a disease. Risk prediction
models can be divided into two classes of models, classification (deterministic or probabilistic)
and survival. The choice of model class is dependent on the specific goals and application
setting. If we are simply interested in predicting which of the units will experience the event,
it is only necessary to use a deterministic classifier. Likewise, if we are interested in finding
out the probability of the event happening for each unit, it is appropriate to use probabilistic
classification methods. Finally, if we wish to model the time in which the event of interest will
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happen, we need to use survival models.

In a non-temporal setting, the most common way to predict risk is by defining risk prediction
as a binary classification task in both a deterministic or probabilistic setting, where the label
1 is given if the event happens and label 0 is given if the event doesn’t happen. Classification
methods have been applied to a variety of risk prediction problems in a range of application
domains. The choice of method is often dependent on the goals of the risk prediction model in
question. In medical applications the focus is often on building interpretable models for which
the potential limitations of the method are well understood. In addition, domain knowledge
may mean that preconceived parametric assumptions can be made. In such cases, this will
result in a risk prediction application where the focus is on one specific method. Examples
include the use of logistic regression to lung cancer prediction (Cassidy et al., 2008) and linear
discriminant analysis to colon cancer (Barrier et al., 2006). As well as interpretable models,
sometimes we may need to identify the most important risk factors associated with the event
of interest, in such cases it may be necessary to utilize methods that perform variable selection.
Examples include Kooperberg et al. (2010) who use elastic net and LASSO methods to build risk
prediction models by selecting the relevant genetic risk factors associated with cancer. However,
in many other application settings, there is lesser need for interpretability and the aim is simply
to build risk prediction models that are as accurate as possible. This enables us to apply more
‘black box’ algorithms where the mathematical properties and interpretability of the models are
less understood. Examples of the application domains include Credit Risk (Khandani et al.,
2010), Customer Churn (Tsai & Lu, 2009), (Xia & Jin, 2008) and Cancer Prediction (Kourou
et al., 2015). Each of these applications shares a common approach whereby a wide variety of
classification methods are applied to the risk of event and their performances are evaluated.

One of the most common problems associated with risk prediction in a classification setting is
data imbalance. Data imbalance occurs when the number of units in one class is significantly
greater than the number of units in the other classes. This can cause the classifiers to be biased
towards the majority class. Burez & Van den Poel (2009) introduce weighted random forests
and alternative accuracy measures to deal with data imbalance. Xie et al. (2009) build on the
idea of weighted random forests to develop improved balanced random forests in order to help
overcome data imbalance. However, whilst both approaches appear to perform well on their
chosen datasets, they risk overfitting and are not very interpretable.

Survival models in risk prediction have been predominantly used in medical applications where
the event of interest is often a onset of disease. As with the classification setting, there is a
strong focus on building interpretable models. The choice of model is often dependent on the
parametric assumptions we want to make. The most popular type of survival model used is the
proportional hazards model. Proportional hazards models assume that the variables have a mul-
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tiplicative effect on the hazard. Proportional hazards models can be fully parametric whereby
a distributional assumption of the hazard is made or semi parametric where no distributional
assumptions are required. Common example applications include prostate cancer predictions
(Halabi et al., 2003) and cardiovascular disease predictions (Pencina et al., 2009). On the other
hand if we want to assume that the effect of the variables accelerate or decelerate through time,
we can apply accelerated failure time models (Datta et al., 2007). In this thesis we focus on
Proportional hazards models due to their ability to allow for models with no distributional as-
sumptions. The majority of all such survival analysis studies focus on discovering relationships
between covariates and the time to event rather than building predictive models that work well
out of sample. In addition, they use a limited range of performance measures to evaluate their
performance. As with classification methods, there are also a number of ’black box’ methods
which may provide greater performance but are less mathematically understood/interpretable.
Examples of such risk prediction applications include Fantazzini & Figini (2009) who apply
survival random forests to credit risk and Binder & Schumacher (2008) who apply Cox boosting
to cancer prediction.

2.4 Model Evaluation

In this section we focus on the issues of model evaluation. We first revisit the motivation behind
model evaluation and then describe one of the most common ways of splitting the training set
and test set. Finally, we give an overview of the different loss functions used in my thesis.

As denoted in section 2.2.1 Building a Supervised Learning Task, for a given risk prediction
task there are a huge number of risk prediction models to choose from. Whilst it is possible to
make parametric assumptions and focus on one model, often this is not desirable and therefore
we must choose our model from a selection of models. In addition, even if we use just one model
it may still be necessary to test the validity of the fitted model. Having chosen our selection of
method(s), model evaluation involves two parts - firstly splitting the data into the training set
and test set, and secondly choosing the appropriate measures i.e. loss functions.

2.4.1 K Fold Cross-Validation

As introduced in section 2.2.1 Building a Supervised Learning Task, fitting and evaluating
models require splitting the data set of size N into a training set of size m and a test set of
size N−m. After we fit the model to the training set, we need to validate the model on the
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test data to determine whether our model is under-fitting or over-fitting or generalized fitting.
The problem with simply splitting the data set into two parts is that we cannot guarantee the
training set and the testing set have the same distribution. This will introduce a bias to the
fitted model and cause large variance on validation of the model over testing set. So how to
split the data into training set and testing set will affect the effectiveness and reliability of the
model validation. The method of K fold cross validation (Stone, 1974) solves this problem.

The K fold cross validation splits the whole data set into K groups known as folds. Each of the
K folds takes turns to be the testing set, the rest of the folds are the training set. This ensures
each fold of the data set be a part of training set K− 1 times and be testing set 1 time. The
model is fitted K times and the average of model outputs is the final output.

2.4.2 Performance Measures and Loss Functions

In machine learning tasks, there is a wide spectrum of performance measures. However, there
is no perfect performance measure which is suitable for all tasks and data sets since each
performance measure focuses on different aspects of machine learning tasks. As detailed in
section 2.2.1 Building a Supervised Learning Task, machine learning models are qualitatively
evaluated using loss functions. The loss functions produce a value based on the modelled result
and the reality in terms of event outcome. The closer the modelled result with the true out-
come, the smaller the value/loss, or the greater the reward. As with the choice of risk prediction
model class, the choice of the loss function will depend on the aim of our risk prediction task.
The loss functions in risk prediction are broadly divided into two types – discrimination and
calibration. Discrimination measures measure a model’s ability to discriminant between the
two classes of outcomes - the event happens or the event doesn’t happen. Calibration mea-
sures seek to measure how close the probability of the event compared to the actual outcome.
Calibration measures can only be applied in a survival or probabilistic classification setting.
However, discrimination measures can be applied to both deterministic classification models
and probabilistic classification models (via thresholding). Let us first begin by mathematically
defining a loss function.

Consider a set G that contains a set of possible mappings, let Y be the output space. We define
a loss function L in the following form,

L :G× Y→R. (2.12)

The loss function is not just a performance measure but also the function to be optimised in
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the process of training our model to best fit the training data in order to achieve optimal goals.

2.4.2.1 Deterministic/Discrimination Loss Functions

In this subsection we give an overview of the deterministic loss functions used in this thesis.

Classification Accuracy In the deterministic setting, the simplest performance measure is
the classification accuracy, which is defined as follows,

Accuracy=
NCP

N
, (2.13)

where NCP is the number of units which have been correctly predicted, N is the size of data
set.

The higher the classification accuracy, the better the classifier has performed. Therefore, the
classification accuracy is a ‘reward’ function rather than a loss function. However, one problem
with the accuracy is that it struggles to cope with an imbalanced classification problem in which
one category greatly outnumbers another. For example, there was one rare disease in UK which
only 5% of the population get. If we have a model that identifies 1 in 5 patients among 100
participants, the model would produce an accuracy of 96%. However, in reality this model
would not be of any use since it fails to identify 4 out of 5 who have the disease. Accuracy in
this case is a misleading performance measure since it would not allow us to see the granular
detail of the model’s performance-for example the number of people with the disease who have
been correctly diagnosed, this is especially relevant when the data is imbalanced.

Due to the drawback of accuracy in dealing with imbalanced data sets, we will move our focus on
detecting the instances we are interested in, i.e. the positive cases. In the example of rare disease
prediction, the positive case is the patient with disease. The measures recall R and precision P
come into play. These were first introduced in the Message Understanding Conference (Sasaki,
2007). The recall R is defined as,

R=
TP

(TP+ FN)
, (2.14)

where the true positive TP is the number of units with the positive status where the model
correctly predicts the positive status, the false negatives FN is the number of units with the
positive status where the model incorrectly predicts the negative status.
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The precision P is defined as,

P =
TP

(TP+ FP)
, (2.15)

where the false positives FP is the number of units with the negative status where the model
incorrectly predicts the positive status. Back to our rare disease problem and the machine
learning model, where recall is 0.2 and precision is 1 as there is no false positives, which means
no health people is misclassified with disease. The recall of 0.2 is a bad result for a disease
detection model as it only identifies 20% patients. If we go to another extreme, we predict
all patients have the disease. We will have precision 0.05 and recall 1 as there is no false
negative. We can see the improved recall is at cost of decreased precision. If the further medical
examination is not costing, we will prefer high recall to minimize false negative cases to prevent
life losses. On the other hand, if the disease isn’t fatal and the further treatment is only for life
improvement, but harmful and expensive, the false positive cases should be avoided so that a
higher precision is desirable.

In the context of risk prediction modelling the precision expresses the proportion of instances
where the event is predicted to have happened, did in fact happen whilst the recall expresses
the proportion of the instances where the event happened for which the model correctly predicts
to have happened. Although the both recall and precision focus on positives, in practical clas-
sification tasks, we have to trade-off between choosing which measure we maximize to improve
our model. In some cases, we need find an optimal combination of recall and precision, the F1
score come into favour.

F1 Score: The F1 score is the harmonic mean of the precision and recall (Sørensen, 1948) and
defined as follows,

F1= 2×R×P
(R+P)

, (2.16)

where F1 ∈ [0,1]. The closer F1 score is to 1, the better the performance of the model. When
the F1 score is 1, the model has the perfect precision and recall.

F1 score doesn’t count for true negative cases so it would be less useful in imbalanced data
set where positive cases greatly outnumber. It is useful in our data sets where, as detailed in
section 4.4.2 Demographic Statistics and Associativity Tests, the positive cases overwhelmingly
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outnumber the negative cases. Another issue with the F1 score is F1 score isn’t differentiable
so it cannot be used directly as a loss function for optimization.

2.4.2.2 Probabilistic/Calibration Loss Functions

Whilst deterministic performance measures can be applied to both deterministic and proba-
bilistic classifiers (via threshold), to evaluate the performance of our probabilistic classification
models we require the probabilistic/calibration loss functions. Probabilistic performance mea-
sures can only be applied to probabilistic methods. The two loss functions used in this thesis
are the logarithmic loss (log loss) and the Brier Score.

Log Loss: Logarithmic loss, cross entropy loss or simply log loss is first defined by (Cover &
Thomas, 1991) and is a measure of how close the probability of obtaining the true event status
is to 1. The log loss can be seen as negative log likelihood. From the output of a classifier, only
the probability of the true event status will be used and taken into logarithmic domain. Since
a probability is always within 0 to 1, the range of the log loss is R−. The closer the probability
of the true event status is to 1, i.e. the closer to 0 the logarithmic probability, the better the
model/classifier has performed. Therefore, the negative value of the logarithm is defined as Log
Loss.

Let the set Pt contain a set of possible probabilities pt of obtaining the true event status, we
can define the log loss in the following way,

Llogloss:Pt×Y→R− (2.17)

For an individual unit i, pti is the predicted probability of obtaining true event status for unit
i, we calculate its log loss in the following way,

(pti,yi)→−log
(
pti(yi)

)
, (2.18)

pt(yi) ∈ [0,1], the closer to 1 the pti, the smaller of –log(pti), the closer the prediction to
truth. For a smaller value of probability for the true event status, its larger log loss act like a
penalty, the log loss is known as an incorrect prediction penalty.
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In a binary classification setting, for a N unit data set, the log loss is,

LL=−
1
N

N∑
i=1

log
(
pti(yi)

)
. (2.19)

As the log loss has the effect of penalising incorrect predictions, it is an optimal function to be
optimized in model fitting process.

Brier Score: The Brier score (Brier, 1950) can be seen as a probabilistic equivalent of
the mean squared error. It comes in the form of a squared difference between the predicted
probability of the event of interest and the actual event status. If the event status is 1, the
squared difference will be (p1−1)2, otherwise the squared difference will be (p1−0)2 where p1
is the probability of obtaining status 1.

In a binary classification setting, let the set P1 contain a set of possible probabilities p1, we
have the following Brier score mapping function:

LBrierScore:P1×Y→ [0,1]. (2.20)

For an individual unit i, let pi1 be the probability of obtaining event status 1, the Brier score
takes the form,

(p1i,yi)→ (p1i−yi)
2. (2.21)

For a N unit data set, the Brier score is,

BS=
1
N

N∑
i=1

(p1i−yi)
2, (2.22)

The closer the p1 to actual class status, the smaller the Brier score and the better fitted the
model. If the Brier score is 0, the model is perfect. We can decompose the Brier score into two
parts of calibration and determination (Stephenson et al., 2018). If we partition the probability
p1 ∈ [0.1] into m mutually exclusive bins labelled by the index k = 1,2...,m, denote nk the
number of units that have the probability of p1kj fallen in the kth bin, where j= 1,2...,nk. The

38



Brier score can be rewritten in the following way,

BS=
1
N

m∑
k=1

nk

nk∑
j=1

(p1kj− ȳk)
2 ← calibration part

+
1
N

m∑
k=1

nk
(
ȳk(1− ȳk)

)
← discrimination part,

(2.23)

where ȳk = 1
nk

∑nk
j=1p1kj.

Wilcoxon Test: The Wilcoxon test (Wilcoxon, 1945) is a nonparametric test to compare
whether there is a difference in location between two (paired) samples. It was first extended to
model comparison by Demsar (2006). The Wilcoxon test for model comparison compares two
models by ranking their loss functions from the same data set. In this thesis, we will use the
Wilcoxon test to rank the Brier scores of the same data set from different prediction models
and test whether the ordering of the Brier score results for one model is different from that of
another.

The advantage of using the Wilcoxon test is that it does not make any distributional assump-
tions.

2.4.2.3 The Net Benefit via an Exchange Rate

All above measures evaluate the performance of risk prediction models from a purely statistical
point of view. When we use a prediction model to produce a risk probability for an adverse
event without taking other factors into consideration, we use 0.5 as the probability threshold
to classify the units as at risk or not at risk. In other words, we put the same weight on harms
and benefit. However, in a real world setting, a decision is often made after other practical
factors are taken into consideration, i.e. making a decision involves trading off between harms
and benefits .This provides the motivation for the Net Benefit introduced by (Vickers, 2016) as
a performance measure. If a model tells us there are 10% units at the risk of the adverse event,
we need take an action on them. In some circumstances, we may want to avoid missing false
negative units at some cost, say we will exchange 10 actions to capture one true positive unit.
This exchange rate means 9 false positive units worth one true positive unit. The exchange rate
is derived from a trade-off between the consequences of action and no action. In our example
the exchange rate is 1

9 .

The exchange rate Re also formulated by (Vickers, 2016) will affect the probability threshold
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ptd which is used to convert the output of the probability model to deterministic classes in the
following way,

Re =
ptd

1−ptd
(2.24)

This new analytic performance measure net benefit has gained a wide use in last decade because
it incorporates the exchange rate/probability threshold in the following way,

Net Benefit=
TP

N
−
[FP
N
×Re

]
=
TP

N
−
[FP
N
× (

ptd
1−ptd

)
]
.

(2.25)

As an analytical measure, the net benefit weighs benefits and harms with a specific exchange
rate. In almost any clinical setting we want to achieve the best health outcomes for the patients
whilst at the same time being constrained by limited resources and budgets. In addition, some
treatments may have adverse effects. The net benefit allows us to capture this trade-off by both
rewarding true positives and also taking into account the costs of giving patients treatments
which they may not require. In the context of diagnosing a disease, if the disease is fatal, early
diagnosis is crucial. In the first step, we may use patients’ demographic variables and a few
blood test markers to predict the risk. We identify some patients at risk and in the next step we
need a CT scan to confirm whether or not these patients have the disease. We know that using
the risk prediction model in the first step alone we cannot guarantee not to miss any patients
who have the disease, however, giving the CT scan to every patient can be both expensive and
harmful. This provides the motivation for the use of the net benefit in decision making.

Assume there are 1000 patients in our study, there are 300 patients with disease. The prediction
model A predicts 250 patents in high risk group who have the disease and 350 patients with
false positive, yielding F1 = 0.56. The prediction model B gives 255 true positive and 300 false
positive, producing F1 = 0.59. In terms of traditional measures, we would say the model B is
better. If a doctor believes it would be worth testing 10 patients to identify one patient with
the disease, it means the doctor put 9 times more weight on finding the disease at an earlier
stage than avoiding a further examination, which can be translated to statistic probabilistic
threshold ptd = 0.1.

Now we will use 0.1 as the probabilistic threshold instead 0.5 to re-run the models. This time
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the model A produces TP = 292 and FP = 480, leading to net benefit 0.241. The model B gives
TP = 294 and FP = 700, leading to net benefit 0.216. So for this doctor who will examine 10
patients to identify one patient with the disease, model A is a better choice as it gives a better
clinical value. Intuitively we can see that model A only misses two more patients but brings
down false positive cases by 220, which saves the cost for 220 unnecessary further examinations
or treatments. The net benefit gives the quantitative measure for this cost and benefit trade
off.

By varying the exchange rate, we are taking the harms and benefits into consideration to make
our decision.

2.4.2.4 Survival Loss Functions

In this thesis we will focus on using two survival loss functions: the Concordance index and the
integrated Brier score.

Concordance Index: The Concordance index (C-index) (Harrell et al., 1996) is a discrimi-
nation measure. The C-index is defined as the proportion of the pairs of units for which one unit
is predicted to have its event first, really had its event first. In other words, the Concordance
index is the measure of how well the model can rank the units based on their survival times not
the probability of their survival times.

For a data set of size N, removing all censored units, we have Nr units. Our model predicts
unit i will survive to time ti, its really survival time is Ti, the C− index can be defined in the
following way,

C− index=

∑Nr
i,j=11(Ti > Tj) · 1(ti > tj)∑Nr

i,j=11(Ti > Tj)
, (2.26)

where

1(u > v) =

1, if u > v

0, otherwise
.

C− index = 1 corresponds to a perfect model prediction, and C− index = 0.5 represents a
random prediction.
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Integrated Brier Score: The Brier score we discuss in section 2.4.2.2 is for binary classifi-
cations settings. In the survival prediction setting, we need a measure of how well the models
fit with reality over all times. The Integrated Brier Score measures the performance of a fitted
survival function Ŝ(t) for the whole-time interval.

In a data set of size N, for unit i, we have covariate xi, Ti is the time when the event happens
and censoring is absent, the model predicts the probability of unit i survival at time t is Ŝ(t | xi),
so the Brier score for N units at time t is,

BS(t)=
1
N

N∑
i=1

(
1(Ti>t)−Ŝ(t|xi)

)2
. (2.27)

In reality, a survival analysis data set always has some units censored, for these units we only
know the event has not happened after some time C(censoring time). We cannot simply use the
above equation to calculate the Brier score for censored data. The standard way to overcome
the issue of censoring is by using a weighting scheme independent of the survival model. This
is known as Inverse Probability Censoring Weight (IPCW) introduced by Graf et al. (1999).
The IPCW models the probability of censoring C, this enables us to put more weight on units
that have not been censored. Let G(t) = P(C > t) where G can be modelled using a survival
estimator. Graf uses the Kaplan Maier Estimator, however alternative censoring estimators
may be used (Gerds & Schumacher, 2008).

For unit i, let xi be the covariate vector, ti =min{Ti,Ci} and the event status δi. The formu-
lation of the Brier score for the censored data is presented as follows,

BS(t) =
1
N

N∑
i=1


(
0− Ŝ(t|xi)

)2
· 1(ti 6 t and δi = 1)

Ĝ(t−i )
+

(
1− Ŝ(t|xi)

)2
· 1(ti > t)

Ĝ(t)

 , (2.28)

where

1(u) =

1, if u is true

0, otherwise
.

Gerds & Schumacher (2008) shows that such estimators are consistent.

To consider the performance of the model over the whole-time interval we can integrate over

42



the interval. Let t∗ be the largest time to event or censoring in the data set,

IBS=

∫t∗
0
BS(t)dt. (2.29)

IBS is an overall measure for the prediction of the survival model. The smaller the IBS, the
better the model fitted.

2.4.3 Regularization

There are multiple strategies in which risk prediction models can be improved. In this thesis
our focus will be on one approach know as regularization. We therefore proceed to introduce
regularization in the context of risk prediction models.

2.4.3.1 Bias and Variance trade-off

Before we go into the details of regularization, we introduce the concept of balancing bias and
variance and the phenomenon of overfitting and underfitting.

As discussed in section 2.2.1 Building a Supervised Learning Task, we strive to find a map
function to map input X to output Y. We assume there exists the relation between X and Y.
We can write,

Y = g(X)+ e. (2.30)

g is the mapping function, e is error. In practices, we never make a perfect estimation of g(X)
and make e zero.

For a data unit i (xi,yi), we apply a modelled mapping ĝ on xi and get the estimated value of
ĝ(xi), we have expected squared error,

Error(xi) = E

[(
yi− ĝ(xi)

)2]. (2.31)

If we further decompose the Error, we can get the following,

Error(xi) =
(
E[ĝ(xi)] −g(xi)

)2
+E

[(
ĝ(xi)−E[ĝ(xi)]

)2]
+σei, (2.32)
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i.e.
Error(xi) = Bias

2+Variance+ IrreducibleError. (2.33)

The bias is the measurement how far the estimated value is away from the true value. The
variance represents how far the estimated values spread out from the mean of the estimated
values. Irreducible Error is the error that cannot be reduced by a good model and the reason
for it can be the incompleteness or the variations of observations.

The data we acquire always contains the real information which represents the real pattern of
data and some random noise, i.e. the variations of observations. We want the models only
learn the real pattern of data. But in reality, when we train our models over a training set, we
minimize the error and at the same time we may unintentionally force the models to pick up
certain patterns of noise in the training set.

If we made the model too flexible to get the estimation too close to the true values in the
training set, then this model has lower bias and high variance, leading to high error in the
testing set. This is where the overfitting occurs. On other hand, if we use a simple model, for
example, a linear model, to model non-linear data, we cannot capture the underlying pattern
of data. This model may have a low variance, but has high bias, producing high error in both
the training set and testing set. This model is underfitted.

In machine learning tasks, low bias and low variance are desirable but they simply don’t go
together. In general, decreasing the bias will increase the variance and decreasing the variance
will increase the bias. There is a trade-off between bias and variance to avoid underfitting or
overfitting. Finding a balance between bias and variance is always a challenge. Cross-validation
can low bias and variance. Other methods, such as, bagging (Breiman, 1996), boosting (Freund
& Schapire, 1997) and regularization (Tikhonov & Arsenin, 1977) can overcome overfitting.
Regularization is a widely used technique in an attempt to solve the overfitting. In our fu-
ture work we choose to focus on regularization for classification and survival models. We will
therefore provide a brief introduction to regularization.

2.4.3.2 Regularization Methods

In machine learning settings, regularization is a process of modifying a learning model to make it
more generalizable. Regularization actually introduces a penalty while the model is overfitting.
This penalty is designed to penalize more overfitted features. The regularization used in our
research primarily focuses on models where we can map the input X onto the output Y via
coefficients β. They were originally developed for the regression setting by Tikhonov & Arsenin
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(1977). It can be extended to a classification or survival setting via a regularized log likelihood
LLr. Let θ be the distribution parameters if applicable, a ridge regularized log likelihood can
be defined in the following way,

LLr(θ,β) = LL(θ,β)+ λβTβ. (2.34)

λ is the tuning parameter which determines how much we want to penalize the flexibility of our
model and especially penalize the overshot coefficients. If we chose λ= 0, we have no penalty at
all and we just train our model by log likelihood. On the other hand, with the increase of λ, the
impact of the penalty grows and coefficient estimates get smaller, even approaching to zero. So,
finding an appropriate value of λ is a crucial step in regularization process. The mathematics
of regularization can be seen via a trade-off of bias for a lower variance. In other words, adding
the penalty of λβTβ to the optimization function of likelihood introduces a bias in the training
process but will minimize the variance in the testing process so that overall error will reduce
too. This ridge regularization penalty is also known as the L2 penalty.

While the ridge regularization constrains the absolute size of the coefficients to prevent over-
fitting and reduce the overall error of the models, sometimes we may want to select the most
relevant variables, one way to do this is via LASSO regression (Tibshirani, 1996). LASSO is
defined in the following way,

LLl(θ,β) = LL(θ,β)+ λ‖β‖1 . (2.35)

As well as imposing bias, LASSO also has the additional benefit of forcing some of the coefficients
to equal zero. Forcing coefficients to be zero eliminates variables - therefore LASSO has the
additional benefit of conducting variable selection. However, since an absolute value is not
differentiable, LASSO likelihoods are computationally more difficult to optimize. Both Ridge
and LASSO require the use of a parameter λ that needs to be tuned in the validation process.
This in turn requires the choice of a loss function/performances measure. Further detail on the
tuning process is provided in chapter 6 Regularization Problems in a Gym User/Patient Setting.
The parameter λ reflects the size of the constraint being imposed. The LASSO regularization
penalty is also known as L1 penalty.
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Chapter 3

Weibull Full Likelihood Implementation

In this chapter, we detail a software implementation of a full likelihood estimation of survival
models. The aim of this chapter is to implement the Weibull proportional hazards model to
further develop our understanding of proportional hazards models - a class of models that are
used extensively throughout this thesis. We first introduce the two main classes of survival
models known as Proportional Hazards Models and Accelerated Failure Time Models. We then
provide an overview with regards to how survival models can be fitted via maximum likelihood
estimation and further derive the mathematical formulas of likelihood estimation. Finally, we
proceed to specify the Weibull proportional hazards model and conduct a full implementation
of the model based on the mathematical equation of its log likelihood. We test our model on a
simulated data set and present the results.

The two main types of survival models are proportional hazards models and accelerated failure
time models. Proportional hazards models assume the covariates have a multiplicative effect
on the hazard function whilst accelerated failure time models assume the covariates have a
multiplicative effect on the event time.

3.1 Proportional Hazards Models

The most commonly used survival models are known as proportional hazards models Cox
(1972). Proportional hazards models aim to model a hazard function that we defined in sec-
tion 2.2.1.3 Survival Models, as a function of covariates and time. A proportional hazards
model consists of two components, at any time t, the baseline hazard function h0 (t,θ) and the
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multiplicative function G(β,x). The baseline hazard function h0 (t,θ) models the hazard rate
independently of the covariates where h0 (t,θ) is a parametric distribution with parameters θ.
The multiplicative function G(β,x) incorporates the covariates via coefficients β,

h(t,θ,β,x) = h0 (t,θ)G(β,x). (3.1)

A special case of proportional hazards models is the Cox proportional hazards model where
G(β,x) = exp(βx),

h(t,θ,β,x) = h0 (t,θ)exp(βx), (3.2)

β is the vector of coefficients and x is the vector of the observed unit variables. In parametric
models the h0 (t,θ) can be specified by choosing from a selection of distributions.

3.2 Accelerated Failure Time Models

Another alternative class of survival models to proportional hazards models are accelerated
failure time models (Wei, 1992b). Instead of modelling the hazard, accelerated failure time
models model the survival times T in the form,

logT =−βx+σW, (3.3)

where W is an error term modelled by an appropriate distribution. In addition, exp(σW) can
also be denoted as the baseline time to event T0. Whilst accelerated failure time models model
the survival time, their survival and hazard functions can be derived to allow for fitting under the
maximum likelihood estimation process as described in the next section. To derive the hazard
and survival functions of accelerated failure time models we let T0 be the baseline survival time
in the form exp(σW) and let S0(t) denote the baseline survival function and T0 = exp(σW) ,
we can express S0(t) in the following form,

S0 (t) = P (T0 > t) = P

(
W >

log t

σ

)
. (3.4)

Since we can denote T = T0 exp−βx, we can write the survival function in the form,

S(t,x) = P (T > t|x) = P
(
T0 exp(−βx)> t | x

)
= P
(
T0 > texp(βx) | x

)
= S0

(
texp(βx)

)
. (3.5)

We denote S0(t) as reference survival function. Using the relationship of equations 2.7 and 2.8
we can obtain the following relationships,

f(t,x) = −
[
S
(
texp(βx)

)] ′
= f0

(
texp(βx)

)
exp(βx) (3.6)
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where f0(t) = S ′0(t),

h(t,x) = f(t | xi)

S(t | xi)
= h0

(
texp(βx)

)
exp(βx) , (3.7)

where h0(t) = f0(t)
S0(t)

. We can see S(t), f(t) and h(t) are all accelerated by the factor exp(βx).

3.3 Maximum Likelihood Estimation

One of the most popular ways of fitting survival models is by finding the appropriate β,θ that
maximize the likelihood function as introduced by (Cox, 1972). For an individual unit i at time
ti, we denote the proportional hazard function to be,

h
(
ti,,θ,β,xi

)
= h0

(
ti,,ψ

)
G(β,xi). (3.8)

3.3.1 Maximum Likelihood Estimation Derivation

For a given unit i, ti is the time to event or censoring, whichever happens first, let ψ be the
parameters of a parametric distribution θ and the vector of coefficients β if applicable, let
f(ti,ψ) be the probability density function of the event happening at time ti, we can write the
likelihood function L in the form,

Li(ψ) = f(ti,ψ)δiS(ti,ψ)
1−δi , (3.9)

where δi = 1 if the event happens at time ti or 0 otherwise. Using the relationship for a hazard
function 2.11 as defined in section 2.2.1.3 Survival Models, we can rewrite the likelihood function
in the form,

Li(ψ) = h(ti,ψ)δiS(ti,ψ). (3.10)

Assuming that each unit experiences the event or censoring independently of each other, for N
units the likelihood function can be written in the form,

L(ψ) =

N∏
i=1

h(ti,ψ)δiS(ti,ψ), (3.11)

by taking logarithms we can get the following result,

LL(ψ) =

N∑
i=1

{
δ
i
log
(
h(ti,ψ))+ log (S(ti,ψ)

)}
. (3.12)
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Since S(ti,ψ) = exp(−Λ(ti,ψ)) 2.10 defined in section 2.2.1.3 Survival Models, we can rewrite
equation 3.12,

LL(ψ) =

N∑
i=1

{
δ
i
log
(
h(ti,ψ)−Λ(ti,ψ)

)}
. (3.13)

The parameters ψ can be chosen to maximize log likelihood, where ψ includes the distribution
parameters θ and the coefficients β if applicable.

The Maximum likelihood estimation method of fitting survival models can be used for both
proportional hazards and accelerated failure time models. However, survival models can be
fitted in alternative ways for example via boosting (Binder & Schumacher, 2008) and bagging
(Ishwaran et al., 2008).

Computing the full likelihood requires the specification of underlying distribution for the base-
line hazard for the proportional hazard models or the error term for the accelerated failure time
models. If we do not want to specify a baseline we can use the semi parametric proportional
hazards model, such as, the Cox proportional hazards. However, without a specified baseline
model we are unable to use the full likelihood estimation as detailed above and instead we can
use the partial likelihood. On the flip side, the use of the partial likelihood would only allow us
to compute the hazard ratio, not the hazard itself. The partial likelihood method is described
below.

The Partial likelihood: An alternative to fitting via the maximum likelihood is to fit the
models via the partial likelihood (Cox, 1975). The advantage of this approach is that we do not
have to specify a baseline survival distribution or hazard function.

Let us define a data set with size D in which all the units have independent time to event. At
time t, no event has happened or censored, so all units are at risk. We call this data set as a
risk set,

R(x,tm) = {m : t> tm}, (3.14)

tm is the time to event for the unit m and x is the covariate vectors of the risk set, its likelihood
to failure at time tm is,

Lm(ψ) = P(unit m fails | one fails from R(x,tm))

=
P(unit m fails | tm)∑

l∈R(x,tm)P(unit l fails | tm)

=
h(tm | xm)∑

l∈R(x,tm)h(tm | xl)
.

(3.15)
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In a proportional hazards model, h(t,θ,β,x) = h0(t,θ)exp(βx), this can be written in the form
of ,

Lm(θ,β) = h0(tm,θ)exp(βxm)∑
l∈R(x,tm)h0(tm,θ)exp(βxl)

. (3.16)

Cancelling top and bottom by h0 (tm,θ) we get ,

Lm(β) =
exp(βxm)∑D
l=1 exp(βxl)

. (3.17)

Assuming independence of each unit, the partial likelihood function for data set of size N
therefore takes the form,

L(β)=

N∏
m=1

[ exp(βxm)∑D
l=1 exp(βxl)

]δm
. (3.18)

The partial likelihood is therefore the product of conditional probabilities of the event happening
given the risk set at that time and that one event is about to occur. The advantage of partial
likelihood estimation is that we do not have to make any distributional assumptions for the
baseline hazard. However, since we only estimate the βs we are unable to compute the full
hazard or survival functions which are required to calculate the loss functions such as the
integrated Brier Score. On the other hand, the full likelihood models allow us to compute the
survival function analytically once we have fitted the parameters and coefficients.

3.4 Weibull Proportional Hazards Model

In this subsection we will provide an overview of a specific example of a full likelihood model
that we will implement.

The Weibull proportional hazards model (Lee & Go, 1997) is a fully parametric proportional
hazards model that assumes a Weibull distribution for the probability density function. The
Weibull proportional hazards model has been applied to a range of survival analysis applications
ranging from engineering (Jardine et al., 1987) to agriculture (Caraviello et al., 2003).

The probability density function of the general Weibull distribution is denoted in the following
form.
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f0 (t,α,γ) =
γ

α
(
t−µ

α
)(γ−1)exp

(
−(
t−µ

α
)γ
)
, (3.19)

where γ , 1 is the shape parameter, α> 0 is the scale parameter and µ is the location parameter.
Let µ= 0, Set λ= α−γ, we can express the baseline probability density function of the Weibull
proportional hazards model as,

f0 (t,λ,γ) = λγt(γ−1)exp(−λtγ), (3.20)

From equation 2.7, we can integrate f0(t) to get S0(t),

S0 (t,λ,γ) = −

∫t
0
f0(u)du= exp(−λtγ). (3.21)

From equation 2.8, we can get the baseline hazards function of the normal Weibull distribution
as follows, ,

h0 (t,λ,γ) =
f0(t)

S0(t)
= λγt(γ−1). (3.22)

For unit i with observed covariate vector xi, we have the following Weibull distribution hazard
proportional function,

h(t,λ,γ,β | xi) = λγt
(γ−1)exp(βxi), (3.23)

Through the relationships of equations 2.9 and 2.10 we can derive the survival function,

S(t,λ,γ,β|xi) = exp
(∫t

0
h(u | xi)du

)
= exp

(
−λtγ exp(βxi)

)
. (3.24)

and from equation 2.11, we can have the probability density function,

f(t,λ,γ,β|xi) = h(t | xi)S(t | xi) = λγt(γ−1)exp(βxi)exp
(
−λtγ exp(βxi)

)
. (3.25)

From equation 3.12 and for a data set of N units we are then able to derive the associated log
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likelihood in the following way,

LL(λ,γ,β) =
N∑
i=1

{
δ
i
log
(
h(ti,ψ)

)
+ log

(
S(ti,ψ)

)}
=

N∑
i=1

{
(δ
i
)
[
log

(
λγti

γ−1)+βxi]− λtiγ exp(βxi)}.
(3.26)

We then optimize this log likelihood function using the optim R function to find out λ,γ,β.

3.5 Simulated Data

Since we are implementing the full likelihood of a Weibull proportional hazards model, a data
set is generated using a Weibull distribution with a predefined λ, γ and β. X1,X2 are vectors of
size N and generated by normal distributions. Let xi be a vector consisting of (X1i,X2i), Let
β be a vector of (β1,β2), our aim is to create a data set of {ti,δi,xi}Ni=1 for N data units. The
simulation formulation is based on the work of (Bender et al., 2005). We generate each time to
event Ti using the following formula,

Ti =

(
− log (Ui)
λexp(βxi)

) 1
γ

, (3.27)

while censoring time is computed in the following way,

Ci =

(
− log (Vi)
λcexp(βxi)

) 1
γ

, (3.28)

in which λ is modified,

λc = λ(
1− r
r

)

1
γ

, (3.29)

where both Ui and Vi are a draw from a uniform distribution of (0,1). The r is the event ratio,
i.e. the ratio of number of units in which the event happened to the sample size.

The status δi = 1 if Ti 6 Ci, 0 otherwise.

3.5.1 Simulation Experiment

In our experiment we set our λ to 0.2, γ to 0.8 and sample size N. We set the λ to be not equal
to one to ensure that the data follows a Weibull distribution as opposed to just an exponential
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distribution. The γ is set to less than one in order to ensure that the risk of the event on
simulated data will decrease over time. We simulated the two variable vectors of X1 andX2,
both are independently drawn from a normal distribution with size N. X1 is simulated with
mean=4, standard deviation 0.5. X2 is simulated with mean 2 and standard deviation 0.5. We
set β1 to −5 and β2 to 0.3, the event ratio r to 0.5, xi = [X1i,X2i].

We then applied our full likelihood implementation onto this data set to fit the λ, γ and β.
We first set a data set of size N 10,000. Next, we simulate the data set 100 times, for each of
the 100 data sets we fit the λ, γ and β by minimizing the negative log likelihood. Finally, we
compare my mean fitted values, from the 100 data sets to the actual values that we set. We get
the following result in table 3.1.

λ γ β1 β2
True 0.2 0.8 -5 0.3
Mean 0.20558 0.79909 -5.00927 0.3036646
RMSE 0.024507 0.00987 0.0676 0.0276

Table 3.1: Results from a Simulated Data of Size 10,000.

Table 3.1 demonstrates the mean fitted parameters are very close to the original parameter
value we set. In order to demonstrate the impact of the sample size on the accuracy of the
implementation, we extend this to a larger scale simulation for a given set of sizes (800, 1000,
2000, 3000, 5000 ,8000, 10000, 150000). We calculated the mean squared errors (MSE) between
the parameters we set and the fitted parameters. We also calculated the variance of the MSE
and plot both the MSE along with their error bars (Mean MSE ± standard deviation). The
error bars provide a visual representation of the spread of the mean squared errors. We plot
the log Sample Size (in order to get a higher resolution) to get the following plots.

Figure 3.1 shows the results and error bars for a fitted lambda. The error bar size and mean
square error size decrease as the sample size increases.
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Figure 3.1: Plot for Fitted λ with Sample Size on the X Axis, MSE with Error Bars on
the Y Axis.

Figure 3.2 shows the results and error bars for a fitted gamma. The error bar size and mean
square error size decrease as the sample size increases.

Figure 3.2: Plot for Fitted γ with Sample Size on the X Axis, MSE with Error Bars on
the Y Axis.

Figure 3.3 shows the results and error bars for the first fitted beta. The error bar size and mean
square error size decrease as the sample size increases.
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Figure 3.3: Plot for Fitted β1 with Sample Size on the X Axis, MSE with Error Bars on
the Y Axis.

Figure 3.4 shows the results and error bars for the second fitted beta. The error bar size and
Mean Square Error size decrease as the sample size increases.

Figure 3.4: plot for Fitted β2 with Sample Size on the X Axis, MSE with Error Bars on
the Y Axis.
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3.6 Summary

At first glance from the plots we notice that the mean MSE values are small. This indicates
that the model fits the simulated data well as we expected and tells us that our model has been
well implemented. Using our model, we can reveal the real pattern hidden in the data set. In
addition, the mean MSE decreases with the increase of the sample size. This is consistent with
the law of large numbers whereby the increased data size means that the fitted model gets closer
to the expected value.

Another observation is that the size of the error bars decrease as the sample size increases, which
indicates a decrease in variance. These phenomena can be seen in all plots and is consistent
with the fact that the standard deviation is inversely proportional to the square root of the
sample size. However, a notable feature is that when the sample size is small the lower bound
of the error bars for many of the plots is below zero. This suggests that the standard deviation
of the mean MSE is greater than the mean MSE itself. This implies that there is a huge amount
of variation relative to the mean MSE itself. However, as we increase the sample size the lower
bounds of the error bars are closer to zero. This indicates that variance decreases fast relative
to the mean MSE as we increase the sample size.

Another area to take into consideration in terms of behaviour of the plots is the use of optimizers.
This implementation uses the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) as its
optimizer. This is the default optimizer in the ’optim’ function. However, there are three other
optimization algorithms available in the ‘optima’ function in R. Since the likelihood function is
differentiable and therefore all optimizers can be used to fit its parameters. Different optimizers
will have different convergence properties and will therefore impact how well the optimizing
functions fits to the parameters.

The results show us that by maximizing the log likelihood optimized by a BFGS algorithm we
are able accurately uncover the real pattern of the synthetic data with the Weibull distributions.
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Chapter 7

Conclusion and Future Work

This chapter gives the conclusion to the thesis. We summarize our main findings from
our investigations so far and give an outline for our future work

7.1 Summary of Findings

The thesis has the following main findings.

The first data set contains the gym user records which include the gym user demographic
information and visit records. The data set inspire two sub investigations - Predicting
Gym User Churn and Predicting Gym User Visits.

The second data set addresses patient records in rehabilitative care, where the patients
are treated and helped back to work. The data set drives the two sub investigations -
Predicting Patient Treatment Times and Predicting Patient Treatment Types.

Predicting Gym User Churn In our first investigation we look at whether machine
learning modelling is able to predict whether or not a gym user will churn. We investigate
firstly whether there is a link between demographic variables and a gym user churn. We
find that based on exploratory analysis, demographic variables have a strong associativity
with whether or not a user will churn. However, when we utilize the demographic variables
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to build classification models to predict whether or not a user will churn, we find that
we are unable to outperform a majority vote baseline. Even when we add further visit
status information, we are still unable to outperform the baseline. We later conduct
churn prediction in a survival setting and the models can outperform the baseline in
terms of rank who will churn first. This sub optimal performances introduces the need
for evaluating any predictive model against an majority vote baseline, to demonstrate its
usefulness.

Predicting Gym User Visits Our second investigation looks at predicting individual
visits in a moving window setting. When predicting individual user weekly visits, most
machine learning models we build are slightly able to outperform a majority vote baseline
over whether a user will visit in a given week with the user’s demographic variables and
previous visit records. We also find that there is a reduction in the predictability as we
move forward in time since the available data set size decreases.

Predicting Treatment Times for Patient Rehabilitative Care The third investigation
looks at whether we can use machine learning to design efficient treatment plans by pre-
dicting patient treatment times. This is the first study of its kind looking at modelling
patient rehabilitative care as opposed to simply treat patients for a condition. Using as-
sociativity studies we first find that there is a link between certain demographic variables
and treatment times. We then utilize risk prediction models that incorporate feature
selection models to find the most relevant demographic variables. The feature selection
models are able to reduce the number of variables that describe the model. Our treat-
ment time prediction models are able to outperform the baseline from both a survival and
regression settings. The results from the feature selection and the fact that demographic
variables were able to outperform the majority vote baseline demonstrates that there is a
link between demographic variables and patient treatment times. However, the weak out-
performance of the risk prediction models demonstrates that there could be other factors
that may determine how much treatment is needed. Additionally, the model performance
could potentially be improved by reducing the amount of missingness in the categorical
variables or creating interaction terms between the categories if deemed appropriate.

Predicting Patient Treatment Types Our fourth investigation progresses to extend the
investigation into predicting treatment types. We treat the prediction of a treatment
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type as a classification problem, using the demographic variables as our predictors. We
find that due to the high-class imbalance, outperforming the majority vote baseline is
difficult. However, in some cases the Adaboost algorithm was able to identify patients
that required ‘rare’ treatments. Additionally, the model performance could potentially be
improved by reducing the number of missingness in the categorical variables or creating
interaction terms between the categories if deemed appropriate.

Methodological Contribution

1. Comparison of tuning strategy performance of the F1 and Brier score LASSO
regularization Our first methodological contribution is to compare the tuning of
the logistic LASSO via the F1 score and Brier score and demonstrate their merits
via both the gym user churn data set and the patient treatment data set.

2. Net benefit LASSO regularization Introduces the net benefit LASSO and demon-
strated its merits by showing that it is able to obtain greater net benefit perfor-
mance.

3. Integrated Brier Score regularization of Cox proportional hazards models Demon-
strates the benefits of using the integrated Brier score to tune regularized Cox
proportional hazards models.

4. Net benefit optimization via parameter tuning in machine learning models Using
support vector machines as an example we demonstrate how we optimize for the
net benefit via modern machine learning methods.

7.2 Future Work

There are two possible areas for which my research can be extended. Firstly, investigate
further the statistical properties of my methodological contributions by considering their
performance on synthetic data. Alternatively, there are significant future areas of research
that are beyond the scope of a PhD thesis. In the following subsection I explain possible
approaches to generate synthetic data sets for both a classification and survival setting.
However, any such further investigations would require more considerations.
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7.2.1 Data Generation

In order to test the robustness of the models we can generate data sets with certain
properties to evaluate the performance in these models. The main focus on this thesis
will be imbalance, dimensions and censoring. This is motivated by the fact that the utility
of loss functions can be dependent on the nature of data sets of interest. On the other
hand, in the survival setting, varying proportion of censoring can affect the performance
of model turning, this is especially of interest since the integrated Brier score account for
censoring whilst the partial likelihood deviance and Concordance index do not. When
generating the data sets we need to take into consideration what sort of data would most
likely result in the method failing, in the context of parameter tuning this is heavily
dependent on the loss function itself. From the perspective of the F1 and Brier score,
the most obvious starting point would be the focus on imbalance. The Brier score is
known to struggle to account for infrequent events therefore the focus will be on heavily
imbalanced data. We now proceed to describe how we will generate the data sets in a
classification and a survival setting.

7.2.1.1 Classification Data Set Generation

We aim to use a data set of fixed size 5000 but of varying dimensions. We will keep the
number of meaningful variables fixed by drawing from a uniform distribution with mean
1 whilst drawing the rest of variables from a uniform distribution with mean value of 0.
Also the data sets will be generated with different degrees of class imbalance to observe
how loss functions perform on varying data sets. .

7.2.1.2 Survival Data Set Generation

For the survival data set generation, we also use a fixed data set size and number of
meaningful but different dimensions. The data sets will be generated in the same way as
we described in the section 3.5. Since the time to event and censoring are drawn from
a Weibull Distribution, we will be confident that we are able to recover the coefficients
with LASSO Cox regression.

We will generate different proportions of censoring data sets and study the performance
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of our models with concordance index and integrated Brier score as turning measures for
penalty parameter λ.

7.2.2 Future Areas of Research

The wellbeing research in this thesis, investigating the application of analytics to gym user
behaviour and patient treatment planning, gives motivation for future research beyond
the scope of this thesis. The following ideas are potential major areas to investigate,
centred on optimising inter-related variables, such as specific outcomes:

1. Reinforcement Learning Tool to Improve Gym User Well-being Investigate the
use of a reinforcement learning approach where the ‘actions’ to optimise different
outcomes, such as user fitness, gym usage etc. The tool would test whether actions
in the form of certain nudges or incentives can help maximize the reward in the
form of better gym outcomes.

2. Reinforcement Learning Planning for Hospitals’ Patient Treatment Investigate
the use of a reinforcement learning approach where the ‘actions’ are the ‘real-time’
clinical decisions made to decide whether or not patients require treatment and
where they should be allocated whilst the reward is the patient outcomes and
hospital capacity.

3. A Performance Index for Gyms and Hospital Care An equivalent of the FTSE
100, the performance index for gyms and hospital care enables gyms and treatment
centres to evaluate themselves against a benchmark. This will enable them to be
assessed if they are underperforming or outperforming compared to their peers.

4. National Comparison Tool for Gyms and Hospital Care

A ranking system that allows for different gyms and hospitals groups to be ranked
base on optimising a ‘group’ of criteria. This would be a points-based system where
points are given for a range of outcomes. The topic of research would be how to
allocate the points for each possible outcome and how much weight to put on each
positive or negative event.

Each of these ideas is of potentially interesting avenues to explore. However, since a large
amount of data collection required over a long period of time, this would not be viable
over the time scale of this thesis.
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Appendix A

Full Result Tables

rn 1
1 (Intercept) 0.00
2 GenderFemale 0.00
3 GenderMale 0.00
4 Marital.StatusDivorced 0.00
5 Marital.StatusMarried 0.00
6 Marital.StatusSeparated 0.00
7 Marital.StatusSingle 0.00
8 Marital.StatusWidowed 0.00
9 Marital.StatusWith Partner 0.00
10 Education.LevelA Levels or NVQ Level 2/3 0.00
11 Education.LevelDegree -0.06
12 Education.LevelDoctorate -0.34
13 Education.LevelGCE’s, GCSE’s or NVQ Level 1 0.09
14 Education.LevelMasters -0.04
15 Education.LevelNo Qualification 0.08
16 Education.LevelOther Qualification 0.10
17 Age 0.00
18 EthnicityAfrican 0.04
19 EthnicityCaribbean 0.00
20 EthnicityChinese 0.00
21 EthnicityIndian 0.00
22 EthnicityMixed White and Black African 0.00
23 EthnicityNot Stated -0.36
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24 EthnicityOther -0.14
25 EthnicityOther Asian Groups 0.00
26 EthnicityOther Black Backgrounds 0.00
27 EthnicityOther Mixed Background 0.00
28 EthnicityOther White Background 0.00
29 EthnicityWhite British -0.05
30 EthnicityWhite Irish 0.00
31 Diagnosis.CategoryDementia 0.00
32 Diagnosis.CategoryEpilepsy 0.00
33 Diagnosis.CategoryFunctional 0.00
34 Diagnosis.CategoryInflammatory/Infectious 0.00
35 Diagnosis.CategoryMovement Disorder 0.08
36 Diagnosis.CategoryMS 0.00
37 Diagnosis.CategoryNeuromuscular 0.00
38 Diagnosis.CategoryOther 0.00
39 Diagnosis.CategoryOther Tumour 0.00
40 Diagnosis.CategorySpinal Cord Injury 0.00
41 Diagnosis.CategoryStroke 0.00
42 Diagnosis.CategoryTBI 0.00
43 Diagnosis.CategoryVestibular 0.00
44 Diagnosis.SpecificAlzheimers 0.00
45 Diagnosis.SpecificAtaxia 0.00
46 Diagnosis.SpecificCervical 0.00
47 Diagnosis.SpecificEncephalitis 0.00
48 Diagnosis.SpecificFronto-Temporal 0.00
49 Diagnosis.SpecificGlioma - Grade 1 -0.17
50 Diagnosis.SpecificGlioma - Grade 2 0.00
51 Diagnosis.SpecificGlioma - Grade 3 0.00
52 Diagnosis.SpecificGlioma - Grade 4 0.00
53 Diagnosis.SpecificHaemorrhage 0.00
54 Diagnosis.SpecificHydrocephalus 0.00
55 Diagnosis.SpecificInfarct 0.05
56 Diagnosis.SpecificInflammatory - Other 0.00
57 Diagnosis.SpecificLumbar 0.00
58 Diagnosis.SpecificMeningioma - Grade 1 0.03
59 Diagnosis.SpecificMeningitis 0.00
60 Diagnosis.SpecificMinor - PTA <1hour 0.00
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61 Diagnosis.SpecificMND 0.00
62 Diagnosis.SpecificModerate - PTA <1day 0.00
63 Diagnosis.SpecificNeuropathy - CIDP 0.00
64 Diagnosis.SpecificNeuropathy - CMT 0.00
65 Diagnosis.SpecificNeuropathy - Other -0.27
66 Diagnosis.SpecificOther 0.00
67 Diagnosis.SpecificOther Brain Tumour 0.00
68 Diagnosis.SpecificOther Movement Disorder 0.00
69 Diagnosis.SpecificOther Neuromuscular 0.00
70 Diagnosis.SpecificPrimary Progressive 0.00
71 Diagnosis.SpecificRelapsing Remitting 0.00
72 Diagnosis.SpecificSarcoidosis 0.00
73 Diagnosis.SpecificSecondary Progressive 0.00
74 Diagnosis.SpecificSevere - PTA <7days 0.00
75 Diagnosis.SpecificSubarachnoid Haemorrhage 0.00
76 Diagnosis.SpecificVery Severe - PTA 7days+ 0.00
77 Pre.Injury.Work.HoursFull Time 0.00
78 Pre.Injury.Work.HoursN/A 0.00
79 Pre.Injury.Work.HoursOff-Sick 0.00
80 Pre.Injury.Work.HoursPart Time 0.00
81 Pre.Injury.Work.StatusEmployed 0.00
82 Pre.Injury.Work.StatusEmployed Off Sick 0.00
83 Pre.Injury.Work.StatusEmployed on Graded Return 0.00
84 Pre.Injury.Work.StatusSelf-Employed 0.00
85 Pre.Injury.Work.StatusStudying -0.22
86 Pre.Injury.Work.StatusUnemployed 0.45
87 Initial.Work.HoursFull Time 0.14
88 Initial.Work.HoursN/A 0.00
89 Initial.Work.HoursOff-Sick 0.00
90 Initial.Work.HoursPart Time 0.00
91 Initial.Work.StatusEmployed 0.00
92 Initial.Work.StatusEmployed Off Sick -0.21
93 Initial.Work.StatusEmployed on Graded Return 0.00
94 Initial.Work.StatusMedically Retired 0.00
95 Initial.Work.StatusSelf-Employed 0.00
96 Initial.Work.StatusStudying 0.00
97 Initial.Work.StatusStudying Off Sick 0.00
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98 Initial.Work.StatusUnemployed 0.00
99 Initial.Work.StatusVolunteering 0.00
100 Initial.Occupation.TypeClerical and Intermediate 0.00
101 Initial.Occupation.TypeEducation 0.00
102 Initial.Occupation.TypeMiddle or Junior Managers 0.00
103 Initial.Occupation.TypeModern Professional 0.00
104 Initial.Occupation.TypeRoutine Manual and Service 0.00
105 Initial.Occupation.TypeSemi-Routine Manual and Service 0.00
106 Initial.Occupation.TypeSenior Managers or Administrators -0.26
107 Initial.Occupation.TypeTechnical and Craft Occupations -0.23
108 Initial.Occupation.TypeTraditional Professional 0.00

Table A.1: LASSO Cox Model results

rn 1
1 (Intercept) 295.68
2 (Intercept) 0.00
3 GenderFemale 0.00
4 GenderMale 0.00
5 Marital.StatusDivorced 0.00
6 Marital.StatusMarried 0.00
7 Marital.StatusSeparated 0.00
8 Marital.StatusSingle 0.00
9 Marital.StatusWidowed 0.00
10 Marital.StatusWith Partner 0.00
11 Education.LevelA Levels or NVQ Level 2/3 0.00
12 Education.LevelDegree 0.00
13 Education.LevelDoctorate 0.00
14 Education.LevelGCE’s, GCSE’s or NVQ Level 1 0.00
15 Education.LevelMasters 0.00
16 Education.LevelNo Qualification 0.00
17 Education.LevelOther Qualification 0.00
18 Age 0.00
19 EthnicityAfrican 0.00
20 EthnicityCaribbean 0.00
21 EthnicityChinese 0.00
22 EthnicityIndian 0.00
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23 EthnicityMixed White and Black African 0.00
24 EthnicityNot Stated 0.00
25 EthnicityOther 0.00
26 EthnicityOther Asian Groups 0.00
27 EthnicityOther Black Backgrounds 0.00
28 EthnicityOther Mixed Background 0.00
29 EthnicityOther White Background 0.00
30 EthnicityWhite British 0.00
31 EthnicityWhite Irish 0.00
32 Diagnosis.CategoryDementia 0.00
33 Diagnosis.CategoryEpilepsy 0.00
34 Diagnosis.CategoryFunctional 0.00
35 Diagnosis.CategoryInflammatory/Infectious 0.00
96 Initial.Work.StatusSelf-Employed 0.00
97 Initial.Work.StatusStudying 0.00
98 Initial.Work.StatusStudying Off Sick 0.00
99 Initial.Work.StatusUnemployed 0.00
100 Initial.Work.StatusVolunteering 0.00
101 Initial.Occupation.TypeClerical and Intermediate 0.00
102 Initial.Occupation.TypeEducation 0.00
103 Initial.Occupation.TypeMiddle or Junior Managers 0.00
104 Initial.Occupation.TypeModern Professional 0.00
105 Initial.Occupation.TypeRoutine Manual and Service 0.00
106 Initial.Occupation.TypeSemi-Routine Manual and Service 0.00
107 Initial.Occupation.TypeSenior Managers or Administrators 0.00
108 Initial.Occupation.TypeTechnical and Craft Occupations 0.00
109 Initial.Occupation.TypeTraditional Professional 0.00

Table A.2: LASSO Generalized Linear Model results

Scoring BL Brier
score

Log Loss F1.score NB Re =

9/10
NB Re =

7/2
lambda 0.426500 0.381600 0.196562 0.196562 0.998100
Predictors β β β β β

(Intercept) 0.3374 0.0000 0.0000 0.0000 0.7352
Gender -0.0129 0.0000 0.0000 0.0000 -0.1488
Single 0.8684 0.8444 0.7231 0.7231 0.9508
Partner 0.4449 0.3809 0.0000 0.0000 0.7415
Educatio Degree 0.0000 0.0000 0.0000 0.0000 -0.0814
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GCE’s, GCSE’s or NVQ Level 1 -0.1314 -0.0727 0.0000 0.0000 -0.3318
Masters 0.0436 0.0000 0.0000 0.0000 0.9063
Education Qualification 0.0000 0.0000 0.0000 0.0000 0.7702
Age 0.0258 0.0271 0.0385 0.0385 0.0181
Ethnicity Other 0.0000 0.0000 0.0000 0.0000 0.1496
EthnicityWhite British -0.4314 -0.3885 -0.0257 -0.0257 -0.6239
Diagnosis Functional 0.0000 0.0000 0.0000 0.0000 0.4582
Other 0.0000 0.0000 0.0000 0.0000 0.5009
Stroke 0.0000 0.0000 0.0000 0.0000 -0.0156
TBI 0.0969 0.0712 0.0000 0.0000 0.1809
Ataxia 0.0000 0.0000 0.0000 0.0000 -0.8844
Glioma - Grade 4 -0.2542 -0.1447 0.0000 0.0000 -0.7077
Infarct 0.0000 0.0000 0.0000 0.0000 -0.1513
Secondary Progressive 0.0000 0.0000 0.0000 0.0000 -0.6197
Work.Hours N/A 0.4456 0.4021 0.0798 0.0798 0.6374
Work.Hours Off-Sick 0.4794 0.4402 0.1299 0.1299 0.6319
Work.Hours Part Time 0.0000 0.0000 0.0000 0.0000 -0.0361
Employed on Graded Return 0.0000 0.0000 0.0000 0.0000 0.0310
Self-Employed 0.0000 0.0000 0.0000 0.0000 0.2022
Unemployed 0.0000 0.0000 0.0000 0.0000 0.0564
Student 0.0000 0.0000 0.0000 0.0000 -0.7406
Semi-Routine Manual/Service -0.1057 -0.0373 0.0000 0.0000 -0.4357
Senior Managers/Administrators 0.2369 0.1464 0.0000 0.0000 0.9320
Technical/Craft 0.0000 0.0000 0.0000 0.0000 0.5138
Brier Score 0.126697 0.104407 0.105413 0.110099 0.110099 0.096007
Log Loss 4.376055 0.354212 0.353110 0.378319 0.378319 0.322475
F1 score 0.932367 0.932367 0.932367 0.933187 NA NA
NB Re = 9/10 0.759276 0.759276 0.759276 0.759276 0.769186 0.763348
NB Re = 7/2 0.429864 0.469457 0.442308 0.427602 0.427602 0.533937

Table A.3: Full Results of Logistic Regression LASSO Regularization Classification for
Treatment of Joint Meeting with an Occupational Therapist and a Psychologist Using
Different Scoring Functions.

Scoring BL Brier
score

Log Loss F1.score NB Re =

9/10
NB Re =

7/2
lambda 1.092100 1.082100 1.058200 1.089900 1.061200
Predictors β β β β β

(Intercept) 0.1964 0.1384 0.2119 0.1558 0.1191
Male -0.2740 -0.2737 -0.2718 -0.2718 -0.2718
Separated -0.9020 -0.8995 -0.8921 -0.9020 -0.8932
Single 1.4226 1.4217 1.4316 1.4321 1.4321
Partner 1.0883 1.0848 1.0841 1.0925 1.0851
Education Degree -0.1430 -0.1427 -0.1401 -0.1413 -0.1399
Doctorate 0.5756 0.5764 0.5825 0.5778 0.5822
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GCE’s, GCSE’s or NVQ Level 1 -0.2480 -0.2494 -0.2534 -0.2463 -0.2524
Masters 1.3542 1.3538 1.3559 1.3573 1.3563
No Qualification 0.0565 0.0535 0.0442 0.0554 0.0453
Other Qualification 1.2060 1.2027 1.1922 1.2028 1.1931
Age 0.0234 0.0234 0.0244 0.0241 0.0244
Caribbean 0.6558 0.6382 0.5977 0.6532 0.6031
EthnicityOther 1.1699 1.1580 1.1417 1.1767 1.1457
Other Asian Groups 0.3410 0.3317 0.3174 0.3444 0.3203
White British -0.7039 -0.7085 -0.7138 -0.7022 -0.7127
Epilepsy -1.1963 -1.1905 -1.1733 -1.1927 -1.1749
Functional 0.8153 0.8161 0.8242 0.8206 0.8243
Diagnosis Category:Other 0.7879 0.7859 0.7865 0.7895 0.7869
Stroke -0.2729 -0.2735 -0.2771 -0.2761 -0.2777
TBI 0.1762 0.1750 0.1711 0.1734 0.1712
Ataxia -3.2973 -3.2806 -3.2464 -3.2909 -3.2500
Glioma - Grade 4 -1.0208 -1.0241 -1.0313 -1.0199 -1.0299
Haemorrhage -0.5679 -0.5628 -0.5477 -0.5656 -0.5487
Moderate - PTA <1 day 0.7143 0.7077 0.6933 0.7185 0.6964
Secondary Progressive -1.5358 -1.5513 -1.5841 -1.5359 -1.5792
Severe - PTA <7 days -0.2761 -0.2749 -0.2716 -0.2748 -0.2715
Subarachnoid Haemorrhage 0.0197 0.0168 0.0153 0.0217 0.0164
Work.Hours: N/A 0.7861 0.7876 0.7973 0.7903 0.7967
Work.Hours:Off-Sick 1.0631 1.0623 1.0615 1.0649 1.0620
Employed on Graded Return 0.2297 0.2287 0.2253 0.2287 0.2255
Self-Employed 0.5453 0.5452 0.5445 0.5468 0.5449
Volunteering 0.4682 0.4575 0.4419 0.4758 0.4457
6th Form College A Levels -2.3470 -2.3236 -2.2578 -2.3351 -2.2645
Account manager -2.5678 -2.5407 -2.4569 -2.5418 -2.4638
Actor -2.8627 -2.8396 -2.7918 -2.8658 -2.7997
Architect -1.2141 -1.1937 -1.1344 -1.2014 -1.1406
Assistant Manager Pret -3.2059 -3.1878 -3.1289 -3.1906 -3.1343
Barrister 0.1955 0.1956 0.1893 0.1880 0.1885
Business Operator, BT -0.8607 -0.8304 -0.7635 -0.8624 -0.7738
CAMHS Maudsley NHS Trust -2.0712 -2.0466 -1.9718 -2.0520 -1.9786
Carer -2.7521 -2.7182 -2.6511 -2.7590 -2.6623
Cashier for sainsbrys -0.7354 -0.7075 -0.6344 -0.7237 -0.6425
Creative advertising -2.5840 -2.5585 -2.4754 -2.5604 -2.4820
Creative imaging -0.9047 -0.8671 -0.7747 -0.8977 -0.7866
Events Planner -4.8790 -4.8650 -4.8290 -4.8778 -4.8340
Finance director -3.2508 -3.2320 -3.1829 -3.2437 -3.1885
Fitness coach -3.1763 -3.1410 -3.0376 -3.1565 -3.0483
Garment technologist -2.0502 -2.0212 -1.9511 -2.0471 -1.9611
GP -2.4704 -2.4521 -2.4083 -2.4730 -2.4148
IT consultant -2.3643 -2.3384 -2.2712 -2.3571 -2.2795
IT programmer -1.1074 -1.0778 -1.0053 -1.0996 -1.0144
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IT sales -2.9380 -2.9098 -2.8491 -2.9343 -2.8570
Lecturer -2.0015 -1.9764 -1.9337 -2.0138 -1.9427
Logistics -2.3509 -2.3284 -2.2614 -2.3372 -2.2682
Lorry Driver -2.0928 -2.0757 -2.0359 -2.0905 -2.0416
Medical Engineer 0.1462 0.0250 0.0000 0.1130 0.0000
Mnagement consultant -2.7568 -2.7326 -2.6869 -2.7672 -2.6957
MSU Manager -1.1737 -1.1530 -1.1117 -1.1749 -1.1182
Nursery School Teacher -0.7760 -0.7353 -0.6370 -0.7674 -0.6498
Occupational Therapist -4.3021 -4.2788 -4.2272 -4.3002 -4.2344
Operations manager -3.7558 -3.7353 -3.6642 -3.7361 -3.6702
Owner of station news agent -2.1584 -2.1388 -2.0950 -2.1604 -2.1017
Pa for local council -3.7127 -3.6962 -3.6505 -3.7078 -3.6560
Part time Judge/barrister -2.3157 -2.2943 -2.2544 -2.3232 -2.2619
Phlebotomist -2.8159 -2.7966 -2.7318 -2.7970 -2.7374
Prison officer -2.6581 -2.6314 -2.5710 -2.6566 -2.5789
Psychology Professor -3.4194 -3.3984 -3.3737 -3.4337 -3.3809
Self-employed builder -2.2803 -2.2555 -2.1992 -2.2780 -2.2069
Sells fish at Billingsgate -2.3651 -2.3386 -2.2626 -2.3507 -2.2708
Socail media -1.4285 -1.4121 -1.3546 -1.4072 -1.3592
Solicitor -0.9386 -0.9230 -0.8977 -0.9503 -0.9040
Student -2.2617 -2.2534 -2.2244 -2.2528 -2.2268
Supermarket sales Assistant -3.5027 -3.4781 -3.4287 -3.5042 -3.4359
Teacher -1.4958 -1.4808 -1.4458 -1.4932 -1.4504
Trainee Accountant -1.2234 -1.1965 -1.1117 -1.1995 -1.1190
Employed nurseery teacher -2.7601 -2.7454 -2.7096 -2.7558 -2.7137
Vodafone Account Manager -1.7205 -1.7001 -1.6311 -1.7024 -1.6366
Warehouse supervisor -2.3621 -2.3359 -2.2742 -2.3613 -2.2828
Community out-reach (PC typ-
ing)

-1.3598 -1.3400 -1.3006 -1.3606 -1.3065

Modern Professional 0.0417 0.0351 0.0173 0.0382 0.0191
Semi-Routine Manual/Service -0.1964 -0.2026 -0.2195 -0.1994 -0.2179
Senior Managers /Administrators 1.4932 1.4916 1.4878 1.4938 1.4885
Technical/Craft 0.8548 0.8502 0.8399 0.8545 0.8414
Occupation Type 0.2867 0.2812 0.2680 0.2860 0.2700
Brier Score 0.420420 0.051338 0.051900 0.053284 0.051495 0.053113
Log Loss 14.521143 0.220462 0.220209 0.226229 0.220901 0.225727
F1 score 0.733840 0.973890 0.972549 0.977212 NA NA
NB Re = 9/10 0.201201 0.552102 0.552102 0.552102 0.556312 0.552102
NB Re = 7/2 -0.891892 0.433934 0.432432 0.424925 0.432432 0.426426

Table A.4: Full Results of Logistic Regression LASSO Regularization Classification for
Treatment of Joint Meeting with an Occupational Therapist and a Psychologist Using
Different Scoring Functions with Over Sampling.

Scoring Integration Brier Score Concordance Index
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lambda 0.025000 0.003125
Predictors β β

Married 0.117425
Single 0.243217
Partner 0.210232
Education Degree -0.046122 -0.333235
Doctorate -0.991823
"GCSE’s or NVQ Level 1""" 0.048810 0.288388
Masters -0.644016
No Qualification 0.414973
Other Qualification 0.427951
Age 0.004363 0.007319
Caribbean -0.048696
Indian 0.214541
Ethnicity Not Stated -0.534069
EthnicityOther -0.724628
White British -0.013915
Diagnosis Functional 0.167587
Movement Disorder 0.406847
Category Other 0.089022
TBI 0.136977
Vestibular -0.109897
Cervical -0.052134
Encephalitis -0.064028
Glioma - Grade 2 -0.345284
lioma - Grade 4 0.201982
Infarct 0.273620
Meningioma - Grade 1 0.581516
Meningitis 0.194764
Moderate - PTA <1day 0.110569
Neuropathy - CMT -0.723916
Other Neuromuscular 0.117804
Work.Hours:Off-Sick -0.040072 -0.303811
Work.HoursPart Time -0.383855
Work.StatusEmployed Off Sick -0.242464 -0.437289
Self-Employed 0.137861
Studying -0.108843
Unemployed -0.390084
Accounts Supervisor -0.281066
Administrator -0.122361
Antiques consultant -0.619301
Bar man -0.074762
Barrister -0.241088
Barristers Clerk -0.008959
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BBC radio 3 producer -1.061993
Business Operator BT -0.389021
Cashier -0.181576
Cashier for sainsbrys -0.852485
ellular and molecular medicine -1.325722
Civil Servant -0.721820
Director -0.600532
Finace analysis for red cross -1.917809
History and RE secondary teacher -0.409723
Investment Banker -0.267114
Lawyer -0.422220
Manager in Translation Service -1.409934
Maths Teacher -0.096629
NHS Administrator -0.207771
NHS England -0.143974
Night club security manager -0.007675
Office worker for BT -0.372258
Optometrist -0.196595
Pa for local council -0.054183
PA in childrens Charity -0.270512
Paediatric Nurse -1.173057
Police - desk based -0.073419
Police Officer -0.335871
Post office clerk -0.271123
Project Manager -0.470095
Psychiatric SpR -0.798691
psychologist -0.121077
RBS Bank Admin r -0.897531
Registrar -0.930864
Researcher -0.883406
Retail -0.753238
Sales Assistant -0.812008
Science teacher -1.012103
Security Guard -0.983622
Self emloyed TV Producer -0.072055
ISenior manager -0.062647
Solicitor 0.057359
Spindoctor -2.001778
Student -0.290812
Tax officer -1.160007
Teacher -0.391208
TV Producer -1.604616
Waiter -0.168476
Education 0.211352
Middle or Junior Managers 0.394766
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Modern Professional 0.117476
Senior Managers or Administrators -0.019382 -0.463803
Technical and Craft Occupations -0.043927 -0.799344
Traditional Professional 0.354332
Integrated Brier Score 0.081284 0.082440
Concordance Index 0.621792 0.606795
Brier score at 500 minutes 0.450554 0.452633
Brier score at 1000 minutes 0.35643 0.358186

Table A.5: Treatment Time Predictions using Cox LASSO Model with Different Scoring
Functions
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