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Abstract: In this report, we consider whether statistical regularities in natural images might be ex-
ploited to provide an improved selection criterion for interest points. One approach that has been
particularly influential in this domain, is the Harris corner detector. The impetus for the selection
criterion for Harris corners, proposed in early work and which remains in use to this day, is based
on an intuitive mathematical definition constrained by the need for computational parsimony. In this
report, we revisit this selection criterion free of the computational constraints that existed 20 years
ago, and also importantly, taking advantage of the regularities observed in natural image statistics.
Based on the motivating factors of stability and richness of structure, a selection threshold for Harris
corners is proposed that is optimal with respect to the structure observed in natural images. Fol-
lowing the protocol proposed by Mikolajczyk et al. [6] we demonstrate that the proposed approach
produces interest points that are more stable across various image deformations and are more dis-
tinctive resulting in improved matching scores. Finally, the proposal may be shown to generalize to
provide an improved selection criterion for other types of interest points. As a whole, the report af-
fords an improved selection criterion for Harris corners which might foreseeably benefit any system
that employs Harris corners as a constituent component, and additionally presents a general strategy
for the selection of interest points based on any measure of local image structure.
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Le détecteur de Harris dans le monde réel: Un critere de
sélection basé sur les statistiques des images naturelles

Résumé : Dans ce rapport, nous étudions si les régularités statistiques dans les images naturelles
pourraient étre exploitées pour fournir un critere de décision amélioré pour les points d’intérét. Une
approche particulierement connue dans ce domaine est la méthode de détection de coins de Harris.
Le choix du critere de décision proposé a 1’origine, et qui est toujours utilisé actuellement, était basé
sur une définition mathématique intuitive avec un soucis d’efficacité numérique. Dans ce rapport,
nous revisitons ce critere, libre de toute contrainte computationnelle telle qu’il existait il y a 20
ans, mais aussi en tirant profit des régularités observées dans les statistiques des images naturelles.
Basé sur les facteurs de stabilité et de richesse des structures, un seuil de sélection pour les coins
de Harris est proposé de fagon a étre optimal par rapport aux structures observées dans les images
naturelles. En suivant le protocole proposé par Mikolajczyk et al. [6], nous montrons que I’approche
proposée génere des points d’intérét qui sont plus stables par rapport aux déformations de I’image
et plus différenciés en améliorant les résultats de corrélations. Finalement, nous proposons 1’idée
de généraliser cette démarche pour améliorer les criteres de sélection pour d’autres points d’intérét.
En résumé, ce rapport propose donc un nouveau critere de selection pouvant étre utilisé directement
dans tout systeme utilisant la méthode de Harris, et il propose une stratégie générale pour la sélection
de points d’intérét basée sur une mesure de structure locale des images.

Mots-clés : Détecteur de coin de Harris, statistique des images naturelles, critére de décision
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4 N. Bruce and P. Kornprobst

1 Introduction

Interest operators have a long history in computer vision and remain a significant component in
many machine vision systems, constituting an early feature extraction stage which typically guides
higher level vision tasks. This involves the selection of a candidate set of points or regions possibly
of varying scale and/or shape. This set of points/locations may then be used in object recognition,
robot navigation, scene classification or a variety of other tasks. There are many proposals for the se-
lection of interest points with the central criterion being invariance to deformations of the image and
distinctiveness of local structure at chosen points; a consideration important for matching purposes.
While many different definitions for the selection of interest points has been proposed, the most
popular approach remains the Harris corner detector. The Harris corner detector was introduced two
decades ago and now appears within hundreds of applications and has been cited more than 2500
times in published work at the time of writing.

The introduction of interest operators in the context of machine vision perhaps dates back to
1979 when an influential proposal for corner detection was put forth by Moravec [7]. Moravec’s
operator considers how similar a local region of the image is to nearby heavily overlapping regions,
computing the sum of squared differences between the central region and regions in the local sur-
round. That is, given an image patch centered at location ¢, j in an intensity image [ this difference
is given by S(z,y) = >, >, (1(4,5) — (i +=,j + y))? and is computed for the neighbors in the
horizontal and vertical directions as well as for the two diagonal directions. A corner is defined as
a location that is locally maximal subject to S(z, y). The intuition behind this procedure is that for
homogeneous (flat) regions, this difference will be very small with the difference becoming greater
for regions containing edges and even larger for regions containing corners.

Harris and Stephens refined this idea by considering directional derivatives in lieu of shifted
patches to produce a more robust corner detector, with invariance to rotation [2]. Specifically,
I(i + z,j + y) becomes I(i,5) + I (i, j)x + I,(i,j)y subject to a truncated first order Tay-
lor series expansion where I, and I, are partial derivatives in x and y respectively. A substitu-
tion of this term into S(x,y) and inclusion of a weighting parameter w(i, j) yields the expression

S(a,y) = 30, 30 wli, ) Loy )z + 1,36, ))y)* = (& y) Az y)" where

A <IZ> <IJI,>
<LIl,> <I;>
where angle brackets denote summation over i, j subject to the weighting function w(i, j). The
function w is defined here as a gaussian function of variance ¢ which defines the scale of the analysis.
The matrix A describes the local intensity structure of the neighborhood centered around i, j. The
judgement of whether a pixel location corresponds to a corner is based on the eigenvalues A; and Ao
of the matrix A. Specifically, when A\; = 0 and Ay ~ 0 a flat region is found, when \; is a large
positive value and Ay ~ 0 an edge is found. When \; and )\, are both large positive values, a corner
is present. Following this intuition, it has been proposed that interest points be selected according to
the locations for which

MA2 — K(A1 4+ A2)? = det(A) — ktr?(A)

INRIA



Harris Corners in the Real World 5

is large and a local maximum with x a constant. This produces a strong value when both \; and A
are large but penalizes situations where one of these values is much larger than the other indicative
of an edge situation. There are two specific concerns that one might raise considering the form of
this expression:

1. The specific form of this expression is one of infuitive quantitative reasoning (based on the
determinant and trace of A) but significantly limits the shape of the decision boundary for
choosing candidate Harris corners. This specific form is one based on computational parsi-
mony since the determination of the eigenvalues of A requires the computation of a square
root. While this operation may have been sufficiently cumbersome (in a computational sense)
in 1988 to warrant a selection criterion that avoids computing square roots, this is much less
of a concern with modern computing hardware. The concern related to computation of square
roots arises from the fact that an eigendecomposition for the 2x2 case is given by the quadratic
formula with

Ao = %(tr(A) + \/trZ(A) — 4det(A)) )

2. It is unclear what the specific tradeoff between pairs of intermediate magnitude eigenvalues
and one large eigenvalue paired with one smaller eigenvalue (given by the parameter x should
look like. This is apparent from the fact that there is no universal consensus on the value of
+ which from a system performance perspective will most likely be application dependent.
Anecdotal observations suggest a range of 0.04 to 0.15 as appropriate choices.

While the definition of local structure that constitutes Harris corners is sensible, it is arguable
that the form of the selection boundary deserves further consideration. Moreover, the original form
proposed in 1988 remains in common use and remains the most common means of selecting interest
points in the machine vision literature.

This brings us to the central motivation of this paper: To revisit Harris corners from the perspec-
tive of the decision criterion employed and in doing so, to provide a sensible principled decision
boundary for selecting Harris corners on the basis of principles that may generalize to any interest
operator for which there exists a selection criterion based on local structure.

Many other structural definitions for Harris corners have been proposed but only very few that
consider the impetus for the selection criterion based on the eigenvalues of the autocorrelation ma-
trix. This is surprising in light of the fact that the basic structure of Harris detector seems to imply
a detector that is highly robust to changes in rotation and scale [10]. Existing efforts that focus on
the decision boundary associated with Harris corners are limited in that are either ad hoc, based on
heuristics [8, 9] or focus on the approximation of (i + z,j + y) [9].

There is heretofore no existing work that attempts to construct a definition for the selection of
Harris corners based on first principles and motivated by the criteria of invariance and distinctive-
ness. In this paper, we put forth such a proposal which provides a definition for the decision bound-
ary based on these motivating principles through observation of the structure of natural images as it
pertains to Harris corners. Additionally, this definition exploits the statistics of the natural world in
order to best satisfy these criteria.

The format of this paper is as follows: Section 2 provides a more detailed description of the
precise set of criteria that might motivate the decision boundary for selecting Harris corners. This

RR n° 6745



6 N. Bruce and P. Kornprobst

also includes a statement of the central premise of our proposal in light of these criteria. In section
3 the statistics of natural images are considered as they relate to Harris corners through observation
of a large set of natural images. Commentary and modeling pertaining to the observed statistics
is presented. Section 4 provides some qualitative results on natural images containing geometric
forms and discussion is included concerning the relationship between corners chosen by the Harris
algorithm and real corners appearing in the natural world. Section 5 presents quantitative evidence
in favor of the proposal through consideration of the stability of point selection under various natu-
ral image deformations including combined rotation and zoom, and changes in viewpoint revealing
advantages of the proposed selection criterion as compared with the traditional approach. Finally,
in section 6 we discuss more general issues pertaining to the proposal at hand and present many
possible fruitful avenues for further research.

2 Motivation and Approach

2.1 Motivation

As mentioned, interest point detection typically involves the extraction of features with a specific ap-
plication domain in mind. Typical applications include at least image matching, tracking, panorama
stitching, 3D-modeling and object recognition among others. The central criteria for candidate in-
terest points (and the evaluation criterion associated with such points in are typically:

1. Repeatability: For purposes such as matching across viewpoints, tracking, and stitching, an
important property is that the set of discrete interest points selected by an algorithm for one
view corresponds to the same points in the world drawn from a different viewpoint, or subject
to some transformation/deformation of the image.

2. Distinctiveness: Any process that relies on matching candidate points across a change in view-
point, time or other deformation of the image requires that the points chosen correspond to
regions with distinct structure in order for points from say, one view point fo be matched with
those from another.

3. Geometry: For a task such as 3D modeling, one may strongly desire that the interest points
correspond strictly to some geometric construct. For example, the most desirable property
may be that a corner detector produces well localized corners that correspond to real corners
within the image, ignoring repeatability and distinctiveness.

In light of these motivating factors, it is unclear to what extent the selection boundary for Harris
corners proposed in the original work [2] is suited to these conditions.

2.2 Towards an Optimal Selection Criterion

One sensible manner in which to approach the problem is in considering the sort of structure that is
observed within natural images. Specifically, it may be sensible to consider the observation likeli-
hood of the two eigenvalues p(A1, A2) as a means of determining a decision threshold. The impetus
for this choice with respect to the three motivating factors is as follows:

INRIA



Harris Corners in the Real World 7

1. Repeatability: For any given interest point h, one has corresponding values \; and Ay. A
corresponding point in a second image (e.g. the first image subject to a slight change in
zoom/rotation/viewpoint) will have the effect of perturbing the eigenvalues in question (corre-
sponding to the same point) by some small values d1, d2. It may be the case that while (A1, A2)
lies within the selection boundary and is deemed an interest point, (A1 + d1, A2 + d2) may lie
outside of the selection boundary. In terms of an overall repeatability score (as the number
of points in image 1 that have corresponding points in image 2) it is desirable to maximize
the distance (on average) between interest points chosen, and the selection boundary as this
reduces the likelihood that such a perturbation will result in a point moving from inside to out-
side of the decision boundary (i.e. the tolerance for ; and Js is higher). It suffices to choose
interest points based on some threshold T such that p(A1, A2) > T to satisfy this condition.

2. Distinctiveness: It is also evident, that in choosing interest points as an inverse function of
the likelihood of local structure parameters, one also has a desirable property with respect
to distinctiveness. In fact, this is the very definition of distinctiveness: Points whose local
structure is observed least frequently are chosen first, followed by those that appear with
increasing frequency. It is interesting to note that this is precisely the criterion employed
to measure the distinctiveness of interest points that appears in [10].

3. Geometry: With respect to local geometry, the relationship between the likelihood of the local
structure coefficients and specific real world constructs is less evident. That being said, on
an intuitive level it is expected that local structure corresponding to corners should appear
much less frequently than that corresponding to edges as observing ones surroundings at any
given time may well confirm. For this reason, it is reasonable to assume that one might also
arrive at a selection criterion that is favorable for applications involving 3D reconstruction, or
determination of geometric form.

As a whole, the choice of a decision boundary based on the reciprocal likelihood of observed
local structure parameters (e.g. A; and A, in the case of Harris corners) seems a sensible strategy
for the choice of a decision boundary with optimality in some sense with respect to repeatability and
distinctiveness, and also at an intuitive level in its correspondence to image geometry.

3 Harris Corners and Natural Image Statistics

In this section, we describe methods and results associated with deriving an estimate of p(A1, A2) in
the context of all natural images.

3.1 Methods

2100 images were drawn from the Corel stock photo database, consisting of indoor and outdoor
scenes with photographs taken at several venues around the world. The central 1200x800 pixel
portion of the images was cropped and the eigenvalues of the Harris matrix computed for each pixel
location across the 2100 images. A histogram density estimate was constructed with a bin width of
0.0061 by 0.0061.

RR n° 6745



8 N. Bruce and P. Kornprobst

3.2 Results

Figure 1 depicts the log of p(\1, \y) for o = 2 as determined from the 2100 images in the test set
with values reflected across the y = x axis since A\; > Ag as given by equation 1. Additionally, the
traditional Harris criterion boundary for several different thresholds for x = 0.15 shown in red and
for k = 0.04 shown in navy are presented.

Notably, there is a significant difference between the shape of the surface produced by considering
p(A1, A2) relative to the Harris decision boundaries. Also of note, is the fact that the lowest prob-
abilities correspond to the A\; = Ay case, which agrees with our previous intuition concerning the
manner in which geometry relates to observed statistics. That is, the equality case for the eigenvalues
seems to correspond most closely with the definition of a perfect corner and corresponds to the least
likely structures in the statistics.

A second salient observation may be made concerning the distribution itself: As the dropoff in
p(A1, A2) is much steeper in the direction of increasing A than in the direction of A1, and )\ is at
least as large as Ao this should make Ay a very good predictor of p(A1, A2) (recall that points only
exist in the upper left sector of figure 1. It is interesting to note that selection of interest points based
on min(Ay, A2) appears in one effort with the motivation for this choice based on choosing good
features for the purpose of tracking [11]. The motivation for this choice is that in practice this pro-
duces points for which the autocorrelation matrix is above the noise level and is well-conditioned.
This particular measure is also mentioned in the context of a study involving the comparison of in-
terest points [10], but this particular choice is not included in the comparison. There also exists an
additional effort by Tsai and Su [12] that considers the predictive capacity of the smaller eigenvalue
to locate corners based on generated analytic structures and the authors conclude that the smaller of
the two eigenvalues is a very good predictor of corners. There is however no mention of the Harris
measure in this work and thus no comparison. The minimum eigenvalue approach seems a good
candidate from a theoretical standpoint as it verifies a set of important axiomatic properties [3] that
other measures including the Harris criterion fail to satisfy. Here, we also demonstrate that the like-
lihood estimate provides a strong case for the minimum eigenvalue as a measure of corneredness in
support of the suggestions made in the aforementioned studies.

3.3 Fitting

One might select interest points on the basis of a direct lookup on the likelihood of A;, Ao given
by the probability density function, choosing points in increasing order of p(A1, A2). Within a his-
togram density estimate, the nature of discrete computation requires quantization in the form of bin
size. This quantization has the possibility of causing various point locations within the image to
be assigned identical scores complicating the task of choosing a candidate point set. Furthermore,
using a sufficiently fine quantization (as used in figure 1) to diminish the likelihood of this occurring,
even for an estimate based on more than 2 trillion samples as we have performed, one still encoun-
ters A1, Ao combinations for several locations within an image that have only been observed a small
number of times (including 0), making the order of point selection ambiguous. This is due to the
exponential dropoff in observations with an increase in A; or As.

A solution to this is to fit a function to p(A1, A2) affording a continuous representation of p(A1, Aa).

INRIA



Harris Corners in the Real World 9

Figure 1: The log likelihood of the various possible combinations of A1, A2 in the context of a large
sample of natural images, with the Harris criterion for several thresholds corresponding to x = 0.04
(navy) and x = 0.15 (red) superimposed. Note that there exists a significant difference in the shape
of the threshold given by the traditional Harris criterion relative to the value of p(A1, A2) in the
probability density function on the pair of eigenvalues of the autocorrelation matrix.
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10 N. Bruce and P. Kornprobst

It should be stressed that this relies on the reasonable assumption that the distribution observed on
the basis of smaller eigenvalues remains the same for larger eigenvalues.

There are many possible assumptions that one might make about the form of this function. Figure
1 suggests that a polynomial fit to log(p(A1, A2)) might be adequate. We have performed a minimum
least squares fit to the learned log(p(A\1, A2)) distribution based on a polynomial of order n for
n € {2,3,4,5}. Corresponding functions are depicted in figure 2. It is interesting to note that a
high order polynomial fit is required to capture the long tailed nature of the distribution suggesting
a simpler form or better fit might be achieved via a non-polynomial fit of some form. This however
is tangential to the point of this paper but may present an interesting avenue for future consideration
and the polynomial fit we have considered appears to be sufficient for the purposes of this study with
the n = 5 case producing a mean squared error of less than 10~1°. The order 5 polynomial is given
by Pj =

—0.0042 0.1014 —0.9998 5.0371 —13.0068 13.7893
0.0145 —0.3589 3.6914 —20.0508 57.0538 —67.4095
—0.0078 0.1991 —2.2568 19.2248 —73.3100 110.1198
—0.0156 0.3808 —2.9872 6.2377 18.1182 —69.2591
0.0156 —0.3881 3.4473 —12.7242 14.4629 15.2591
—0.0052 0.1298 —1.2093 5.2478 —10.9142 10.3522

where the coefficient appearing at P;; corresponds to the term z’y’ with i = j = 5 corresponding
to the top-left element, and with x = A\ — Ao and y = A\; + Ao.

3.4 Scale

While the original Harris operator is rotationally invariant, many recent efforts consider the applica-
tion of the Harris operator at several spatial scales suggesting the need to consider the distribution
of p(A1, Ag) for different choices of o. Owing to the scale invariance property of natural images [1],
one might expect that the distribution of p(\1, \3) may share this same property. From a qualita-
tive perspective, the distributions produced by the eigenvalues of the autocorrelation matrix are very
similar across scale. That said, for large changes in scale, the exponential dropoff in the direction
of A1 + Ay seems to diminish slightly with increasing scale. We also observed that the ranking of
points for a given image according to p(A1, A2) remains largely the same regardless of the scale at
which the distribution is learned. For certain applications, in particular those for which comparison
of likelihoods across different scales is important, this might be a significant factor. For the purposes
of this study the results are computed based on the distribution learned from the 02 = 4 condition
shown in figure 1 and this should not have any significant impact on the analysis or conclusions.

4 Harris corners and real corners

In instances where the aim is to perform some form of geometric modeling of the scene, a sensible
goal is to ensure that the selected corners conform to corners of real physical entities. The following
provides an example of the operation of the original Harris criterion as compared with the likelihood
based criterion as applied to some natural images with strong geometric structure. The top image
appearing in figure 3 is a common test image in the domain of interest point detection, and the sec-
ond similar image is chosen for its geometric structure. In each case, a candidate set of points for

INRIA



Harris Corners in the Real World 11

Figure 2: An example of polynomial fits (top left, top right, bottom left, bottom right) of order
n € {2,3,4,5}

RR n° 6745



12 N. Bruce and P. Kornprobst

the traditional Harris threshold with x = 0.04 is shown (left) and for the likelihood based selection
threshold (right) choosing points that score highest in order to equalize the number of points se-
lected. It appears that the likelihood based selection criterion results in more corners corresponding
to the physical corners of objects and additionally, better localization in some instances. Notice for
example in the top figure that several of the corners of the hexahedron are correctly selected by the
likelihood based measure but are missed by the Harris criterion. The points located at the back of
the hexahedron (e.g. the one marked with the asterisk (*)) are symptomatic of one issue with the
standard Harris criterion: These points consist of one eigenvalue that is very large combined with a
smaller eigenvalue of intermediate size. The strength of the larger eigenvalue prevents selection of
the corner even for very small x values. Also note the mislocalization of some of the corners on the
blocks.

The second image points out an additional issue pertaining to the standard Harris criterion. The
eigenvalues may differ by orders of magnitude such that the order of strength of this measure is
frequently corner < flat region < edge. This is evident in the points selected in central regions of the
geometric structures. In the interest of forming a geometric representation of the scene, it is sensible
to enforce an ordering of corner < edge < flat region so that the chosen points that are not corners
nevertheless correspond to the geometry of the figure.

5 Quantitative Evaluation

On the basis of the discussion appearing in section 2 it is sensible to provide a simple demonstration
that the proposal of likelihood based interest point selection yields better performance in terms of
repeatability in a quantitative sense. As the proposal at hand provides the possibility of improved
performance for any application that employs Harris corners as a constituent component, there are
many choices that one might make to provide some quantitative analysis consistent with the proposal.

For this purpose, we have chosen an evaluation paradigm for the selection of interest points that
is in common use and evaluates repeatability and matching scores for affine regions selected on the
basis of the Harris corner criterion with repeatability and matching scores considered within this
evaluation paradigm. The extension of the Harris corner detector to the selection of affine regions
and the specifics of the evaluation follow.

5.1 The Harris Affine Operator

Mikolajczyk and Schmid propose a modification of the Harris detector to make it suitable for the
selection of affine regions [5]. The specific details are beyond the scope of the current work, but in
short the Harris operator is applied at several spatial scales and maxima are selected according to the
traditional measure of Harris corneredness. For points that are above threshold, the characteristic
scale is identified and regions normalized based on affine shape adaptation. Scale parameters and
localization are then estimated via an iterative algorithm. For the specific details, the reader is
encouraged to consult [5].

In the following study we have computed affine regions according to this strategy, with the best
500 candidate points chosen for scales of 02 € 2,4,8,16. Following affine shape adaptation and

INRIA



Harris Corners in the Real World 13

Figure 3: An example of corners selected by the original Harris criterion (left, with x = 0.04) and
by the likelihood based criterion (right) for a classic test image from the corner detection literature
(a), and for a similar example.

RR n° 6745



14 N. Bruce and P. Kornprobst

rejection of points that fail to converge this typically leaves approximately 1800 candidate regions
in each image for which the number in the corresponding region between any pair of images varies.
We have employed the implementation of affine shape adaptation of Laptev [4].

5.2 Evaluation Protocol

In the evaluation protocol put forth by Mikolajczyk, Schmid et al. [6] overlap between two regions
Ruo "Ryt

is defined according to the measure 1 — R O 7

) with R, corresponding to the elliptical
oy H)

region defined by z7 ux = 1 and with H the homography relating the two images from which R,
and R, are drawn.

A repeatability score may then be assigned to any pair of images based on the number of regions
that exhibit an overlap score greater than some value € relative to maximum number of possible
overlapping regions. Each image contains some number of points within the overlapping region
defined by the homography and the maximum number of possible overlapping regions equals the
minimum of the number of points within this overlapping region for the two images. In the results
presented in [6] results for an overlap of 40% are employed and this is also the threshold for overlap
in the results reported in this section.

5.3 Test Images

The test set employed is drawn from the images considered in [6] and a subset of these images
is depicted in figure 4. Images consist of two natural scenes, one subjected to combined rotation
and scale and one subjected to a change in viewpoint, and two textured images, with the same two
types of deformations as the natural scenes. It is perhaps worth stating once again, that one might
consider any evaluation paradigm for the purposes of observing the stability of points selected by
the algorithm but this particular choice is natural given the popularity of this evaluation paradigm
and the availability of source code for affine region selection and evaluation of repeatability.

5.4 Results

Figure 5 demonstrates the repeatability scores associated with increasing degrees of combined ro-
tation/zoom and change of viewpoint. The results confirm a few points made earlier. First, note
that the repeatability (and set of candidate regions) is similar for the proposed likelihood based ap-
proach and the minimum eigenvalue approach confirming that the minimum of the eigenvalues is
a good estimate of the likelihood of the eigenvalue pair. The likelihood and minimum eigenvalue
demonstrate clearly better repeatability scores for both the natural image and texture subjected to
combined rotation and zoom. In the case of a viewpoint change, the likelihood and minimum eigen-
value selection is clearly better for smaller viewpoint changes, but this advantage diminishes with
increasing viewpoint angle (and even becomes a deficit for the graffiti image for the most extreme
viewpoint angles). There are a few possible explanations for this behavior. One explanation for this
behavior pertains to the nature of the training set. Although the Corel stock photo database consists
of a large variety of natural images, these images are largely composed images and thus confined
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Figure 4: Test images from the study of Mikolajczyk et al. the images are subjected to natural
deformations including changes in scale and rotation as in the bark and boat examples (top row,
second row) and changes of viewpoint (third row, fourth row).
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to frontoparallel views. Thus it is possible that for a very severe deformation such as the rightmost
graffiti image shown in figure 4 that the statistics of the image are sufficiently different from the
training set that the previously selected corners are deformed in a manner that they are no longer
improbable according to the training set. In the case of a mobile robot performing navigation within
a certain environment and roaming in order to collect representative views, this would presumable
not be an issue. A second possibility is that the effect of any given deformation on the values of \;
and A, is systematic in nature. The proposal should imply optimality under an isotropic perturbation
of Ay and )\, associated with some image deformation. That said, a severe change in viewpoint
angle may perturb A\; and \; in a specific manner such that the original Harris criterion happens to
be less sensitive to said perturbation. In this case, it is less important how close points are to the
decision boundary and more important is, in which direction these points tend to move (in the A1, Ay
plane). This also suggests an interesting possible avenue for future research, that being the effect
that specific types of deformations have on the values of A\; and A, providing a stronger optimality
criterion for the decision boundary.

6 Discussion

There are a variety of interesting points that emerge from the subject matter of this paper. We have
presented an analysis of the selection of interest points based on the Harris corner detector revisiting
a central aspect of the algorithm motivated by the specific purposes for which interest points are
employed. Motivated by these design criterion, we propose a selection criterion that is optimal from
the perspective of natural image statistics. It should perhaps be emphasized that our intention is
not to present a general closed form formula for choosing Harris corners for any and every purpose
(although the results given may satisfy this purpose to some extent). It is possible, or even likely
that for a purpose such as localization in mobile robot navigation, that one may do even better in
constructing an estimate of p(\;, \y) that accounts for the specific statistics of the environment
in which the robot is navigating. Furthermore, more detailed analysis may produce a better fit to
the distribution in question. It should be stressed that this is a case in which the message is more
important than the medium: that a likelihood based selection criterion that considers the relevant
statistics is a natural way of choosing interest points. The methods put forth in this paper provide
a general guideline for application specific Harris corner selection and the specific choice of a fit to
the probability density is based on simplicity of exposition and may benefit from further analysis.
In short, the aim is to demonstrate that a likelihood based selection criterion that exploits natural
image statistics may produce more stable and distinctive points of interest. That said, conclusions
and points of interest emergent from this study are as follows:

* A likelihood based selection criterion that considers the structure observed in the statistics of
natural images is a sensible means of choosing points of interest on the basis of qualitative
and quantitative evidence

* Although we have considered Harris corners, the motivation and proposed principle is not
specific to Harris corners and may be equally applied to any strategy for interest point selection
for which there is a choice of selection boundary
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* The strategy of likelihood based selection presents the possibility of producing a selection
criterion that is environment and/or task specific by choosing a particular training set (e.g.
images from a roaming robot, or an exhaustive systematic sample of images that represent a
specific deformation such as a change of viewpoint)

* The minimum of the two eigenvalues of the autocorrelation matrix appears to provide a good
approximation to the likelihood of the eigenvalue pair. The use of a minimum eigenvalue
selection criterion does appear in a few places in the literature, but a thorough comparison of
this selection criterion with the traditional Harris measure is warranted

* The likelihood based criterion selects more corners that correspond to real corners of objects
making it amenable to the representation of image geometry and the apparent failure of the
traditional measure seems to be in penalizing locations for which two strong eigenvalues are
present, one of which is of exceptional magnitude or disallowing instances in which both
eigenvalues are of smaller magnitude but nearly identical

* The results presented in section 5 suggest an additional avenue for future consideration. Specif-
ically, the study of the manner in which some systematic deformation alters the parameters
(the two eigenvalues in this case) on which the selection criterion is based. Section 5 also
suggests that the proposed methodology may be sensitive to the data set employed and the
precise contribution of these two elements is unclear.

» Even in the presence of anisotropic perturbation of eigenvalues based on an image deforma-
tion, small deformations of the image should result in optimal repeatability as evidenced by
the data presented. It is worth noting also that many of these tasks involve deformations that
are far less severe than say, that between the leftmost and rightmost graffiti images shown
in figure 4 and thus performance improvements may also be observed for many typical tasks
without the need for a stronger model.

As a whole, we have presented a novel principled strategy for the selection of Harris corners
motivated by structure observed in natural image statistics. The analysis presented raises many
interesting questions pertaining to the selection of Harris corners, and the nature of interest operators
in general. As a whole, the proposal presents the possibility of improved performance for any system
that employs Harris corners as a constituent component and presents many fruitful directions for
further research.
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