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1. Introduction 

A social network consists of a selection and interconnections of members [1]. In particular, culture 
and nature form the foundation of a social network; however, most relations in real-life social networks 
remain hidden. Such connections have become transparent, open, and exploitable in the web era with 
social networking platforms, such as Facebook, Twitter, Instagram, and YouTube [2]–[8]. Details of the 
network can also be collected and evaluated [9][10]. The network can be interpreted as a graph with 
nodes representing network actors and arrows suggesting relationships between interactors. Social 
Network Analysis (SNA) aims to reveal patterns within network systems and research actors to detect 
the effect of those patterns on individuals and organizations [11]. The focus of information scientists 
and experts in social networking has increasingly shifted towards enhancing people's motivation 
experiences through social networks for information purposes. Social networking provides opportunities 
to connect and share information to address problems and increase awareness, and SNA gives new 
insights to analyze the network structure [12]–[19]. 

SNA reflects on the framework of relations between various social players, such as individuals, 
associations, organizations, and countries, or human activity goods. SNA is also used to define the 
structure of social networks by analyzing the participants and explaining the network's structure based 
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on graph theory, algebra, statistical probability, and simulation [20][21]. SNA has been widely used in 
many research disciplines (e.g., economics, psychology, anthropology, biology, politics, business, and 
medicine) [22]–[24]. However, the issue as to whether SNA can be suited for analyzing Korean popular 
culture has yet to be addressed in depth. The present research employs SNA tools to examine patterns 
and assess user relationships in social network platforms [25]–[27]. 

This paper presents a set of social science SNA measurements and models and analyzes YouTube 
accounts concerning Korean popular culture (K-pop) networks in Thai society. First, we apply different 
network simulation techniques as a preliminary channel structure analysis, then we use descriptive SNA 
indices to analyze the overall network structure and main country location, and finally, we research the 
network dynamics. The paper aims to provide an outline of SNA procedures since the forms of 
relationships within the K-pop fandoms are too diverse, and many Thai K-pop fans have a specific 
understanding in the sense of the Korean Wave. More specifically, we aim to discuss the roles that 
influential SNA metrics play in interpreting the dynamics of the Korean Wave and patterns that cannot 
be obtained from 'classical' statistics and models. The reasoning behind each visualization and SNA index 
collection is clarified after its use. 

2. Method 

This study applies SNA to transform social media streaming information into knowledge. It provides 
insights into the critical role of social media in the distribution of alternative information. The steps of 
this study are: 1) Collection of data from K-pop YouTube channels between June 9 and July 22 2020; 
2) Exploration of links and patterns generated in comments and replies through combined interactions 
on the K-pop YouTube channels; 3) Identification and Analysis of social roles and social network key 
players; 4) Analysis of comments on videos such as discussions, top words, pairs of words, and multiple 
correlations within the K-pop YouTube channels; and 5) Suggesting further action to make information 
distribution through social media streaming more effective. 

2.1. Analysis of the relationship between all YouTube channels 

We began by looking for YouTube channels that are important to Popular Korean culture. We 
decided to use the keyword "Korea", extracted searches from all over the world, implemented an iterative 
binary searching technique and ranked corresponding resources according to their search relevance. 
Following the investigation, we discovered that there were 1,241 network-correlated YouTube channels. 
We, therefore, used Gephi software for SNA. The tool used for extracting data is named YouTube Data 
Tools (https://tools.digitalmethods.net/netvizz/youtube/). 

2.1.1. Prevalence and Patterns of Korean Popular Culture YouTube Channel 

Gephi's accelerated "crawling" of the K-pop YouTube community (Data extraction) led to 5,356 
channels being manipulated. The resulting data collection of 5,356 channels were "cleaned" by deleting 
messages not applicable to critical research mentions. There were 1,241 distinctive vertices and 5,061 
edges in the network of famous channels within the K-pop YouTube community. The edges of the 
survey included original posts, comments, and references which were all guided. The representation of 
complex networks provides an understanding of the flow of form or information [28]. Gephi has been 
implemented from the outset to navigate complex networks quickly and intuitively. The structural 
design supports graphs with a structure or object that differs over time and provides a schedule portion 
containing a network segment. The machine tests all nodes and edges in the timeline slice's time span, 
which coincides with the view module, and updates it. Thus, it is possible to perform a complex network 
as film sequences. The dynamic module may receive network data from a graph file or external data 
sources. During execution, a data source will still transmit network data to the dynamic controller and 
then immediately display the effects in the displaying module. For example, to see the network 
construction over time, a web-crawler can be linked to Gephi. The architecture is interoperable and can 
be conveniently generated for collaboration with current applications, databases, or online servers by 
third parties [29]. Consequently, Table 1 includes an overall description of the case graphs. 
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Table 1.  Overall graph metrics for the Network of K-pop YouTube Channels 

Type of Graph Directed 

Overall Nodes 1,241 

Overall edges 5,061 

Degree of Average 4.078 

Path length of Average 3.938634762140362 

Epsilon 0.001 

Probability 0.85 

Weakly Connected Components Number 23 

Strongly Connected Components Number 1,112 

Iterations Number  100 

Change of Sum 0.09619521979796743 

Modularity 0.380 

Graph density 0.003 

 

The top five viewed Korea related YouTube Channels are: UCstEtN0pgOmCf02EdXsGChw (ABS-
CBN Entertainment) 371,504,541 views, UC3ZkCd7XtUREnjjt3cyY_gg (WorkpointOfficial) 
260,879,384 views, UCHkj014U2CQ2Nv0UZeYpE_A (JustinBieberVEVO) 371,504,541 views, 
UCp0hYYBW6IMayGgR-WeoCvQ (TheEllenShow) 206,248,898 views, UC-8Q-hLdECw 
QmaWNwXitYDw (KatyPerryVEVO) 194,667,225 views. 

2.1.2. Performance from impacts and network analysis 

This section focuses on the K-pop YouTube community's internal communication and social 
network scale. It also reports on the characteristics of each vertex, dependent on in-degree and out-
degree, closeness, betweenness, and eigenvector centrality [30]. The SNA algorithms were developed as 
shown in Table 2. 

2.1.3. In-Degree and Out-Degree Centrality Results 

The in-degree value is the number of K-pop YouTube channels that replied to or mentioned other 
K-pop YouTube channels. The top three vertices had over 100 arrows pointing to them, based on the 
in-degree values created by the Gephi statistics. In this investigation, the top three most common 
networks listed from top to bottom were (1) UCs2t9DlvAuyTBkvk2djGZKw (Genierock) – an 
in-degree of 71; (2) UC3ZkCd7XtUREnjjt3cyY_gg (WorkpointOfficial) – an in-degree of 65; 
(3) UC8f7MkX4MFOOJ2SerXLInCA (one31) an in-degree of 60; and (4) 
UCjVb9mJZTeuPLN4hOjmvQnw (Bie The Ska) and UC4plRabXFGdAE6HP-tBQKdQ 
(HEARTROCKER) in-degree of 49. Genierock, WorkpointOfficial, and one31 thus seem to be the 
most prominent sources in this investigation. The rest of this social network's members perform various 
"in-between" roles. 

Success is not a single indication of effect in a social media network. The important medium (out-
degree centrality) was considered in this investigation. Second, there were only ten channels on the 
Korean YouTube Channel community that communicated specifically with UCMz oAF3aplb-
2sF8DHiNzA (ซรียีเ์กาหลยีอดฮติ). When the YouTube channels were rated out-of-degree, however, the 

top YouTube channel was UCh3HXrUrB6V0XtZbGWCFGlQ (เกาหลเีกะกะ까오 리 께까) – appearing 

as a citizen from the YouTube channel info. What this also means, however, is that this is a popular 
account, which is very outspoken and cites several others in the K-pop YouTube channel debate within 
the website. The out-degree of a YouTube channel measures the network's reaction to the channel. It 
measures the number of arrows pointing away from the channel or the number of channels it reacts to. 
When the authoring channel talks to others, it has the effect of putting them on the route or reaching 
out to them for a second time, even if they were already in the network. An account that is interested 
in its growth shows that interest to others. 
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Table 2.  The list of Social Network Analysis algorithms 

Algorithms Functions 

Degree centrality  

(in a certain relationship 

hierarchy) 

Degree (depth, r=1, N) 

{ 

int D=0;//count node 

while (N is linked with C){ 
D++; 

if (C has links && r !=depth && C is not in S[]){ 

Degree (depth, r++, C); 

} 
} 

S[] = (N, D); 

} 

Closeness centrality 

Closeness (depth, N) 
{ 

SID[nodes]=network(depth, N); 

value=0; 

for (int i = 1; i ≤ nodes; i++){ 
for (int j = 1; j ≤ nodes; j++){ 

value = value + Shortpath_num(SID[i], SID[j]); 

} 

S[i]=value/(nodes-1); 
} 

return S[]; 

} 

Betweenness centrality 

Betweenness (depth, N) 

{ 
SID[nodes]=network(depth, N); 

std = (nodes ˆ 2–3 ∗ nodes + 2)/2; 

for (int i = 1; i ≤ nodes; i++){ 

value=0; 

for (int j = 1; j ≤ nodes; j++){ 

for (int k = 1; k ≤ nodes; k++){ 
if (j !=k){ 

value = value + Shortpath_through(SID[j], SID[k], SID[i]); 

} 

} 
} 

S[i]=value/std;//standardized by (N2-3N + 2)/2 

} 

return S[]; 
} 

Shortest path analysis 

Shortest (depth, r=1, N, Att) 

{ 

while (N is linked with C){ 

if (C ∩ Att && C is not in S[]) 

S[] = (C, r); 
if (C has links && r !=depth) 

Shortest (depth, r++, C, Att); 

} 

Sort (S[], r); 
return S[]; 

} 
 

Data on Closeness Centrality. According to the methods in this article, closeness centrality is 
calculated by summing up the total distance to all nodes, and then all nodes are given a rank according 
to their shortest path distance. In this kind of centrality, we identify the more prominent persons with 
the ability to influence the network as a whole better. Thus, the centrality of closeness will help identify 
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good 'broadcasters' in a social network. Of the 1,241 Korean YouTube Channels culture, just 11.36 
percent (141) of users scored a comparable score of 1, while 88.64 percent of the overall Korean YouTube 
Channels culture users scored 0. Therefore, it can be deduced in this inquiry into the K-pop YouTube 
community that network communication is greatly linked in a complex way. 

Betweenness Depends on Centrality. Fig. 1 reflects the findings of the inquiry into the K-pop 
YouTube community's centrality of betweenness. This analysis demonstrates that YouTube channels in 
the K-pop industry play an essential role in bridging the network by following the shortest pathways 
and calculating how many times each vertex occurs. The Faster technique for betweenness centrality 
[31] was used to represent the graph-distance between all pairs of nodes for the Network Diameter, 
which comprised betweenness centrality, closeness centrality, and eccentricity. Information spreads on 
YouTube through relatively short paths. Then, those YouTube networks, on short paths, monitor the 
distribution of information via the social media network. Thus, YouTube channels with several short 
paths have high centrality of betweenness, and are considered powerful gatekeepers of information. In 
the case of K-pop YouTube channels, the YouTube channels with the highest betweenness centrality 
was that of UC5zGJZpxeZPFcds5gFcDE7Q (zbing z.) followed by UC9VmaM36k50ZLGkFL5Zh_pg 
(Aueyauey เอ๋ยเอย้) and UCQp9wDCeuLrRs-u7mC0QZVQ (Bstars Music). YouTube channels described 
in the topic above are ranked by the in-degree centrality. Thus, these three YouTubers can be counted 
as the most famous and the most prominent social network accounts in the K-Pop YouTube community. 

 

Fig. 1.  Betweenness Centrality distribution 

Evidence of the Centrality of Eigenvectors. Eigenvector centrality is known to be a form of the 
centrality of a "higher degree." A YouTube channel with fewer links may have a very high centrality of 
its vector with Eigenvector centrality. This means that it is more advantageous to connect to some 
vertices than a relation to others. However, those few connections need to be very well connected to 
make high variable value connections. In the investigation of K-pop YouTube channels, the highest 
scores for eigenvector centrality were that of the UCs2t9DlvAuyTBkvk2djGZKw (Genierock) followed 
by UCOmHUn--16B90oW2L6FRR3A  (BLACKPINK) and UCjVb9mJZTeuPLN4hOjmvQnw (Bie 
The Ska), which provides adequate evidence that suggests certain Korean YouTube channels within the 
community is more helpful to other social network users than others. 

2.1.4. Data Analytics and Visualizations 

The socio-gram layout is shown in groups in Fig. 2. A given algorithm clusters the groups. The 
relative density of the network classifies these groups. These clusters tend to integrate vertical groups 
with high network capacity. These clusters may be merged. Additionally, this applies to network 
customers that are overly clustered and obsolete. These network members are also known as influencers 
for the network. These groups also promote the clustering of network users with a lower network 
capacity and ignore them as discrete instances that are not necessary for the simulation of clusters because 
they don't interact on the network with anyone. The Clauset, Newman, and Moore algorithms [32] 
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were used to show the relations between these vertices for this analysis and visualization. This algorithm 
uses modularity as a network property to set up an intercommunal network. 

In the case of YouTube channels in K-pop culture, Gephi created 31 classes. The groups were 
arranged to show the isolates in a single group in separate boxes. Then Gephi calculated the clusters 
based on the criteria used in selecting the groups [33]. The resulting socio-gram (Fig. 2) shows the 
clusters in separate boxes with connections to particular clusters across a selection of colors. The isolates 
are located in different boxes at the figure's top and bottom right-hand corners. Based on its non-
communication in the network, these isolates struggle to affect the overall visualization, which is also 
the reason why, in the figure, the relations are seen in a circular shape. Even care should be made of the 
coordination between the parties. From Fig. 2, with connections to several other nodes in the social 
network, the main clusters are clustered to the left.  

 

 

Fig. 2.  Network of Large Groups of Clusters within the K-Pop Culture 

It is possible to argue that the principal drawback of this analysis is that it falls short of a certain 
degree of minimal effects. In fact, this applies to the apparent lack of public contact in social media with 
the case of YouTube channels in the K-pop culture. This apparent lack of popularity on social media, 
especially on YouTube, may at the time have been affected both globally and locally by many other 
internet news events. At the same time, information overload is a reality that will not change shortly, 
particularly from social media. This will thus give further analysis the opportunity to examine social 
media users' dispersion, especially those explicitly influencing individuals, during essential cases. 

2.2. A specific analysis of Korean popular culture 

From the global community of K-pop YouTube channels as presented in the findings of phase 1, we 
selected a total of ten channels, eight of which are Thai-based, for further analysis in this section. The 
criteria for selecting these channels were: a) that only K-pop content was presented, b) that the channel 
had more than 200,000 followers or subscribers, c) that up-to-date news alerts were given. The collection 
and consensus results are shown in Table 3. 
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Table 3.  Eight Korean Popular Culture YouTube Channels in Thailand 

Channel ID Label View Subscriber Video 

UCxoVgoUhfhFBeWeRKtFOs7w เทพลลีา 84,255,961 99,000 303 

UC7e3Krtw6AHasOuaaTAnSEw Grace Maneerat 79,146,634 614,000 246 

UCHQXqbz6NFExjXhnZQr677A Mink Mink 58,711,530 431,000 760 

UCE5NeNZxvOB3Xfk_s7Xdf8g jaysbabyfood 35,586,714 264,000 235 

UCiBqB5aji6Rm81LdpYHJ7kQ ติง่รวีวิ รวีวิซรีสีเ์กาหล ี 25,017,207 216,000 168 

UCGEX7Jt1kVJmBRDFoDzksVQ AUM AT 2,667,784 36,700 190 

UCuj8RdA_27pxe-hbC_sWAxQ Pungnoeynim 423,872 16,000 15 

UC2tpxtLyV8aojLb2tdOYYWQ KhongPangKhongKwan 394,565 11,500 36 

 

Then, we selected five Thai-based channels and sorted the remaining information according to the 
findings in Table 3 to further examine common issues related to K-pop and evaluate K-pop's impact on 
Thai society. 

2.2.1. Data collection 

Since our analysis indicates that the classification cannot adequately be distinguished from the 
subjective existence of particular questions, our approach relies on the discovery – and time-consuming 
variance of search results – for a series of chosen questions. We utilized the YouTube Data Tool 'Video 
List' module, which uses the 'search: list' endpoint of the YouTube API v3.4, to use the 'order' parameter 
on the Web platform and smartphone apps for user-focused search and hence our analysis explored the 
basic rating process. The capture module was then immediately called on for the top 300 results from 
June 9 to July 22, 2020, for 44 days simultaneously. The complexities arising from this unique 
configuration are further elaborated in this paper's subsequent sections. In the absence of a simple 
methodological equilibrium, the researchers must creatively handle the theoretical possibilities and 
limitations. We understand that location and personalization on YouTube will play an important role, 
but we keep the API data as close as possible to a 'baseline' point of view. 

Our data collection method was used in the manual selection of the following five YouTube ID 
queries: [UCxoVgoUhfhFBeWeRKtFOs7w], [UC7e3Krtw6AHasOuaaTAnSEw], [UCHQXqbz6N 
FExjXhnZQr677A], [UCE5NeNZxvOB3Xfk_s7Xdf8g], and [UCiBqB5aji6Rm81LdpYHJ7kQ].  This 
collection reflects on current and contentious topics, of which it is possible to say that the search results 
are linked to politically motivated controversies and that they are discussed. This preference is supported 
by the practice of depicting conflicts in 'situations where actors differ, "and the development of social 
life can be seen through a high-contrast lens [34]. While extending our approach to less-heated 
YouTube parts such as interviews would be important, we were primarily searching for questions where 
we could fairly predict substantial improvement over time in response to recent incidents. Except for 
Gamergate, which had settled before we started gathering data, all words suggested ongoing disputes 
which have been perforated and deeply divisive by current events, which made an overview of the grade 
shift especially prominent. Our selection has also mirrored the three authors' current experience and 
allowed us to address the data with more trust. We understand that our ad hoc inquiries do not 
encourage us to make general statements about YouTube cultures but instead help us develop and test 
a technique that we intend to apply in future research systematically. 

We also focused on Google Trends data, a database that offers statistics on the search volume for 
four Google sites over a predefined period to contextualize the rankings we also collected with a metric 
of public interest: site search, product search, news, and YouTube. If the given data is not true search 
figures but averaged to the maximum value for the period, the variance measurement is endorsed over 
time. In each of our case studies, we were able to examine search volume variations on YouTube. 

For the ethical component of our research, we did not want to anonymize channel identities, either 
in our fundamental data or for publishing purposes. Contrary to YouTube, the use of real names is not 
mandated; most notably, the questions we selected did not extend to private spaces where privacy 
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standards pose practical issues but to networks with multiple subscribers addressing a broader audience. 
While YouTube maintains social networking sites elements, our queries highlighted a vast array of 
networks that subscribe to a broadcasting framework that is in several respects reminiscent of speech 
radio. The public interest in understanding this new media environment is essential. 

Data is collected from the YouTube API for this study. A script is scheduled for running every day 
during the year 2020 and retrieves data from YouTube API about the popular videos of the day. The 
script will then process and archive the data obtained from YouTube in text files.  

In this article, Thailand will examine trend video clips, which contain a total of 72,994 videos. 
YouTube usually adds 200 videos into the trend list every day to have 73,000 (365 x 200) videos. We 
have obtained 72,994, perhaps because the number of popular videos was marginally less than 200 on a 
couple of days. On YouTube, for several days, the same video could appear on the trend list. We, 
therefore, have data to examine on 72,994 trend videos. The 72,994 videos are also not special ones. We 
currently have 11,177 exclusive videos out of the 72,994 videos. In other words, 11,177 videos were 
featured in the trend list all year long. Some of them could have been on the registry for ten days, others 
20 days, etc. We can see more detail on this later in the report. 

2.2.2. Data analysis 

Python and the great community of Python libraries, including Pandas, Matplotlib, NLTK, ImageAI, 
WordCloud, and more, performed the data analysis of the present study. The research was carried out 
in a Jupyter Notebook. Comments posted by followers on video clips in the five YouTube channels were 
reviewed. The results of the analysis of the five channels are shown below in Table 4. 

Table 4.  Basic statistical results 

Statistic CategoryID ViewCount LikeCount DislikeCount CommentCount 

count 1442.00 1442.00 1437.00 1437.00 1023.00 

Mean 22.99 189770.06 4035.49 125.92 370.17 

std 1.29 245252.72 4991.22 351.03 675.10 

min 1.00 0.00 5.00 0.00 0.00 

25% 22.00 43863.50 995.00 17.00 104.00 

50% 23.00 110382.50 2464.00 41.00 240.00 

75% 24.00 236057.00 5009.00 116.00 439.00 

max 26.00 2442916.00 54430.00 7629.00 16255.00 

 

The mean average for the number of views is 110,382.50. This means that one-half of the trend 
videos hold less views than this figure, while the views for the other half exceed this figure. The average 
number of people who like a trending video is 4,035.49, while the average number of dislikes is 125.92. 
The average number of comments is 370.17, while the low is 240.00. We can see that the percentage of 
videos with less than 390 views is approximately 71 percent, and the number of videos with less than 5 
million views is roughly 91 percent. 

Currently, we can see that the bulk of pattern videos are 2000 or more with a video peak of 120 or 
less. Similarly, we can see that the percentage of videos with less than 2,000 likes is around 44.33%. We 
shall verify that by plotting a scatter plot between Viewscount and Likescount to visualize the 
relationship between these variables.  

We see that Viewscount and Likescount (Fig. 3) are truly positively correlated: as one increases, the 
other increases too—mostly. We see that most trending videos have around 2000/7 = 286 comments 
since each division in the graph has seven histogram bins. Similarly, we can see that the rate of videos 
with less than 286 comments is around 57.48%. 
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Fig. 3.  The scatter plot between Viewscount and Likescount relationship 

 

2.2.3. Video title lengths 

We shall now add another column to our dataset to represent the length of each video title, then 
plot the histogram of title length to get an idea about the lengths of trending video titles. We see that 
title-length distribution resembles a standard distribution where most videos have title lengths of 
approximately 40 to 65 characters. Then, a dispersion plot is drawn between the title duration and the 
number of views to see the relation between these two variables. Looking at the dispersion graph, we 
may conclude that there is no relation between the title duration and the number of views. However, 
we note an odd trend: videos with 1,000,000 views and more have a title length from about 30 to 70 
characters. 

2.2.4. Analysis of follower comments in five YouTube channels 

As shown in Table 5, the highest number of replies to comments was 199. The comment with the 
most replies was about a contest hosted by Busted!, which offered incentives in the form of prizes to 
engage people in the conversation. 

Table 5.  Comments reply analysis result 

ID CommentTextDisplay CommentTotalReplyCount 

24294 มาชงิของฝากจาก Busted! กนัจา้าา มเีข็มกลดั 2 ร... 199 

9487 นอ้งไมเ่หมาะเป็นยูทูปเบออ่า พูดไมค่่อยน่าฟังเท... 180 

38621 คอืเราก็เป็นผูห้ญงินะ แต่กูก็รูพ้รอ้มๆกบัพีเ่ข... 103 

211 ใครไม่เคยไปเทีย่วต่างประเทศทางนี👇้👇👇 83 

20946 ติง่btsมาแลว้จา้. ขอเสยีงโน๊ยยย 75 

 

Table 6 illustrates that the comment that garnered the highest number of likes at 9,309 was about 
women. 

Table 6.  Text comments analysis result 

ID CommentTextDisplay CommentLikeCount 
38621 คอืเราก็เป็นผูห้ญงินะ แต่กูก็รูพ้รอ้มๆกบัพีเ่ข... 9,309 

39724 ชอ่งนีน่้ากลวัขึน้ทุกวนัละ5555 5,904 

25793 ใครอยากจดัฟันไลค ์ 5,279 

6390 ชอบความประชดพีเ่กรซอะ 5555+😂😂😅😅 5,170 

27498 น่ารกักก 555 5,019 
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Fig. 4 shows that, in general, followers of five K-pop YouTube channels comment on most video 
clips in a pleasing, amusing, and happy manner. If they are teenagers, commenters use words like 'cute', 
'funny', or 'fun', as well as expressions that indicate laughter (e.g., 555 or lol) to show that something is 
amusing or pleasing to them. Moreover, if they are female, commenters use words like "elder" (i.e., the 
word 'พี'่ to refer to someone older than them) and "woman" next to other positive words or descriptors 
like "beautiful" so as to express their positive attitudes. 

 

Fig. 4.  The word cloud of five K-pop YouTube channels comments on video clips 

3. Results and Discussion 

In the year 2020, a channel by the name of Mink Mink created the most popular videos on YouTube. 
Content related to product reviews, restaurants, accommodation, tourist attractions, as well as personal 
vlogs rather than corporate ones, receive the most popularity in the K-pop YouTube community. 
Furthermore, after Mink Mink, the 2nd and 3rd channels with the most popular videos were 
entertainment channels. While a video may only be on the trending list for a day or two, six videos were 
on the list for a total of 44 days. Thep Lee La received the most views, subscribers, likes, and comments. 
It was, nevertheless, the fourth most hated video. Even when some videos only received approximately 
50,000 views, they were included on the trending list, as shown in Fig. 5. 

 

Fig. 5.   The graph of videos in five YouTube channels 

In popular video titles, words like "official," "video," "2020," "vs.," "trailer," "music," "game," "new," 
"highlights," "first," and "challenge" were among the most prevalent. This perhaps suggests that 
including the current year in the title of a YouTube video will increase its chances of trending. In popular 
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video titles, the use of emojis were most common. Most popular videos have names that are between 36 
and 64 characters long, with a minimum of three and a maximum of 100. Even when there were just 
seven comments on a video, it still became popular. The most hated YouTube Rewind videos of 2019 
and 2020 were the first and second most disliked videos, respectively. Videos take an average of 1.5 days 
to reach the top of the trending list for the first time. While 5,000 characters is the maximum permitted, 
most popular videos have descriptions that are between 500 and 1500 characters long. Many popular 
videos include social network links in their captions. Tags are used in almost all popular videos. On 
average, there are 21 tags. An object-detection algorithm was applied to the thumbnails of popular 
movies, and it was discovered that a human is the most prevalent item in the thumbnails. As a result, 
one might choose to include a personal photo in their next video. 

As shown in Fig.  6, videos that fall into the entertainment category (approximately 710 videos) were 
the trendiest videos among other categories, followed by people & blogs with some 700 videos and satire 
with some 200 videos, and so forth. Fig. 7 demonstrates that significantly fewer circulating videos are 
released on Saturdays and Sundays than on other days of the week. Except for Monday, the number of 
releases on other days of the week is not significantly different from Saturday's. On Monday, only 140 
trend videos were released. 

 

Fig. 6.  The categories of videos in five YouTube channels 

 

Fig. 7.  The release date of videos  
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The graph shown in Fig. 8 displays the number of trending videos released each day from 12 am to 
11 pm, beginning at 0 (00:00 hrs.). We can see that popular videos are mostly published during the 
period between 9 am to 1 pm. We also observe that the least popular videos are published between 12 
am and 8 am and between 2 pm and 11 am. Some possible explanations behind this finding may well be 
due to YouTube's trending video algorithm or it may be due to the fact that far more videos are released 
between 2 pm and 7 pm. The two above graphs do not suggest Saturday's videos are more likely to turn 
into a trend because Saturday may be the day when videos were more frequently posted than on other 
days. To verify those statements, we also need to know how many videos (not just trending ones) have 
been released every day of the week in the year 2020. The same holds true for hours of the day. 

 

Fig. 8.   The time period of publishing videos 

Fig. 9 shows that YouTubers prefer to include their channel's names in the title and descriptions of 
their videos followed by the content of the video clip they want to feature or highlight. In descending 
order are the words 'Mink' (348 occurrences), 'เทพลลีา' (257 occurrences), 'jaysbabyfood' (229 
occurrences), 'Maneerat' (200 occurrences), 'Grace' (195 occurrences), and 'ติง่รวีวิ' (140 occurrences), 
which all represent the name of the channel. 

 

Fig. 9.  The Word Cloud of YouTubers' preferred words to add to their videos and descriptions 

We shall now compare the video stats mentioned in the previous sections. Views with Likes is directly 
correlated to view count, and the length of the title is in line with the number of views. A heat map 
visualization has been created to show the relationships between different measurements. Fig. 10 shows 
a correlation map, and the correlation matrix shows that views and attitudes are strongly correlated. 
Lighter shades show a higher positive correlation in this heat map, and darker shades suggest a weaker 
positive correlation. The highest positive correlation possible is 1, and the highest negative correlation 
(the lowest positive correlation) is -1. 
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Fig. 10. The YouTube channels correlation matrix 

We can see that the correlation (0.87) between views and likes is strongly optimistic. This means 
that the two begin to rise concurrently in trending YouTube channels. A strong positive correlation can 
also be shown (0.79) between Disklikecount and Commentcount, as well as between Likecount and 
Commentcount (0.65). In addition, there is a positive correlation between Viewscount and 
Dislikescount, and one between Likescount and Dislikescount. 

4. Conclusion 

When we looked at ways to explain YouTube's "relevance" algorithm, we discovered that simple 
variables like screen size, comment counts, and search results had few clear connections. There is no 
reason to believe that a more detailed multivariate approach would result in better relations, since (a) 
the single YouTube variable used to define a factor directly — time to view — is not accessible from the 
API, and (b) query-dependent statistic variables like 'videos users who are looking for a word' cannot be 
replicated from the outside. While it would be worth exploring the tremendous functional information 
gathered by content producers, our highly straightforward approach provided various fascinating findings 
considering that apparent causal factors remain unchanged. In light of the Thai Government's growing 
interest in social impact work and the region's economic growth, we were inspired to map the field's 
academic landscape and analytically examine its development. We utilized SNA, data science, and social 
science tools to differentiate the development and essence of the K-pop industry in terms of social media 
platform, sharing, comments, replies, actions, respective collaboration features, and analysis focus areas. 
The SNA approach helps disclose possible knowledge focused mostly on title video, comment reply, and 
YouTube channels' presentation, but this does not provide a comprehensive understanding of the 
complex patterns of growth and interaction in the rapidly expanding entertainment sector. In future 
studies, we expect to add more data sources and variables, such as Facebook, Instagram, Twitter, and 
qualitative and quantitative methodologies, to provide a more detailed study of Korean Popular Culture. 
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