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Abstract. This paper presents a technique for identification of non-linear hysteretic systems 
subjected to non-stationary loading.  In the numerical simulations, a Bouc-Wen model was chosen 
for its ability to represent the properties of a wide class of real hysteretic systems. The parameters 
of the model are computed instantaneously by approximating the internal restoring force surface 
through an “ad hoc” polynomial basis. Instantaneous estimates result from time-varying spectra of 
the response signals. A numerical application of interest to earthquake engineering is finally 
reported. 

Introduction 
Methods for identifying systems with hysteresis can be framed respectively in the parametric and 
the non parametric approach: in the former case, a priori selection of a specific model for the 
dynamic behaviour of the system is needed and the identification process consists of determining 
the coefficients for such model. Non parametric methods, instead, do not require any assumption on 
the type and localisation of structural non-linearities but, generally, the quantities identified cannot 
be directly correlated to the system’s equation of motion and, therefore, their use in the applications 
is limited. 

Chassiakos et al. [1] and Smyth et al. [2] proposed a parametric method in which the parameters 
of the Bouc-Wen model are identified through an adaptive procedure, based on the application of 
least square techniques of estimation. An alternative approach is due to Kyprianou et al [3], who 
introduced a “differential evolutive” method for the identification of the parameters of the Bouc-
Wen model, whose formulation in many respects comes close to that of genetic algorithms. 

The formulation of parametric methods requires the adoption of an appropriate form for the 
model, which should accurately describe the dynamic behaviour of the system under investigation. 
Sometimes, however, it may prove impossible to meet this requirement: this is what prompted the 
development of non-parametric methods whose formulation does not require any a priori 
knowledge of the dynamics of a structure. Classical non-parametric methods are based on the 
extension of the restoring force surface method: Benedettini et al. [4] approximated the surface of 
the time derivative of the internal restoring force on a polynomial basis, by assuming as state 
variables the force itself and velocity; Masri et al. [5] extended this approach by proposing a 
polynomial base approximation of the system as a function of velocity, displacement and the 
excitation. 

In the frame of non-parametric approaches, Pei et al. [6] used a special type of neural network, 
which showed good performances in the identification of hysteretic systems. Finally, Saadat et al. 
[7] formulated a “hybrid” approach that combine in a single identification procedure the potentials 
of both the parametric and the non parametric approach. 

The present paper adopts the idea of approximating the restoring force surface on a polynomial 
basis [4,5] and outlines a strategy for an instantaneous identification of the hysteretic model 
parameters. 



 
 

 

Bouc-Wen hysteretic models 
The Bouc model formulation is based on the use of the following Stieltjes integral [8]: 
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where x and r are two time-dependent functions, which are considered as input and output 
functions, respectively. In structural engineering applications the input x usually has the meaning of 
a generalized displacement, while the output r plays the role of a generalized force. The integral in 
Eq. 1 depends on the time-function ξ(t), which is referred to as internal time and is assumed to be 
positive and non-decreasing. The function µ, called the hereditary kernel, takes into account 
hysteretic phenomena. One of the definitions of ξ(t)  proposed by Bouc, is the total variation of x: 
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where the superposed dot indicates time differentiation. Eq. 2 implies the rate-independence of 
ξ(t) and as a result, r(t) is in turn rate-independent. The kernel µ is defined as a continuous, 
bounded, positive and non-increasing function on the interval ξ(t)≥ 0, having a bounded integral. In 
the special case of an exponential kernel ( ) Ae βξµ ξ −= , with , 0A β > , a differential formulation of 
Eq. 1 can be easily deduced: 

r Ax rβ ξ= −                                                                                                                             (3) 

with xξ = . One can observe that for an initial value in the interval (-ru, ru), with ru =A/β, the 
hysteretic force r(t) remains in the same interval. The univariate (1D) Bouc model of Eq. (3) was 
modified by the contributions of several authors; among others, Wen suggested the use of the 
positive exponent, n: 

( ) nr Ax sign r x r xβ γ= − +                                                                                                    (4) 

where sign(.) is the signum function. Note that Eq. 4 can be written under the form (3), with the 
intrinsic time flow ( )( ) 11 / nsign r x r xξ γ β −= + . Wen assumed integer values for n; however, all 
real positive values of n are admissible. When n is large enough, force-displacement curves similar 
to those of an elastic-perfectly-plastic model are obtained. Provided that β+γ > 0, the limit strength 
value ru of the model of Eq. 4 becomes ( )/n

ur A β γ= + .  The parameter β is positive by 

assumption, while the admissible values for γ, i.e. [ ],γ β β∈ − , can be derived from a 
thermodynamic analysis [9].  

A further important modification concerned the introduction of the so-called strength and 
stiffness degradation effects, by means of the functions η and ν [10]: 

1r Ax rν β ξ
η

 = −                                                                                                                    (5) 



 

where ξ  is the same as for a non-degrading model; 1 c eνν = +  represents a strength degradation 
effect, while 1 c eηη = +  is associated with a stiffness degradation effect; e is the energy dissipated 
by the hysteretic model and cν≥ 0 and cη≥ 0.   

 The identification technique will be explained referring to the case of a simple Bouc-Wen 
oscillator, whose equation of motion is: 

( )sgn n

mx r u

r Ax r x r xβ γ

+ =


= − ⋅ + ⋅   
                                                                                            (6) 

where m, x  and u are respectively the mass, the acceleration and the excitation, r is the internal 
restoring force; A, β, γ and n are the parameters on which the form of the hysteresis cycle depends.  

For the purposes of identification, the function ( )r x,r  is replaced with a polynomial in the 
variables x  and r: 
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where α1, α2…  are the coefficients of the polynomial approximation of r . Within the range of 
validity of the approximation adopted, the above equation admits Volterra series expansion. 

Instantaneous estimators of Bouc-Wen parameters 

Let { } { }Tp m α α α α ...= =Tp 1 2 3 4  be the vector of parameters which describes the 
dynamic properties of the system and let us introduce an instantaneous objective function [11,12]: 

( ) ( ) ( )  
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where ( )*D n ,m  and ( ) *
VD n ,m, p  are the values of the response signal’s time-dependent 

spectrum, e.g. a Short-Time Fourier Transform (STFT) [13], at discrete time instant ∆*n t  and 
frequency ∆m f , respectively measured and calculated by integrating Eq. 7, for a given 
configuration of parameters p. The number of frequency samples, M, to be considered in the 
objective function in Eq. 8 will depend on the frequency interval under analysis. 

If the time-dependent spectrum satisfies the time marginal property [13], then Fob gives the 
difference between the instantaneous energies of the experimental signals and those of the system 
output corresponding to a given configuration of the unknown parameters p: by resorting to 
classical optimisation procedures, it proves possible to determine instant by instant the minimum of 

( )*
obF n ,p , through which the vector of the instantaneous estimators p(t) of the dynamic properties 

can be defined.   
The knowledge of the instantaneous estimators α1(t), … α4(t), as determined at time t=n*·∆t, 

makes it possible to obtain an approximation of the surface r  which is valid in a portion of the 
definition domain comprised between the maximum values that the velocity and the internal 
restoring force of the system assume around time t. 

The analytical expression of surface r  (Eq. 6) depends linearly on the A, β and γ constants, and 
non-linearly on the n exponent; if a value of n is selected a priori, then the instantaneous estimators 
A(t), β(t) and γ(t) for the Bouc-Wen model can be determined by solving at each time a linear 



 
 

 

system with the classical least squares techniques. The limits of the region of the ( )x,r  where linear 
equations are written can be defined on the basis of the values taken on by the instantaneous 
amplitude of the velocity, x , and of the internal restoring force, r, assumed around the instant at 
which the instantaneous estimators are evaluated.  

Numerical example 
As a numerical application of the instantaneous identification, a Single Degree  Of Freedom 
(SDOF) system described by the Bouc-Wen model subjected to a seismic excitation at the support 
(San Fernando earthquake, 1971, E-W component, accelerations measured on the basement of the 
Alhambra Building, sampling frequency: 200 Hz [14]) has been considered. 

The structural response used for the identification of system parameters was the relative 
acceleration, as estimated through step integration of Eq. 7 using the ©SIMULINK software. Figs. 
1 and 2 represent the system response and a diagram of the internal restoring force as a function of 
displacement, Table 1 gives the numerical values of the Bouc-Wen model parameters. 

The identification was performed in the 1-80 s time interval and by considering the presence, in 
the “measured response” of exogenous noise produced by contaminating the acceleration with 
white Gaussian noise having an RMS corresponding to 10% the RMS value of system acceleration; 
moreover, the value of mass m was supposed to be known a priori. 
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Figure 1:  Bouc-Wen oscillator: system output and a Gabor t-f representation 
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Table 1:  System parameters 
  

m 1 kg 
A 10 N/m 
β 10 N(1-n)·m-1 
γ   5 N(1-n)·m-1 
n   1  

 
Figure 2: Bouc-Wen oscillator: system output - hysteretic loop  

 



 

Eq. 7 can be expanded in Volterra series, by resorting to associated linear equations (ALEs) [15], 
the first of which is the equation of motion of the underlying linear system; having posed the Wen 
parameter n=1, the best cubic polynomial was found to contain only the rx2  and 2rx  terms, hence: 
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being ( )sx  ( )sr  the velocity and the internal force corresponding to the n-th component of the 

Volterra series expansion of the system’s response; [M], [C] and [K] are the matrices of the linear 
part of the system. From Eq. 9 it is possible to determine the s-th order contribution of the Volterra 
series expansion, ( ){ }s

q t , as the response of the underlying linear system to an input which is a 

non-linear function of the first s-1 terms. 
A proper choice for the order of the Volterra series expansion has the advantage of suppressing 

distortions due to measurement or integration; in this case the order 7 was found to be sufficient to 
adequately approximate the system response. 

Fig. 3 illustrates the instantaneous estimators of the coefficients of the equivalent polynomial 
system: the evolution of the non-linear parameters α4 and α5 shows a high variability in the interval 
10-40 s, where the system response is clearly non-linear. Outside this interval the instantaneous 
estimators do not present any fluctuations, the output being essentially linear. 
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Figure 3:  Instantaneous estimators of the equivalent polynomial system 



 
 

 

 
The identified acceleration was evaluated by subdividing the total time support into smaller 

intervals (2s) and calculating, over the small interval considered, the response of the equivalent 
polynomial system whose coefficients are the mean of the instantaneous estimators. The excellent 
agreement between the time histories (Fig. 4a) evidences the positive result of the identification 
procedure and the ability of the equivalent polynomial model to reproduce correctly the dynamic 
behaviour of the system in the portion of domain identified by the maximum values of x  and |r| 
observed during the vibration. The quality of the instantaneous approximation is related to the 
length of the analysis window in samples, whose optimal value in its turn depends on decorrelation 
length [11,13]:  the diagram in Fig. 4b shows the error in the equivalent polynomial approximation 
as a function of the STFT window length in samples for this specific application. 

Fig. 5 shows the instantaneous estimators of the Bouc-Wen model coefficients, evaluated in the 
maximum amplitude range for velocity and the internal restoring force (10-20 s). Table 2 lists the 
mean characteristics of the coefficients identified (STFT window length: 200 samples). 
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Figure 4a: Comparison between the “measured” 
response, “Bouc-Wen”, and the identified one, 
“equivalent polynomial” (window length: 201 
samples) 

Figure 4b: Error in the equivalent polynomial 
approximation as a function of window length in samples 
(as normalised with respect to the signal’s energy) 
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Figure 5:  Instantaneous estimators for the Bouc-Wen model 

 



 

Table 2:  Mean characteristics of the instantaneous estimators 
 

Parameter Exact value Mean  Standard deviation Coefficient of variation 
A 10 9.84 0.40 0.041 
β 10 8.96 4.09 0.457 
γ 5 4.21 2.34 0.555 

 
 
The instantaneous estimator of coefficient A is characterised by considerable stability around the 

exact value, whilst the scatter in the coefficients of the non-linear part of the Bouc-Wen model is 
significantly higher, as borne out by the significant magnitude of the standard deviations and the 
coefficients of variation. The identification of these parameters is affected not solely by the 
presence of external noise; in the time intervals where the excitation and the dynamic response are 
modest, in fact, system behaviour can be rated as linear and the determination of the β and γ 
coefficient is not reliable. Fig. 6 shows in the ( )x,r  plane the internal restoring force surfaces 
obtained by substituting into the analytical expression (Eq. 6) the exact values and the mean values 
of the instantaneous estimates (Tab. 1 and Tab. 2, respectively). This figure confirms that the 
approximation obtained, relative to the portion of domain identified by the maximum values of x  
and |r|, is acceptable and, hence, the result of the identification can be regarded as positive. 

 
 

Figure 6:  Restoring force surface: comparison between the exact surface and the surface identified 

Conclusions 
This paper has presented a parametric procedure for the identification of the parameters of  
hysteretic systems described by the Bouc-Wen model. The determination of the model parameters 
has been conducted by approximating the surface of the time derivative of the internal restoring 
force, r , with a cubic polynomial in the x and r variables and calculating the dynamic response of 
the system through a finite Volterra series. 

The application to a Bouc-Wen SDOF subjected to a seismic excitation has lead to the 
identification of an equivalent time-variant polynomial system, from which it was possible to get 
instantaneous estimates of the system parameters. 

In addition to reducing computational costs, the use of Volterra series expansion demonstrated to 
be advantageous in suppressing distortions due to measurement or integration, which otherwise 



 
 

 

would have been attributed to higher-order Volterra kernels; in the numerical example, the order 7 
was found to be sufficient to adequately approximate the system response. 
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