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Pseudo-potentials and loading surfaces for an

endochronic plasticity theory with isotropic

damage

Silvano Erlicher ∗, Nelly Point ∗∗

Abstract

The endochronic theory, developed in the early seventies, allows the plastic behavior

of materials to be represented by introducing the notion of intrinsic time. With dif-

ferent viewpoints, several authors discussed the relationship between this theory and

the classical theory of plasticity. Two major differences are the presence of plastic

strains during unloading phases and the absence of an elastic domain. Later, the en-

dochronic plasticity theory was modified in order to introduce the effect of damage.

In the present paper, a basic endochronic model with isotropic damage is formu-

lated starting from the postulate of strain equivalence. Unlike the previous similar

analyses, in this presentation the formal tools chosen to formulate the model are

those of convex analysis, often used in classical plasticity: namely pseudo-potentials,

indicator functions, sub-differentials, etc. As a result, the notion of loading surface

for an endochronic model of plasticity with damage is investigated and an insight-

ful comparison with classical models is made possible. A damage pseudo-potential

definition allowing a very general damage evolution is given.

CE DATABASE SUBJECT HEADINGS: Plasticity, Thermodynamics, Damage,

Constitutive models
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Introduction

In the early seventies, Valanis (1971) proposed the endochronic theory of visco-plasticity,

which postulates the existence of an intrinsic time governing the rate-independent evolution

of stress and strains in materials, whereas the Newtonian time is exploited to model the viscous

behavior; see also (Schapery, 1968; Bažant and Bath, 1976). In the case of plasticity without

viscous effects, the resulting constitutive laws are characterized by the absence of an elastic

domain and the corresponding hysteresis loops are typically smooth and open. The flow rules

of these models were not originally formulated in terms of pseudo-potentials, which made the

direct comparison of this class of models with classical plasticity theories difficult (Valanis,

1980). However, it was recently proven by Erlicher and Point (2006) that endochronic models

do admit a representation based on pseudo-potentials and on the normality assumption, pro-

vided that pseudo-potentials be endowed with an additional dependence on state variables.

This proof, given for the case of plastically incompressible models, showed the strong relation-

ship between the endochronic theory and the generalized plasticity (Phillips and Sierakowski,

1965; Eisenberg and Phillips, 1971; Lubliner et al., 1993; Auricchio and Taylor, 1995). It was

also shown that the non-linear kinematic hardening model, that is associated, but is not in a

generalized sense, admits a representation in terms of a pseudo-potential. Recently, the same

authors extended this analysis to other models, like the Mróz model (Point and Erlicher, 2007)

and the non-associated Drucker-Prager model (Erlicher and Point, 2005); see also Ziegler and

Wehrli (1987), Houlsby and Puzrin (2000). In summary, this thermodynamically well-posed

approach can be used for a very large class of existing classical or non-classical plasticity

models. Actually, a similar approach is used in geotechnical engineering, see e.g. Collins and

Houlsby (1997), where pseudo-potentials have an additional dependence on the so-called true

stresses, distinguished from the generalized stresses.
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The standard endochronic theory was modified by several authors through the introduction

of a damage variable. Using the strain equivalence postulate, Xiaode (1989) proposed an

endochronic model with isotropic damage, while Valanis (1990) discussed an endochronic

model with anisotropic damage, in the larger theoretical framework of fracture mechanics.

Later, a different approach based on the postulate of energy equivalence was used, among

others, by Chow and Chen (1992) and Wu and Nanakorn (1998, 1999).

In the aforementioned works, the thermodynamic formulation of flow rules is not based on

the notions of pseudo-potentials and loading surfaces, as it is typical for other classical plas-

ticity models with or without damage. Hence, in this paper, a simple endochronic model of

plasticity with isotropic damage similar to that discussed by Xiaode (1989) is presented: no

generalization is introduced with respect to the previously cited models, but a new approach

is suggested for their description. In detail, the postulate of strain equivalence is adopted;

the Helmholtz energy is assumed to have a regular quadratic term and an additional singular

term; the tools of the convex analysis such as indicator functions and sub-differentials (Rock-

afellar, 1969; Moreau, 1970; Frémond, 2002) are used to define the flow rules starting from

well-suited pseudo-potentials. This presentation leads to the proper definition of the plastic-

ity loading surface for an endochronic model with damage and is a direct extension of the

results concerning the endochronic model without damage already discussed in Erlicher and

Point (2006). Only plastically incompressible models are considered here, since they permit

to explain the main ideas, without introducing a too complex formalism. The extension to the

general case is possible, but it is omitted for simplicity. The proposed analysis has an intrinsic

interest, since it allows an easier comparison between endochronic models with damage and

classical plasticity models with damage. Nonetheless, in the authors’ opinion, another im-

portant reason justifies the interest towards this class of models: they represent the suitable

theoretical basis for the analysis of the thermodynamic admissibility of the Bouc-Wen models
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with strength and stiffness degradation; see among others (Bouc, 1971; Wen, 1976; Baber and

Wen, 1981; Casciati, 1989; Karray and Bouc, 1989). This was one of the main motivation

at the origin of the present study and the related developments about degrading Bouc-Wen

models are presented in a companion paper (Erlicher and Bursi, 2007).

After the introduction, the endochronic theory is presented in the second section: in the

first part, standard endochronic models are described, while the second part concerns the

definition of the flow rules of the extended endochronic theory, characterized by an additional

scalar variable endowed with damage. The thermodynamic framework, with the definition

of the suited pseudo-potentials, is discussed in the following section and is supplemented by

numerical examples. Then, a brief discussion about stability and uniqueness is made and the

concluding remarks are given, where the topics dealt with in the companion paper (Erlicher

and Bursi, 2007) are pointed out.

Endochronic models

Flow rules of plastically incompressible ND-EC models

The endochronic theory was first formulated by Valanis (1971), who suggested the use of a

positive scalar variable ϑ, called the intrinsic time scale, in the definition of constitutive plas-

ticity models. The evolution laws are described by convolution integrals involving past values

of the strain ε and suitable scalar functions µ depending on ϑ, called memory kernels. When

the memory kernel is exponential, the integral expressions can be rewritten as simple differen-

tial equations, the flow rules; in the case of an isotropic endochronic model without hardening

or softening, called here ND-EC model (see Figure 1), fulfilling the plastic incompressibility

5



assumption, they read:































tr (σ) = 3K tr (ε) , dev (σ) = z

ż = 2G dev (ε̇)−β zϑ̇

(1)

where β > 0 (notice that β different from zero is needed to have a non elastic behavior); the

superposed dot indicates the time derivative; ε is the small strain tensor; σ is the Cauchy

stress tensor; tr and dev are the trace and deviatoric operators; K is the bulk modulus while

G is the shear modulus. The simplest choice for the intrinsic time scale flow indicated in (1)

is ϑ̇ = ‖dev (ε̇)‖. It is interesting to note that relationships (1) are equivalent to































σ = C : (ε − ε
p)

tr (ε̇p) = 0 and ε̇
p = β dev(σ)

2G
ϑ̇

(2)

where the trace of the plastic strain flow ε̇
p is zero, consistently with the assumption of

plastic incompressibility. C = (K − 2G/3)1 ⊗ 1+2GI is the elasticity fourth-order tensor for

isotropic materials; 1 is the second-order identity tensor; I is the fourth-order identity tensor

and ⊗ represents the tensor product.

Flow rules of plastically incompressible D-EC and DD-EC models

An endochronic model with isotropic hardening or softening with plastically incompressible

flow is defined as follows:































tr (σ ) = 3K tr (ε ) , dev (σ ) = z

ż = 2G dev (ε̇) − β z ϑ̇ with ϑ̇ = ζ̇
g

(3)
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where g > 0 is called the hardening-softening function (Bažant, 1978). As stated by its name,

the function g introduces isotropic hardening (or softening), which distinguishes this model

(D-EC) from the basic ones presented in the previous section and indicated as ND-EC (see

Figure 1). In the classical endochronic formulations, g is a function of ζ , where ζ is the intrinsic

time measure. A standard choice is ζ̇ = ‖dev (ε̇)‖ according to Valanis (1971). Another more

general definition, leading to a cyclic behavior similar to that of the Prandtl-Reuss model

(Lemaitre and Chaboche, 1990) when the positive parameter n is large enough, reads

ζ̇ =

(

1 +
γ

β
sgn (z : dev (ε̇))

)

|z : dev (ε̇)| ‖z‖n−2 (4)

with γ ∈ [−β, β] in order to ensure the non-negativity of ζ̇; sgn is the signum function. An

important difference between (4) and the standard definition ζ̇ = ‖dev (ε̇)‖ is related to the

product z : dev (ε̇), entailing ζ̇ = 0 when the deviatoric strain increment is orthogonal to the

stress. However, ζ̇ can be different from zero during unloading, i.e. when z : dev (ε̇) < 0. Eq.

(4) shows that γ affects the difference between the loading and unloading values of the intrinsic

time increment at a given stress z. In particular, when γ = β these increments are zero during

unloading, while γ close to (and greater than) −β leads to relatively small increments during

loading, while ζ̇ is relatively large during unloading. The influence of n on the endochronic

model behavior is discussed in the last Section, with reference to the strain accumulation and

the stress relaxation effects. According to (3) and (4) and assuming β + γ > 0, the norm of

the tensor z (t) is bounded as follows:

‖z (t)‖ = ‖dev (σ (t))‖ < σu =

(

2G

β + γ

)
1
n

(5)

for t > 0, provided that ‖z (0)‖ < σu. This inequality proves that a limit strength value

exists and only concerns the deviatoric part of the stress σ, consistently with the plastic

incompressibility requirement. Eq. (5) also shows that this bounding stress depends on the

parameters β, γ and n.
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The expression (3) is equivalent to































σ = C : (ε − ε
p)

tr (ε̇p) = 0 and ε̇
p = dev(σ)

2G/β
ζ̇
g

(6)

From the last relationship in (6), it appears that the parameters β, γ and n introduced in (4)

affect the amplitude of the plastic strain flow, while the direction is always that of dev (σ).

A larger class of endochronic models can be defined by the following relationships































σ = (1 −D)C : (ε − ε
p)

tr (ε̇p) = 0 and ε̇
p = 1

1−D
dev(σ)
2G/β

ζ̇
g

(7)

where D is a scalar variable introducing isotropic damage. The plasticity model with damage

defined by (7) is named here the extended endochronic model and it belongs to the class

of DD-EC models, as indicated in Figure 1. Note that the stress is defined by introducing

the factor (1 −D), consistently with the definition of effective stress and the principle of

strain equivalence (Lemaitre and Chaboche, 1990). Moreover, it can be observed that the

relationships (7) are equivalent to































tr (σ) = (1 −D) 3K tr (ε) , dev (σ) = z

ż = (1 −D) 2G dev (ε̇) − β z ϑ̇− Ḋ z

1−D
with ϑ̇ = ζ̇

g

(8)

which can be compared with (3).

A possible choice for ζ̇ is given by

ζ̇ =

(

1 +
γ

β
sgn (z : dev (ε̇))

)

|z : dev (ε̇)| ‖z‖n−2 (1 −D)1−n (9)
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which represents a direct generalization of (4): the last factor depending on D and n is

introduced in order to have an intrinsic time depending on the effective stress instead of the

actual one, consistently with the strain equivalence postulate. An elastic with damage model

can be defined by assuming ζ̇ = 0. In the authors’ knowledge, the notions of pseudo-potential

and loading surface were never applied to the extended endochronic theory; therefore, these

aspects are analyzed in detail in the next section.

A thermodynamic framework for the extended endochronic theory

The aim of this section is to define the Helmholtz free energy and the pseudo-potential leading

to the flow rules (7) or, equivalently, (8). Under the assumption of isothermal and small

transformations, the Helmholtz free energy density is chosen as follows:

Ψ = Ψ (v) = ψ (ε, εp,ζ,D) + IH (ε, εp,ζ,D) (10)

where v = (ε, εp,ζ,D) is the vector of state variables; ε, ε
p and D were previously defined;

ζ is a scalar internal variable associated with isotropic hardening. For all the state variables,

an initial zero value is assumed. The choice of ζ to indicate an internal variable might seem

misleading, since the symbol ζ was also used in (3)-(8) to define the intrinsic time measure.

However, as it will be seen hereafter, this choice is the proper one, as for endochronic models,

ζ has simultaneously both meanings; ψ is the regular part of the Helmholtz energy; IH is

the indicator function of the closed set H: by definition, an indicator function is equal to 0

inside H and equal to +∞ outside (Rockafellar, 1969); the set H indicates the admissibility

domain for the state variables v and should be introduced every time some conditions on

state variables are to be imposed: for instance, it is equal to the interval D ∈ [0, 1] in order

to impose the admissible values for the damage variable (Frémond, 2002).
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Once Ψ is known, the non-dissipative thermodynamic forces qnd = (σnd, τ nd, Rnd, Y nd) are

defined as the gradient of ψ (ε, εp,ζ,D):

σ
nd :=

∂ψ

∂ε
, τ

nd :=
∂ψ

∂εp
, Rnd :=

∂ψ

∂ζ
, Y nd :=

∂ψ

∂D
(11)

while the non-dissipative reaction forces qndr = (σndr, τ ndr, Rndr, Y ndr) are given by

(

σ
ndr, τ ndr, Rndr, Y ndr

)

∈ ∂IH (ε, εp,ζ,D) (12)

where ∂ is the sub-differential operator (Rockafellar, 1969). If the constraints imposed by H

are fulfilled, the indicator function IH is zero and Ψ (t) = ψ (t). This entails the identity of

the time-derivatives, viz. Ψ̇ (t) = ψ̇ (t) + qndr · v̇ = ψ̇ (t). In other words, one has qndr · v̇ =0

for every instant t (Frémond, 2002).

Due to the assumptions of isothermal and small transformations, the expression of the second

principle reads:

Φ1 (t) = σ : ε̇ − ψ̇ ≥ 0 (13)

(13) states that the intrinsic (or mechanical) dissipation Φ1 has to be non-negative. Intro-

ducing the dissipative thermodynamic forces qd = (σd, τ d, Rd, Y d) as

σ
d := σ − σ

nd−σ
ndr , τ

d := −τ
nd− τ

ndr, Rd := −Rnd −Rndr, Y d := −Y nd− Y ndr

(14)

and substituting (14) in (13), one obtains:

Φ1 (t) = σ
d : ε̇ + τ

d : ε̇
p +Rdζ̇ + Y d Ḋ ≥ 0 (15)

In order to fulfill (15), the flows of the state variables ε̇, ε̇p,ζ̇ and Ḋ have to be suitably

correlated with the dissipative thermodynamic forces σ
d, τ d, Rd and Y d. Therefore, some

additional complementarity rules need to be defined: usually, a scalar non-negative function
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called pseudo-potential

φ = φ (v̇′;v; ρ) such that φ (0;v; ρ) = 0 for all v and ρ (16)

is introduced and the dissipative forces qd = (σd, τ d, Rd, Y d) are derived imposing the so-

called generalized normality assumption on it. Equivalently, one can define the flow rules v̇

by imposing the generalized normality assumption on the dual pseudo-potential φ∗, which is

the Legendre-Fenchel transform of φ (Rockafellar, 1969). This last method will be explicitly

exploited herein. The generic flow v̇′ is noted with ”prime”, while the actual flow at the present

state is noted with v̇. As a matter of fact, the pseudo-potential is assumed to vary with the

present value of state variables v and with some additional parameters collected in the vector

ρ. These parameters may be any quantity related to the past history of the material (Frémond,

2002). For instance, one may have ρ(x) = (e(x), ‖ε(x)‖max) = (e(x),max0≤t′≤t ‖ε (x, t′)‖),

where e is the dissipated energy per unit volume at the point x of the body volume and ‖ε‖max

is the maximum (from t′ = 0 to the present state t′ = t) of the strain norm at the same point.

Observe that the parameters collected in ρ could also be non-local, like ρ (x) =
∫

V0(x) edV , i.e.

the energy dissipated in a given volume V0 (x) around the point x of body volume.

When no viscous effect occurs, the case of plasticity with damage is recovered. This corre-

sponds to choose a pseudo-potential φ independent from ε̇, entailing σ
d = 0; for a detailed

derivation of these relationships, see, for instance, Erlicher and Point (2006). Moreover, ”plas-

tic flow may occur without damage and damage may occur without appreciable macroscopic

plastic flow” (Lemaitre and Chaboche, 1990). Therefore, (15) with σ
d = 0 ”must be split in

two independent inequalities”:

ėp := τ
d : ε̇

p +Rd ζ̇ ≥ 0, ėD := Y d Ḋ ≥ 0 (17)

The two scalar quantities ėp and ėD respectively define the rate of energy per unit volume
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dissipated by plasticity-related phenomena and by damage phenomena; see Figure 2. Their

sum ė = ėp + ėD is the rate of the total dissipated energy per unit volume and coincides

with the intrinsic dissipation Φ1. The restrictions imposed by these two inequalities are more

severe than the original unique inequality of Clausius-Duhem (15). However, they are usually

adopted as basic thermodynamic criterion for the formulation of plasticity models with dam-

age (Lemaitre and Chaboche, 1990). This assumption will be adopted hereafter. Taking into

account (17), the pseudo-potential is supposed to split into two pseudo-potentials φD and φp,

respectively related to damage and plastic flow:

φ
(

ε̇
p′, ζ̇ ′, Ḋ′;v; ρ

)

= φD
(

Ḋ′;v; ρ
)

+ φp
(

ε̇
p′, ζ̇ ′;v; ρ

)

(18)

In the following sections, the Helmholtz free energy, the pseudo-potentials φD and φp, as well

as their Legendre-Fenchel transforms (Rockafellar, 1969), are formulated for the endochronic

model with damage (7).

The Helmholtz free energy

According to (10), for the DD-EC models one has the following Helmholtz free energy:

Ψ (v) = ψ (v) + IH = (1 −D)
1

2
(ε − ε

p) : C : (ε − ε
p) + IH (19)

In this paper, two cases are considered:

H =































(ε, ε
p, ζ, D) such that D ≥ 0, D ≤ 1

and (1 −D)sR (ṽ,ρ) − r0 ≤ 0































(20)

where s and r0 are positive parameters; ṽ = (ε, ε
p, ζ) collects all state variables except D

and R = R (ṽ,ρ) is a non-negative function called source of damage. The first two conditions
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on D impose the minimum and the maximum values for this variable. As it will be seen, the

third condition in (20) is strictly related to the definition of the damage limit surface. The

second case is characterized by a different assumption:

H = {(ε, ε
p, ζ, D) such that D ≥ 0, D ≤ 1} (21)

where only the two basic inequalities on D are retained.

Making use of (14), (19), (20) and of the pseudo-potential (25), i.e. the Definition 1 of φD given

in the following section, it is possible to prove that the assumption qndr = 0 is admissible.

The same holds for the model defined by (19),(21) and (34) (Definition 2 of φD). For brevity,

the details of this proof, are omitted. As a result, the non-dissipative thermodynamic forces

fulfill the following relationships:

σ
nd = ∂ψ

∂ε
= (1 −D) C : (ε − ε

p) = σ − σ
d = σ

τ
nd = ∂ψ

∂εp = − (1 −D) C : (ε − ε
p) = −τ

d

Rnd = ∂ψ
∂ζ

= 0 = −Rd

Y nd = ∂ψ
∂D

= −1
2
(ε − ε

p) : C : (ε − ε
p) = −Y d

(22)

Moreover using (22) and supposing D < 1, the energy dissipation rate reads

ė = ėp + ėD = σ : ε̇
p + 1

2
σ : C

−1:σ
(1−D)2

Ḋ

= dev (σ) : dev (ε̇p) + tr(σ)
3
tr (ε̇p) + 1

2

(

dev(σ):dev(σ)
2G

+ (tr(σ))2

9K

)

Ḋ
(1−D)2

(23)

Taking the time-derivative of (22)1 and recalling that no viscous effect is considered (σd = 0),

one obtains

ε̇ = ε̇
p + ε̇

e = ε̇
p + C−1 :

σ̇

1 −D
+ C−1 :

σḊ

(1 −D)2
:= ε̇

p + ε̇
e,σ + ε̇

e,D (24)

13



where ε̇
e,σ is an elastic strain flow at constant damage and ε̇

e,D is an elastic strain flow at

constant stress. It follows that ėD = 1/2
(

σ : ε̇
e,D
)

. Note that in general the endochronic

theory may present non-zero energy rates ėp and ėD also during unloading phases; see Figure

2b in this respect.

The pseudo-potential for the damage flow

The formalism of the loading function fD, as well as the pseudo-potential φ∗
D = IfD≤0 , can

be used to express the damage evolution (Lemaitre and Chaboche, 1990; Salari et al., 2004;

Nedjar, 2001; Frémond, 2002). We present herein a well-known damage evolution rule by

using both pseudo-potentials φD and its dual φ∗
D. Then, a discussion is done about a novel

pseudo-potential leading to a damage evolution where Ḋ may be different from 0 also during

unloading phases. In detail, the main difference between the two cases is related to the role of

the damage limit surface. Standard damage evolution rules, viz. Definition 1, are characterized

by the possibility for the actual state point to be inside the damage domain delimited by this

limit surface; in this situation and in particular during unloading phases, damage increments

are null. Conversely, in the damage evolution which we propose here, i.e. Definition 2, the

present state point is forced to be always on the damage limit surface also during unloading

phases.

Definition 1 of φD

Let us begin with the following pseudo-potential, associated with the Helmholtz free energy

(19)-(20):

φD
(

Ḋ′;v; ρ
)

=
[

1

2
(ε − ε

p) : C : (ε − ε
p) − (1 −D)sR (ṽ,ρ) + r0

]

Ḋ′ + IDD

(

Ḋ′
)

(25)
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and

DD =
{

Ḋ′ such that Ḋ′ ≥ 0
}

(26)

The pseudo-potential φD is the sum of a regular part, proportional to Ḋ′ and of the indicator

function IDD
. The term multiplying Ḋ′ in the regular part of φD is always non-negative, by

virtue of the third condition defining H in (20). The regular part of φD, considered for the

actual flow Ḋ′ = Ḋ, represents the rate of dissipated energy ėD. (25)-(26) allow a large number

of standard damage evolution rules to be represented, according to the specific definition of

R (ṽ,ρ). An interesting example is

R = R (ε) =
1

2

(

2Gε
e,+ : ε

e,+ + λ
(

[tr (εe)]+
)2
)

(27)

where λ = K − 2G/3 is the Lamé constant. For a scalar x, [x]+ := 〈x〉, where 〈〉 are the

McCauley brackets. The positive part ε
e,+ of the tensor ε

e is obtained after diagonalisation.

Other definitions for R can be adopted; see, among others, Nedjar (2001) and Salari et al.

(2004).

In order to derive the damage flow, it is convenient to consider the Legendre-Fenchel transform

of φD, which reads:

φ∗
D

(

Y d′ ;v; ρ
)

= supḊ′∈DD

[(

Y d′ − 1
2
(ε − ε

p) : C : (ε − ε
p) + (1 −D)sR (ṽ,ρ) − r0

)

Ḋ′
]

= IED

(

Y d′ ;v; ρ
)

(28)

where ED=
{

Y d′ such that fD
(

Y d′ ;v; ρ
)

≤ 0
}

is the damage loading domain and the cor-

responding loading function is:

fD
(

Y d′ ;v; ρ
)

= Y d′ −
1

2
(ε − ε

p) : C : (ε − ε
p) + (1 −D)sR (ṽ,ρ)− r0 := Y d′ − Y d′

max (29)

15



By using the normality assumption, the relevant damage flow rule reads

Ḋ = λ̇D
∂fD(Y d)
∂Y d′ = λ̇D

with fD
(

Y d;v; ρ
)

λ̇D = 0, λ̇D ≥ 0, fD
(

Y d;v; ρ
)

≤ 0.

(30)

At the actual state, it holds Y d′ = Y d = −Y nd, and therefore:

fD = fD
(

Y d;v; ρ
)

= (1 −D)sR (ṽ,ρ) − r0 ≤ 0, (31)

which is the damage limit surface, but also is one of the conditions defining the set H. It

becomes evident that the positive constant r0 is the initial damage threshold. The Kuhn-

Tucker conditions state that fD < 0 implies no damage increment, while fD
(

Y d;v; ρ
)

= 0

corresponds to a damage increment which can be computed by enforcing the consistency

condition:

ḟD = (1 −D)s
(

∂R (ṽ,ρ)

∂ṽ
˙̃v+

∂R (ṽ,ρ)

∂ρ
ρ̇

)

− R (ṽ,ρ) s (1 −D)s−1 Ḋ = 0 (32)

leading to the explicit expression of the damage flow

Ḋ = H (fD)

(

∂R (ṽ,ρ)

∂ṽ
˙̃v+

∂R (ṽ,ρ)

∂ρ
ρ̇

)

1 −D

s R (ṽ,ρ)
, (33)

where H is the Heaviside function. The presence of the Heaviside function in the damage flow

definition indicates that damage increments are zero during unloading phases. Note that (33)

entails that the limit condition D = 1 is never reached.

Figure 3 illustrates some loading-unloading cycles of an elastic with damage model (ζ̇ = 0).

The uniaxial stress is considered, viz. all the components of the Cauchy tensor are supposed

to be null, except σ11. The parameter values represent a hypothetical material for which the

Young modulus E = 35000MPa and the Poisson ratio ν = 0.18 are close to those of concrete;

damage is defined by (20) and (27), with s = 2.5 and r0 = 1.2e − 05 MJ/m3; see also the
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numerical examples in Nedjar (2001). Together with the stress-strain and damage evolution of

this model, Figure 3 depicts the evolution of Y d = 1/2 (ε − ε
p) : C : (ε − ε

p), i.e. the actual

value of Y d′, and of the quantity Y d′

max = 1/2 (ε − ε
p) : C : (ε − ε

p) + r0 − (1 − D)sR (ε),

defining the upper limit of Y d′ according to (29). When these two curves are superposed, the

damage increases.

Definition 2 of φD

Unfortunately, a definition of Ḋ of the type (33), deriving from the pseudo-potential (25)

and the condition (20), is not able to represent the case of damage increasing during both

loading and unloading phases, owing to the condition fD ≤ 0. We recall that the case of

damage increasing during unloading may occur in Bouc-Wen models with stiffness degradation

(Erlicher and Bursi, 2007). A damage pseudo-potential, simpler than (25), is more suited:

φD
(

Ḋ′;v
)

=
[

1

2
(ε − ε

p) : C : (ε − ε
p)
]

Ḋ′ + IDD

(

Ḋ′
)

(34)

with DD still provided by (26) and with the conditions on the damage state variable defined

in (21). As already observed, it is possible to prove that the assumption qndr = 0 is admissible

also for this Definition 2 of the damage pseudo-potential. The dual pseudo-potential becomes

φ∗
D

(

Y d′ ;v
)

= IED

(

Y d′ ; v
)

where ED=
{

Y d′ such that fD
(

Y d′ ;v
)

≤ 0
}

is the correspond-

ing damage loading domain, with the damage loading function

fD
(

Y d′ ;v
)

= Y d′ −
1

2
(ε − ε

p) : C : (ε − ε
p) := Y d′ − Y d′

max (35)

At the actual state, Y d′ = Y d = −Y nd and therefore fD
(

Y d;v
)

= 0 at every instant.

Therefore, the relationships (30) reduce to Ḋ = λ̇D∂fD/∂Y
d′ = λ̇D, with λ̇D ≥ 0. Moreover,

Ḋ = λ̇D can no longer be computed by the consistency condition, fulfilled as an identity at

every instant. Hence, it must be rather defined by an additional condition. Any definition
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ensuring rate-independence, consistent with (21) and fulfilling Ḋ = λ̇D ≥ 0 is admissible,

even though is characterized by non-zero damage increments during unloading phases.

The pseudo-potential for the plastic flow

The usual method to define associated plastic flows is based on the notion of loading function,

indicated here by fp, as well as on the normality assumption. Another equivalent formalism

is based on the use of the dual pseudo-potential φ∗
p = Ifp≤0 (Moreau, 1970). A third way to

formulate plasticity models is based on the pseudo-potential φp, Legendre-Fenchel conjugate

of φ∗
p (Frémond, 2002; Ziegler and Wehrli, 1987; Houlsby and Puzrin, 2000; Erlicher and

Point, 2006). The advantage of using the formalism based on fp (or φ∗
p = Ifp≤0) is essentially

simplicity. Moreover, when a non-associated flow is to be defined, the simple introduction

of a second function gp called plastic potential matches this purpose. Nonetheless, for some

non-classical plasticity theories, like endochronic theory and generalized plasticity (Lubliner

et al., 1993), it is not straightforward to provide a proper definition of the loading function

fp. It was proved by Erlicher and Point (2006) that for these plasticity theories (without

damage) a way to define the loading function is to start from the definition of the pseudo-

potential φp, to compute the dual potential φ∗
p and then to derive fp. An important point is the

additional dependence of φp, and therefore of φ∗
p and the loading function too, on the state

variables. This dependence is only optional for standard plasticity theories but is essential

both for the endochronic theory and the generalized plasticity. Moreover, we notice that some

models with non-associated flow also admit a representation based on the definition of a

suited pseudo-potential φp, depending on state variables. The example of a non-associated

Drucker-Prager model can be found in Erlicher and Point (2005); in particular, it is shown

that a suited pseudo-potential φp leads to a modified loading function which plays both roles

18



of the traditional loading function and of the plastic potential.

For the endochronic models with damage, the plasticity pseudo-potential is defined as follows:

φp
(

ε̇
p′, ζ̇ ′;v; ρ

)

= (1 −D)
‖dev (C : (ε − ε

p))‖2

2G/β

ζ̇ ′

g (v,ρ )
+ ID

(

ε̇
p′, ζ̇ ′;v; ρ

)

(36)

where ID is the indicator function of the convex set

D =























































(

ε̇
p′, ζ̇ ′

)

such that

tr
(

ε̇
p′
)

= 0, ζ̇ ′ ≥ 0 and

ε̇
p′ =

dev(C:(ε − ε
p
))

2G/β
ζ̇′

g(v,ρ)























































(37)

(see Figure 4a). The first equality in D imposes the plastic incompressibility of the flow.

Moreover, since D is supposed to be less or equal to one and g = g (v,ρ), the hardening-

softening function, is positive by assumption, the second condition in D ensures the positivity

of φp. Therefore, the standard properties of φp, viz. non-negativity, convexity and positive

homogeneity of order 1, are matched. The third condition in D gives the plastic flow and is

consistent with (7). It can be proven that when ε̇
p′ = ε̇

p and ζ̇ ′ = ζ̇, i.e. when the actual flows

are considered, the first term of the sum in (36) represents the rate of energy ėp dissipated by

the plastic flow, defined in (17) for the general case. Note that the pseudo-potential has an

additional dependence on the state variables and on the past-history dependent parameters

collected in ρ.

The dual dissipation potential φ∗
p is obtained by the Legendre-Fenchel transformation of φp

(Rockafellar, 1969). Since φp is positively homogeneous of order 1, then φ∗
p is an indicator
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function:

φ∗
p

(

τ
d′ , Rd′; v; ρ

)

= sup
(ε̇p′ ,ζ̇′)∈D

(

τ
d′ : ε̇

p′ +Rd′ ζ̇ ′ − φp (v̇′;v; ρ)
)

= sup
(ε̇p′ ,ζ̇′)∈D

(

dev
(

τd
′
)

:
dev(C:(ε − ε

p
))

2G g(v,ρ) /β
ζ̇ ′ +Rd′ ζ̇ ′ − (1 −D)

‖dev(C:(ε − ε
p
))‖

2

2Gg(v,ρ)/β
ζ̇ ′
)

= IE

(

τ
d′ , Rd′;v; ρ

)

(38)

The indicator function IE is associated with the convex set

E =
{(

τ
d′, Rd′

)

such that fp
(

τ
d′ , Rd′ ;v; ρ

)

≤ 0
}

(see Figure 4b) with

fp
(

τ
d′ , Rd′;v; ρ

)

= dev
(

τ
d′
)

:
dev (C : (ε − ε

p))

2Gg (v,ρ) /β
− (1 −D)

‖dev (C : (ε − ε
p))‖2

2Gg (v,ρ) /β
+Rd′ (39)

The function fp is the loading function for an endochronic model with plastic incompressibility

and with isotropic damage. It is associated with the loading domain E. If the past-history

parameter ρ is a scalar equal to ep, the plastic dissipated energy, then a work-hardening

behavior is defined, in the sense that the loading function evolves with the plastic dissipated

energy. A different approach to define work-hardening plasticity models was proposed by

Ristinmaa (1999).

The generalized normality conditions imposed on φ∗
p leads to:























































ε̇
p = λ̇

∂fp(τd,Rd;v;ρ)
∂τd′ = λ̇dev(C:(ε−εp))

2Gg(v,ρ)/β

ζ̇ = λ̇
∂fp(τd,Rd;v;ρ)

∂Rd′ = λ̇

λ̇fp
(

τ
d, Rd;v; ρ

)

= 0 fp
(

τ
d, Rd;v; ρ

)

≤ 0, λ̇ ≥ 0

(40)

where the last three inequalities are the Kuhn-Tucker conditions. The plastic flow defined in

(7) is retrieved. Note that the derivatives are taken with respect to the generic variables τ
d′

and Rd′ , but they are computed at the present state τ
d′ = τ

d and Rd′=Rd. In summary, the
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usual notions of plastic multiplier and loading surface have been defined for an endochronic

model with damage. This kind of thermodynamic formulation for endochronic models is quite

innovative and has been first presented in Erlicher and Point (2006), for the case of no damage.

As was pointed out in that paper, an important property characterizing endochronic models

is the fact that at the actual state, the loading function fp is always zero: for this reason,

the consistency condition ḟp = 0 is always fulfilled as an identity and cannot be used to

compute the plastic multiplier λ̇. This is also true in this case, where the actual state is
(

τ
d, Rd

)

= ((1 −D)C : (ε − ε
p) , 0) . As a result, the Kuhn-Tucker conditions reduce to

λ̇ = ζ̇ ≥ 0, where ζ̇ is the flow of the internal variable associated with Rd and, using the

language of the endochronic theory, is also the flow of the intrinsic time measure; it can be

freely defined, provided that it is non-negative and that rate-independence is guaranteed. As

already observed, the standard choice is ζ̇ = ‖dev (ε̇)‖.

Figure 5 illustrates an example of uniaxial behavior of an endochronic plasticity model with

damage. The parameters of the elastic phase and of damage (Definition 1) are the same as

those of Figure 3. In addition, g = 1, ζ̇ is given by ( 9) with n = 5 , β = 2834.9 MPa1−n

and γ/β = −0.5 ; as a result, σu = (2G/ (β + γ))1/n = 2.25 ∗
√

2/3 = 1.8371 MPa, where σu

is the upper limit of ‖dev
(

τ
d/ (1 −D)

)

‖ = ‖dev (σ/ (1 −D)) ‖ =
√

2/3 σ11/ (1 −D) when

g = 1.

In the example of Figure 6, the damage is defined by the rule D = 1 − 1/ (1 + cηep), with

cη = 1500 m3MJ−1 (Definition 2). The parameter cη indicates the sensitivity of dam-

age to the energy ep dissipated by plasticity. If cη is large, the damage increment at a

given ep-value is larger than in the case of small cη. The Young modulus and the Pois-

son ratio are the same as in the previous figures. The parameters defining the intrinsic

time flow (9) are: n = 15, β = 16.1846 MPa1−n and γ/β = −0.8 ; as a result, σu =
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(2G/ (β + γ))1/n = 2.25 ∗
√

2/3 = 1.8371 MPa. Moreover, the hardening function is defined

as g =
(

1 + ‖dev (ε (t′)) ‖maxt′∈[0,t]
/εu

)n
, where t is the present time and εu = 0.0002. Figure

6d depicts the evolution of Y d = 1/2 (ε − ε
p) : C : (ε − ε

p), i.e. the actual value of Y d′. Ac-

cording to (35), this quantity is also equal to Y d′

max, which is the upper limit of Y d′ . The typical

endochronic behavior with plastic strains increasing during unloading phases is highlighted in

Figure 6b. As a result, owing to the damage rule depending on the dissipated plastic energy,

also the damage slightly increases during the unloading phases: observe the damage evolution

after t=0.3 and t=0.5, which are the instants where unloading phases begin.

A brief discussion about stability and uniqueness

It is well-known that standard endochronic models violate the Drucker’s postulate and the

Ilyushin’s postulate, see e.g. (Sandler, 1978). As a result, inelastic strains may continuously

increase if a cyclic stress of constant and arbitrarily small amplitude is imposed around a given

static stress (Figure 7a). Dually, a stress relaxation occurs when cycling straining is imposed

(Figure 8a). The parameters used for the numerical simulations of Figures 7 and 8 are: E =

35000 MPa, ν = 0.18, g = 1, γ/β = −0.5, while β has a value such that (2G/ (β + γ))1/n =

1.8371 MPa, for the given n values used in the figures. The strain accumulation entails a

violation of a Lyapunov-type stability condition. For this reason, endochronic theory have been

repeatedly criticized in the past years. However, Bažant (1978, p.705) showed that endochronic

models do fulfil some weaker physically motivated stability conditions. Moreover, there are

materials that are stable in the Drucker’s sense and others that are not. Hence, for these

materials, a proper model cannot fulfil the postulate of Drucker. All the aspects concerning this

subject have been explored in detail in the previously cited references (Sandler, 1978; Bažant,

1978) for endochronic models without damage. A detailed analysis for the case of models
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with damage would deserve further studies, but this is beyond the purposes of this paper.

Figures 7a and 8a simply show the influence of the parameter n on the strain accumulation

and the stress relaxation for an endochronic model without damage. When n tends to infinity,

a plastic behavior of Prandtl-Reuss type is retrieved, where neither strain accumulation nor

stress relaxation occur. Figures 7b and 8b concern models with damage.

Another important topic concerning plasticity and/or damage models is the loss of unique-

ness due to strain-softening; see e.g. (Jirásek and Bažant, 2002). An exhaustive treatment

of this subject for endochronic models with damage requires further analyses. However,

for illustrative purposes, a simple analytical study of a uniaxial model is presented here-

after. Let σ, ε and εp be the stress, the total strain and the plastic strain in the axial di-

rection, respectively. Then, the uniaxial behavior can be represented by the following law:

σ = (1 −D)E (ε− εp) = (1 −D)Eεe, where E is the Young modulus. The incremental form

reads

dσ = (1 −D)E (dε− dεp) − σ
dD

1 −D
= (1 −D)Edε− βσ

dζ

g
− σ

dD

1 −D
(41)

where the intrinsic time increment is

dζ =

(

1 +
γ

β
sign (σdε)

)

|σ|n−1 (1 −D)1−n |dε| (42)

and the damage increment writes

dD = H (fD)
dR

dεe
dεe

1 −D

s R (εe)
(43)

with R (εe) = E 〈εe〉2 /2 and fD = (1 −D)sR (εe) − r0 ≤ 0. Assume σ > 0 and dε > 0

(loading); the case σ < 0, dε < 0 is analogous. Then, the condition to avoid strain-softening

is

dσ ≥ 0 (44)
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The generic damage increment when fD = 0 is given by

dD =
2

s

1 −D

εe
dεe =

2

s
E

(1 −D)2

σ
(dε− dεp)

Moreover, from (41) one has dεp = βσdζ/ [E (1 −D) g] . Hence, the condition (44) assumes

the following form

(

(1 −D)Edε− βσ
dζ

g

)

(

1 −
2

s

)

≥ 0 (45)

The first factor is always positive provided that g ≥ 1. This can be proven using the definition

of dζ given in (42) with σ > 0, dε > 0 and observing that the non-negativity of the first factor

in (45) is equivalent to the condition σ/ (1 −D) ≤ (E/ (β + γ))1/n (g)1/n = σy (g)1/n, stating

that the effective stress is always less or equal than the bounding axial stress σy, modified

by the hardening function g. If g ≥ 1, this inequality is always strictly fulfilled. Hence,

strain-softening can be avoided if s ≥ 2 . The same result can be obtained using the tensor

expressions (7), (9), (27) and (33) and imposing that all the stress components are zero except

σ11 := σ. This proof is omitted for brevity. The same condition on s has been found for the

case of elasticity with damage (Nedjar, 2001). Note that g < 1 induces strain-softening also

when there is no damage. The analysis of the unloading case is not necessary, since at a given

stress-strain state with σ 6= 0, the unloading stiffness is always greater than the loading one.

A more complex analysis, not considered here, is needed for the multi-axial case, where the

fourth-order tensor of tangential moduli for the endochronic model with damage should be

computed. If strain-softening is avoided, the uniaxial behavior in what concerns the strain

accumulation and the stress relaxation is analogous to that of standard endochronic models.
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Conclusions

An extended endochronic theory with a scalar damage variable was developed, based on the

postulate of strain equivalence and by using pseudo-potentials depending on state variables

and on parameters related to the past history of the material. The relevant loading surfaces,

for damage and for plasticity, were defined. Two different damage pseudo-potentials were

discussed and a formalization of the conditions on state variables affecting the definition of

damage was provided, by an additional indicator function in the Helmholtz free energy. In a

companion paper (Erlicher and Bursi, 2007) , a link between this extended endochronic theory

and the Bouc-Wen type models with both strength and stiffness degradation is established.

This will permit to prove the thermodynamic admissibility of these Bouc-Wen models and to

highlight a constraint for the relevant stiffness degradation rules.

Appendix: Notations

The following symbols are used in this paper:

C = fourth-order elasticity tensor

D = internal variable associated with isotropic damage

eD = energy per unit volume dissipated through damage

ep = energy per unit volume dissipated through plasticity

fD = loading function for damage

fp = loading function for plasticity
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G = shear modulus

g = hardening-softening function

H(·) = Heaviside function

I = fourth-order identity tensor

IH = indicator function of the set H

K = bulk modulus

qd = dissipative thermodynamic forces vector

qnd = non-dissipative thermodynamic forces vector

Rd = dissipative part of the thermodynamic force introducing isotropic hardening(softening)

Rnd = non-dissipative part of the thermodynamic force introducing isotropic hardening(softening)

v = state variables vector

Y d = dissipative part of the thermodynamic force dual to the damage variable

Y nd = non-dissipative part of the thermodynamic force dual to the damage variable

z = hysteretic part of the stress tensor

β = coefficient defining the plastic flow of Endochronic models

γ = coefficient defining the plastic flow of Endochronic models

ε = total small strain tensor
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ε
p = plastic small strain tensor

ζ = intrinsic time measure for Endochronic models. Moreover, it is the internal variable

associated with isotropic hardening/softening of Endochronic models

ϑ = intrinsic time scale for Endochronic models

λ̇ = plastic multiplier

λ̇D = damage multiplier

µ = hereditary kernel

ρ = history-dependent parameters vector

σ = Cauchy stress tensor

σ
d = dissipative part of the Cauchy stress tensor

σ
nd = non-dissipative part of the Cauchy stress tensor

τ
d = dissipative part of the thermodynamic force dual to the plastic strain tensor

τ
nd = non-dissipative part of the thermodynamic force dual to the plastic strain tensor

Φ1 = mechanical or intrinsic dissipation

φ = pseudo-potential or dissipation potential for plasticity

φ∗ = dual pseudo-potential for plasticity

φD = pseudo-potential or dissipation potential for damage

φ∗
D = dual pseudo-potential for damage
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Ψ = Helmholtz free energy volume density

1 = second-order identity tensor

〈〉=McCauley brackets
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List of Figures

1 Classification of Endochronic models and most relevant references. The

black square indicates that a thermodynamic formulation based on a suited

pseudo-potential was found for the associated group of models. 34
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Fig. 1. Classification of Endochronic models and most relevant references. The black square indicates

that a thermodynamic formulation based on a suited pseudo-potential was found for the associated

group of models.
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Fig. 2. The increment dep of the energy dissipated by plastic strain (1) and the increment deD of

the energy dissipated by damage (2). The increments of the elastic and plastic strain as well as of

the stress are also schematically illustrated for a) the loading phase; and b) the unloading phase.

35



0 0.5 1

x 10
−4

0

0.5

1

1.5

2

2.5

3

3.5
(a)

ε
11

σ 11
 [M

P
a]

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1
(b)

t

D

0 0.2 0.4 0.6
0

0.5

1

1.5

x 10
−4 (c)

t

[M
J/

m
3 ]

Yd

Yd′
max

Fig. 3. Elastic with damage model. Uniaxial behavior. (a) The stress-strain evolution. The dotted

line indicates the effective stress σ11/(1−D). (b) The damage evolution, with the damage increasing

only during loading phases. (c) Time-evolution of Y d, i.e. the actual value of the thermodynamic

force Y d′ , and of Y d′
max, i.e. the upper bound of Y d′ defined in (29).
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Fig. 4. Endochronic model with damage in the uniaxial stress regime. (a) Several configurations of

the effective domain D of the pseudo-potential φp. (b) Corresponding configurations of the load-

ing domain E, associated with the loading function fp. The actual stress point always occurs at

Rd′ = Rd = 0 and, at this point, the flows ε̇
p and ζ̇ are defined by the normality condition.
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tion. (c) See Figure 3c.
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Fig. 8. Stress relaxation, uniaxial behavior with strain varying between 0.000075 and 0.00008. (a)

Endochronic model without damage. (b) Endochronic model with damage, with the same damage

parameters as in Figure 7b.
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