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On large size problems of dynamic network assignment and traffic equilibrium: 

Computational principles and application to Paris road network 

Vincent Aguiléra, Fabien Leurent (Université Paris-Est, Lvmt) 

Abstract 

The paper reports on the algorithmic treatment and computer implementation of a 

macroscopic dynamic traffic assignment model called LADTA. The modelling 

assumptions and the mathematical analysis founding the model are first stated. 

Detailed descriptions of the main algorithms are given, together with the principles of 

the computer implementation. It is shown how the design of the software architecture 

allows for distributed computation of a traffic assignment. The practical ability of this 

implementation to tackle with large size networks is illustrated by an application to 

the Paris road network, which comprises around 1,300 zones and 39,000 links.  

 

Keywords 

Network assignment. Dynamic Equilibrium. Assignment algorithms. Dynamic least 

cost paths. Dynamic network loading. Continuous time. Computer implementation. 

Paris road network 
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Manuscript Text 

INTRODUCTION 

Dynamic Traffic Assignment (DTA) models have been the topic of continuous 

developments in recent years, on both the research side (1 to 9) and the 

implementation side. User friendly packages dedicated to network and traffic planning 

studies and including DTA have appeared on the market (10,11,12). Two main classes 

of DTA models are usually distinguished in the literature: on the one hand, models 

based on a microscopic or mesoscopic traffic simulators and on the other hand 

analytical macroscopic models. 

Our model, called LADTA (for Lumped Analytical DTA) belongs to this second 

class. It has been designed as an extension of classical static assignment models (13), 

with special emphasis on the time-varying features including notably: dynamic 

network operation; traffic phenomena such as queuing; the time and space pattern of 

flow by origin-destination pair and user class; the choice of departure time. 

The objective of this paper is to report on the algorithmic treatment and computer 

implementation of LADTA. Its ability to tackle with large size networks is illustrated 

on the Paris metropolitan area. This assignment problem has about 1,300 traffic 

assignment zones and 39,000 directional links. It is the authors’ belief that the 

algorithmic approach may be of interest to the researchers as well as the software 

developers involved in traffic assignment; and that the computational performance 

and the application outcomes may be of interest to practitioners. 

The paper comprises three sections, followed by a conclusion. It is structured as 

follows. Section 1 presents the modelling assumptions and the mathematical analysis 

that found LADTA. Section 2 focuses on the main algorithms and computer 

implementation. It also illustrates, through an example, how computations can be 

distributed. Section 3 reports on the application to the road network of Paris 

metropolitan area. The emphasis is put on (i) application data and results and (ii) 

runtime indicators during iterations. Some practical issues that make topics for further 

research are discussed in conclusion. 

1. LADTA MODEL AND SOLUTION SCHEME 

1.1 Systems analysis of network traffic assignment 

Network traffic assignment involves four cause-and-effect relationships, as depicted 

in Figure 1: 

1) the formation of travel services: Informally, one can say that the user of a 

transportation network who traverses a route r to reach a destination, starting at a 

given departure time h, is using a travel service (r,h). For each class of users, a travel 

service provides a certain quality of service and has a certain price. These depend on 

the quality of service and the price of the arcs traversed along the route. Solving the 

problem of service formation yields optimum services on the basis of the economic 

attributes of the arcs. 
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2) user choice: if the user of a transportation network behaves as a rational economic 

agent, he will choose the optimum service w.r.t. his/her own evaluation criteria. So for 

each user class the volume that is assigned to each service depends on the nature of 

the services and the a priori economic structure of the user class. Typically, this 

structure describes the distribution of the economic trade-offs between price and 

quality of service. 

3) volume loading: the volume on each arc depends on the volumes on the paths 

which traverse the arc, and hence on the service volumes. 

4) traffic flowing: for each arc the quality of service, in particular the traversal time, 

depends on both the arc entry volume and the arc flowing parameters, such as exit 

capacity and minimum traversal time. Solving the flowing problem yields the exit 

volume and the actual traversal time, on the basis of the entry volume and flowing 

parameters. 

 
FIGURE 1: Graphical summary of the four causal relationships. 

1.2 Modelling strategy in LADTA 

LADTA extends Beckmann's static model (14) in the following ways: 

• Temporal profiles are used to model volumes, times, prices and costs. 

• Service formation is addressed using a dynamic route search algorithm which 

extends the classical shortest path algorithm used in the static case. 

• User choice can include route choice and also departure time choice. Only the 

definition of the choice options differs from the static case. 

• Volume loading is addressed by dynamic, recursive network propagation of 

volume “atoms” (time intervals with constant flow rate): this extends Dial's 

tree loading algorithm from static to dynamic case. 

• Traffic flowing is performed at the arc level: inputs are the temporal profiles of 

exit capacity, minimum traversal time and cumulated entry volume. Outputs 

consist of the temporal profiles of the cumulated exit volume and the actual 

traversal time. 
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Analytical formulae together with efficient algorithms are available for all partial 

problems, which are assembled into an equilibrium scheme. The overall mathematical 

formulation amounts to a fixed point problem with respect to the arc volume temporal 

profiles. The equilibrium problem is addressed by a method of successive averages. A 

more detailed description can be found in (6). 

1.3 Sketch mathematical formulation 

The clock time is a variable h whose values belong to the set H. The transportation 

network is modelled by a set N of nodes n, and a set A of directional arcs a, whose 

nodes belong to N. Arc a has a reference free-flow travel time 0at  and exit capacity 

)(haκ  in cumulated volume. In addition r denotes a route, which is defined as a 

continuous sequence of network arcs without redundancy (i.e. no arc is traversed 

more than once). We use { ra ∈ } to denote the set of arcs which make up a route r, 

and { ar ∈ } to denote the set of routes that traverse an arc a. {r > a} denotes the sub-

path of r which is strictly upstream of a. This subset is empty when ra ∉ . { ar < } 

denotes the sub-path of r which is strictly downstream of a. 

The user classes are modelled by a set U of classes u. The origin-destination (O-D) 

pairs are modelled by a set uI  of pairs i for each user class u. A demand segment z 

consists of a category of users belonging to a class u, on an O-D pair i, with a 

temporal preference η and an economic trade-off β, which may pertain e.g. to the 

trade-off between travel time and price. The volume of segment z is denoted by zQδ  

and )(hQz  stands for the demand volume of segments identical to z except perhaps 

the temporal preference, cumulated up to departure instant h. 

A service ),( hrs =  is a route and departure time pair. Supply is characterized by the 

variables of price, p, traversal time, t, passage time, h, and the cumulated volumes 
+

X  at entry and −
X  at exit (depending on passage time and at the level of arcs a or 

routes r). At the time h of entrance into a route r, a user of class u experiences a 

traversal price of )(hpur
+  and an actual traversal time of )(htur

+ , which cannot be less 

than the minimum traversal time )(0 htur
+  that would be experienced under free-flow 

condition. 

To a user of segment ),,,( ηβ= iuz  the generalized cost of service s = (r, h) is denoted 

by )(sGz , for instance )),(()()(),( η+δ+β+= +++
hthhthphrG ururzurz  with zβ  the 

segment unit cost of time and ),( ηδ h  the delay cost of arriving at )(hth ur
++=h . 

Service formation amounts to the recursive formulation of the service attributes (time, 

price etc) with respect to the destination and the exit time, h :  

 ∑ ∈ <
−− = ra aruuaur Htt ))(()( , hh , (1a) 

 ∑ ∈ <
−− = ra aruuaur Hpp ))(()( , hh , (1b) 
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in which )(, haruH <  is the time of entry in the downstream sub-path “r < a” to exit r 

at h : it is the inverse function of ha =< )(, hHh aru , whereas ))(()( hh rurur Htt
+− =  

and ))(()( hh rurur Hpp
+− = . 

About user choice, let us assume here for simplicity a cost-minimizing behaviour in a 

deterministic choice situation, under inelastic demand. The segment elementary 

volume zQδ  that corresponds to a departure time interval [,[ hhh δ+  is assigned to 

services s in elementary flows +δ szX  in the following way, in which zS  denotes the set 

of services available to segment z  and zµ  denotes a dual variable: 

 0≥δ +
szX  (2a) 

 zSs sz QX
z

δ=δ∑ ∈
+  (2b) 

 zz sG µ≥)( , zSs ∈∀  (2c) 

 0))(( =δµ− +
szzz XsG , zSs ∈∀  (2d) 

Volume loading is the problem of assigning the route volumes +
urX  to the network 

arcs a, yielding arc volumes +
uaX . It involves also the travel times )(, ht aru

+
>  on the 

sub-path of r upstream of a through the exit-entry function of time shift, aruH >, . 

Stated formally, 

 ∑ ∑∈ ∩∈ >
+

>
+++ −=−

u uiIi aRr aruuraruuruaua hHXhHXhXhX )]([)]([)()( 0,,0  (3) 

Traffic flowing is governed by two physical principles that limit the exit volume and 

one economic principle of time minimization. The first principle, called the arrival 

constraint, states that the exit volume, )(hX ua
− , is limited to the entry volume, 

)(hX ua
+ , with a time lag consisting of the minimum traversal time 0uat . The second 

principle, called the capacity constraint, states that the exit volume during interval 

],] 0 hh , )()( 0hXhX uaua
−− − , is limited to the exit capacity, )()( 0hh aa κ−κ . The third, 

economic principle called the time minimization principle, states that the volume 

flows as quickly as possible; capacity is used to the full when there is a queue at the 

exit. Thus 

 )()(][)( 0inf
min

shhtshXhX aauaua
hshh

ua −κ−κ+−−= +

≤−≤

−  (4) 

Thus )(htua

+ is recovered as the solution argument of })()(:{inf hXthXt uaua
+− >+ . 

Supply-demand equilibrium is reached when the volumes and travel conditions (time 

and price) are functions of each other in the four problems of service formation, user 

choice, volume loading and traffic flowing. To formulate equilibrium we define 

generic functions on the basis of the problem equations established previously: 
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• ),(F),( S
++++ = UAUAUSUS ptpt  for service formation. Function SF  is defined by 

equations (1a, b). 

• ),(FU
+++ ∈ USUSUR ptX  for user choice. Function UF  is defined by eqn (2). The 

use of a membership sign in place of an equals sign provides a reminder that UF  

is multivalent. 

• )(FV
++ = URUA XX  for volume loading. Function VF  is defined by eqn (3). 

• )(FF
++ = UAUA Xt  for traffic flowing. Function FF  is defined by eqn (4). 

Together, these four formal dependencies characterize the supply-demand 

equilibrium. Mathematically, this is a nonlinear complementarity problem in the 

variables +
URX . If we express the variables +

URX , +
UAt  and +

UAp  in terms of +
UAX , we 

obtain an equivalent reduced formulation which is a fixed point problem: 

 ]),([FFFF FSUV
+++ ∈ UAUAUA pXX oo  (5) 

Equation (5) is the dynamic counterpart of Beckmann's static model (1956) and can 

be solved identically, by iteratively updating a vector of arc flows. The method for 

updating is to combine a current vector of class-arc entry flow profiles ][k
UAX
+  with an 

auxiliary vector 
][k

UAY
+

 defined by ]),([FFFF
][

FSUV
][ +++ ∈ UA

k
UA

k
UA pXY oo , weighted by 

fractions kζ−1  and kζ , respectively, to obtain the current vector of the next iteration 

k+1: 

][][]1[
)1(

k
UAk

k
UAk

k
UA YXX

++++ ζ+ζ−=  

In this abstract formulation, the arc travel times +
UAt  define an underlying chronology 

for flow propagation along the network. As the convex combination at the arc level 

cannot maintain the chronology, the arc flow profiles ]1[ ++ k
UAX  do not rely on a given 

chronology – at least, not until equilibrium is reached. This issue of chronological 

basis is addressed in (8). 

2. ALGORITHMS AND IMPLEMENTATION 

The LADTA model has been implemented targeting the application to problems of 

very large size, notably so to road networks for which the set of variables exceeds the 

amount of memory available on a single computer. This requirement led us to design 

distributable algorithms to tackle with the most computer intensive tasks in a 

reasonable amount of time. 

This section provides in § 2.1 formal definition of temporal profiles (i.e. time 

dependant variables), in order to present three core algorithms: the arc-based multi-

class traffic flowing algorithm MCPQTFLOW (in § 2.2), the dynamic least cost path 

algorithm DLCP (in § 2.3) and the volume loading algorithm RLOAD (in § 2.4). One 

distinctive feature of the last two algorithms is that they are destination-based. This 

allows for a simple and efficient distribution scheme, which is described in § 2.5, 

where the software architecture of the LTK is detailed.  
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2.1 Temporal profiles 

The basic variables in the LADTA model are functions of time. In the algorithms 

presented in the sequel, those functions are represented by piece-wise linear functions 

of time called temporal profiles. Formally, a temporal profile is defined as follows: 

Definition 1, Temporal Profile: a temporal profile P  is a (finite, non empty) set of n 

real numbers triples }1),,,({ nipph iii K& = , such that 01 =p&  and niih K1)( =  is a 

strictly increasing sequence. It defines a piece-wise linear function )(hP as follows: 

[ ]
] ]
] ]








+∞∈

∈−+

∞−∈

= −

;

;)(

;

)( 1

11

nn

iiiii

hhifp

hhhifhhpp

hhifp

hP &  

The set of operators defined on profiles includes basic ones (e.g. linear combination) 

and some others among which two deserve mention at this stage: shift and hcomp. 

Both are binary operators on profiles that take one argument in a particularly 

important class of profiles called traversal time profiles. 

Definition 2, Traversal Time Profile: A temporal profile T  is a traversal time 

profile if )(hT  is strictly positive and satisfies also the First In – First Out (FIFO) 

property: 

)()()(),,( 22112121 hThhThhhhh +≤+⇒<∀  

Definition 3, shift: Let X  be a profile and let T  be a traversal time profile. 

),shift( TXY =  is a profile such that )())(( hXhThY =+ . 

Definition 4, hcomp: Let X  be a profile and let T  be a traversal time profile. 

),(hcomp TXY =  is a profile such that ))(()( hThXhY += . 

 

2.2 Arc-based multi-class traffic flowing 

For the reasons exposed in section 1, LADTA models the dynamicity of traffic 

phenomena in a simplified way: on each arc, flows from various user classes interact 

only at capacity bounded bottlenecks called point queues, located at the exit of the 

arc. The point queue model is briefly introduced in § 2.2.1. It forms the basis of the 

arc-based multi-class traffic flowing algorithm, exposed in § 2.2.2. 

2.2.1 The point queue model 

Let define a volume profile and a capacity profile as follows: 

Definition 5, Volume Profile: a temporal profile niiii xxhX K& 1),,( ==  is a volume 

profile if 0)( 1 =hX  and )(hX  is increasing. 

Definition 6, Capacity Profile: a temporal profile }1),,,({ nikkhK iii K& ==  is a 

capacity (rate) profile if 0)( ≥hK  for all h , niki K& 1,0 ==  and 0>nk . 

Let now consider a point-wise queue q , having a capacity profile K . The time to flow 

n  vehicles out of the queue, starting at instant h , is given by: 
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hndhhKhhhKhn
h

h
−≥>′′= ∫

′
]})(,:{[min),,(tflow  

Let niiii xxhX K& 1),,( ==  be a volume profile entering queue q . The queue length (i.e. 

the number of vehicles present in q ) at an instant h  is denoted )(hNq . Let qh  be the 

first instant, if it exists, such that (i) 0)( =qq hN  and (ii) the entry flow (i.e. the instant 

variation of the entry volume) exceeds the exit capacity rate )( qhK . Starting from qh , 

qN  will begin by increasing, then remain positive until queue vanishes at instant endh  

such that the volume having entered the queue from qh  to endh , )()( qend hXhX − , is 

matched by the volume having exited the queue, ∫ end

q

h

h
dhhK )( . From the definitions 

of a volume profile and a capacity profile, qN  is obviously a profile. The 

corresponding time in queue profile qT , valid for ];[ endq hhh ∈ , is such that: 

),),((tflow)( KhhNhT qq =  

Given these definitions, the PQTFLOW algorithm computes the time-in-queue profile 

for all h , taking as inputs: 

• }1),,,({ nixxhX iii K& == : a volume profile entering the point queue. 

• K : a capacity profile. 

2.2.2 Multi-class traffic flowing 

Let now consider:  

• a network ),( ANG =  

• a set of user classes U  

• a set of input volume profiles UuAauaUA XX ∈∈
++ = ,,, }{  

• a set of free flow traversal time profiles UuAauaUA TT ∈∈= ,,,0,,0 }{  

• a set of exit capacity profiles AaaA KK ∈= }{  

The purpose of the arc-based multi-class traffic flowing algorithm MCPQTFLOW is 

to establish a set of traversal time profiles, UuAauaUA TT ∈∈= ,,, }{ , assuming that the 

flows from various user classes interact only at point queues located at the exit of the 

arcs.  

Algorithm 1: MCPQTFLOW 

Main loop: 

for each Aa ∈  do 

Let ∑ ∈
++ ← Uu uauaaq TXX ),(shift ,,0,,  

Let ),(PQTFLOW ,, aaqaq KXT
+←  

for each Uu ∈  do 
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),(hcomp ,,0,,,0, uaaquaua TTTT +←  

end for 

end for 

 

2.3 Dynamic least cost path algorithm 

Let define a traversal cost profile as follows: 

Definition 7, Traversal Cost Profile: a temporal profile niiii cchC K& 1),,( ==  is a 

traversal cost profile if )(hC  is strictly positive. 

Given a directed graph ),( ANG = , two distinguished nodes o  and d  in N , a set of 

arc traversal time profiles AaaA TT ∈= }{ , a set of arcs traversal cost profiles 

AaaA CC ∈= }{ , r  a finite, possibly cyclic, path from o  to d , a  the first arc in r , and 

ar <  the sub-path of r  downstream of a , then the cost of the path r  when leaving 

o at instant h  can be defined inductively as follows: 

))(()()( hthChChC aarar ++= <  

If doR ,  denotes the set of paths from o  to d , then we define a dynamic least cost 

path from o  to d  as a mapping that associates each departure time h  to a path 

doRr ,∈  such that: 

}:)({min)( ,dorr RrhChC ∈′= ′  

The purpose of the dynamic least cost path algorithm DLCP is to compute the 

dynamic least cost paths to a destination d , from all nodes in N  and for all departure 

times. As a prerequisite, let us define a routing profile. 

Definition 8, Routing Profile: let ),( ANG =  be a directed graph, d  a distinguished 

node in G , dn ≠  a node in N, Idx  a one-to-one mapping between A  and [ ]A#;1 . A 

temporal profile miiiidn rrhR K& 1, ),,( ==  is a routing profile from n  to d  if for all h , 

}),(:)Idx({)(, AjnaahR dn ∈=∈ . 

The DLCP algorithm yields a set NndndN CC ∈= }{ ,,  of path traversal cost profiles to 

d , and a set NndndN RR ∈= }{ ,,  of routing profiles to d such that, for all h  and all 

Ni ∈ , di ≠ , and for all Aa ∈ , the following constraint holds – a Bellman condition: 

]}),(:))(()({min)([)]Idx()([ ,, AjiahThChChCahR ajadidi ∈′=′++=⇒= ′′′  

Informally, the DLCP algorithm proceeds almost like the Dijkstra algorithm: starting 

from the destination, nodes that violate this constraint are successively relaxed. Costs 

are initially set to infinite values for all nodes except the destination of which the cost 

is zero. When a node is relaxed, all instants are processed jointly. If it violates the 

Bellman condition, its predecessors are put in a list waiting for being processed. One 

crucial difference with the classical Dijkstra algorithm is that a given node may 

appear more than once in the waiting list, since arcs traversal costs vary with time. So 

the order in which nodes are taken out of the waiting list is a key feature: processing a 
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node “too early” leads to unnecessary relaxation of its predecessors. Intuitively, if a 

distance can be defined between the destination and any other node in the graph, the 

idea is to take out of the list at first the nodes closest to the destination according to 

that distance. This distance must reflect the evolution of the cost of paths towards the 

destination. For instance, if nodes in the graph are assigned xy coordinates, and if arcs 

traversal costs are related to the length of the arcs, then the Euclidian distance is a 

good candidate. A more formal mathematical analysis is provided in (15), but with no 

specification of the computer implementation. 

Algorithm 2: DLCP 

Inputs: 

),( ANG = : a directed graph. 

d : a distinguished node in N . 

AaaA TT ∈= }{ : a set of traversal time profiles. 

AaaA CC ∈= }{ : a set of traversal cost profiles. 

dist : a mapping that associates any node n  in N  with a number 0)dist( >n . 

Outputs: 

NndndN RR ∈= }{ ,, : a set of routing profiles to destination d . 

NndndN CC ∈= }{ ,, : a set of cost profiles to the destination d . When leaving 

from node n  at instant h , )(, hC dn is the cost to reach d  along route )(, hR dn .  

Local variables: 

Q : a list of nodes waiting for treatment. 

Initialisation 

for each n in N do  

)}0,,0{(, +∞←dnC   

)}0,0,0{(, ←dnR  

end for 

}{dQ ←  

)}0,0,0{(, ←ddC  

)}0,0,0{(, ←ddR  

Main loop 

while ∅≠Q  do 

Let Qj ∈  such that }:)(dist{min)dist( Qnnj ∈=  

}{\ jQQ ←  

for each arc ),( jia =  do 
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Let ),(hcomp , adja TCCC +=  

Let })()(:{ , hChChH di<=  

if ∅≠H  

Let C′  a cost profile such that 



 ∈

=′
otherwise)(

if)(
)(

, hC

HhhC
hC

di

 

CCi ′←  

Let diR ,′ a routing profile such that: 

 


 ∈

=′
otherwise)(

if)Idx(
)(

,
, hR

Hha
hR

di
di  

didi RR ,, ′←  

}{iQQ U←  

end if 

end for 

end while 

 

2.4 Volume Loading 

Given a set of routing profiles to a destination, demand profiles associated to the 

origins, and arcs traversal time profiles, the RLOAD algorithm computes the entry 

volume profile of each arc, starting from the origins, and following the routing 

profiles according to the arcs traversal times. This is the dynamic, destination-based 

version of Dial’s cascade algorithm (16); it is analogous to some dynamic network 

loading algorithms (3). 

Algorithm 3: RLOAD 

Inputs: 

),( ANG = : a directed graph. 

d : a distinguished node in N . 

AaaA TT ∈= }{ : a set of traversal time profiles. 

NndndN RR ∈= }{ ,, : a set of routing profiles to the destination d . 

NndndN XX ∈= }{ ,, : a set of volume profiles. dNX ,  describes the demand to 

the destination d . ddX ,  must be null. 

dist : a mapping that associates each node n  in N  with a number 0)dist( >n  

Output: 
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AadadA XX ∈= }{ ,, : a set of volume profiles. 

Local variables: 

Q : a list of nodes waiting for treatment. 

Initialisation 

for each Aa ∈  do 0, ←daX  

for each node Nn ∈  such that 0, ≠dnX  do }{nQQ U←  

Main loop 

while ∅≠Q  do 

Let Qi ∈  such that }:)({distmax)dist( Qnni ∈=  

}{\ iQQ ←  

for each arc ),( jia =  do 

   Let })()(:{ , aIdxhRhH dia ==  

Let aX ′  a volume profile such that 
] ]
∫

∞−∩∈

=′
hHt

dia

a

tXhX
;

, )(d)(  

adada XXX ′+← ,,  

),(shift,, aadjdj TXXX ′+←  

if dj ≠  

}{ jQQ U←  

end if 

end for 

0, ←diX  

end while 

 

2.5 Software architecture of the LTK 

The computer implementation of the LADTA model is called the LADTA ToolKit 

(LTK for short). The block diagram in Figure 2 gives an overall picture of the 

software architecture of the LTK.  

The LADTA C API implements computer intensive algorithms, basic operations on 

profiles, and efficient data I/O routines to manage large profile sets. It is compiled as a 

shared library, using the GNU C compiler gcc. The LTK itself contains a set of 

command line programs to realise the various tasks needed while computing a DTA. 

This allows for driving a simulation using a scripting language (e.g. Tcl, Python) as 

glue, while tools included in the LTK are used as building blocks.  
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FIGURE 2: Multilayer software architecture of the LADTA Tool Kit. 

Dashed frames represent possible extensions. 

On top of the LTK, the LTK Tcl Utilities contain a set of Tcl scripts that (i) ease the 

use of the LTK and (ii) manage client/server communication via TCP/IP sockets when 

the computation of a DTA is distributed. A user-friendly GUI is under development, 

using the free GIS called GRASS. 

In what follows, we illustrate through an example how to use the LTK for solving a 

one-class, fixed-demand DTA, using distributed computations and the following 

resolution scheme: 

1,,1, ),(FC −− ⋅β+=→ kAAkAkAA TPCTP  

kIIkAkA RQTC ,1,, ),,(RC →−  

+
−

++
− ⋅ζ−+⋅ζ=→ 1,,,,1, )1(),,(VL kAkkAkkAkIIkA XYXRQT  

kAAAkA TTKX ,,0, ),,(TF →+
 

where AP  is a set of arc toll price profiles and β  a unit cost of time. 

 

GUI 

Glue with a GIS 

DBMS 

libLADTA (.dll, .so) LADTA C API 

Operations on profiles Disk based management of profile sets  

Algorithms 

Data input/Results output 

Other scripting/programming languages 

LTK Command line utilities 

• ltk_import_graph 

• ltk_import_arc_property 

• ltk_dlcp 

• ltk_rload 

• ltk_mcpqtflow 

• … 

 

Tcl wrappers 

LTK Tcl Utilities 

Client/Server communication 
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STEP 0: Initialization  

We have at our disposal n+1 computers connected over a network. n computers are 

servers, named S1 to Sn, and one is the client. The client is the computer that drives 

the computation: it sends requests to servers and takes care of synchronisation. 

Servers run the LTK Server (ltkd) and wait for requests from the client. The servers 

and the client share a common directory (LTK_DATA) for data exchange, and they all 

store their private data in a local directory ltk_data. 

Inputs are supposed to be initially stored in LTK_DATA. At start, this directory 

contains the following files: 

• G: stores a directed graph ),( ANG =  

• KA: stores the set of arc capacity profiles AaaA KK ∈= }{  

• T0A: stores the set of free flow traversal time profiles AaaA TT ∈= }{ ,0,0  

• PA: stores the toll price profiles AaaA PP ∈= }{ ) 

• Q,d: stores demand volume profiles to destination d, taken from the dynamic 

OD trip table IiiI QQ ∈= }{ . 

During the initialization, the client: 

• makes a local copy of  G, KA, T0A and PA. 

• makes a local copy of T0A , named TA,0.   

• assigns a set of destinations to each server, so that each server is assigned a 

comparable number of destinations. It then requests the servers to copy their 

assigned Q,d from LTK_DATA to their local ltk_data, and waits for 

completion. 

• requests the servers to make a local copy of G, and waits for completion. 

Once the initialization step has been completed, the client performs a number of 

iterations. Iteration k, starting at k=1, is divided into five successive steps. 

STEP 1, FC (Formation of Costs): 1,,1, ),(FC −− ⋅β+=→ kAAkAkAA TPCTP  

During this step, some arc properties are used to compute the arcs traversal costs at 

iteration k. In the general case, which arc properties are used and how they are 

combined is left to the modeller as long as the resulting profile set contains arc 

traversal cost profiles. For the purpose of our example, we compute a generalised cost 

using arc traversal times 1, −kAT  at previous iteration, arc toll price profiles AP  and a 

unit cost of time β . 

To complete this step, the client: 

• creates the local file CA,k by executing the ltk_lincomb tool with the 

appropriate arguments (1 P beta TA,k-1) 

• copies TA,k and CA,k to LTK_DATA. 

• requests the servers to make a local copy of TA,k and CA,k, and waits for 

completion. 
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STEP 2, RC (Route Choice): kIIkAkA RQTC ,1,, ),,(RC →−  

Depending on the arcs traversal costs and times, the route choice step updates the set 

of routes for every OD pair and departure time. Typically, the DLCP algorithm is 

used here to compute an optimal route per OD and departure time. 

To complete this step, the client: 

• requests each server Si to compute the set of routing profiles R,k,d, for all 

destinations d assigned to Si during initialisation. Server Si does so by 

executing the ltk_dlcp tool, with the appropriate arguments (G d CA,k 

TA,k). R,k,d is stored in Si’s ltk_data.  

• waits for completion by all servers. 

STEP 3, Volume Loading (VL): 

+
−

++
− ⋅−+⋅=→ 1,,,,1, )1(),,(VL kAkkAkkAkIIkA XwYwXRQT  

Routes computed in the RC step are used, jointly with the demand, to compute the 

entry volume profiles per arc at iteration +
kAX , . The auxiliary state +

kAY ,  is obtained by 

summing on the client side partial loads computed by the servers using the RLOAD 

algorithm (see Algorithm 3). 

STEP 4, Traffic Flowing (TF): kAAAkA TTKX ,,0, ),,(TF →+  

Arc entry volumes are “flowed” to compute the profiles of arc traversal time. If using 

the MCPQTFLOW algorithm, the client runs the ltk_mcpqtflow tool to compute 

TA,k.  

STEP 5: Stopping criterion 

The client decides on whether to stop the computation or to do one more iteration, 

based on a fixed criterion (e.g. a maximum number of iterations has been reached), or 

the value of a convergence indicator.  

3. APPLICATION TO THE PARIS METROPOLITAN AREA 

This section reports on an application of the LADTA Tool Kit to the road network of 

the Paris metropolitan area. The simulation inputs are introduced in § 3.1, including a 

dynamic OD trip table. Some assignment results are depicted and commented on in § 

3.2. Lastly, computational aspects including the distribution scheme and the run time 

per iteration are presented in § 3.3. 

3.1 Application data for the Paris case 

The administrative region that covers Paris metropolitan area is called “Région Ile de 

France”. Its geographic extent is around 140 km from west to east, and 100 km from 

south to north. It is divided into eight counties called “départements”, as illustrated in 

bold line on Figure 3(a); the City of Paris is the central department. The zoning 

system as provided by the State Department of Transport for Paris area (Dreif) covers 

the eight counties in the Paris metropolitan area plus some extra area in the northern 

part. It comprises 1,277 zones and its level of detail is varied with the density of 

population. The Dreif supplied us with a geocoded file of the Paris metropolitan area 



Aguiléra, Leurent  17 / 25 

Large size problems of dynamic network assignment and traffic equilibrium 

road network. Figure 3(b) depicts this network. It comprises 39,137 directed arcs and 

18,048 nodes. Roads having a capacity higher 2,500 pcu/h are drawn with thick lines.  
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(b) 

 

FIGURE 3 : (a) Traffic zones and administrative departments in Paris area (b) 

Paris metropolitan road network. 

For the purpose of our experiment, we had to set up a dynamic OD trip table. To this 

end we used two data sources: 

• an OD trip table containing the averaged flow 
pm7
pm5|odQ  between each OD pair 

of zones ),( do  during the evening peak hour (from 5 pm to 7 pm), in pcu/h. 

• a household travel survey made over the Paris metropolitan area in 2001 and 

called the EGT. The EGT contains data on about 80,000 individual trips, 

36,000 out of them being recorded as “made by car”. The departure time of 

each surveyed trip is known, as well as its statistical weight in the set of trips 

made during an average weekday. 

We derived a dynamic OD matrix, aggregated by county to county pair and by periods 

of 30 minutes. Precisely, a demand volume profile )(, hQ do  was evaluated by inter-

zone OD pair ),( do , knowing: 

• the county O  to which zone o belongs (resp. D , d ), 

• the trip flow from o  to d , during the evening peak period, 
pm7
pm5|odQ ,. 

• the profile of trip volume by county to county OD pair ),( DO , )(hQOD , 

hence the volume from county to county D at the evening peak, 
pm7
pm5|ODQ . 

Based on these inputs, the temporal profile by elemental OD pair ),( do  was inferred 

as follows: 

)()(
pm7
pm5

pm7
pm5

|

|
hQhQ OD

Q

Q

od
OD

od
=  

3.2 Assignment results 

The results after 50 iterations were taken as sufficiently close to equilibrium. It is 

quite hard to summarize the outcomes of an all day long dynamic assignment. 

Certainly the most evocative outcome would be a video of the instantaneous traffic 

state on a network map, but on such a large size problem the film would have to be 

focused on some sub-network (either by location or by road type) to achieve 

legibility. Before providing a network map, let us comment on some aggregate 

indicators and their variations over the day of assignment. 

Figure 4 depicts the number of queued vehicles, in the whole network and during the 

day. It starts to increase shortly after 6:00 am. It then exceeds 100,000 veh during the 

morning peak, between 7:30 am and 9:00 am. From 10:00am to 4:00pm it varies 

between 10,000veh and 40,000 veh. The evening peak starts at 4:00pm. Between 

4:00pm and 5:00pm, it grows rapidly up to 170,000veh, and remains around this level 

until 8:00pm. Three distinct peaks can be observed between 4:00pm and 8:00pm, after 

what the number of queued vehicles decreases to reach a few thousands after 9:00pm. 



Aguiléra, Leurent  19 / 25 

Large size problems of dynamic network assignment and traffic equilibrium 

These variations are consistent with those of the Instantaneous Mean Speed (IMS) 

computed along the main roads (i.e. roads having a capacity higher 2,500 pcu/h), 

which is plotted in Figure 5. In order to ease comparison with real world data, the 

background of the plot in Figure 5 is taken from the Sytadin real time traffic 

information system. Sytadin provides a mean speed indicator, updated every 6 

minutes, on the Paris area main roads network. The dark curve in the background plot 

shows the evolution of Sytadin’s mean speed indicator between 5:00am and 12:00am, 

November 14th, 2008.  The red area in the background plot represents values that are 

exceptionally taken by this indicator, while the yellow area can be interpreted as its 

range of variations under usual traffic conditions. Those information are publicly 

available at http://www.sytadin.tm.fr. 

The IMS is computed as follows: 

∑

∑

∈

∈
=

)('

)('

)(

)(

hAa

a

hAa

aa

L

hVL

hIMS  

with : 

• )(' hA  the set of arcs having a capacity greater than 2500veh/h and a strictly 

positive input flow at instant h . 

• 
)(

)(
hT

L
hV

a

a

a =  

• aL is the length of arc a . 

The maximum value of the IMS, which is around 90 km/h, is attained at 5:00am. 

From then, the average speed decreases down to 55 km/h just before 8:00am. It next 

increases until 10:00am, and then slowly decreases while remaining above 80 km/h 

until the evening peak arises. It appears like the evening peak lasts longer than the 

morning peak. 

Interestingly, the variations of the IMS compare favourably with those of the mean 

speed indicator provided by Sytadin.  
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FIGURE 4: Number of queued vehicles throughout the Paris network 
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FIGURE 5: Instantaneous Mean Speed on main roads, compared to measured 

data. 
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Let us finally come to the network map of congestion: out of many link indicators in 

terms of vehicle number, number of queued vehicles, proportion of queued vehicles, 

mean speed, ratio of mean speed to free-flow speed and so on, our preferred indicator 

is the total duration of the congestion period across the day. This is depicted in Figure 

6 by using two thresholds of, respectively, 1 and 4 hours per day. Almost all of the 

motorways are queued longer than one hour per day. Links queued longer than four 

hours per day include (a) the main north-south arterials in the Centre of Paris; (b) the 

first Paris ring road “Le Boulevard Périphérique”; (c) some parts of the second ring 

road “A 86”; (d) some parts of the third ring road “La Francilienne”; (e) some radial 

motorways running south; (f) an intermediary ring road used to access the major 

Business Centre at “La Défense”. 

These results must be taken as an under statement of traffic congestion in the Paris 

metropolitan area, because of our simplified model of congestion on the basis of 

point-wise queues: thus congestion is under estimated both in the unqueued state 

where medium-range flow has unimpaired speed and in the queued state where the 

capacity rate is kept at maximum value, notwithstanding the lack of queue backward 

propagation. 

 

FIGURE 7 Location of severe traffic congestion along the Paris road network 

3.3 Computation log book 

The computation was distributed among one client computer and six servers, using the 

distribution facilities of the LTK, and following the resolution scheme exposed in 

§2.5, with arc toll price profiles set to 0, and arc traversal costs taken equal to arc 

traversal times. A total of 4 computers, each equipped with bi-core processors and 
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 1090

 1100

 1110

 1120

 1130

 1140

 1150

 1160

 560  570  580  590  600  610  620  630  640

Y
 (

k
m

)

X (km)

congested more than 1h during the day

congested more than 4h during the day

a
b

c
d

e

f



Aguiléra, Leurent  22 / 25 

Large size problems of dynamic network assignment and traffic equilibrium 

two servers each. Each server handled about 214 destinations. A total of 50 iterations 

were performed, yielding a total run time of roughly 5h30. 

3.3.1 Run time per iteration 

The run time per iteration, as well as the time taken by each step within an iteration, 

were measured along 50 iterations. The time by iteration includes the time needed for 

data exchange between the client and the servers. The run time of the Formation Cost 

step (FC) is almost unnoticeable. Anyway, this gives a rough approximate of the cost 

of data exchange since in the FC step at iteration k, the client basically requests the 

server to get a local copy of the traversal time profiles computed in iteration k-1. 

Not surprisingly, the two most time consuming steps are Route Choice (RC) and 

Volume Loading (VL). The run time of the Route Choice step (RC), during which the 

DLCP algorithm is performed, increases rapidly during the very first iterations, and 

then tends towards 2 minutes per iteration. Volume loading evolves similarly. The 

Traffic Flowing step (TF), done at the client level, is almost negligible during the first 

10 iterations, then increases slowly to about 10 seconds per iteration. 

These elements enable one to predict the effect of any number of processors. 

3.3.2 Flow balance at nodes 

Our computation scheme relaxes the constraint that, at every instant, the total flow 

coming in a given node should be equal to the total flow going out of the node. 

Indeed, at traffic equilibrium (if any) this property must hold at each node. So a 

necessary condition for convergence is to estimate the flow balance at nodes. 

Arbitrarily, we considered a node to be unbalanced if  

)(
100

1)()( +∞>− +−+
∫ n
h

nn XdhhXhX  

In the evolution of the number of unbalanced nodes with the iteration number along 

the assignment run, from iteration 2 at criterion value of 7% a continued decreasing is 

observed, at a quick and steady pace up to iterations 12-15 at criterion value of 2%, 

then with diminishing returns owing to the step size in the convex combination step. 

CONCLUSION 

The LADTA Tool Kit was applied to the Paris metropolitan road network for an 

equilibrium dynamic traffic assignment (DTA) in continuous time all day long. The 

computational performance was satisfactory, thus demonstrating the feasibility of 

equilibrium, macroscopic DTA on problems of very large size. 

The application results showed that many major links are subject to queued traffic 

during a significant period in the day, which makes obvious the need to use dynamic 

rather than static assignment both to analyze and to manage the network. A side 

requirement pertains to assignment indicators in order to track queued traffic states 

and the effects of congestion at a scalable level of detail – including by origin-

destination pair of traffic zones. Traffic planners at the Dreif are all the more 

interested in our model as its application data are mainly the same as their data for 

static assignment, apart from the dynamic OD matrix. 

The computational approach handles time in a continuous way, with selected instants 

that separate affine pieces of the main traffic and travel variables. The assignment 
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software has a modular and multilayer architecture, which allows for distributed 

computation where a client computer asks servers for specific tasks. The software user 

is supplied with many commands and controls on the computation process at every 

layer in the architecture. 

In the authors’ opinion, these implementation principles are robust and will make 

easier the further developments in the LADTA model. In the current state of 

implementation, the dynamic features in LADTA include: (i) the route propagation of 

time, flow and travel cost; (ii) in the users’ choice of route and/or departure time, a 

perfect information about travel times and costs as expected under equilibrium; 

(iii) dynamic operation of arc exit capacity and reference travel time; (iv) point-wise 

queuing at arc exit. On-going development is targeted to: (v) information and traffic 

orientation; (vi) congestion in the unqueued state of traffic; (vii) backward 

propagation of queues. Further model development will be aimed at: (viii) the location 

of parking capacity and its availability by time of day; (ix) the choice of travel mode. 
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