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Contributions to the logit assignment model 

ABSTRACT 

In the past, research in traffic assignment modeling has been directed 

primarily towards the deterministic model. Alternative, more behavioral 

principles were thought to be too demanding computationally. 

This paper presents two mathematical contributions that enable one to solve a 

logit assignment model with flow-dependent travel times at a reduced cost. 

First, a convergence test for Fisk's minimization program is introduced, based 

on a duality gap principle. Second, a new definition of Dial's STOCH fixed-time 

logit assignment procedure is given, in which the set of available paths is 

defined only once and the computations are re-interpreted. 

A numerical experiment indicates that these tools make the logit assignment 

model very competitive compared to the procedures conventionally used to 

solve the deterministic model. 

KEYWORDS 

Road Transportation; Traffic Assignment Model; Logit; Optimization 

1. INTRODUCTION 

Traffic assignment is the fourth and final step in the conventional travel 

demand forecasting scheme; by partitioning the origin-destination trip rates 

between several paths, the assignment program attempts to duplicate the 

vehicular flows on the network. 

Most assignment models assume that travellers behave rationally. The most 

well-known assignment principle is that of Wardrop (1952): that every 
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traveller strives to maximize the utility derived from his transportation 

choices, in other words to minimize his generalized travel time. Thus, a user-

optimal equilibrium is achieved when no traveller may decrease his travel time 

by unilaterally switching paths. 

To account for errors in trip-makers' perception of travel time, Daganzo and 

Sheffi (1977) defined the stochastic user principle, according to which every 

trip-maker strives to minimize his/her stochastic generalized travel time. This 

rule allows for partitioning origin-destination trip-rates between several 

alternative paths, even if their true travel times differ from each other. 

Two stochastic models are of particular interest: the logit model (Dial, 1971) 

and the probit model (Abraham, 1961; Burrell, 1968; Daganzo and Sheffi, 

1977). The latter, though behaviorally more appealing, is impractical because 

only Monte-Carlo procedures are available, unless all paths can be identified. 

The logit model however, is endowed with both an extremely efficient fixed 

time assignment procedure (Dial's STOCH2), as well as a convex minimization 

formulation with a closed-form objective function (Fisk, 1980). 

Nevertheless, computational difficulties have prevented the logit model from 

enjoying more widespread use. Among other drawbacks, Fisk's objective 

function was thought difficult to evaluate. Only recently have heuristic 

methods been developed (Chen and Alfa, 1991, and Damberg et al.,1992). 

In this article, we present two developments which make computation of a logit 

user equilibrium competitive with its deterministic counterpart. First, we 

design a theoretically-sound convergence test for an equilibrium algorithm like 

the Method of Successive Averages; then it is possible to check whether an 

equilibrium has been reached. Second,  we modify the definition of the set of 

available paths in Dial's STOCH2: this procedure is problematic if crudely 

implemented within an equilibration scheme, as the path set is likely to change 

from one iteration to the next. We put forward some changes that remedy this 

flaw. 

The organization of the paper is the following: Section 2 states the problem in a 

formal way. Section 3 introduces the convergence test for Fisk's model. In 

Section 4, we derive a definition of efficient paths that does not depend on 

congestion phenomena; it is inspired from Dial's STOCH2, and a related path 

loading procedure is provided, wherein it is easy to compute all the terms in 
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Fisk's objective function. In Section 5, a numerical experiment is carried out to 

demonstrate that the Method of Successive Averages, combined with the 

proposed tools, is indeed a very efficient algorithm when applied to the logit 

model. Section 6 concludes and suggests some further developments. We note 

that all proofs of the assertions presented here can be found in (Leurent, 1994), 

in which elastic demand and capacity constraints are also considered, and a 

dual solution scheme is proposed. 

2. PROBLEM FORMULATION AND MODELING NEEDS 

2.1 Logit equilibrium model 

Let r-s be an origin-destination pair with traffic flow   qrs , θ a non-negative 

parameter, k a path from r to s with deterministic travel time 
  
Trs

k
 and flow 

  
frs

k
. 

In the logit assignment model (Dial, 1971), it is assumed that the path flow 
  
frs

k
 

is proportional to a negative exponential function of the travel time 
  
Trs

k
: 

 

    

frs
k

= qrs

exp(−θ T
rs
k )

exp(−θ T
rs
k )

k�
. (1) 

Then it is automatically ensured that: 

 
  
qrs = frs

k
k� . (2) 

The travel time of path k is related to the travel times   Ta  of the links a that 

belong to it via 

 
  
Trs

k
= Taa∈k� = δrs

ak
Taa� . (3) 

where 
    
δrs

ak
= 1 if   a ∈k , or 0 if not. 

Let   xa  be the traffic flow on link a: 

 
  
xa = δrs

ak
frs

k
rsk� . (4) 

Let finally   ta  be the travel time function of link a (assumed to be continuous 

and non-decreasing): 

     Ta = ta (xa ). (5) 

Then eqns. (1)-(5) define a logit-based equilibrium. Figure 1 illustrates a logit 
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split between two paths. 

Fig. 1. Proportion of travellers that choose path 1 

as a function of θ and the time difference T2-T1 (binary case). 

2.2 Fisk's minimization program 

Fisk (1980) characterized the logit equilibrium with variable travel times as 

the unique solution to the following convex minimization program (6): 

 
      
min f JL (f ) = ta (x) dx

0

xa�a� +
1
θ

frs
k

log(
f
rs
k

qrs

)rsk�  (6) 

subject to (2) and (4) and of course to 
    
frs

k
≥ 0. 

In (6) we replaced Fisk's 
    

frs
k

log( frs
k

)rsk�  with 
    

frs
k

log( frs
k

/ qrs)rsk�  to facilitate 

the understanding of the relationship between (6) and the computations in the 

STOCH algorithm. This does not alter the existence and uniqueness results 

obtained by Fisk. 

Fisk did not address a crucial question: how should the available paths be 

defined? In Beckmann's deterministic model (1956), all existing acyclic paths 

may be considered; but in a logit model a specific definition is required, since 

the conventional shortest path routines do not automatically find suboptimal 

paths. 

In Dial's paper (1971), two alternative definitions of efficient paths are 

provided, namely STOCH and STOCH2. But these definitions are consistent 

only with respect to fixed travel times (ie. with constant functions   ta  in eqn. 

(6)), and cannot be used in a variable-time program. A definition of available 

paths that is consistent with flow dependent travel times will be provided in 

Section 4. First, we address equilibration issues. 

2.3 The Method of Successive Averages 

Powell and Sheffi (1982) proved the convergence of the Method of Successive 

Averages (MSA) applied to minimization programs as Fisk's (provided that the 

definition of available paths cannot vary). 

Let us define a Fixed-Time Assignment (FTA) as a path loading procedure that 

partitions the OD flow according to the logit rule, based on a given set of 
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available paths. An FTA yields a solution to (6) with constant travel time 

functions and a given set of utilized paths. 

The MSA equilibration algorithm is comprised of four steps. 

Step 0: Initialization. 

o Set iteration counter     n:= 0 . 

o Choose a sequence     α
(k)

 of real numbers such that (    0 ≤ α
(k)

≤ 1), 

(    Σα
(k)

= +∞ ) and (    Σα
(k)2

< + ∞ ). 

o Find an initial feasible flow pattern 
      
xa

(0)
= xa (f

(0)
). It may be obtained 

through an FTA based on link times 
    
ta
(−1)

: = ta (0). 

Step 1: Link Travel Time Update. 

o Set 
    
ta
(n)

: = ta ( xa
(n)

) . 

Step 2: Direction Finding. 

o Compute an FTA of traffic of all O-D pairs, based on link travel times 

    
ta
(n)

: this yieds a path flow solution       g
(n)

 and also an auxiliary arc flow 

pattern 
      
ya

(n)
= xa (g

(n)
) . 

Step 3: Link Flow Update. 

o Set 
      
xa

(n+1)
= xa (f

(n+1)
):= xa

(n)
+ α

(n)
( ya

(n)
− xa

(n)
) . 

Step 4: Convergence Test. 

o Apply a convergence test: either a maximum number of iterations, or a 

test on the maximum value (over the arcs a of the network) of the change 

in 
    

α
(k)

xa
(k)

k=1
n� / α

(k)
k=1
n�  from the previous iteration n-1 to the current 

one n. 

If test is satisfied, then terminate; else increment the iteration counter 

    n:= n + 1  and go to step 1. 

The MSA has been widely applied to solve Fisk's program. However, the 

definition of efficient paths has not been adequately addressed. Thomas (1991) 

wrote that "it seems likely that methods which incorporate definitions of 

acceptable paths similar to those of Dial and Gunnarsson are intrinsically non-

convergent, though in practice users often claim them to be satisfactory in that 

respect". In the following Section, we provide a theoretically-sound convergence 
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test for the equilibration algorithm, that will be of use together with a formal 

definition of the efficient paths, as will be given in Section 4. 

3. A CONVERGENCE TEST FOR THE LOGIT MODEL 

We first consider the issue of designing a theoretically-sound convergence test 

for an application of the MSA to Fisk's program. It is based on a duality gap 

principle inspired from the deterministic model. 

3.1 The duality gap principle in the deterministic model 

In the deterministic case, where only those paths whose travel times are 

minimal are used, the objective function reduces to 
      
JD (f ) = ta ( x) dx

0

xa (f )
�a� . 

The usual convergence test is to evaluate a duality gap between the objective 

function       JD (f
(n+1)

)  and a lower bound estimate: 

       JD (f
(n)

) + ∇JD (f
(n)

). (g
(n)

− f
(n)

)  

where       g
(n)

 is obtained in the Step 2 of the MSA (or equivalently of the Frank-

Wolfe's method). Thus, the duality gap is given by: 

      
DGD

(n)
= ta

(n)
(xa (f

(n+1)
) − xa (g

(n)
))a� = frs

k(n+1)
(Trs

k(n)
− mink Trs

k(n)
)rsk�  

The duality gap 
    
DGD

(n)
 is always positive, except at equilibrium at which point 

it is zero. Hence, a convergence test involves checking whether DG is close to 

zero. 

3.2 A convergence test for Fisk's model 

We suggest applying the duality gap principle to the logit model. Let us denote 

the entropic part of the logit objective function as: 

 
      
JE (f ) = JL (f ) − JD (f ) =

1
θ

frs
k

log(
f
rs
k

qrs

)rsk� . (7) 

Then the flow vector       g
(n)

 considered in Step 2 of the MSA is the unique 

solution to the following auxiliary program: 

 
      
ming J

f (n ) (g) = JD (f
(n)

) + ∇JD(f
(n)

).(g − f
(n)

) + JE (g) . (8) 

The duality gap associated with the logit objective function is 
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DGL

(n)
= JL (f

(n+1)
) − LBE

(n)
, where the lower bound estimate     LBE

(n)
 is 

defined as       JD (f
(n)

) + ∇JD (f
(n)

).(g
(n)

− f
(n)

) + JE (g
(n)

) . 

When applying the MSA algorithm to the logit model, it is in general not 

possible to compute       JE (f ) , unless all paths are identified. However, for some 

models like the one that will be described in Section 4, it is easy to compute 

      JE (g) . 

The trick is to evaluate the duality gap with respect to       g
(n)

 and not with 

respect to       f
(n+1)

. We also suggest the following convergence test, based on 

functions related to       g
(n)

 rather than to       f
(n+1)

: 

if 
      
JL (g

(n)
) − LBE

(n)
≤ ε ( JL (g

(n)
) + LBE

(n)
) , then terminate and let       g

(n)
 

be the solution to the minimization program (6), else return to Step 1. 

If true, the test gives a vector that solves the minimization program, based on 

the convexity of     JL . Conversely, if the path flow vector f* solves the program, 

then auxiliary vector g* that corresponds to f* is in fact equal to it and thus 

the convergence test is satisfied (Leurent, 1994). 

Remark that if only a relative measure     JL − LBE of the duality gap is needed, 

then it is not necessary to compute     JE : the test can reduce to check if 

      JL (g
(n)

) − LBE
(n)

≤ ε , in other words to check if 

      JD (g
(n)

) − JD (f
(n)

) − ∇JD (f
(n)

).(g
(n)

− f
(n)

) ≤ ε . 

4. DEVELOPMENT OF THE STOCH3 PROCEDURE 

The results obtained so far apply to any set of utilized paths under the sole 

constraint that no path may include more than once a given node. We now 

define a set of efficient paths that enable one to benefit from the efficiency of 

Dial's STOCH2. 

Most previous logit assignment models have used Dial's second definition of 

efficient paths, according to which "a path is efficient (reasonable) if every link 

in it has its initial node closer to the origin than is its final node". The word 

"closer" refers to the travel time measured from the origin with respect to a 

current travel time vector that may change from one iteration to the next. 

Therefore there was no use trying to compute an objective function for the logit 

assignment model. 
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Three problems had to be tackled: 

- to restrict Dial's set of efficient paths so as to limit its size and for each 

reasonable path not to be much longer than the shortest one. 

- to stabilize the definition of efficient paths so that it depends neither on 

congestion nor on the iteration number; and 

- to find a way to compute the entropic part of the objective function, so as 

to measure the convergence rate. 

Subsection 4.1 deals with the first two questions, based on previous work by 

Tobin (1977) as regards the first question. Subsection 4.2 introduces the 

STOCH3 procedure, which offers a practical way to perform a fixed-time logit 

assignment on the efficient paths defined in Subsection 4.1. Subsection 4.3 

describes a way to evaluate       JE (g)  in the STOCH3 model. 

4.1 Definition of a stable set of efficient, not-too-long paths 

A path is called "STOCH3-efficient" (or reasonable, or available) if it does not 

include the same node more than once, if every link has its initial node closer 

to the origin than its final node, if every link is "reasonable enough" compared 

to a reference shortest path. 

More precisely, let: 

- 
    
Ta

0
 be a reference generalized travel cost for link a; 

- 
    
Cr

0
(n) be a reference shortest generalized travel cost from origin r to node 

n, based on the link costs
    
Ta

0
; 

- 
  
hr

a
 be a maximum "elongation ratio" for link a wrt. the origin r; 

-   Ba ,   Ea  be respectively the beginning and end nodes of link a. 

Definition 1: a path k from origin r to destination s is STOCH3-efficient iff 

- it does not comprise more than once a given node; 

- 
    
Cr

0
( Ea ) > Cr

0
( Ba )     ∀a ∈k ; 

- 
    
(1+ hr

a
)(Cr

0
(Ea ) − Cr

0
( Ba )) ≥ Ta

0
, with 

    
hr

a
≥ 0 ,   ∀a ∈k . 

A link a that satisfies the two last conditions is called STOCH3-reasonable wrt. 

origin r. 
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The last condition in Def. 1 limits the number of efficient paths by limiting 

their total reference generalized travel cost: defining 
    
Hr = max

a
hr

a
, summing 

over all links a that are incident to an efficient path k yields that: 

    
Length(k) = Σ

a∈k
Ta

0
≤ (1+ Hr )(Cr

0
(s) − Cr

0
(r)) = (1+ Hr )min

k'
Length(k' ) 

Conversely, if k satisfies 
    
Length(k) ≤ (1+ Hr ) min

k'
Length(k ' ), it may not be 

efficient since the two first conditions in Def. 1 must hold as well. 

Def. 1 is inspired from Dial's specification STOCH2 (Dial, 1971), as regards the 

second condition, and from Tobin (1977) as regards the third. Our own 

contribution is to impose fixed reference travel costs, thus ensuring a stable 

definition of the efficient paths whatever the congestion phenomena. 

4.2 The STOCH3 procedure 

Recall that in the STOCH3 procedure it is necessary to consider, on the one 

hand, the reference generalized travel costs to enumerate the available paths, 

and, on the other hand, the "actual" travel times according to which the OD 

flows are partitioned between the paths. 

Program variables 

n node with reference travel cost 
    
Cr

0
(n) from origin r . 

    Or (i) the i-th node in the order of increasing access cost 
    
Cr

0
(n) from r. 

  
Ωr

a
 indicator variable = 1 if link a is reasonable from r and 0 otherwise. 

  Ta  current travel time on link a. 

A(a) impedance of link a. 

    WA(a)  link weight that accounts for the importance of a in contributing to a 

reasonable path. 

    WN (n)  node weight. 

    XA (a) flow on link a from the current origin r. 

�� ��� flow passing through node n from the current origin r. 

F(a) total current flow on link a (over all origins). 
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Index r can be omitted when writing variables A, WA, WN, XA and XN, as these 

variables do not need to be stored after dealing with origin r. 

Algorithm STOCH3 

Step 0. Overall preliminaries: calculation of reasonable paths. 

o From every origin node r, compute the shortest paths to all nodes n, 

based on the reference link travel costs 
    
Ta

0
, yielding the reference access 

costs 
    
Cr

0
(n) and a labelling     Or (i) of the nodes n in the order of increasing 

access cost from r. For each link a, set 
    
Ωr

a
: = 1 if 

    
(1+ hr

a
)(Cr

0
(Ea ) − Cr

0
( Ba )) ≥ Ta

0
> 0 , 

    
Ωr

a
: = 0  otherwise. 

Step 1. Preliminaries for a standard iteration. 

o Initialize the total link flows variables F(a) to 0. 

o Set the link impedances     A (a):= exp(−θTa ) . 

Steps 2, 3 and 4 are to be run for each origin node r. 

Step 2. Forward pass. 

o Set all     WA(a)  and     WN (n)  to 0. Set     WN (r): = 1. 

o For each node n taken in the order of increasing reference cost 
    
Cr

0
(n) 

(the i-th node to be considered is indicated by     Or (i)), for each link a with 

beginning node   Ba = n , if 
    
Ωr

a
= 1 then compute     WA(a): = A(a)WN (n) and 

add     WA(a)  to     WN (Ea ), else do nothing. 

Step 3. Backward pass. 

o For each node n, set     XN (n): = qrn   if n is a destination node, 0 

otherwise. 

o For each node n taken in the order of decreasing reference cost 
    
Cr

0
(n) 

(use the labelling     Or (i) in decreasing order), for each link a with end node 

  Ea = n, if 
    
Ωr

a
= 1 then compute     XA (a): = XN (n)WA (a) / WN ( Ea )  and add 

    XA (a) to     XN (Ba ) , else set     XA (a): = 0 . 

Step 4.  Contribution to total link-flows. 

o   ∀a ,     F(a): = F (a) + X A (a) 

At the end of the procedure, the vector F gives the fixed time logit assignment 

based on link travel times   Ta . 
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4.3 Computation of the entropic part of the objective function in the 

STOCH3 model 

It is shown in (Leurent, 1994) that, at the end of the forward pass from origin 

r, it holds that 

 
    
WN (s) = exp(−θ Trs

k
)k� . (10) 

As 
    
grs

k
= qrs exp(−θ Trs

k
) / exp(−θ Trs

k
)k� , we get 

    

1
θ

grs
k

log (
g

rs
k

qrs

)k� = − grs
k

Trs
k

k� −
qrs

θ
log( exp(−θ Trs

k
)k� )  

and by summing over all origin-destination pairs r-s, 

      
JE (g) =

1
θ

grs
k

log(
g

rs
k

qrs

)rsk� = − xa (g ).Taa� −
1
θ

qrs log( exp(−θ Trs
k

)k� )rs�  

Then, the convergence test designed in Section 3 can be applied to the STOCH3 

set of available paths. 

5. COMPUTATIONAL EVIDENCE 

In this section, we carry out a numerical example to compare the performance 

of the STOCH3 logit model using the MSA, with that of the deterministic 

model using both the Frank-Wolfe algorithm and the MSA. 

5.1 The case study 

The application is related to the western part of the Paris metropolitan area 

during the evening peak period, with a typical trip travel time of one hour. The 

test network is composed of 2,000 directed links. There are 141 origin and 

destination zones. 

The dispersion parameter θ is set to 0.233 mn-1, so that when two routes 

compete with each other, the first one with a travel time five minutes shorter 

than the second one, approximately three out of four drivers choose the first 

road. As only the rate of convergence is of interest here, the elongation ratios 

  
hr

a
 are set to +•; note that from previous surveys they may be set to 

    
hr

a
: = 1.6 

for interurban studies (USAP, 1992) or 
    
hr

a
∈[1.3;1.5]  for urban studies 
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(Tagliacozzo and Pirzio, 1973). 

5.2 Results 

Figure 2 depicts the performance of the three algorithms, showing the 

evolution of 
    
log X (n)

J*
− 1  where: 

- in the logit model, J* is the optimal value of the objective function in (6), and 

    X
(n)

 is the value of       JL (g
(n)

) . In the MSA, the step size     α
(n)

 is set to 
    

1
4+ n /10

. 

- for the deterministic model, J* is the optimal value of the deterministic 

objective function, and     X
(n )

 is the value of       JD (f
(n+1)

) . In the MSA, the step 

size     α
(n)

 is set to 
    

1
1+ n

. 

Fig. 2. Convergence rates of the three algorithms. 

The convergence rate is much better in the case of the logit model, notably 

because the descent direction includes information about all of the available 

paths, not only about the shortest path in each iteration. 

6 COMMENTS AND CONCLUSION 

6.1 IVHS implications 

In an IVHS context, the logit model may be of particular interest for assessing 

the level of information provided to motorists by a route guidance system (Van 

Vliet et al. 1990). One way to evaluate the effects of such a system is to model 

two classes of motorists, the first equipped with a route guidance device and 

characterized by a large dispersion parameter θ, and the other class of  non-

equipped drivers characterized by a small θ. 

6.2 Model extensions 

In (Leurent, 1994), the case of elastic demand and capacity constraints is 

addressed. A dual solution scheme is also introduced, but for large scale 

applications it is not efficient. 

The computational efficiency of the MSA applied to the logit assignment model 

facilitates the following possible extensions of the model: 
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- diagonalization schemes, for example with travel time functions that depend 

on flows of several links. It is easy to derive a variational inequality 

formulation of (6). 

- simultaneous models that capture more than one step in the conventional 

transportation planning process. 

6.3 About path identification 

It is useful to identify paths. The STOCH procedure is a way to consider all 

available paths at a reduced cost. We believe that our numerical experiment 

demonstrates, above all, that path-based equilibration algorithms are much 

more efficient than link-based algorithms. This conclusion is also supported by 

recent work by Schittenhelm (1990) and Larsson and Patriksson (1992), among 

others. 

Algorithms that identify paths should better address more behavioral models. 

In a fixed-time path loading procedure like STOCH, the origin-destination flow 

is partitioned between the paths according to a behavioral rule. Other available 

behavioral rules are the probit model (Abraham, 1961; Burrell, 1968; see 

Daganzo and Sheffi, 1977, and Powell and Sheffi, 1982, for a mathematical 

foundation), and the bicriterion, cost-versus-time model (Marche, 1973; see 

Leurent, 1993, for a mathematical foundation). By applying a behavioral rule, 

we by-pass the need to search for an effective step-size in the descent. It is thus 

remarkable that, by the identification of paths, the computational process is 

greatly facilitated, especially in the case of behavioral models. 
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Fig. 1. Proportion of travellers that choose path 1 

as a function of θ and the time difference T2-T1 (binary case). 
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Fig. 2. Convergence rates of the three algorithms. 
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