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Nous proposons un algorithme de résolution du modele monocentrique de transport avec
congestion. Nous utilisons cet algorithme afin d'explorer I'impact de différents schémas de
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taxe linéaire refléte le codt d'usage du véhicule ; (ii) péage cordon, ou les voitures payent pour
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1 Introduction

While the literature on road pricing has been abundant in the last decades,
long term impact on housing and business location have not received so
much attention. Recent implementation of an area-based charge in London
and a few other experiments have raised concern about the overall impact
on congestion, business activities and environmental conditions in the long
run (cf. Santos & Fraser 2006). At the same time, the alarming levels of
pollution reached in many metropolitan areas and the important increase of
energy cost contribute to making the optimization of urban forms and the
regulation of transport an important issue (cf. Mitchell et al. 2005).

This paper explores the impact of transport pricing on the urban form,
and, hence, on transport volume, COs emissions and energy consumption.
We consider a monocentric model with traffic congestion where all the eco-
nomic activity is located in the central business district (CBD). There are two
main actors: households, whose utility is increasing with housing area, and a
government that decides how much land is devoted to roads. The government
collects a population tax, which is the same for all households, and a loca-
tion tax that depends on where the household lives.! Transport congestion
introduces an externality that requires public intervention for regulation.

Transport congestion was introduced in the monocentric model by Strotz
(1965) and Mills (1967). In the following decade, there was growing interest
in second-best allocations of land between housing and roads.? A synthesis
of this problem may be found in Kanemoto (1980). Recently, Mun et al.
(2003) have shown that second-best pricing schemes are almost as efficient
as first-best pricing. Their conclusion has been confirmed by Verhoef (2005).
Both models, however, are rather restrictive forms of the monocentric model.
Mun et al. (2003) do not consider a variable housing area, and Verhoef (2005)
assumes that the amount of land allocated to transportation is fixed. The
monocentric model has been used mainly for theoretical and normative dis-
cussions, and very little for empirical applications.?

1On practical grounds, road pricing may contribute to raising funds for the transport
sector (cf. De Palma et al. 2007, de Palma & Quinet 2005).

2Representative papers are Mills & Ferranti (1971), Solow (1972, 1973), Riley (1974),
Robson (1976), Kanemoto (1977), Arnott & MacKinnon (1978), Arnott (1979), and Sul-
livan (1983).

3Empirical applications include Baum-Snow (2007), Boarnet (1994), McMillen et al.
(1992) and Rouwendal & van der Straaten (2008).
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Figure 1: Impacts of congestion pricing.

We adopt the monocentric city framework using the formulation of Fu-
jita (1989), and contribute to the literature at two stages. First, we propose
a flexible and efficient algorithm to compute the optimal solution. The so-
lution approach underlying the algorithm replaces the standard optimality
conditions (cf. Fujita 1989) by a set of first-order differential equations that
can be solved efficiently by standard numerical techniques.* The algorithm
is flexible enough to be used for a number of pricing rules.

Second, we undertake an empirical application on the agglomeration of
Ile-de-France (IDF). In particular, we feed the model with data from IDF and
find that it succeeds in adequately capturing a number of urban features. On
the basis of the calibrated model, we quantify the impacts of different pricing
rules: cordon, linear and first-best tolls. All policies lead to a smaller city
and a reduced average trip-distance.

Figure 1 illustrates the impacts of congestion pricing on the distribution
of households. Each curve reflects the distribution of households under a
given regime. Road pricing motivates households to move closer to the CBD.
Linear toll depends on only the travel distance, while first-best toll, which is
non-linear, depends on the congestion or external cost created by the trip.
A unit of trip-distance in a congested area is tolled more than the same unit

“The model was solved under a particular set of parameter values in Riley (1974),
Robson (1976) and Kanemoto (1977), but no general solution method has been proposed.



in an uncongested area. In this monocentric geometry, congestion is higher
around the CBD and it is there that the difference with linear tolls emerges.
In Figure 1, the impacts of the (optimal) linear toll and first-best toll are
rather similar in the outer part of the city, but they become quite distinct
around the CBD.

Optimal pricing reduces the radius of the city, the average trip-distance
and congestion by 34%, 15% and 13%, respectively. The optimal linear toll,?
which we call linear toll for short, induces a comparable impact and leads
to a relatively dense city. But in practice, the linear toll is equivalent to an
important increase in gasoline price. Such a policy is likely to face road user
opposition and has the inconvenience of depending on only the length of the
trip and not on its location (origin/destination pair). For example, urban
and inter-urban trips (which induce less congestion) are tolled the same way.
So, under a more general transport network the linear toll will be less efficient
than in the model we consider here. Efficiency is measured as the unspent
part of the households’ revenue, for a given level of utility.

Cordon pricing is less efficient than linear toll but still reaches an ac-
ceptable efficiency level of 62% with respect to first-best. By contrast to
linear tolls, cordon tolls concern only highly congested areas and turn out
to be an attractive alternative for policy makers. Indeed, similar pricing
rules to cordon toll are already in use in some cities (London and Singapore,
in particular), and other implementation projects are under study. From
the simulation we have conducted, it appears that an optimal urban form re-
quires both a smaller radius and a higher concentration of households around
the CBD (cf. Figure 1). The first-best rules satisfy these requirements by
setting the toll equal to the external cost. Linear toll is more efficient in
reducing the radius of the city than in concentrating households around the
CBD. In general, under the linear rule, the optimal trade-off between the two
objectives requires an excessive charge on road users.

A cordon toll close to the CBD does not have a strong impact on the
radius of the city. At the same time, a cordon toll away from the CBD
has substantial impact on the radius of the city but does not induce any
significant variation in the concentration of households inside the city. In
most cases, and for data related to Ile-de-France, we found that it is optimal
to set the cordon toll at a distance about 21km from the city center.

Pricing reduces the size of the city but the average area occupied by house-

5That is, optimal among linear tolls.



holds does not decrease so much. On one hand, part of the land available for
housing and transportation is lost. However, this lost area is not very large
since, as the empirical observation shows, the available land for housing and
transportation gets smaller as we move away from the city center. On the
other hand, with congestion pricing, the surface of land allocated to roads
decreases and larger areas are available for housing. Overall, both impacts
have comparable magnitudes and the resulting variation in the housing area
remains, in general, small.

On more general grounds, pricing congestion contributes to decreasing the
level of pollution since it leads to smaller and more compact cities. Indeed,
energy consumption per household decreases as urban density increases (cf.
Newman & Kenworthy 1989). Since CO5 emissions are correlated with trip-
distance, congestion pricing has an appreciable environmental benefit. The
set of simulations we have conducted shows that congestion pricing reduces
the level of emissions by 15%, and has a comparable impact on congestion.
The paper is organized as follows. In Section 2 we introduce the notation and
provide the solution procedure for the land-use equilibrium. The calibration
of the model to IDF is undertaken in Section 3. In Section 4 we discuss the
impact of congestion pricing. We finally conclude in Section 5.

2 A general method to compute a compensated
equilibrium

2.1 The basic framework

The analysis is carried out under the classical monocentric model. We adopt
the formulation of Fujita (1989) and denote the model by HS7.° The number
of households living in the city is fixed and equal to N (closed city). The
variable 7 denotes the distance from the center of the city. Each household
makes daily trips from its location, at distance r from the center of the city,
to the Central Business District (CBD) that extends to distance r. from
the center of the city. Inside the CBD, we assume that transportation is
costless. The radius of the city is denoted by ry. N(r) is the number of
households located further than distance r from the city center. L(r) is the
amount of land available for housing or transportation at r. Lp(r) is the

6Fujita (1989) refers to the model as the Herbert-Stevens model with traffic congestion.



amount of land allocated for transportation at r. Each household consumes
two goods, housing s and a composite good z, and gets a utility U(z, s) where
0U(z,8)/0z > 0 and dU(z,s)/0s > 0. All households have the same utility
function and the same (pretax) revenue Y. The price of the composite good
is normalized to 1 and the unitary price of land, or land rent, at distance r
from the city center is R(r). The opportunity cost of land, or the agricultural
rent, is denoted by R4. The amount of composite good necessary to achieve
utility level u when the housing area is equal to s is Z(s,u), which is the
solution of U(z,s) = w in z. Let I denote the revenue net of taxes. The
household bid rent function ¢(I,u) is given by

Yl u) = maxi(s’w, (1)

s>0 S
where the maximum is reached at the bid-maz lot size S(I,u)

S(I,u) ;= argmax L(s,u) (2)
5>0 S
The government is responsible for providing the transportation infrastruc-
ture, Ly (r), and has the possibility of levying two kinds of taxes: a popula-
tion tax that does not depend on r and is denoted by g, and a location (or
congestion) tax that depends on 7 and is denoted by (7).

The road occupancy at r is defined by the ratio of the number N(r) of
households located further away than r from the city center to the amount
L7(r) of land devoted to transport use at r. At each distance r, the transport
cost depends on the road occupancy at r: ¢(N(r)/Lr(r)), where the function
c is assumed to satisfy ¢(w) > 0, ¢(w) > 0 and ¢’(w) > 0 for all w > 0. The
transport cost from distance r to the CBD is

Define the bid rent of the transport sector 1y at each distance r as the
marginal benefit of land for transportation at r:

NI\ (a0 (ve )\
vr (Lm)) = (28%) (25) - (4)
The bid rent ¢ (N(r)/Ly(r)) represents the cumulated gain for the N(r)
commuters (away from r) from a unit increase of roads at 7.
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2.2 Solution approach

The household’s problem is to maximize the utility function U(z, s) over r,
z and s subject to the revenue constraint z + R(r)s =Y — g —I(r) — 7(r). If
we replace I in (1) by” Y — g —I(r) — 7(r), we obtain the household bid rent
at distance r

VY — g~ 1(r) — (), w) = max IO T 220 g

and the corresponding bid-max lot size S(Y — g —I(r) — 7(r), u). Appendix
A provides an interpretation of the HS7 model and the role played by the
population tax g. Since all households are identical, it is convenient to as-
sume that they all reach the same utility level at an optimal solution.® The
objective of the central planner is to maximize the total surplus in the city.
Let n(r) denote the number of households in an annulus of unit width at r.
The objective function to be maximized over (nonnegative) quantities n(r),
s(r), Lp(r) and 7y is the following total surplus .7

7= /rf{[Y —7(r) = Z(s(r),u) — Ras(r)|n(r) — RaLr(r)}dr.  (6)

Any distribution n(r) of households should satisfy the following constraints.
First, the total amount of land devoted to housing and transportation must
be lower than or equal to the amount of land available:

n(r)s(r) + Lr(r) < L(r) for r. <r <ryp. (7)
Second, the distribution of households satisfies:
Ty
N(r) = / n(r)dr for r. <r <ry. (8)

Finally, all households are located inside the city:

N = N(r.) = / ff n(r)dr. (9)

"Indeed, Y — g —I(r) — 7(r) is the part of the income that remains for the consumption
of housing (s) and the homogeneous good (z).

8Without this assumption, an optimal solution may imply an increasing utility as
we move away from the CBD (cf. Riley 1974, Papageorgiou & Pines 1999). When all
households are assumed identical such a situation may seem inconsistent and the Mirrlees
paradigm of the “unequal treatment of equals” appears (cf. Mirrlees 1972). We avoid this
discussion and consider only solutions with equal utilities among households.



Since the bid rent function (I, w) is continuously increasing in I, we can
define ¢(R,u) by
d(R,u) :=1< ¢(I,u) =R. (10)

The quantity ¢(R,u) is the aftertax revenue required by a household having
utility level v and willing to pay a land rent R. The optimality conditions
of this problem (maximize (6) subject to constraints (7), (8) and (9)) are
recalled in their standard form in Appendix A. They represent conditions
for the compensated equilibrium in which the common utility « is achieved
by a competitive land market with common location tax g and an optimal
location tax [(r). The idea of the approach we propose is to transform stan-
dard optimality conditions (Equations (22a)-(22f) in Appendix A) into a set
of first-order differential equations. Brueckner (2005) proposed a similar ap-
proach but under a framework where the proportion of land devoted to roads
is fixed. We have the following result.

Proposition 1. Let u > 0 be a fized utility level. The solution of the problem
which consists in mazimizing (6) subject to constraints (7), (8) and (9) can be
computed in the following way. Solve, for all positive vy and forr. <r <ry,
the system of backward differential equations :

(. __C/(‘I’EI(R(T)))‘I’EI(R(T))+C(‘I’51(R(7’)))
R U
% (). »
N 1)
R 7 G)
V0 = 5w, w

with terminal conditions R(ry) = R and N(ry) = 0. Then, find ry such
that N(r.) = N. From these, compute Lr(r) = N(r)/Y:'(R(r)), 5(7’) =
SG(R(r),u)) and I(r) = [ (W (R() g (RO for v < v < ry.

Tec

Proof. See Appendix B. O

This procedure assumes that n(r) > 0 and Lp(r) > 0 for all r. < r <
r¢. While the second condition is guaranteed at any optimal solution,? it
is possible that households density be equal to zero at some distance r. In
Appendix C we provide details on how to implement this algorithm and show
how to handle the case where n(r) =0 for r > r..

Tf not, N(r)/Lz(r) will be unbounded inducing a very high transportation cost.
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In order to compare the optimal pricing rule with alternative policies, we
relax the analytical form in the first equation of (11) by introducing the more
flexible rule:

(U (R(r)WLH(R(r))  (first-best)
H(r)=(k (linear toll) (12)
§a Lirgy (1) (cordon toll),

where x and &; are positive constants and I, 3(r) the function that takes
value one at r4 and zero elsewhere along with replacing the first equation in
(11) by R'(r) = —(H(r) + c(V: (R(r))))/(0¢(R(r),u)/OR). Then, instead

of (11), we solve the system of differential equations given by

() — )+ 9 Rl
—(R(r),
2 (i) v "
20 L(r)
, _ WLN(RO)
N0 = S GmRm W)

The second pricing rule in (12) corresponds to a charge that is proportional
to the length of the trip, where « is the charge per unit of distance. Such may
reflect a charge implemented as a gasoline tax. Notice that the linear toll
does not depend on the origin and destination of the trip. The third pricing
rule in (12) reflects cordon pricing. Each driver pays &, for crossing the ring
of radius 4. Households living inside this ring do not pay the charge.

3 Calibration on Ile-de-France

In this section, we calibrate the model parameters to match selected target
variables related to the IDF (Ile-de-France) region. The monocentric model
may be criticized as being based on unrealistic assumptions. Indeed, many
metropolitan regions have a polycentric structure, and many authors con-
sider that the main effort should therefore focus on polycentric models (cf.
Mieszkowski & Mills 1993, forexample). The monocentric framework, how-
ever, remains very useful for at least three reasons. First, for the case of
IDF, as we discuss below, there is a high concentration of (non-industrial)
activities in the CBD located inside Paris. Second, the monocentric model



is useful when we consider only part of the economic activity and the related
transportation. In particular, in IDF, most economic activities with highly
skilled employees are concentrated in the CBD. This issue is particularly rel-
evant since polycentric models have not yet been used successfully. Third,
given that the theory underlying the monocentric model is much more coher-
ent and complete (many theoretical insights have already been gained), the
empirical exercise can be evaluated much more accurately than if polycentric
models are used. We do not intend to say that the monocentric model is
superior to polycentric models, but we argue that there are many lessons we
can draw from it if we remain aware of its limitations. Moreover, empiri-
cal observations still confirm the high concentration of economic activities
in small areas. For the case of IDF, a recent report by Pottier et al. (2007)
states that more than three million households (among a total of five million)
are working in the twenty districts inside Paris. The ratio is even higher for
highly skilled employees, who generally use private cars relatively frequently.
Moreover, maps from AIRPARIF show a high concentration of emissions in
the CBD and the region around. On the basis of these observations, we think
that many urban attributes of IDF can be explored within the monocentric
framework.

3.1 A specific model

The related literature has extensively considered the Cobb-Douglas utility

function:'?
U(z,s) =2%" with a>0, p>0. (14)

From U(s, z) = u, we have the quantity of composite good
Z(s,u) = ut/* s7P/e, (15a)
and the solution of (2) yields

S(1u) = (A5 5 b 8, (15h)

Substituting it in (1) yields the bid rent function
g (-2
a+ 6 a+p

10See Robson (1976), Verhoef (2005) and Kanemoto (1977).

ViusI (15¢)

(I, u) =
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The inverse of (15¢) gives
_B_
a4+
S(R,u) = O‘Zﬁ (%) s (15d)

For the congestion function, we use the BPR (Bureau of Public Roads) for-
mula (cf. Branston 1976)

o) = (1K), (16
Vo

where k' is a positive constant, vy is the maximum travel speed and 6 the
households’ valuation of time. This function satisfies the convexity require-
ment for £/ > 1 and A > 1. In (16) the travel cost is the sum of two
terms. The first term does not depend on the road occupancy and reflects
the transport cost without congestion. The second term captures the impact
of congestion. Indeed, as road occupancy increases, travel speed decreases
and the travel time increases. Define k = k' 6/v,. The impact of a marginal
increase in roadoccupancy is ¢(y) = kML Using (4) and (15) we can
obtain all expressions required in the computation of (13):

( br(y) = () =k
_ R 1
VPR = ()T
(17)
i (R) = kR
[ W (R)r' (R) = (kN)x R,
where v = ¢ (R).
3.2 Base-case parameter values
We fit the above model with data from IDF.
Land available
We assume
L(r) = p(r) x 2mr, (18)



Local roads Main roads Highways
Length (km) 14490 2752 1814
Max. speed (km/h) 50 70 110

Table 1: Road network in Ile-de-France.

where p(r) is the fraction of land devoted to housing and transportation at
r.'' Data from IDF show that the proportion of land used for housing and
transportation, with respect to the total available land, decreases as we move
away from the CBD. Furthermore, collective houses are more concentrated
near the CBD and individual houses spread away from the city center. Col-
lective houses are generally built on more than four levels, while individual
houses are built on one or two levels. It is important to take into account
this fact in order to match the observed distribution of households. We
approximate u(r) by an exponential expression, which yields

p(r) = 3.191 ¢ 371077 (R? =0.99). (19)

Figure 5 shows both observed values (dots) and their approximation (lines).
As we move away from the CBD the fraction of land available for housing
and transportation decreases substantially.

Travel speed

There are two options at least on how to compute free-flow travel speed: vy.
First, one may consider that it is constant over all the region. In this case
it can be computed as the (harmonic) mean of the maximum allowed speeds
over the network of three kinds of roads. The details of the network are
shown in Table 1 and give a value of about 55 km /h.

A better approach is to consider that the free-flow travel speed decreases
as we get closer to the CBD. This case arises because a driver inside Paris uses
mainly (slow) local roads but can drive on faster roads in outer regions. To
take into account the fact that the free-flow speed increases as we move away
from the CBD, we approximate it as follows. At the city border a traveller
mainly uses highways where the speed limit is 110 km/h. A household will

"Fujita & Thisse (2002) report that only 12% is used in this sense and all the remaining
area is used for agriculture, protected areas, etc.
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Variable Value Unit

Te 3 500 m

N 2 120 493 household

0 6 900 €h tyear™!
Ra 48 €m =2 year~!

Table 2: Base-case parameter values

be likely to use highways less as we get closer to the CBD. We assume'? that
to travel from the city center to the CBD, on average, 80% of the trip is made
on highways, and 20% on main roads. A trip that starts closer to the CBD
uses less highways but the same fraction of main roads. Instead, urban area
roads (with a speed limit of 50 km/h) substitute for highways. Denoting by
wy, and w, the respective fractions of usage of highways and main roads, the
average speed is the harmonic mean

ﬂ_F%_Fl_wh_w" —i

110 70 50 T
or vg = 3 850/(77 — 42wy, — 22w,). As mentioned above, w, is fixed at 20%.
Assuming a linear form of wj, and taking into account that w, = 0.8 at ry

and wy, = 0 at r., we end up with the following relation between the free-flow
travel speed and the distance to the city center:

B 51 931
- 1-5.92x 10-67

Vo

Hence, the free-flow travel speed decreases from about 90km/h at distance
70km (entrance of the city) from the city center to 52km/h at distance 10km
(where the maximum speed generally becomes low). This decrease is more
realistic and leads to better calibration than the fixed vy.

Households

We consider a population of drivers going to and from the city center 230 days
a year,13 and estimate costs over one year. Some parameter values are pro-
vided in Table 2. The number of households used is adjusted so that it

2Based on the authors judgement from a Google-Earth exploration.
13This is approximately: 5 days x 52 weeks - 30 days (holidays).
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corresponds to the number of vehicles used for home-to-work trips. Since
we consider a CBD of radius 3.5 km, and since we consider only households
that make trips to the CBD, we remove half of the population located in the
ring that extends from 0 to 7 kilometers. Accordingly, we consider a total
population of N = 2 120 493 households.

Utility function

From the Cobb-Douglas utility functions properties, we know that the ratio
B/a is equal to the share of the available revenue spent on housing with
respect to the share spent on the homogeneous good. Robson (1976) assumed
a value of 50% and Kanemoto (1977) reduced the approximation to what
seems to be a more realistic 20%. In the base-case, we consider the second
value which matches recent estimations reported in INSEE (2003). Thus, we
have o = 443, so that

U(z,s) = (245)6 : (20)

An alternative value of (3 is considered for the sake of comparison.

Congestion term

The congestion function depends on the maximum speed inside the city, the
value of time and parameters k£’ and X in (16). Boiteux (2001) reports that
the value of time in IDF in 2001 was 11.6€ /h for home-to-work trips.'* To
take into account the increase since 2001, we take the value of 15€ (which
corresponds to a five year growth rate at 5%). So, during a year with 230
working days and an average of two trips per day, we have # = 15 x 230 x
2 (€h~lyear™!). Both parameters are used in the calibration of the model.
As a comparative statics exercise we consider an alternative situation with a
higher level of congestion and compare with the base-case.

Tolling schemes

We consider four policies:

- no toll (NT), where x in (12) reflects vehicle operating cost;

14For the sake of comparison, the average value of time for work trips reported in Small
& Verhoef (2007), Chapter 3, is $9.14/h for metropolitan areas in the US in 2003.
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- cordon toll (CT), where a driver pays a toll when he enters inside the
ring of a given radius;

- (optimal) linear toll (LT), where k is set to the value that maximizes
the surplus in (6);

- a first-best toll (FB) that internalizes the external costs.

The “no toll” rule may be interpreted as a small tax or, better, the wvehicle
operating cost per kilometer. On the basis of a gasoline price of 1.5€ per liter,
the gasoline cost per meter for an average vehicle that consumes 6 liters per
100 kilometer is 0.0207 € per meter per year. Assuming that gasoline price
is half the vehicle operating cost we use xk = 0.0414 for the N'T policy.'® For
the cordon toll, both the location and the value are chosen to maximize the
surplus .#(u) given in (6). For the linear toll (LT), we search for the value
of k that maximizes .%(u). In practice, the optimization process is a tedious
but straightforward task. Pricing rule NT is the reference policy, since it is
close to the real situation.

Calibration

A dataset related to rings with 7km intervals is used to feed the model with
data. To replicate the urban structure of IDF, we construct a loss function
(denoted “Loss”) that depends on the four parameters u, 5, k and A. The
loss function is equal to the weighted sum of square errors between observed
data and the output of the model. We focus on the radius of the city (ry),
the distribution of the households (pop), the travel time (tt) and the level of
urban rent (rent). The expression of the loss function is

Loss(u, B, k,\) =
My, —rp\? M. — R(r)\
Tf f rent

3 o () e (M)

where w, denotes the weight of variable z and M denotes the value of x
predicted by the model at r (r measured in km). The four variables are not

15Based on authors’ judgement and data values from INSEE (2005).
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observed and predicted (R* = 0.987).  predicted (R? = 0.97).

measured in the same way: “rent” is the average rent between r and r—Ar (we
have used Ar = 7km), “tt” is the average travel time for households between
r and r — Ar, “pop” is the number of households between r and r — Ar.
The weights are set equal (and normalized to one) by default. They may be
changed to focus the calibration on a given set of variables. The function
Loss(u, 3, k,\) reaches a unique minimum when the output of the model
perfectly matches the observed values. Table 4 contains the values of target
variables along ten rings as indicated in the first column. The second column
contains the number of households. Values in the third column correspond
to the number of vehicles used for home-to-work trips. As we are mainly
interested in transport, this variable may be used instead of the number of
households. The fourth column contains the travel time for the same type
of trips. Rent values (based on observations from “indice notaire-INSEE” in
2007) are reported in the last column.

The model is calibrated with respect to policy LT, i.e. when households
pay a tax that reflects the vehicle operating cost. The output of the model
with parameter values u = 11 976, 3 = 0.2, A\ = 4.02 and ¥’ = 6.6 x 1072
fits particularly well the distribution of households and travel time. Figure 2
shows the observed distribution of households in IDF and the distribution
produced by the model. The correlation is satisfactory. Figure 3 shows
observed and predicted values for the travel time. The correlation between
the two sets is high, even if the slope of the predicted values seems higher. The
variable free-flow travel speed has been useful for refining the approximation
of travel time. The only variable that does not seem to be well fitted by the
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model is the land rent. This fact may be explained intuitively as follows.
Under the monocentric city framework, the market rent is an exclusive result
of transport costs. The attractiveness of the CBD lies in the fact that we
incur lower travel time. But in reality, the attractiveness of the CBD of Paris
is the result of many other attributes: a richer social life, better access to
many facilities and so on. This difference is one of the limitations of the
model used here.

4 Results

Simulation outputs are presented in Table 5. Table 3 contains a smaller set
of the output of the base-case scenario. Under each scenario there are four
pricing rules: no toll, cordon toll, linear toll and first-best toll. The base-case
uses parameter values discussed above and summarized in Table 2. The first
column of Table 5 provides location tax corresponding to H(r) given in (12).
The second column contains the radius of the city r;. Column 5 corresponds
to the average area occupied by a household (5 = [/ s(r) n(r)dr/N). The

Tc

average (one-way) trip-distance Vi = f:cf rn(r)dr/N is given in column V.
Column RD contains the surface of land allocated to roads. T and Ty
denote the average travel time and the free-flow travel time, respectively.
The social cost per household is decomposed into three items (all expressed
for an average household per year): Cp, the opportunity cost of land; Cr,
the generalized transport cost; and Cy, the cost of the homogeneous good.
Column A.¥ corresponds to the impacts of pricing on the surplus of an
average household per year. We now discuss the impact of each pricing rule
under the base-case and then compare with two alternative scenarios.

4.1 The structure of the city
No toll

Without tolling, drivers incur only the vehicle operating cost. The urban
region extends to a radius of 73km which corresponds to the actual radius of
IDF. The average area occupied by a household is 84 m?. The average length
of a trip is 22km and the average duration 38 mins. The amount of taxes
collected (769€) is close to annual spending on private transport in IDF. The
density of households increases as we move from 7, to the CBD. It declines
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Ty 5 Vi RD T A
City Housing Trip Roads’ Travel Asurp

radius area length area time
km m? km 10*m? mins €]y
No toll 73.423  84.236 22.075 7539 37.7 0

Cordon toll  55.633 84.889 19.632 6 482 33.9 181
Linear toll ~ 46.246 81.385 18.727 6 042 32.7 271
First-best 48.650 83.129 18.711 6 049 32.7 286

Table 3: The structure of the city (base-case). Cordon toll: located at 22km,
value 22.5€ /day; Linear: x = 0.21/m/year

substantially near the CBD, because households living in the city center do
not use their cars frequently for home-to-work trips. Vehicle emissions, in
particular for CO,, are highly correlated with the trip-distance, and a policy
that reduces the latter is environmentally effective. Indeed, transportation
is the leading sector in terms of COy emissions in France (141 million-tons
in 2005, according to ADEME). Assuming an average emission of 153 g/km
(reported for 2006 by ADEME), IDF accounts for a total of 3.3 million-tons
of CO4 per year for just home-to-work trips.'

This situation is not optimal since congestion externality is not taken
into account by road users.!” Congestion pricing has long been advocated as
the convenient tool to remove market distortions and increase welfare. We
explore the impacts of three alternative policies.

Cordon toll

Drivers pay the toll when they enter a given ring. The value of the toll as well
as its location are both chosen to maximize the surplus in (6). The optimal
location of the cordon is at 22km from the city center and each household
going inside the toll region pays 22.5€ per day. This pricing rule motivates
households to locate inside the ring so they do not pay the toll. Competition

16Monetary values of pollution are reviewed in Zaouali & de Palma (2007).
1"Without transport congestion (externality) the unregulated equilibrium is optimal.
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for land inside the cordon raises land rent near the CBD. The land rent
curve shifts upwards near the cordon location (cf. Figure 6). A similar jump
appears in the distribution of households as shown in Figure 7.

In quantitative terms, this policy reduces the radius of the city and the
average length of a trip by 27% and 13%, respectively. The average area
occupied by a household slightly increases by 1% because the land allocated
to roads is smaller. Congestion decreases by 11.5%. The gain in surplus
results from the decrease in the opportunity cost of land (C) and transport
cost (Cr). The consumption of the homogeneous good increases, but overall
the surplus increases by 181€ per household per year.

Notice that the housing area increases slightly under CT, despite the
important decrease in the radius of the city. Indeed, the decrease in the radius
of the city induces a relatively smaller decrease in the available land: from
(18) and (19), the available land for housing and transportation is relatively
small when r is large. The decrease in the radius of the city therefore does
not have a large impact (in relative terms) on the total amount of land
available for housing and transportation. At the same time, the amount
of land allocated to roads decreases at all distances from the city center.
Overall, the resulting variation in the housing area remains almost the same.

The (optimal) linear toll

The linear toll requires that each household pay 210€ per kilometer (of daily
trips) per year. We obtain a particularly small city with a radius reduced by
40% in comparison with the no toll situation. The trip-distance decreases by
17% which may be seen as a decrease in CO5 emissions. The corresponding
city is characterized by a reduction in transport cost and opportunity cost
of land as well as an increase in the consumption of the composite good.
The main weakness of the linear toll is that it significantly reduces the area
occupied by households significantly: the average housing area decreases by
4.4% which is relatively higher than the variation under cordon and first-best
tolls.

The linear toll reaches a good efficiency level in comparison with the
optimal toll. In our simulations, however, we found that it is equivalent to
a large increase in the gasoline price (about 12€ /liter). Hence, the policy is
likely to face strong opposition from road users.
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First-best toll

The optimal toll leads, as expected, to a compact and dense city. The radius
of the city and trip-distance decrease by 34% and 15%, respectively. The
consumption of the homogeneous good increases, but the opportunity cost
of land and transport costs are reduced. Travel time decreases by 13%. The
decrease in the radius and trip-distance remain, however, slightly lower than
under the linear toll. Policy FB is particularly effective in concentrating
households around the CBD (cf. Figure 7)."®

Optimal congestion pricing increases the welfare by 286€ per household
per year. Cordon and linear tolls get 62% and 93% of this gain, respectively.
The amount of the toll collected is relatively higher in comparison with all
the other pricing schemes. With the optimal toll, the government budget is
balanced (cf. condition (23)) in the sense that total taxes are equal to the
cost of land used for transportation. Since the other pricing schemes provide
lower revenues, the government must find alternative funding schemes.

4.2 Higher congestion

When k£ in the congestion function (16) increases (Scenario 1 in Table 5),
congestion costs increase, and an efficient urban form corresponds to a fur-
ther concentration around the CBD. The radius of the city increases under
NT and decreases under FB. CT and LT induce a small increase. The higher
congestion is followed by an increase in the land rent around the city center,
motivating households to locate further away from the CBD. This incentive is
higher than the opposing one induced by the (private) travel cost. Appropri-
ate tolling makes the second incentive higher. There is more land allocated
to roads.

The transport cost and expenses on the homogeneous good increase under
the four regimes, while the land cost decreases only under FB. It is clear that
an increase in congestion has a negative impact on welfare. The intuition for
this result is straightforward (notice the decrease in housing area given hy 3).
CO4 emissions and other pollutants related to fuel consumption vary in the
same direction as VK: a higher congestion is followed by a higher pollution
under all regimes except FB.

18A set of simulations we do not report here confirms this fact under a larger set of
parameter values.
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4.3 Alternative preferences

As the preference for housing increases (Scenario 2 in Table 5), the city radius
ry increases under the four regimes. The variations with respect to the base-
case are 25%, 28%, 15% and 13%, respectively for NT, CT, LT, and FB. At
the same time, the increase in the average housing area is relatively small
for NT in comparison to LT and FB. This situation is brought about when
congestion is unpriced and too much land is devoted to roads, leaving smaller
areas for housing.

From the output in Table 5 we can see that the larger city leads to higher
travel time, higher consumption of the homogeneous good and higher CO,
emissions. This result requires a higher compensation for the households and
yields a lower level of surplus.

Under NT the increase in s is relatively small in comparison with the
increase in ry. Indeed, with unpriced congestion the expansion of the city
leads to an over-investment in roads. CT and FB yield a higher area per
household because a smaller area is devoted to roads.

5 Conclusion

This paper examined the impacts of congestion pricing on the urban form.
Our analysis reveals the importance of tolling on household decisions and
consequently on the urban structure of the city. As a solution of the opti-
mality conditions we derive, among other variables, the households distribu-
tion and the amount of land allocated to transportation over the city. Our
analysis concludes that convenient congestion pricing leads to more efficient
urban forms. The increase in welfare results from the reduced travel cost and
the better allocation of land between housing and roads. In monetary terms,
first-best toll yields a welfare increase estimated at 606 M€,'"? Accounting for
environmental impact, the welfare gain of congestion pricing will be greater.
Using an alternative empirical approach, Daniel & Bekka (2000) estimate
that congestion pricing leads to a 10% reduction of emissions. We found
that vehicle-kilometer (and so the related emissions) can be reduced by 16%.
The difference is due to the fact that we integrate the long-term impacts on
housing. De Palma & Lindsey (2006) obtain higher but comparable results.

9From the base case in Table 5, we have 286€ as impact on the surplus. Aggregating
over the total population yields the value of 606 M€.
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They take into account a more general set of trips (not only home-to-work)
and other sources of externalities (noise, accidents, etc.).

The linear toll reaches a good efficiency level in comparison to the first-
best scheme, but its implementation is equivalent to an important increase
in the vehicle operating cost. In practice, the cordon toll represents a poten-
tial alternative. Indeed, it induces a satisfactory increase in the housholds’
surplus and encounters lower opposition from road users, as revelaed by true
experience in recent years.

The model we have considered does not intend to perfectly reproduce
housing and transportation in IDF. The monocentric model has well known
limitations and there is a number of issues relevant to the region IDF that
we have not discussed. In particular, there are multiple (smaller) business
centers outside the CBD, and many working trips do not concern the CBD.
We have assumed that all households have the same revenue, the same pref-
erences and make only a daily home-to-work trip.2’ One further limitation
in this model is that the attractiveness of the CBD is limited to savings in
transport costs. This assumption, which is acceptable in simplified contexts,
is not reasonable for agglomerations such as Paris where other facts such as
the richer social life play an important role.

It is not easy to deal with all these facts at the same time, but the
theory of the polycentric city is not yet sufficiently coherent and complete to
represent a better alternative. Indeed, polycentric models do not refer to a
precise model, but rather to a class of models. It would be useful to develop
an analysis based on polycentric models that overcomes the weaknesses of
the monocentric model. Still, this approach would require an identification
of the limitations, both theoretical and empirical, of the monocentric model.
Some of these limitations are direct extensions of the monocentric city model,
and we plan to address these issues in future research in which we also plan
to add the multi-cordon toll scheme. Indeed, the solution approach adopted
here can be adapted to cordon pricing. At the same time, our conclusions
about the impact of congestion pricing on the urban form and the levels of
emissions should extend to more complicated frameworks.

20Brueckner & Selod (2006) discusses the optimal choice of transport systems.
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A Interpretation of the HS; model

The necessary and sufficient conditions for a solution to the HS; model,
formulated in Section 2 above, are (7)-(9) and the following (22a)-(22f):*!

py = [P g =10 =)0 ) <<y
R4 r > s,
R(r)=v(Y —g—1Ur)—7(r),u) if n(r) >0, (22h)
R(r) = i < é\; ((7;))) if Lp(r) >0, (22¢)
s(r)y=8SY —g—1Ur)—7(r),u), re <r <y, (22d)
_ L(r) = Lp(r)
n(r>_S(Y—g—l(7’)—T(7’),u)’ re <1 <ry, (22e)

I(r) = / d (L]\;((?)) []/\;((?) dv, re<r<r) (22f)

Equations (22a), (22b) and (22c¢) state that each piece of land should be
allocated to the highest bidder. It follows that if both n(r) and Lp(r) are
(strictly) positive, then the households’ bid rent is equal to the bid rent of the
transport sector. Furthermore, at the outside boundary of the city (at ry)
the bid rent function is equal to the agricultural rent R4. Condition (22d)
ensures that each household is choosing its bid-max lot size to maximize
its utility (from (1) and (2)). Equation (22e) implies that constraint (7)
is binding at the optimum, i.e. all the available land within the city is
used either for housing or transportation. The location tax in (22f) reflects
external costs induced by each household. It can be shown that under this
congestion pricing the optimal solution yields

/T :f R(r) Ly (r)dr — / :f 1(r)n(r)dr. (23)

meaning that the cost of transforming (agricultural) land to roads is just
equal to the total amount of congestion tolls collected. The government
budget is balanced in this sense.

21Gee Fujita (1989).
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Transportation introduces externalities in the monocentric model and ef-
ficient solutions can no longer be obtained without public intervention.??
In particular, the location tax given in (22f) is devised so that households
internalize the external costs they impose on other road users.?> The effi-
cient allocation can then be decentralized through a compensated equilib-
rium (given by (22)), where the government chooses g, I(r) and Lr(r). The
decentralization is a consequence of the fact that the solution to any com-
pensated equilibrium can be obtained as a solution to the HS; model and
vice versa. The government can reach any target utility level by imposing
adequate population taxes. The government decides on the taxes to collect
and the amount of land to allocate to roads at each distance. Let HSp(u)
refer to the Herbert-Stevens model with traffic congestion when the target
utility is equal to u.?* The following result (adapted from Fujita (1989))
states the relation between the HS; model and competitive equilibria.

Proposition 2. (R(r),n(r),s(r), Lr(r),rs, g%, U(r)) is a solution to the HSy(w)
if and only if it is a compensated equilibrium under target utility w.

The total surplus in (6) may be written as

B Ty Y_g—l(T)—Z(S(T>’u>_ s(rin(r
y_/rc {( e RA) (r)n(r)
— Ly(r)Ra+gn(r) + U(r)n(r)} dr. (24)

Using (5), (22b) and (23), it becomes

S = / RA)L(r)dr + gN, (25)

-~

TDR

where TDR stands for total differential rent. To illustrate the solution for
varying utility levels, let us write ./, TDR and ¢ as a function of u. We
have from (24) and (25):

S (u) = TDR(u) + N g(u). (26)

22In the absence of transportation externalities the competitive solution without gov-
ernment intervention is efficient.

23The impact of unpriced congestion is discussed in Arnott (1979) and Arnott & MacK-
innon (1978).

24We discuss how the values of u (and/or g) are chosen (and what it reflects).
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Figure 4: HS7 model and compensated equilibria.

The function . has the following properties:*® . (u) is continuously in-

creasing in u, and lim,—, o .7 (u) = N (Y —7(r.)) and lim,_, 1 o, . (u) = —o0.
The function g has the following properties: g(u) is continuously decreasing
in u, lim,—,_ g(u) =Y — 7(r.) and lim,_,;« g(u) = —oc.

Figure 4, which is adapted from Fujita (1989), is useful for understanding
the relationship between the solution to the HS; and compensated equilibria.
The surplus related to the first-best optimum is given by curve . (u). When
the tolling scheme is not optimal, we necessarily obtain a lower level of surplus
for any utility level. Under a non-optimal congestion pricing, curve .%(u)
therefore moves downwards as the dashed curve. The total differential rent
can either be redistributed to the households or to an absentee land owner.
In the latter case, the households revenue is just Y. From Proposition 2 it is
clear that point A corresponds to the solution of the competitive equilibrium
or to the compensated equilibrium with target utility w*. This solution is

25These properties are obtained as an extension to the model without transportation
externalities (see Fujita 1989, page 74).
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obtained under optimal congestion pricing, so if we set I(r) to a different
level we obtain a lower level of surplus. To reach the utility level at point B
the households must receive a total subsidy equal to TDR(u)/N. Such is
the situation where the total differential rent is redistributed to city citizens.
The same is the solution to a competitive equilibrium with an absentee land
owner but where the revenue Y is replaced by Y + TDR(u)/N. The case
where only part of the rent is redistributed is an intermediate case between
the two extremes.

In this sense, g may be interpreted as a control variable that indicates
how much of the total differential rate is redistributed to city residents. The
HS7 model can be seen from another perspective. If the utility level is given,
the population tax should be designed so that condition (9) is met. That
is, the population in the city remains equal to N. Indeed, ¢ appears in the
solution as a multiplier for this condition (See Fujita 1989, page68).

In many papers, (Kanemoto 1977, Robson 1976, Pines & Sadka 1985,
inter alios) the problem has been formulated as utility maximization under
the revenue constraint. This result may be obtained from the HSy model by
finding the highest level of utility given the budget constraint

NY > /rf{[T(r) + Z(s(r),u) + Ras(r)n(r) + RaLr(r)}dr

is satisfied, i.e. total revenue is higher than total costs. However, notice that
this constraint is just .#(u) > 0 which in Figure 4 coincides with point B.

B Proof of Proposition 1

Let us denote the road occupancy at r by I'(r), i.e.

Hr) = ivT(é))

Replacing (8) and (27) by an equality between differentials with appro-

(27)

30



priate boundary conditions, we may easily write all equations (7)-(9) as

(N

LT(T)

(- s(r)

Now, let us examine equations (22a)- (22c¢) involving R(r).

= ()
= N'(r)s(r) + L(r)
— N(r) for r. <r <y,
LT(T)
= oI'(r))
= SY —g—1Ur)—7(r),u)
nditions
T(r.) = 0
lire) = 0
N(r.) = N
N(’/’f) = 0

(28)

(29)

Recall that

we have assumed n(r) > 0 and Lp(r) > 0 for r. < r < ry. Thus, the three
equations (22a)- (22c) are equivalent to

R(r)
R(r)
¢r(I'(r))

= Ry for r>ry

= Yp([(r)) for ro<r<rs

= Y —g—IUr)—7(r),u) for r.<r<rs.

Notice that by continuity at r; the first two equations imply that

Yr((ry)) = Ra.

Now, let us consider the third equation. Notice that

WY —g—1l(r) —7(r),u) = R(r)

Y —g—1(r) = 7(r) = 6(R(r),u) by (10)
(r) +7(r) =Y — g — ¢(R(r),u)
Ur) +7'(r) = —%(R(T),U))R'(T)

(Y —g,u) = R(rc) by (29)
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Recollecting all the results above gives the following equivalent formulation

of conditions (22a)-(22e):

/

R(r) =

_Ur) + e(I'(r))

99
o (R(),u)

for r. <r <y

0 (31)

n

(0(R(r),u),u)

dr(T'(r))
RA for

for 7. <r <y

rZ>Ty

We end up by replacing I'(r) by v7' (R(r)) in the two differential equations.

C Numerical implementation

An NSP software was developed to solve (11).

e afirst function computes an approximate solution R, (r) and N, (r) of
the double backward differential equation (11) over the interval [r.; 7],
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rewritten here:

R = WP + o (R)

Ny ey i)

N = =56, ) 0)

with final conditions R(rf) = Ra, N(ry) =0

In order to cautiously solve the equations above, the following numer-
ical procedure was used:

1. Initialization. Set n =0, 7% =r;, R® = R4, N° =0
2. while r" > r. do

(a) compute R'(r"™) and N'(r™)

(b) compute 6r" = min [r" — Te, Max (57’mm, min(07az, ﬁ—rﬁ)', %))] :

note that three parameters are used: the maximum and mini-
mum admissible values for 0r™, dr,,;, and 07,,.., and a fraction
¢ limiting the progress of the numerical integration.

(¢c) n—>n+1
(d) rm*tt =y — 6", R = R* — r"R/(r™), N*H = N™ —
or"N'(r™)

3. Conclusion. Since 7" = r¢, set R, (r.) = R" and N, (r.) = N"

e a second function searches and finds ry (using dichotomy) such that
N,,(rc) = N. The algorithm is the following:

L. Initialization. Set ry = r., ro = 2r¢, 13 = 3r¢; compute N; =
Ny, (re) = N, for j €1,2,3.
2. while X2 > 1070 and 2111 > 10-%, do
(a) if N3Ny < 0 (the solution lies in [rq;rs]) then
i. set 73 =19, N3 = Ny, 79 = (11 +72)/2
ii. compute Ny = N,,(r.) — N
(b) else if NoN3 < 0 (the solution lies in [ro;73]) then
1. set T =T, N1 = NQ, To = (TQ +7’3)/2
ii. compute Ny = N,,(r.) — N
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(c) else the solution does not lie in [rq;73]) then
i. set T = Tog, N1 = NQ, 9 = T3, N2 = Ng, s = 1.1 T3
ii. compute N3 = N,,(r.) — N

There is a further detail that should be taken into account in the iterations.
Since N'(r) is always negative, from the second line in (11) we have:

N(r)

L(r)’

vz (R(r)) =

Hence, 7' (R) in (15) is replaced by
ot () = ma{ T, (ED e

This change is important when the area just next to the CBD border is
exclusively allocated for transportation.

D Notation

Variable description

rdistance to the city center ||

r. radius of the district center ||
ry radius of the urban fringe |L|
c(y) marginal transport cost [€L7!| as function of road occupancy
g population tax per household [€]
I(r) location tax per household at r [€]
N(r) number of households located further away than r from the city center
N total households in the city
Y annual income |€]
n(r) lineic density of households at r [L™]
R(r) rent at 7 per unit of area [€L7?]
R4 opportunity cost of land [€L 2]
s(r) housing area per agent at r |L?|
L(r) total amount of land available at r |L!]
Lr(r) amount of land devoted to transport use at r [L!]
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R,lng (km) HOllsehOIdS Veh. used for home-to-work trips travel time (hours) Land rent (€/m*m/year)
3.5-7 674 832 140 956 102.39
7-14 1 260 076 580 538 0.37 82.03
14-21 771 020 491 077 0.50 74.07
21-28 438 363 336 195 0.63 70.22
28-35 252 913 225 534 0.74 69.41
35-42 130 083 115 719 0.87 68.64
42-49 109 050 96 744 0.97 71.14
49-56 72 312 59 604 1.10 68.83
56-63 54 568 47 144 1.23 72.31
63-70 32 559 26 983 1.33 69.34
total 2 120 493
Table 4: Data on IDF for ten rings.
tx rr 5 VK RD TT TTy Cr Cp Cy AS
Total City Housing Trip Roads’ Travel Free-flow Land Transp. Composite Asurp
tax radius area length area time TT cost cost good cost
€/y km m km 10T m mins mins €/y €/y €/y €/y
Base-case. Cordon toll: located at 21.998km, value 22.457€/day; Linear: x = 0.21/m/year
No toll 769 73.423 84.236 22.075 7 539 37.68 21.00 5 750 3 469 41 671 0
Cordon toll 2 410 55.633 84.889 19.633 6 482 33.90 18.24 5 499 3 081 42 147 181
Linear toll 3 541 46.246 81.385 18.727 6 042 32.70 17.22 5 185 2 960 42 479 271
First-best 7172 48.650 83.129 18.711 6 049 33.70 17.22 5 360 3 021 42 222 286
Scenario 1. k' : 6.6 — 10.0 Cordon toll: located at 21.496km, value 26.065€ /day; Linear: x = 0.24/m/year
No toll 778 75.241 81.339 22.280 8 196 40 21 5 760 3673 42 057 0
Cordon toll 2 534 55.493 82.629 19.579 6 949 36 18 5 539 3 285 42 445 236
Linear toll 3 605 44.935 78.635 18.521 6 394 35 17 5 222 3157 42 765 347
First-best 8 141 47.788 80.726 18.556 6 430 35 17 5 331 3163 42 629 368
Scenario 2. a4+ 3 =1and 8: 0.20 — 0.21 Cordon toll: located at 22.200km, value 24.783€/day; Linear: k = 0.22/m/year
No toll 790 89.677 85.224 22.583 7571 40 22 5 805 3 667 44 907 0
Cordon toll 2 625 68.474 87.307 20.522 6 722 37 19 5716 3 369 45 135 173
Linear toll 3 530 52.415 84.401 19.545 6 261 36 18 5 469 3 253 45 385 273
First-best 8 037 55.953 86.104 19.494 6 253 35 18 5 549 3 246 45 293 292

Table 5: Summary statistics under different pricing regimes and parameter

values.
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Figure 5: The fraction of land available for transportation and housing.
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Rent (euros/mz)

Households / km?
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Figure 6: Land rent (base-case).
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Figure 7: Distribution of households (base-case).
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Land allocated to transport (m)
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Figure 8: Land allocated to transport (base-case).
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