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Homogenization of dislocation dynamics
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Marne-la-Vallée Cedex 2, France
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Abstract. In this paper we consider the dynamics of dislocations with the same Burgers
vector, contained in the same glide plane, and moving in a material with periodic obstacles. We
study two cases: i) the particular case of parallel straight dislocations and ii) the general case
of curved dislocations. In each case, we perform rigorously the homogenization of the dynamics
and predict the corresponding effective macroscopic elasto-visco-plastic flow rule.

1. Introduction
In the recent years, an important effort has been done, both to improve the methods to compute
discrete dislocation dynamics (see for instance the book of Bulatov and Cai [1] and the references
therein) and also to connect them to continuum models of plasticity in crystalline solids (see
for instance Fivel et al. [2] and more recently Hoc et al. [3]). Although continuum models
of dislocations are known since the 50’s (see Kröner [4, 5]), the dynamics has been taken into
account only recently : see Groma et al. [6, 7] in 2D (and their mathematical studies in [8, 9]),
Hochrainer et al. [10], and Monneau [11] in 3D. The goal of our work is to present, on a particular
example, a rigorous justification of a continuum model with densities of dislocations bridging
the gap with dislocation dynamics at the microscale. Indeed for a very special geometry, we
are able to deduce by homogenization, the macroscopic elasto-visco-plastic flow rule relating the
plastic strain velocity to the shear stress. The full technical details are presented in [12].

2. Homogenization of straight dislocations
In this section, we consider the case of parallel straight edge dislocations with the same Burgers
vector b = bex with b > 0, where (ex, ey, ez) is an orthonormal basis with corresponding
coordinates (x, y, z). All these dislocation lines are assumed to be contained in the same glide
plane (x, y) and to move in this plane.

2.1. The microscopic model for straight dislocations
Because of our assumptions, for every integer i ∈ Z, we can simply describe the position of the
i-th dislocation by its real abscissa that we call xi(t) where t is the time. We want to take into
account the interactions of each dislocation with other defects in the crystal, that constitute
obstacles to their motion. Those obstacles can be for instance other pinned dislocations or
precipitates. In order to simplify the analysis, we will assume that these obstacles are periodically
distributed, of spatial period λ. In our model, those obstacles will be simply modeled by a smooth
periodic potential V per satisfying V per(x + λ) = V per(x). Then the energy of the system is the



sum of two contributions: the interactions of each dislocations with the periodic potential and
the sum of the two-body interactions between dislocations associated to a pair potential V . The
energy of a set of dislocations is then given by

E =
∑

i

V per(xi) +
∑

i<j

V (xi − xj) with V (x) = −µ̄b ln |x| and µ̄ =
µ

2π(1 − ν)

where the constants µ and ν are respectively the shear modulus and the Poisson ratio. Remark
that the force −V ′(x) is then the usual Peach-Koehler force created at the point x by an edge
dislocation positioned at the origin.

We then consider the fully overdamped dynamics, where the velocity is proportional to the
force, i.e.

B
dxi

dt
= −∇xi

E + τext (2.1)

where B is the viscous drag coefficient and the force is on the right hand side. The first
contribution to the force is a term deriving from the energy and τext is a real exterior applied
shear stress, that can be seen as a driving force of the system. A natural question is then: what
is the macroscopic behavior of this system ?

In order to answer this question (which is done in Theorem 2.1), we have to introduce the
plastic strain. To each dislocation is associated a three-dimensional displacement in the crystal,
whose plastic strain is localized in the glide plane z = 0 and is equal to γδ0(z) where δ0 is the
Dirac mass. For instance, for a dislocation xi, the intensity γ (that we continue to call plastic
strain) is equal to −bH(x − xi) where the Heaviside function H(x) is equal to 1 for positive x
and zero otherwise. Here the sign defining the plastic strain is such that the quantity γ increases
when xi increases. Then the total plastic strain can be written as

γ(x, t) = −b
∑

i

H(x − xi(t)).

2.2. The normalization procedure
We are now interested in the behavior of the system at a macroscopic scale Λ such that
Λ >> λ = λ̄b where λ̄ > 1 is a fixed ratio. Then we introduce several dimensionless quantities.
We call x̄ and t̄ the normalized spatial and time coordinates at the macroscopic level, and
introduce a parameter ε and the associated normalized macroscopic plastic strain γε such that

x̄ =
x

Λ
, t̄ =

µ̄

B

t

Λ
, ε =

b

Λ
and γε(x̄, t̄) =

1

Λ
γ(x, t) with γε(x̄, 0) = ε

[

1

ε
γ0(x̄)

]

(2.2)

where [·] is the floor function, γ0 is a given function and BΛ/µ̄ is a typical macroscopic time
deduced from equation (2.1). Remark that ε can be very small in our application (for instance
ε ≃ 10−6 if b ≃ 10−9m and Λ ≃ 10−3m).

We expect that the macroscopic behavior of the model is well described by the limit
macroscopic plastic strain γ0(x̄, t̄) of γε(x̄, t̄) as ε goes to zero.

2.3. Heuristics for the macroscopic stress field
In this subsection, we want to give heuristic expressions of the normalized dislocation density
and the macroscopic stress field, in terms of the limit macroscopic plastic strain.

We remark that the gradient of the map x 7→ −γε(x/Λ, t̄)/ε is a sum of Dirac masses,
and then the number of dislocations in a large segment of length ∆x is formally given by

−
∫ ∆x

0
1

εΛ
∂γε

∂x̄
(x/Λ, t̄) dx. This shows at least formally that the dislocation density can be



estimated as ρ(x, t) = − 1
εΛ

∂γ0

∂x̄
(x̄, t̄). Then the total stress on the right hand side of (2.1)

can be formally described at the macroscopic scale by

τ = τext + τsc with τsc(x̄, t̄) = −µ̄

∫ +∞

−∞

dx̄′

x̄ − x̄′

∂γ0

∂x̄
(x̄′, t̄) (2.3)

where we take the principal value in the integral defining the self-consistent field τsc. This
expression can be deduced from the equation τsc(x̄, t̄) = −(V ′ ⋆x ρ)(x, t), where ⋆x denotes the
convolution with respect to the variable x. Remark also that the expression (2.3) of τsc is known
to be the resolved shear stress created by the normalized dislocation density

ρ0 = −
∂γ0

∂x̄
(2.4)

where for instance ρ0 = 1/λ̄ when there is one dislocation by spatial period λ. In particular, we
see that τsc keeps the memory of the long range interactions between dislocations.

2.4. The homogenization result
We expect that the effective equation satisfied by the limit γ0 can be written











∂γ0

∂t̄
= f(ρ0, τ), for all x̄ ∈ R, t̄ ∈ (0,+∞),

γ0(x̄, 0) = γ0(x̄) for all x̄ ∈ R

(2.5)

where ρ0 is given in (2.4) and τ in (2.3). Then our main result is:

Theorem 2.1 (Homogenization of straight dislocations)
Assume that the initial data γ0 is non-decreasing and satisfies |γ0| + |γ′

0| + |γ′′
0 | ≤ C for

some constant C. Then for any C2 periodic potential V per, there exists a continuous function
f : R

2 → R such that τ 7→ f(ρ0, τ) is nondecreasing. And there exists a unique viscosity solution
γ0 of the equation (2.5).
Moreover, under the assumptions and notation of this section, there exists a unique solution γε

associated to the dynamics (2.1) with initial data given in (2.2), and γε converges to γ0 locally
uniformly on R × [0,+∞).

This result is proven rigorously in [12] in the mathematical framework of viscosity solutions
(see for instance Crandall, Ishii, Lions [13] for an introduction to this theory). We explain in
the next section how we compute the function f , which keeps the memory of the short range
interactions between the dislocations and the periodic potential V per.

2.5. Computation of f using Orowan’s law
In this subsection, we briefly explain (without any justifications) how to compute the function
f . We refer the reader to [12] for the proofs of those results.
Case A: V per ≡ 0.
In this special case, we can show that

f(ρ0, τ) = ρ0v̄ with v̄ =
τ

µ̄
(2.6)

which is nothing else than the normalized Orowan’s law giving, in a dimensionless form, the
plastic strain velocity as the product of the normalized dislocation density ρ0 and the normal-
ized mean velocity v̄ of the dislocations.



Case B: General periodic potential V per.
In that case, the function f can be computed using the following two steps.
Step 1.
For i ∈ Z, we look for solutions to (2.1) of the following special form

xi(t) = b · h

(

vt

b
+

i

ρ0

)

, with h(a + λ̄) = λ̄ + h(a) for all a ∈ R

for some constant v and for a function h which is called a hull function. Both v and h have
to be determined. Because of the convexity of the two-body potential V outside the origin, it
is possible to show that the constant v exists and is unique. Moreover this constant v can be
interpreted as the mean velocity of each dislocation.
Step 2.

We simply define f(ρ0, τext) using the normalized Orowan’s law as in (2.6), but with the
normalized velocity v̄ replaced by the constant v̄ = B

µ̄
v.

2.6. Numerical computation of f
We present numerical simulations for the computation of the function f . We work with
dimensionless quantities: λ = 1 = λ̄ = b = B = µ̄. We put initially N dislocations in an
interval of length l = 10 which is repeated periodically. Therefore this interval contains l times
the period of the periodic potential that we choose equal to V per(x) = A

2π
sin(2πx) with A = 3.

We discretize the ODE system (2.1), using an explicit Euler scheme with a time step ∆t = 0.01.
We compute numerically the mean velocity v of the dislocations after a final time T = 1000. We
then set f = ρ0v with ρ0 = N/l. We do the computation with N = 1, ..., 200 and 0 ≤ τext ≤ 9
with ∆τext = 9

200 . Remark that we can restrict our computation for positive τext, because we
have f(ρ0,−τext) = −f(ρ0, τext), from the symmetry of the potential V per in our problem. The
level sets of the function f are represented on Figure 1. In order to have a better view of the
set where f = 0, this set is conventionally represented in Figure 1 with artificial negative values
of f . We remark that this figure shows in particular a collective behavior of the dislocations:
higher is the density of dislocations, then easier the dislocations move above the obstacles.

Figure 2 shows the map τext 7→ f(ρ0, τext) for ρ0 = N/l with N = 1, 10, 20. We see in
particular that for τext under a threshold (that depends on the dislocation density ρ0) the
function f vanishes.

Figure 1. Level sets of the effective
f(N/l, τext) with N on abscissas and τext on
ordinates
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Figure 2. For N = 1, 10, 20, graph of the
map τext 7→ f(N/l, τext)



3. Homogenization of curved dislocations
In this section, we very briefly generalize the previous analysis to the case of curved dislocations
all contained in the same plane (x, y) with the same Burgers vector b = bex with b > 0.

3.1. The microscopic model for curved dislocations
For i ∈ Z, the motion of the i-th dislocation curve Γi(t) at the point X ∈ R

2 is given by its
normal velocity V defined by

B · V(X, t) = τper(X) +
∑

j

Fj(X, t) (3.1)

where Fj(X, t) is the resolved Peach-Koehler force created by the dislocation Γj(t) at the point
X. Here τper is a smooth periodic function satisfying τper(X + λk) = τper(X) for all k ∈ Z

2,
which represents the periodic obstacles to the motion of the dislocations and can also include
the exterior applied stress. To give the expression of this force, it is convenient to introduce a
continuous function γ̃(X, t) such that each dislocation curve Γj(t) can be seen as the level set
γ̃(X, t) = jb (when this level set is non-degenerated). Then a good approximation is given by

Fj(X, t) =
1

2

∫

R2

dZ J(X − Z) sign(γ̃(Z, t) − jb)

where, in the integral, the sign function takes values −1, 0, 1. Here the kernel J is smooth and
satisfies for a cut-off radius R = R̄b with R̄ > 1 fixed:

J(−X) = J(X) ≥ 0, and J(X) = J∞(X) :=
1

|X|3
g

(

X

|X|

)

for |X| > R > 0

where for isotropic elasticity with X = (x, y), we have g
(

X
|X|

)

= µb
4π

{

x2(2β−1)+y2(2−β)
x2+y2

}

with

β = 1
1−ν

. Remark that this formula allows to describe with the same formalism edge, screw and
mixed dislocations (see for instance [14]). We also define the plastic strain γ as

γ = b

[

γ̃

b

]

where we recall that [·] is the floor function. Then we proceed as in the previous section and
define

X̄ =
X

Λ
, t̄ =

µ

B

t

Λ
, ε =

b

Λ
, and γε(X̄, t̄) =

1

Λ
γ(X, t), with γε(X̄, 0) = ε

[

1

ε
γ0(X̄)

]

.

(3.2)

3.2. The homogenization result
We expect that the effective equation satisfied by the limit γ0 of γε can be written











∂γ0

∂t̄
= f(−∇γ0, τsc), for all X̄ ∈ R

2, t̄ ∈ (0,+∞),

γ0(X̄, 0) = γ0(X̄) for all X̄ ∈ R
2

(3.3)

with

τsc(X̄, t̄) =

∫

R2

dZ J∞(X̄ − Z)γ0(Z, t̄)

where we take the principal value of the integral. Remark that this expression of τsc is consistent
with the one given in (2.3) in the special case where γ0(x̄, ȳ, t̄) is independent of ȳ. Then we
have



Theorem 3.1 (Homogenization of curved dislocations)
Assume that the initial data satisfies |γ0| + |∇γ0| + |D2γ0| ≤ C for some constant C. Then
for any C2 periodic function τper, there exists a continuous function f : R

2 × R → R such that
τ 7→ f(·, τ) is nondecreasing. And there exists a unique viscosity solution γ0 of the equation
(3.3).
Moreover, under the assumptions and notation of this section, there exists a unique solution γε

associated to the dynamics (3.1) with initial data given in (3.2), and γε converges to γ0 locally
uniformly on R

2 × [0,+∞).

4. Conclusion
The main result of our work is the justification of the elasto-visco-plastic flow rule by the
homogenization of the dynamics of dislocations with the same Burgers vector, moving in the
same glide plane with periodic obstacles. Even if this geometry is very particular, this is, up
to our knowledge, the first rigorous result in this direction. We also explained how to compute
the flow rule, and presented numerical results. The proof of the homogenization for straight
dislocations uses strongly the local convexity of the two-body potential V (which is equivalent
to the non-negativity of the kernel J in the case of curved dislocations).

Remark that for the same dynamics, it is possible to find non-convex potentials V , for which
there is no homogenization. For a general geometry, there is in general no hope to find any
convexity argument to justify homogenization. On the contrary, it seems reasonable to think
that homogenization could arise in general, if we assume moreover that the dynamics is modified
by the addition of a small random noise. But this is still an open problem to investigate.
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