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A Simple and Efficient Regularization Method for 3D BEM:
Application to Frequency-Domain Elastodynamics

Patrick Dangla∗, Jean-Franois Semblat∗∗,1, Haihong Xiao∗∗, Nicolas Delpine∗∗

∗ LCPC/LMSGC, 2 alle Kepler, 77420 Champs-sur-Marne, France
∗∗ LCPC, 58 bd Lefebvre, 75732 Paris Cedex 15, France

Abstract

An efficient and easy-to-implement method is proposed to regularize integral equations in the 3D Bound-
ary Element Method. The method takes advantage of an assumed three-noded triangle discretization of the
boundary surfaces. The method is based on the derivation of analytical expressions of singular integrals. To
demonstrate the accuracy of the method, three elastodynamic problems are numerically worked out in fre-
quency domain: cavity under harmonic pressure, diffraction of a plane wave by a spherical cavity, amplification
of seismic waves in a semi-spherical alluvial basin (the second one is also investigated in time domain). The
numerical results are compared to (semi-) analytical solutions; a close agreement is found for all problems
showing the very good accuracy of the proposed method.

1corresponding author: semblat@lcpc.fr
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Regularization of Boundary Integral Equations

In contrast to other discretization methods, the Boun-
dary Element Method involves singular integrals. Ac-
cording to the power, there are three kinds of singu-
larities that depend on whether integrability is defined
(i) in the ordinary Riemann sense (weak singularity),
(ii) in the Cauchy principal value sense (strong singu-
larity) or (iii) in the Hadamard finite part sense (hyper-
singularity). Strong singular integrals appear in the Or-
dinary Boundary Integral Equations (OBIE) while the
Derivative Boundary Integral Equations (DBIE) involve
both the strong and hyper-singular integrals. Strong
and hyper-singular integrals have to be converted to
regular ones in the regularization of the BEM formu-
lations (Tanaka et al., 1994; Sladek and Sladek, 1996,
1998). Strictly speaking, weak singularity is not treated
by regularization. However, from the point of view of
numerical integrations, one should devote a great atten-
tion to the evaluation of these integrals because stan-
dard integration quadratures fail in accuracy (Lachat
and Watson, 1976; Sladek et al., 1997, 2001; Manolis
and Beskos, 1988). Therefore each type of singularity
has to be treated by appropriate techniques. Most of the
researches has dealt with strong (Bonnet and Bui, 1993)
and hyper-singularities. Some methods have been pro-
posed in the literature to treat these singular integrals
(Sladek and Sladek, 1996; Niu and Zhou, 2004; Guig-
giani and Gigante, 1990; Guiggiani et al., 1992; Chen
and Hong, 1999; Bonnet, 1999; Bui et al., 1985; Bonnet
and Xiao, 1995; Aubry and Clouteau, 1991; Xiao, 1994;
Guiggiani, 1994). It is noticed that the regularization
can be performed either before or after the discretiza-
tion, i.e. in the global or local (intrinsic) coordinate
space, as observed in some papers mentioned above. A
comprehensive review of BEM in dynamic analysis has
been proposed by Beskos (Beskos, 1997).

In this paper, the regularization is performed in the
global coordinate space after the discretization of the
geometry. Herein, only strong and weak singularities
of the ordinary boundary integral equations are dealt
with. The method takes advantage of an assumed three-
noded triangle element for the discretization of three-
dimensional problems. Thanks to this simple shaped
element, one can performed analytical derivations of the
Cauchy principal value of the singular integrals. Such
an approach has been previously applied for 2D elas-
todynamic problems in (Dangla, 1988, 1990). To the
author’s best knowledge, this method has not been used
in any 3D analysis. This paper addresses this issue by
summarising the theoretical background of the method.
Afterwards, the efficiency and accuracy of the regular-
ization method is analysed in 3D elastodynamics.

Numerical Modeling in Elastodynamics

To analyze problems in 3D elastodynamics, various
numerical methods are available:

• the finite element method which is efficient to deal
with complex geometries and numerous heterogene-
ities (Chammas et al., 2003), even for inelastic con-
stitutive models (Bonilla, 2000). It has neverthe-
less several drawbacks such as numerical disper-
sion (and damping) (Ihlenburg and Babuška, 1995;
Semblat and Brioist, 2000) and (consequently) nu-
merical cost in 3D elastodynamics,

• the finite difference method which is very accurate
in elastodynamics but is mainly adapted to simple
geometries and linear constitutive models (Frankel
and Vidale, 1992; Moczo et al., 2002; Virieux,
1986)

• the boundary element method which allows a very
good description of the radiation conditions but is
preferably dedicated to weak heterogeneities and
linear constitutive models (Banerjee et al., 1988;
Beskos, 1997; Beskos et al., 1986; Bonnet, 1999;
Dangla, 1988; Snchez-Sesma and Luzn, 1995; Yokoi,
2003)

• the spectral element method which has been in-
creasingly considered to analyse 2D/3D wave prop-
agation in linear media (Faccioli et al., 1996; Ko-
matitsch and Vilotte, 1998)

• the Aki-Larner method which takes advantage of
the frequency-wavenumber decomposition but is
limited to simple geometries (Aki and Larner, 1970;
Bouchon et al., 1989)

• series expansions of wave functions which give a
semi-analytical estimation of the scattered wave-
field for simple geometries (Moeen-Vaziri and Tri-
funac, 1985; Snchez-Sesma, 1983)

Each method has specific advantages and drawbacks. It
is consequently often more interesting to combine two
methods to take advantage of their peculiarities. One of
the most common method in elastodynamics is to couple
FEM and BEM allowing an accurate description of the
near field (FEM model including complex geometries,
heterogeneities and constitutive behaviours) and a reli-
able estimation of the far-field (BEM model involving
radiation conditions).

Integral Equations

This paper is limited to isotropic elastodynamics for
time-harmonic problems of circular frequency ω. For
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any given body force distribution Fi(x) over Ω, the gov-
erning equations which must be verified by any displace-
ment and stress fields, ui(x) and σij(x), take the follow-
ing form:

σij = λuk,kδij + µ(ui,j + uj,i) (1)

σij,j + ρω2ui + Fi = 0 (2)

The fundamental solutions, in time-harmonic elastody-
namics, are defined by a force of unit amplitude applied
at a fixed point y and in a fixed coordinate direction k:
Fi(x) = δ(x − y)δik. For infinite body the fundamen-
tal solution, denoted by ui(x) = Uk

i (x,y;ω), is known
as the Helmholtz fundamental solution and is given by
(Eringen and Suhubi, 1975):

Uk
i (x,y;ω) =

1

4πµ

[

1

k2
S

∂2

∂xi∂xk

(

eikSr

r
− eikP r

r

)

(3)

+
eikSr

r
δik

]

where r2 = (x− y)2 and where kP = ω
√

ρ/(λ+ 2µ)

and kS = ω
√

ρ/µ are the longitudinal and transver-
sal wave numbers respectively. The stress tensor asso-
ciated with Uk

i (x,y;ω), defined by (1), is denoted by
Σk

ij(x,y;ω) while the stress vector applied to the sur-

face boundary of Ω is T k
i (x,y;ω) = Σk

ij(x,y;ω)nj .
For sake of simplicity let us assume no body force

from now on. Application of the Maxwell-Betti reci-
procity theorem leads to the following displacement in-
tegral representation at point y ∈ R3 (Bonnet, 1999):

κ(y)uk(y) =

∫

∂Ω

[

ti(x)Uk
i (x,y;ω) (4)

−ui(x)T k
i (x,y;ω)

]

dSx

where κ = 1 (y ∈ Ω) or κ = 0 (y 6∈ Ω).
Let y denote a fixed point on the boundary surface

∂Ω. For a given small ε > 0, introduce a spherical
shaped neighbourhood vε(y) of y, called an exclusion
neighbourhood (Guiggiani et al., 1992). The domain
Ωε(y) = Ω−vε(y) obtained by removing vε(y) from Ω is
such that the point y is exterior to Ωε(y). Its boundary
is ∂Ωε = (∂Ω−eε)+sε, where eε = ∂Ω∩vε, sε = Ω∩∂vε.
The classical form of the integral equation consists in
taking the limit ε→ 0 in the representation formula (4)
taken for the domain Ωε. The limiting expression thus
obtained is known as the Somigliana identity:

Ck
i (y)ui(y) = −

∫

∂Ω

[

ti(x)Uk
i (x,y;ω) (5)

−ui(x)T k
i (x,y;ω)

]

dSx

The notation −
∫

stands for the Cauchy principal value
of a singular integral, i.e. the limit:

−
∫

∂Ω

(·) = lim
ε→0

∫

(∂Ω−eε)

(·) (6)

The free term Ck
i (y) appearing in (5), is defined by:

Ck
i (y) = lim

ε→0

∫

sε

T k
i (x,y;ω) dSx (7)

It is found to be equal to 1/2δik when Ω is smooth at y.

Discretization and Regularization Principle

The boundary surface ∂Ω and the boundary vari-
ables (ui, ti) are discretized by using three-noded trian-
gular elements. A finite set of equations is generated
by enforcing equation (5) at the nodes of the surface
mesh (collocation method). Thus the boundary surface
consists of the set of N boundary surface elements Ee:
∂Ω = {Ee, e = 1...N}. The integral appearing in (5)
then assumes the form of a sum of N element integrals:

−
∫

∂Ω

(·) =
N

∑

e=1

−
∫

Ee

(·) (8)

The numerical evaluation of non singular element inte-
grals that appear in (8) is usually based, like in finite el-
ement methods, on Gaussian quadrature formulas. The
approximate value of an element integral can be given
formally by:

∫

Ee

f(x) dSx ≈
Nu
∫

Ee

f(x) dSx =

n
∑

i=1

wif(xi) (9)

where xi and wi are the coordinates and weights of the

Gauss points. The notation
Nu
∫

stands for the numer-
ical approximation of integrals. This special notation
has been adopted to emphasize that in case of singular

integral −
∫

6=
Nu
∫

.
Since some of element integrals are singular, a straigh-

forward evaluation of (5) based on Gaussian quadrature
formulas will inevitably lead to some significant error.
To correct this error, a new term Rk(y) must be intro-
duced in the numerical evaluation of (5):

Ck
i (y)ui(y) = Rk(y)+

Nu
∫

∂Ω

[

ti(x)Uk
i (x,y;ω) (10)

−ui(x)T k
i (x,y;ω)

]

dSx

The regularization method proposed in this paper
consists in deriving analytically the correction term by
taking advantage of the simple shape of the triangle el-
ements. To do so, let us introduce the Kelvin’s funda-
mental solution:

Uk
i (x,y) =

1

16πµ(1 − ν)r
(r,ir,k + (3 − 4ν)δik) (11)

and note Σk
ij(x,y) the stress tensor associated with so-

lution Uk
i (x,y). It is noticed that the Helmholtz and
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Kelvin solutions have identical singularities:

(x → y)
(∀ω > 0)

{

Uk
i (x,y;ω) − Uk

i (x,y) = O(1)
Σk

ij(x,y;ω) − Σk
ij(x,y) = O(1)

(12)

Thanks to this property the correction term Rk(y)
only needs to involve the Kelvin fundamental solutions.
For a given point y ∈ ∂Ω, introduce the index subset
I(y) = {e ∈ [1, N ],y ∈ Ee} such that the integral over
Ee is singular for e ∈ I(y) and non singular for e /∈
I(y). Introduce ∂Ωy = {Ee, e ∈ I(y)} the set of the
neighborhood elements of y. Thus the correction term
can be formulated in the following form:

Rk(y) = (13)


−
∫

∂Ωy

Uk
i (x,y)dSx−

Nu
∫

∂Ωy

Uk
i (x,y)dSx



 ti(y)

−



−
∫

∂Ωy

T k
i (x,y)dSx−

Nu
∫

∂Ωy

T k
i (x,y)dSx



ui(y)

It can be noticed that formulation (13) is indepen-
dent of the interpolation order since ti(y) and ui(y) only
need to be evaluated at point y. Taking advantage of
the simple shape of the three-noded triangle elements,
we can derive analytical expressions of the singular in-
tegrals appearing in (13).

In particular, it can be shown that they are the sum
of elementary contributions involving elements of I(y):

Ik
i (y) = −

∫

∂Ωy

T k
i (x,y)dSx =

∑

e∈I(y)

Ik
i (y;Ee) (14)

Jk
i (y) = −

∫

∂Ωy

Uk
i (x,y)dSx =

∑

e∈I(y)

Jk
i (y;Ee) (15)

The analytical derivations of Ik
i (y;Ee) and Jk

i (y;Ee)
are proposed in the appendix (equations (30) to (35)).

In a similar manner, the free term involves the Kelvin
fundamental solutions and can be assumed in the form
of a sum of free term elements involving elements of
I(y):

Ck
i (y) = lim

ε→0

∫

sε

T k
i (x,y) dSx =

∑

e∈I(y)

Ck
i (y;Ee) (16)

where the exact derivation of Ck
i (y;Ee) is given in the

appendix (equations (22) to (29)).
Since the method of derivation of the correction term

Rk(x,y) is now established, the formulation (10) can be
considered as the regularized form of the initial integral
equation (5).

Numerical Implementation

Both boundary and unknowns are discretized using
three-noded flat triangles and interpolation techniques
initially developed for the Finite Element Method. The
discretization of the geometry and the unknowns is thus
written, respectively, as follows (Bonnet, 1999):

x(ξ) =

3
∑

k=1

Nk(ξ)xk a(x) =

3
∑

k=1

Nk(ξ)ak (17)

with xk: the node coordinates, Nk: the linear interpola-
tion functions and ak: the nodal values of the displace-
ment or traction unknowns.
Thus, the set of scalar equations resulting from the dis-
cretization of equations (10), enforced at the nodes of
the mesh, has the following matrix structure:

[A]{u} + [B]{t} = 0 (18)

where [A] and [B] are fully populated non symmetric
matrices. {u}, {t} are the “vectors” containing, respec-
tively, the nodal values of ui(y) and ti(y). The incorpo-
ration of the boundary conditions consists in substitut-
ing the prescribed nodal values of (ui, ti) into {u}, {t}
in Eq. (18). The columns of this matrix equation are
reordered so as to have a matrix equation of the form:

[K]{v} = {f} (19)

where the vector {v} consists of the unknown compo-
nents of {u}, {t}. The matrix [K] contains the columns
of [A], [B] associated with those unknown components
while the right-hand side {f} results from the multiplica-
tion of the known components of {u}, {t} by the corre-
sponding columns of the matrices [A], [B]. As shown in
the following for unbounded media, the right hand side
{f} can also involve a contribution due to an incident
wavefield. The method has been implemented into the
computer code CESAR-LCPC (Humbert et al., 2005) of
the Laboratoire Central des Ponts et Chausses (French
Public Works Research Laboratory, Paris, France).

Figure 1: Cavity under harmonic internal pressure:
model description.

Validation in Frequency-Domain
Elastodynamics

Example 1: Spherical cavity under harmonic internal
pressure.

Description of the problem and analytical solution.
The first example (figure 1) concerns a spherical cav-
ity of radius R in a full elastic isotropic space under-
going an internal harmonic pressure. The cavity mesh
includes 320 triangular boundary elements (that is 162
nodes) and a special generation process is considered
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to have a regular triangular mesh of the sphere start-
ing from an icosahedron (Edouard et al., 1996) (also see
next sections). Using the regularization method pro-
posed herein, we have computed the displacement field
around the cavity at various (normalized) frequencies.

The validation of the numerical results is made con-
sidering the analytical solution in terms of radial dis-
placement u(r, ω) given by Eringen and Suhubi (1975)
as follows:

u(r, ω) = −P (ω)R3(ikP − 1/r).exp (ikP (r −R))

4µr(1 − ikPR− k2
SR

2/4)
(20)

where kP and kS are the longitudinal and transverse
wavenumbers.

This equation can be rewritten using normalized dis-
tance χ = r/R, normalized frequency ηP = kPR/π (that
is ηP = 2R/ΛP , ΛP being the longitudinal wavelength)

and considering υ(χ, ηP ) =
µu(r, ω)

P (ω)R
. It leads to:

υ(χ, ηP ) = − (iπχηP − 1).exp(iπηP (χ− 1))

(1 − iπηP − π2ζ2η2
P /4).χ2

(21)

with ζ = kP /kS =
√

(1 − 2ν)/(2 − 2ν) = 1/
√

3 (that is
ν=0.25).

Figure 2: Normalized radial displacement υ(χ, ηP ) (real
part) vs normalized distance χ: comparison between nu-
merical and analytical results for normalized frequencies
ηP =0.01, 0.50, 1.00 and 2.00.

Comparisons between numerical and analytical re-
sults. In figure 2, the real part of the normalized radial
displacement υ(χ, ηP ) defined by equation (21) is dis-
played vs normalized distance χ for both analytical and
numerical solutions at normalized frequencies ηP =0.01,
0.50, 1.00 and 2.00. For the nearly static case (ηP =0.01)
as well as the fully dynamic cases, the agreement be-
tween the numerical results and the analytical ones is
very good at all normalized distances. From this first
simple example, the reliability and accuracy of the pro-
posed method then appear very good.

Efficiency of the regularization method. We will then
investigate the efficiency of the regularization method
itself by evaluating the correction term for the same me-
chanical problem (figure 1). A non regularized solution
is computed by dropping the correction term in (10). In
figure 3, this non regularized solution is compared with
both the regularized one and the analytical solution at
normalized frequencies ηP =0.50 (left) and 2.00 (right).
These comparisons show that the numerical results with-
out the analytical correction are far from both analytical

and corrected numerical solutions. The efficiency of the
regularization method then appears very good since the
direct computation of the singular integrals leads to very
bad results.

Figure 3: Normalized radial displacement υ(χ, ηP ) (real
part) vs normalized distance χ: numerical results with
and without the analytical correction of the singular inte-
grals for normalized frequencies ηP =0.50 (left) and 2.00
(right).

Example 2: Diffraction of a plane wave by a spherical
cavity.

Description of the problem and analytical solution.
The second example deals with the diffraction of a plane
P-wave (uinc = U0 exp [i(kPx− ωt)] with U0=1), prop-
agating along x axis, by a spherical cavity. The numeri-
cal results are firstly computed in frequency domain and
compared with analytical results. They are afterwards
converted into time domain to characterize the scattered
wavefield.
As shown in figure 4, we have computed the wave field
around the cavity for various directions. The boundary
element mesh of the cavity (2562 nodes) is generated
the same way as in the previous case (Edouard et al.,
1996). This mesh has been refined since the wave field
has much stronger variations compared to the previous
example. In figure 4, the radial displacement u(r, θ, φ, ω)
is displayed vs distance χ = r/R for both analytical and
numerical solutions at two different normalized frequen-
cies ηP (ηP = 2R/ΛP ). Different azimuthes are also
considered. The analytical solution in terms of radial
displacement ur is given by Pao and Mow (1973) as well
as Eringen and Suhubi (1975)2.

Comparisons between numerical and analytical re-
sults in frequency domain. The results are computed
for various azimuthes (θi = (i − 1) × 450, 1 ≤ i ≤ 5)
and figure 4 displays the real part of the radial dis-
placement vs normalized distance χ = r/R (1 ≤ χ ≤

2There are two mistakes in the original book of Eringen and
Suhubi (1975) which have to be corrected as follows. The origi-

nal expression of T
(3)
11 in (Eringen and Suhubi, 1975) (page 914,

Eq. (9.12.11)) is:

T
(3)
11 (αr) =

`

n2
− n −

1
2
β2r2

´

h
(1)
n (αr) + 2αrh

(1)
n (αr)

and should be replaced by the following expression:

T
(3)
11 (αr) =

`

n2
− n −

1
2
β2r2

´

h
(1)
n (αr) + 2αrh

(1)
n+1(αr)

The original expression of lCn in (Eringen and Suhubi, 1975) (page
914, Eq. (9.12.13)) is:

lCn = (1/∆n)φ0in(2n + 1)
h

T
(1)
11 (αa)T

(3)
41 (αa) − T

(1)
41 (αa)T

(3)
41 (αa)

i

and should be replaced by:

lCn = (1/∆n)φ0in(2n + 1)
h

T
(1)
11 (αa)T

(3)
41 (αa) − T

(1)
41 (αa)T

(3)
11 (αa)

i

where a is the cavity radius, denoted R in this paper.

5



Figure 4: Diffraction of a plane wave by a spheri-
cal cavity: comparison with analytical results for vari-
ous azimuthes at normalized frequencies ηP =1.00 and
ηP =2.00.

3) at two different normalized frequencies ηP =1.00 and
ηP =2.00. The analytical results are plotted with lines
(dotted for ηP =1.00 and solid for ηP =2.00) and the nu-
merical results with symbols (circles for ηP =1.00 and
bullets for ηP =2.00). The agreement between the nu-
merical and analytical results is very good for all az-
imuthes at ηP =1.00. For θ3 = 900, some slight differ-
ences can be noticed at ηP =2.00 near the cavity wall.
This is probably due to the fact that there is a grazing
incidence at this point.

Scattered wavefield in time domain. The numerical
solutions are then estimated for various frequencies to
compute the time domain scattered wavefield around the
spherical cavity. As shown in figure 5, a Ricker signal,
with normalized frequency ηP =0.50, is considered for
the excitation in time domain and the results are dis-
played for three different azimuthes: θ = 0o correspond-
ing to the direction of propagation (x axis), θ = 45o

and θ = 90o (y axis) that is perpendicular to the direc-
tion of propagation. For each azimuth, the time domain
results are displayed for the upstream part of the prop-
agation (χ ≤ −1) and the downstream part (χ ≥ +1).
For the incident and transmitted wavefields, the vari-
ous azimuthes do not always coincide with the direction
of propagation whereas they correspond to directions of
propagation of the scattered wavefield (see following ex-
planations). As shown in figure 5, the characterization
of the scattered wavefield can then be easily performed
as follows:

• θ = 0o (top left): for this azimuth, only the X
component of the displacement is displayed since
the (computed) Y component is found negligible.
The backward and forward components of the scat-
tered wavefield clearly appear in the figure. For
the upstream part, the scattered wavefield com-
prises a P-wave as well as a S-wave component of
respective velocities very close to the theoretical
values (a few %)3. For the downstream part, the
transmitted wavefield is easily identified and the
scattered S-wave component has a velocity close to
the previous value. Nevertheless, the amplitudes
of the scattered wavefield components are not so
large to identify them from figure 5.

• θ = 45o (center): for this azimuth, the apparent
velocity of the incident and transmitted P-waves

3despite the fact we have considered a less refined mesh than

for frequency domain computations.

is lower because it does not coincide with the di-
rection of propagation. Whereas for the scattered
wavefield, radial directions correspond to the di-
rection of propagation and the time domain nu-
merical results show a large amplitude for both
X and Y components. For the Y component of
the scattered wavefield, both P and S-wave com-
ponents can be identified in figure 5. The veloc-
ity values estimated from the numerical results are
found very close to theoretical ones. The velocity
discrepancy between the downstream S component
of the scattered wavefield and the transmitted P-
wave is only due to the change of the apparent
velocity of the latter which is azimuth dependent.

• θ = 90o (bottom): for this azimuth, the apparent
velocity of the incident P-wave is zero because it
is perpendicular to the direction of propagation.
The X and Y components of the displacement are
displayed on one side of the cavity only since they
are symmetrical on the opposite side. The X com-
ponent clearly shows the S-wave part of the scat-
tered wavefield. The estimation of its velocity is as
good as in previous cases. For this azimuth, the Y
component shows that the interaction between the
plane wave and the cavity is particularly complex
since we have a grazing incidence on the cavity
wall.

Figure 5: Diffraction of a plane P-wave by a spherical
cavity: numerical results in time domain (Ricker signal)
for various azimuthes at normalized frequency ηP =0.50.

Example 3: Amplification of a plane seismic wave by
a semi-spherical alluvial basin.

Description of the problem and reference solution.
The third example investigates the amplification of a
plane seismic wave in an alluvial basin. In seismology
and earthquake engineering, this phenomenon is known
as ”site effects” and generally leads to a strong amplifica-
tion of the seismic motion in soft alluvial deposits (Bard
and Bouchon, 1985; Bielak et al., 1999; Chvez-Garca et
al., 2000; Moeen-Vaziri and Trifunac, 1985; Semblat et
al., 2000, 2003a, 2005). The example considered herein
corresponds to a semi spherical alluvial basin (that is a
soft elastic inclusion) in an elastic half space. Numer-
ous papers have investigated the 3D wave diffraction by
a semi spherical canyon (Lee, 1978; Liao et al., 2004;
Yokoi, 2003) or 3D seismic wave amplification by sur-
face heterogeneities (Dravinski, 2003; Komatitsch and
Vilotte, 1998; Moczo et al., 2002; Snchez-Sesma, 1983;
Snchez-Sesma and Luzn, 1995).

Several results have been published for the case of
a semi spherical alluvial basin (Dravinski, 2003; Lee,

6



Figure 6: Amplification of a plane vertical P-wave by a
semi-spherical basin: model description.

1984; Snchez-Sesma, 1983). The 3D BEM model con-
sidered herein for purpose of validation is depicted in
figure 6: the mesh includes the semi-spherical basin of
radius R (same type of triangular meshing as in the pre-
vious section (Edouard et al., 1996)) and part of the
free-surface (for r ≤ 5R). The contribution of the free
surface r ≥ 5R in the BIE is neglected. Therefore, the
BIE are enforced at the nodes of the mesh except those
located at its boundary. The model is excited by a ver-
tical plane P-wave. For the comparison, we will consider
the results of Snchez-Sesma (1983) derived thanks to a
series expansion method. We will then investigate the
amplification of the motion at the surface of the alluvial
basin (i.e. soft inclusion).

For the semi-spherical basin and the half-space, the
mechanical parameters are chosen identical to Snchez-
Sesma’s values as follows:

• shear moduli: µR/µE = 0.3

• mass densities: ρR/ρE = 0.6

• Poisson’s ratios: νR = 0.30 and νE = 0.25

where subscript R refers to the alluvial basin and sub-
script E to the half-space.
Similarly to the previous section, we consider for the
computations the same normalized frequency as Sánchez-
Sesma corresponding to the diameter-to-wavelength ra-
tio ηP = 2R/ΛP where ΛP is the P wavelength in the
alluvial basin.

Comparison between numerical and reference results.
In figure 7, the amplification of the seismic motion is
computed at the free-surface (vertical displacement) and
displayed vs normalized distance (0 ≤ χ ≤ 3). It is com-
pared with Snchez-Sesma’s results (1983) at normalized
frequency ηP = 0.50. The amplification of the verti-
cal motion at the center of the semi-spherical basin is
very well estimated by our numerical approach: 2.81 for
our numerical approach (i.e. 5.63 in amplitude to be
compared to 2 for the half-space) and 2.82 for Snchez-
Sesma’s results (i.e. 5.64 in amplitude). The com-
puted displacement/distance curve from our numerical
approach is very close to Snchez-Sesma’s semi-analytical
results (figure 7). This amplification value is larger than
for the constant depth layer case (1D) since, for the semi-
spherical basin, focusing effects are very strong (Snchez-
Sesma, 1983; Semblat et al., 2000, 2005).
It should be noticed that the normalized frequency ηP =
0.50 corresponds to the fundamental frequency of the 1D
case (the wavelength being ΛP = 4R with R the depth

of the basin). Nevertheless, at this frequency, the vari-
ation of the amplification factor vs frequency is strong:
for the 3D semi-spherical basin, this frequency is rather
far from the maximum amplification peak. If we com-
pute the amplification factor at the centre of the semi-
spherical basin for various frequencies, the largest site
effects are found at normalized frequency ηP = 0.57. At
this frequency and for the mechanical properties chosen
herein, the corresponding amplification factor is about
4.76 (i.e. 9.52 in amplitude), that is 70% larger than for
ηP = 0.50. For sake of comparisons, around normalized
frequency ηP = 0.57 the amplitude variation with fre-
quency is smaller (resp. basin properties).

Figure 7: Computed vertical motion showing the amplifi-
cation at the basin surface and comparison with Snchez-
Sesma’s result for normalized frequency ηP = 0.50.

Conclusion

In this paper, a simple and efficient method to reg-
ularize singular integrals in 3D boundary integral equa-
tions has been presented. The regularization method is
based on the derivation of analytical terms which correct
the error due to the straightforward estimation of singu-
lar integrals through classical Gaussian quadrature for-
mulas. The analytical derivation of the correction term
has assumed a three-noded triangle discretization of the
boundary surfaces. However, the method described in
the appendix can be easily generalized to any flat ele-
ment such as quadrangle. This method has been im-
plemented in a BEM code and applied to 3D frequency
domain elastodynamics.
Some comparisons have been made with (semi-)analy-
tical results for simple problems:

• cavity under harmonic pressure: the agreement
between our numerical results and the analytical
solution is very good for various frequencies even
with a small number of nodes/elements. The ef-
ficiency of the regularization method proposed in
this paper is also discussed for this example.

• diffraction of a plane-wave by a spherical cavity:
the agreement between our numerical results and
the analytical solution is very good for various az-
imuthes and frequencies. In time domain, the nu-
merical results are also found to be satisfactory.

• wave amplification in a semispherical alluvial basin
(soft inclusion): the comparison of our numeri-
cal results with Snchez-Sesma’s semi-analytical re-
sults (Snchez-Sesma, 1983) is also satisfactory. Fur-
ther comparisons are planned with other current
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numerical approaches and more complex geome-
tries.

Considering these good results, future work will then
concern more realistic cases in the field of seismology.
For sake of numerical efficiency, the regularization me-
thod could also be implemented in a Symmetric Galerkin
boundary element formulation (Bonnet et al., 1998) or
in the framework of a Fast Multipole Method (Green-
gard et al., 1998). Our main goal is to have a detailed
description of the 3D geological structure of a given area
to perform reliable computations of seismic wave propa-
gation and amplification (Bard and Bouchon, 1985; Bou-
chon et al., 1989; Chvez-Garca et al., 2000; Frankel and
Vidale, 1992; Moczo et al., 2002; Semblat et al., 2000,
2003a,b, 2005).

Appendix

Calculation of Ck
i (y;Ee)

Let us calculate the free term Ck
i (y) defined by:

Ck
i (y) = lim

ε→0

∫

sε

T k
i (x,y) dSx (22)

In Eq. (22), sε is a spherical surface of radius ε. Let
x be a point on sε. The unit outward normal to sε is
given by n = (y − x)/ε. Thus the stress vector of the
Kelvin fundamental solution applied to sε has the form:

T k
i (x,y) =

1

8π(1 − ν)

1

ε2
((1 − 2ν)δik + 3nink) (23)

Substituting this expression for T k
i in (22) yields:

Ck
i (y) =

1

8π(1 − ν)
. (24)

lim
ε→0

1

ε2

(

(1 − 2ν)|sε|δik + 3

∫

sε

nink dSx

)

where |sε| is the surface area of sε. Here |sε| = ε2ψ,
where ψ is the solid angle. A small amount of calcula-
tions allows to derive the following expression:

∫

sε

nink dSx =
|sε|
3
δik − 2

3
ε2

∑

e∈I(y)

sin

(

θe

2

)

bein
e
k (25)

where θe is the angle formed by the edges of Ee at y,
bei is the unit vector of the bissecting line and ne

k is the
unit outward normal to Ee. The symmetry with respect
to subscripts i and k in Eq. (25) shows the following
identity:

∑

e∈I(y)

sin

(

θe

2

)

bein
e
k =

∑

e∈I(y)

sin

(

θe

2

)

bekn
e
i (26)

Combining (24) and (25) yields:

Ck
i (y) =

ψ

4π
δik (27)

− 1

8π(1 − ν)

∑

e∈I(y)

sin

(

θe

2

)

(bein
e
k + bekn

e
i )

Finally the solid angle is assumed to be the sum of ele-
ment solid angles:

ψ =
∑

e∈I(y)

ψe (28)

Pratically, as shown in figure 8, ψe can be defined by the
solid angle of the trihedron of apex y formed by the two
edges of element Ee and the semi-axis in the direction of
−n(y), where n(y) is an arbitrary outward unit vector
at y. In this case ψe = (ϕe

1 +ϕe
2 +ϕe

3 − π) where the ϕe
i

are the three angles formed by the plane of the trihedron
(figure 9). The calculation of the solid angles ψe relies
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on the knowledge of an outward unit vector at each node
of the mesh. Practically for each node of coordinate y,
n(y) can be calculated as the mean of unit normals to
each element of I(y). It should be noticed that the aver-
aging of the normal is only conventional. It results from
an arbitrary choice in order to perform the calculation
of solid angles ψe. The accuracy of the method does not
depend on this averaging procedure since the value of
the solid angle ψ (equation (28)) is eventually recovered
whatever the choice of n(y). Therefore, the free term
Ck

i (y) is really the sum of free term elements Ck
i (y;Ee)

of the form:

Ck
i (y;Ee) =

ψe

4π
δik (29)

− 1

8π(1 − ν)
sin

(

θe

2

)

(bein
e
k + bekn

e
i )

Figure 8: Conical surface with apex at y

Figure 9: Description of angles ϕ1, ϕ2 and ϕ3 defining
the element solid angle ψe.

Calculation of Ik
i (y;Ee)

The integral Ik
i (y) can be written in the form:

Ik
i (y) = lim

ε→0

∑

e∈I(y)

∫

(Ee−ee
ε)

T k
i (x,y)dSx (30)

where ee
ε = Ee ∩ vε (with of course

∑

e∈I(y) e
e
ε = eε).

Given ε > 0, let us calculate the element integral ap-
pearing in (30). Let x be a current point on Ee and
note ne

i the unit outward normal to Ee. The stress vec-
tor of the Kelvin fundamental solution applied to Ee is
given by:

T k
i (x,y) =

1 − 2ν

8π(1 − ν)

ne
i ek − ne

kei

r2
(31)

where ei = (yi−xi)/r. A trivial integration of the above
expression shows that:

∫

(Ee−ee
ε)

ne
i ek − ne

kei

r2
dSx =

∫ θe

0

(ne
i ek(α) − ne

kei(α)) lnL(α)dα (32)

−2 sin

(

θe

2

)

(ne
i b

e
k − ne

kb
e
i ) ln ε

where L(α) is the length of the segment defined in the
figure (10). Thanks to identity (26), integral Ik

i (y) is

then the sum of element integrals defined by:

Ik
i (y;Ee) = (33)

1 − 2ν

8π(1 − ν)

∫ θe

0

(ne
i ek(α) − ne

kei(α)) lnL(α)dα

Figure 10: Distance L(α) on Ee

Calculation of Jk
i (y;Ee)

The integral Jk
i (y) can be written in the form:

Jk
i (y) = lim

ε→0

∑

e∈I(y)

∫

(Ee−ee
ε)

Uk
i (x,y)dSx (34)

Substituting expression (11) for Uk
i (x,y) in (34) gives

the expression of Jk
i (y;Ee):

Jk
i (x;Ee) = (35)

1

16πµ(1 − ν)

∫ θe

0

(eiek + (3 − 4ν)δik)L(α)dα
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