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Abstract

A computationally efficient and robust sampling scheme can support
a sensitivity analysis of models to discover their behaviour through
Quasi Monte Carlo approximation. This is especially useful for complex
models, as often occur in environmental domains when model runtime
can be prohibitive. The Sobol ′ sequence is one of the most used quasi-
random low-discrepancy sequences as it can explore the parameter
space significantly more evenly than pseudo-random sequences. The
built-in determinism of the Sobol ′ sequence assists in achieving this
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attractive property. However, the Sobol ′ sequence tends to deteriorate
in the sense that the estimated errors are distributed inconsistently
across model parameters as the dimensions of a model increase. By
testing multiple Sobol ′ sequence implementations, it is clear that the
deterministic nature of the Sobol ′ sequence occasionally introduces
relatively large errors in sensitivity indices produced by well-known
global sensitivity analysis methods, and that the errors do not diminish
by averaging through multiple replications. Problematic sensitivity
indices may mistakenly guide modellers to make type I and II errors in
trying to identify sensitive parameters, and this will potentially impact
model reduction attempts based on these sensitivity measurements.
This work investigates the cause of the Sobol ′ sequence’s determinism-
related issues.
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1 Introduction
With the development of computer power, modellers and researchers largely
rely on building models to mimic, understand and predict aspects of natural
phenomena and increasingly their links with human actions. But the models
have become much more complicated and difficult to interrogate and analyse.
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Global sensitivity analysis (gsa) methods have received significant attention
over recent years as they have the capability for reducing model complexity
and understanding model behaviour. However, gsa methods rely on the
selected strategy used to sample model factors (parameters and model inputs)
to generate the model response surface from which sensitivity indices are
calculated. As each sample of factors leads to a forward model simulation,
a sampling scheme may need to be efficient in line with the computational
budget, especially where model runtimes are prohibitive. But any efficient
sampling scheme must also provide sa measures with the desired properties,
such as acceptable convergence rates. It is common to study the impact
of sampling strategies by using benchmark testing functions, as is done by
Tarantola et al. [8].

Tarantola et al. [8] compared the Sobol ′ sequence and Latin Supercube
sampling methods under the Sobol ′ variance-based sensitivity analysis method,
and concluded that the Sobol ′ sequence is better and appropriate under most
circumstances. The Sobol ′ variance-based sensitivity analysis method and
the Sobol ′ sequence are discussed in more detail in Section 2. The results
shown by Tarantola et al. indicated that the Sobol ′ sequence may occasionally
experience large errors for one or multiple input index values [8, bottom right
of Figure 9], but they simply explained this error spike as a deterioration of
the Sobol ′ sequence under high dimensions. The error spike is recognised
as the index value of one or more factors having particularly large errors
compared to the index values of other factors. It is worth noting that this
error spike issue may not easily be identified for practical problems where
model inputs tend to have different sensitivities. For the case in Figure 1, the
error spike is observed because all input variables have the same expected
sensitivity; however, modellers or end users may find it difficult to identify
if certain inputs have incorrect index values for actual model applications.
Thus, it is of utmost importance to investigate the cause of this error spike.

Randomized Sobol ′ sequences such as the scramble method, random shift
method, and newly developed column shift method [7] effectively avoid
the determinism issues of the original Sobol ′ points. For this article, we
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Absolute Error First-Order Sensitivity Index (AES)
 at N = 16384 with 200 replicates

Figure 1: The first-order sensitivity indices of the Sobol ′ sequence for a
multi-linear function, where the input 1 has much higher error than other
inputs.

focus on investigating the determinism-related issues of the original Sobol ′
sequences without the aid of randomization methods. By recreating the same
experiments in Tarantola et al. [8], we find the same error spikes even at
relatively low dimensions. In addition, we find that the error spikes do not
diminish by averaging the errors across multiple replications, and the inner
determinism of the Sobol ′ sequence may cause the error spike. To investigate
this error spike, we propose a simple multi-linear function to test and explore
its causes in more details in Section 3.

2 Experiment set-up

2.1 Sobol ′ variance-based method

In this subsection, we briefly overview the Sobol ′ variance-based method [11],
which is one of the most popular global sa methods due to its model in-
dependence, ease of use, and ability to evaluate how changes in factors
affect model output variance, both with and without interactions. Given a
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square-integrable function

Y = f(X) = f(X1, . . . , Xp) ,

where X = (X1, . . . , Xp) is a vector of p model parameters, Y is a scalar model
output and function f is defined over a p-dimensional unit hypercube

Ω = (X | 0 6 xi 6 1; i = 1, . . . , p) .

Assuming that the input variables X are all independent, the model output
variance V(Y) is decomposed as

V(Y) =

p∑
i=1

Vi +

(
p−1∑
i=1

p∑
j=i+1

Vij

)
+ · · ·+ V1,...,p ,

where Vi = V(fi(Xi)) and Vij = V(fij(Xi, Xj)) are the corresponding partial
variances, and similarly V1,...,p = V(f1,...,p(X1, . . . , Xp)) . The first-order sensi-
tivity index Si of an individual input is obtained by dividing the first term of
the decomposition Vi by the model output variance V(Y):

Si =
Vi

V(Y)
≈

1
N

∑N
j=1 f(B)j[f(A

(i)
B )j − f(A)j]

V(Y)
. (1)

where N is the number of samples. To estimate the sensitivity indices using
Monte Carlo integrals, an N × 2p sample matrix is generated through the
Sobol ′ sequence for each experiment giving sample matrices A and B; see
Figure 2. Matrices A and B are used in the approximations in equation (1),
and A(i)

B is a sample matrix created by replacing the ith column of matrix A
with the ith column of matrix B but keeping the rest of the matrix the same.

To evaluate the performance of selected sampling strategies, Tarantola et
al. [8] used the absolute error across R different replicates. The absolute error
for the first-order sensitivity index (aes) is:

aes =
1

R

R∑
r=1

|S
(r)
i − Ŝi| , (2)

where S(r)i is the estimated Si of the rth replicate, and Ŝi is the analytical Si.
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Figure 2: Generated N×2p sample matrix from the Sobol ′ sequence. Sample
matrix A is the left N×p matrix, and the sample matrix B is the right N×p
matrix.

2.2 Sobol ′ quasi-Monte Carlo sequence

The Sobol ′ low-discrepancy sequence was initially proposed by Sobol ′ [10],
and it is one of a number of quasi-Monte Carlo sampling strategies that
generate structured samples compared to the basic pseudo-random Monte
Carlo sequence. To generate the ith dimension of the jth Sobol ′ point xj,i,
the Sobol ′ sequence uses a group of direction numbers v1,i, v2,i, . . . , vdi,i and
a primitive polynomial of degree di in the field Z2:

xdi + a1,ix
di−1 + a2,ix

di−2 + · · ·+ adi−1,ix+ 1 ,

where the coefficients a1,i, . . . , adi−1,i = 0 or 1. These coefficients are used to
define a sequence of positive integers by the recurrence relation

ms = 2a1,ims−1,i ⊕ 22a2,ims−2,i ⊕ · · · ⊕ 2di−1adi−1,ims−di+1,i

⊕ 2dims−di,i ⊕ms−di,i ,

for s > di + 1 , and ⊕ is the bit-wise XOR operator. The values of ms,i for
s 6 di are freely chosen but with the restriction of being odd integers and less
than 2s. Assuming two integers where y > z , the mathematical equivalent of
the bit-wise XOR operator is

y⊕ z =
blog2(y)c∑
n=0

2n
[(⌊ y

2n

⌋
+
⌊ z
2n

⌋)
mod 2

]
. (3)

The group of direction numbers v1,i, v2,i, . . . , vdi,i is then defined as

vs,i =
ms,i

2s
.
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Then the Sobol ′ point of interest is defined as

xj,i = b1v1,i ⊕ b2v2,i ⊕ · · · ⊕ bhvh,i ,

where bl is the lth bit from the right of number j in binary, for example
(j)2 = bh · · ·b2b1 . Antonov and Saleev [1] proposed the use of grey code (j)2 =
gh · · ·g2g1 instead of binary code (bh · · ·b2b1) to increase the computational
efficiency. Grey code only changes one bit from one number in binary to
the next consecutive one in binary, and it does not affect the asymptotic
discrepancy of the original Sobol ′ sequence. This article uses the Sobol ′
sequence generator code and the 30× p direction number matrix V provided
by the Chaospy python library [3], where p < 40 is the number of dimensions
limited to the maximum size of arrays set provided by the direction number
matrix

V =


v1
v2
...
v30

 =


v1,1 · · · v1,i · · · v1,p
v2,1 · · · v2,p
...

...
v30,1 · · · v30,p

 . (4)

Bratley and Fox [2] and Joe and Kuo [5] give the above definitions for
generating the Sobol ′ sequence and further details, whilst the definition of
discrepancy is given by Tezuka [9].

2.3 Multi-linear function

We propose a simple multi-linear function with the same multi-linear charac-
teristic as the benchmark testing function employed by Tarantola et al. [8]:

Y = f(X) = X1 × X2 × · · · × Xp ,

where p is the number of dimensions. We choose p = 3 , and the function
Y is now defined over a three-dimensional unit hypercube Ω. In theory,
the sensitivity indices Si of model inputs for this multi-linear function are
identical. We generate the sample matrix with 2p dimensions and as indicated
in Figure 2, the size of the direction number matrix V is 30× 6 .
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Figure 3: The x-axis indicates which replicate is used, where each replicate
comprises the results obtained from an independent experiment, and the
y-axis shows the value of the first-order sensitivity index. The 200 magenta
and green dots indicate the index values of input 1 and input 2 corresponding
to 200 replicates, and the red horizontal line shows the exact analytical index
value.

3 Understanding the problem
Morokoff and Caflisch [6] proposed the idea of filling-in-holes to explain po-
tentially poor dimension pairing and correlation issues in the Sobol ′ sequence,
as 16 384 samples are needed to achieve almost perfect uniformity for the
two-dimensional projection plots of the Sobol ′ sequence. Following Morokoff
and Caflisch, and to largely explore the parameter space, we decided to use
16 384 samples, but with 200 different replicates for our experiments. The
results in terms of aes for the first-order sensitivity indices of the three-
dimensional multi-linear function at N = 16 384 samples, averaged through
200 replicates, is shown in Figure 1. The aes of input 1 produces observably
larger error than both inputs 2 and 3. We pulled out the first-order sensitivity
indices of inputs 1 and 2, which have the most distinct behaviour in their
relative absolute error, and compared them by drawing a scatter plot of
200 replicates in Figure 3.

It is interesting to see that the index values of input 2 in green are all scattered
quite close to the line of the exact Si, but the index values of input 1 in
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Figure 4: The x-axis indicates the number of samples from 4 096 to 16 384,
and the y-axis shows the value of the first-order sensitivity index. The red
horizontal line is the exact first-order Si for input 1 of the three-dimensional
multi-linear function. This plot consists of results from 200 replicates, and
eight different groups of replicates are plotted in different colours to indicate
distinct oscillation patterns.

magenta are all scattered a certain distance away from the exact Si line and
the green dots. Recall that the calculation of the absolute error in equation (2)
measures the average distance of each estimated index value to the analytical
value. In our test case, every estimated index value of input 1 is much further
away from the analytical value than those of input 2, thus the absolute
error of input 1 is much higher than input 2 and resolves the error spike. By
inspecting the error spikes of the total-effect sensitivity index, we made similar
observations. The use of absolute error, along with relative absolute error,
can be problematic under this case, and an alternative performance metric
should be considered to avoid the error spike issue; for example, averaging
the index values across replicates first then finding the difference from the
analytical value Ŝi. However, one may not be able to employ replication due
to a limited budget, and this would result in only a single or a small number
of model runs, which would then require investigation on the the unusual
structure of input 1 in order to avoid the error spike.

By inspecting the changes in Si with respect to the number of samples, we
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Figure 5: The x-axis indicates the number of samples from 4 096 to 16 384,
and the y-axis shows equation (6) for input 1, and this term is a component of
equation (1). This plot consists of results from one replicate from each group,
and the eight different replicates are colour coded the same as Figure 4.

conclude that the structure observed in Figure 3 is not stationary. In fact,
the behaviour of Si for input 1 follows a structured oscillation pattern, as
indicated in Figure 4, and the first-order index values for inputs 2 and 3 all
follow a similar oscillation pattern with the change in the number of samples.

Recall that equation (1) for approximating the first-order sensitivity index Si
consists of two different terms: f(B)f(A) represented as

N∑
j=1

f(B)jf(A)j
NV(Y)

; (5)

and f(B)f(AB) represented as

N∑
j=1

f(B)jf(A
(i)
B )j

NV(Y)
, (6)

for convenience. The values of the second term for input 1 with respect to
the number of samples is seen in Figure 5. The error spike of input 1 at
N = 16 384 is caused specifically by the noticeable separation of the higher
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pink group of replicates and the lower black group of replicates in Figure 5.
There are eight general patterns within the total 200 replicates, as indicated
by eight different colours in Figure 4, and Figure 5 shows one replicate from
each pattern group.

4 Discussion and conclusions
The generation of Sobol ′ points strictly follows the direction matrix V in
equation (4), and the first seven points of the Sobol ′ sequence are calculated
through

x1 = v0 , x2 = v0 ⊕ v1 , x3 = v1 , x4 = v1 ⊕ v2 ,
x5 = v0 ⊕ v1 ⊕ v2 , x6 = v0 ⊕ v2 , x7 = v2 .

Following this order, x8 is obtained through v2 ⊕ v3 , and x9 will be v0 ⊕
v2 ⊕ v3 . Therefore, there are 2k points obtained through the combination of
v0, v1, . . . , vk joined by the bit-wise XOR operator. These new 2k points are
constructed by joining the previous 2k−1 points in reverse order with vk, and
the last new point is just vk.

The second replicate (shown as a cyan colour line in Figure 5) consists
of the 16 384th to the 32 767th Sobol ′ point, and these 16 384 points are
obtained through v0, v1, . . . , v14 but with the Sobol ′ point (v14 ⊕ v15) instead
of (v13 ⊕ v14) . The third replicate (shown as a blue colour line in Figure 5)
consists of 16 384 Sobol ′ points constructed from a bit-wise XOR of every
single point in the second replicate with v15 except for the 32 768th point
(= v14⊕ v15). The six direction numbers v15,1, . . . , v15,6 in vector v15 can cause
very limited changes and still retain the strong correlation pattern as from
the second replicate, and this applies to the remaining replicates as well.

The correlation relationship in the direction number matrix V highly affects the
calculations of the variance-based sensitivity analysis, and this determinism is
amplified through the use of the absolute error performance metric. For future
study, we aim to mathematically formulate the exact upper bound and lower
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bound of the first-order sensitivity index Si for specific numbers of samples
with the provided direction number matrix V for a simple linear function.
Then, based on the results of the linear function, we intend to branch out
to more types of functions. In addition, a more advanced direction number
matrix has been developed, with up to 21 201 dimensions [4] rather than
40 dimensions. The change of direction number causing different sensitivity
index behaviour is also worth investigating. By controlling the correlation
impact of different direction numbers for models with certain characteristics,
one can greatly increase the efficiency of utilising the Sobol ′ sequence in
particular, and the reliability of variance-based sensitivity analysis in general.
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