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Adaptive discrete thin plate spline smoother
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Abstract

The discrete thin plate spline smoother fits smooth surfaces to large
data sets efficiently. It combines the favourable properties of the finite
element surface fitting and thin plate splines. The efficiency of its finite
element grid is improved by adaptive refinement, which adapts the
precision of the solution. It reduces computational costs by refining
only in sensitive regions, which are identified using error indicators.
While many error indicators have been developed for the finite element
method, they may not work for the discrete smoother. In this article we
show three error indicators adapted from the finite element method for
the discrete smoother. A numerical experiment is provided to evaluate
their performance in producing efficient finite element grids.
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1 Introduction
Data fitting and smoothing is an important tool to model and analyse data
in scientific and engineering communities [7, 9]. The thin plate spline is a
type of data fitting technique that is insensitive to noise in data. However, it
becomes computationally expensive as the data size increases. The discrete
smoother was developed to fit large data sets efficiently while retaining the
smoothing properties of the thin plate spline [8].

Adaptive refinement further improves the discrete smoother’s efficiency. It
adapts the precision of the solution iteratively within sensitive regions in-
dicated by an error indicator and reduces the number of nodes required to
achieve a certain accuracy. Traditional error indicators for approximating
partial differential equations will not always work for the discrete smoother
as its equations are formed using the observed data that may be perturbed
by noise.

In this article, we show three error indicators adapted for the discrete smoother.
Their performance is compared through a numerical experiment with two-
dimensional model problems. We give more background information on the
discrete smoother in Section 2. Section 3 presents the iterative adaptive
refinement process of the discrete smoother. Section 4 provides details of
the three error indicators. Section 5 displays and analyses the results of the
numerical experiment for these error indicators.
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2 Discrete thin plate spline smoother
The discrete smoother was developed as a first-order finite element approx-
imation of the thin plate spline [8]. More details of the thin plate spline
are provided by Bookstein [1]. Suppose the observed data consists of n
data points {(x(i), y(i)) : i = 1, 2, . . . , n} , where x(i) ∈ Rd is a predictor
value and y(i) ∈ R is a response value. The discrete smoother s(x) is repre-
sented as a combination of piecewise linear basis functions s(x) = b(x)Tc ,
where b(x)T = [b1(x), . . . , bm(x)] are m basis functions, cT = [c1, . . . , cm]
are the corresponding coefficients and m is the number of nodes in the finite
element grid. The resulting system of equations is sparse and the size depends
only on the number of nodes in the grid [11].

Since piecewise linear basis functions are not defined for the minimiser of
the thin plate spline, auxiliary functions u(x) = [b(x)Tg1, . . . ,b(x)

Tgd]
T are

introduced to represent the gradient of s, where g1, . . . ,gd are coefficients of
the gradient approximation. The discrete smoother s also needs to satisfy an
additional constraint∫

Ω

∇s(x) · ∇bj(x)dx =

∫
Ω

u(x) · ∇bj(x)dx

so ∇s and u are equivalent in a weak sense.

The discrete formulation of the minimiser becomes

Jα(c,g1, ..,gd) = cTAc− 2dTc+ yTy/n+ α

d∑
k=1

gTkLgk , (1)

subject to Constraint

Lc =

d∑
k=1

Gkgk , (2)

forA = 1
n

∑n
i=1 b(x(i))b(x(i))

T , d = 1
n

∑n
i=1 b(x(i))y(i) , y = [y(1), . . . , y(n)]

T ,
L a discrete approximation to the negative Laplacian, Gk a discrete approx-
imation to the gradient operator and α a smoothing parameter. Stals [11]
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provides a derivation of the discrete smoother from the thin plate spline. We
solve Minimiser (1) using Lagrange multipliers and the size of the resulting
system of equations depends only on the number of nodes in the grid. This
allows the discrete smoother to interpolate large data sets efficiently.

3 Adaptive refinement
The accuracy of the discrete smoother depends on several factors, including
the mesh size h of its finite element grid [8]. The solution is improved by a
finer grid with smaller h, although this leads to a larger system of equations
with increasing computational cost and memory requirement. Refinement is
the process of iteratively resolving the problem of interest with finer grids to
increase the accuracy of the solution. Adaptive refinement is one approach that
concentrates refinement in certain regions to achieve the required accuracy [6].
It allows the discrete smoother to obtain satisfactory accuracy with fewer
nodes than a uniform grid.

The iterative adaptive refinement process begins by building the discrete
smoother on an initial coarse grid. The error indicator evaluates and indicates
regions with large errors for adaptive refinement. This process is executed
iteratively until the discrete smoother reaches a satisfactory error tolerance.
As the optimal value of the smoothing parameter α in Minimiser (1) may vary
with the mesh size, the optimal value must be updated each time the grid is
refined. We calculate α using a stochastic approximation of the generalised
cross-validation method [5, 8].

The stopping criteria of this iterative process are based on the rate of change of
the discrete smoother’s root mean square error (rmse). This differs from the
approach taken by traditional error indicators as we are fitting a smoothing
spline as opposed to approximating partial differential equations. The rmse
may not be reduced to a required error tolerance value when the data is
perturbed by noise [3]. In our implementation, the iterative process terminates
when the rmse value is reduced less than 10% by one iteration of refinement
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for two consecutive iterations. The finite element grid generated before these
two iterations is chosen to be the optimal grid.

4 Error indicators
The error indicator marks elements with large errors during the iterative
adaptive refinement process. Traditional error indicators were developed for
approximating partial differential equations and they face new challenges when
being applied to the discrete smoother. The error convergence of the discrete
smoother depends on several factors, including the smoothing parameter α,
the maximum distance between data points dx and mesh size h [8]. A smaller h
value does not necessarily reduce the error of the discrete smoother [4].

In this article, we focus on two-dimensional grids with triangular elements
and refine elements using the newest node bisection [6]. Therefore, the error
indicators indicate the error on triangle pairs to determine whether they are
refined. We describe three error indicators adapted for the discrete smoother,
which are the auxiliary problem error indicator, recovery-based error indicator
and norm-based error indicator. The auxiliary problem error indicator and
norm-based error indicator were studied previously by Fang [4]. Additional
modifications have since been made to improve the accuracy of the auxiliary
problem error indicator.

The auxiliary problem error indicator computes the error indicator value by
comparing the discrete smoother with a locally more accurate approximation.
It is built by solving an auxiliary problem that minimises

Jα (ĉ, ĝ1, . . . , ĝd) =
1

n̂

n̂∑
i=1

(
ŝ(x(i)) − y(i)

)2
+ α̂

∫
Ω̂

∑
|v|=2

(Dvŝ(x))
2
dx ,

ŝ = s on ∂Ω̂D ,

where ŝ is the local approximation with coefficients ĉ, ĝ1, . . . , ĝd on a local
domain Ω̂, X̂ = {(x(i), y(i)) : i = 1, 2, . . . , n̂} is the data inside Ω̂ and ∂Ω̂D is
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the Dirichlet boundary. The Dirichlet boundary conditions are defined using
the approximations of the discrete smoother s, including c and g1, . . . ,gd
values. We choose Dirichlet boundaries as they incorporate effects from the
discrete smoother to smooth noise and produce more stable local approxima-
tions. The local domain Ω̂ is a union of the triangle pair and its neighbouring
elements and we improve the accuracy of ŝ by refining the triangle pair. While
a local domain Ω̂ with more elements or further refinement may improve
the accuracy of ŝ, we choose to avoid it for a more efficient error indicator.
The error indicator value is calculated using an energy norm of the difference
between s and ŝ.

The local smoothing parameter α̂ is another factor that affects the accuracy
of ŝ. In previous work, Fang [4] used the smoothing parameter α of s for ŝ
for all auxiliary problems. However, the α value may decrease as the grid
gets finer during the iterative process and a small α̂ makes ŝ more sensitive
to noise in data. Moreover, the effects of noise increase when the number of
data points decreases and the range of the response values decreases. We
may calculate the α̂ values using the generalised cross-validation method for
each ŝ but it is too computationally expensive and unstable. Considering
that calculated α̂ values of auxiliary problems often distribute in a small
range, we choose the median of these values as the optimal α̂ for all auxiliary
problems. When the error indicator needs to indicate errors for a large number
of auxiliary problems, we will randomly select ten auxiliary problems to obtain
the median of optimal α̂ values with a lower computational cost.

The recovery-based error indicator post-processes the discontinuous gradi-
ents D1s of the discrete smoother to estimate the error [12]. The discrete
smoother is represented as a combination of piecewise linear basis functions
and discontinuities of gradients occur at the boundary of elements. The
true error is estimated by comparing the the post-processed and current
gradient of the discrete smoother. Zienkiewicz and Zhu [12] post-processed
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the gradient D̂1si on the jth node by solving a system of equations

m∑
j=1

∫
Ω

bkbjD̂
1sj dΩ =

∫
Ω

bkD
1s dΩ , k = 1, . . . ,m .

The post-processed gradient D̂1s is assembled using the post-processed gradi-
ents D̂1sj in each node and the error indicator value is estimated by

||e||2E ≈
∫
Ω

(D̂1s−D1s)2 dΩ .

The norm-based error indicator is based on an error bound on the L∞ norm of
the discrete smoother [10]. The accuracy of the discrete smoother is limited by
the approximation capacity of the approximating space. Sewell [10] suggested
that the error of a two-dimensional finite element solution with piecewise
linear basis functions is bounded by∫

ti

D2
maxu(x1, x2)dx =

∫
ti

max
i+j=2

|∂2u(x1, x2)/∂x
i
1x
j
2|dx ,

where ti is ith triangle and u is the model function of a smooth problem.
Therefore, for a near-optimal grid, the integral value should be approximately
equal for all the elements. This error indicator indicates elements with large
integral values as large errors to ensure the integral value is evenly distributed
to all elements. It identifies regions where the solution changes rapidly and
uses finer elements to achieve the required accuracy in those regions. Even
though D2

maxu cannot be calculated exactly without u, we can approximate
it using the discrete smoother [4].

5 Numerical experiment
In this section, we evaluate the performance of the three error indicators
on two-dimensional model problems. The numerical results on more model
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problems are presented by Fang [3]. The response values of two model
problems, exponential and Franke functions, are modelled by

y = e−50(x1−0.5)
2

e−50(x2−0.5)
2

and

y = e−0.1(x
2
1+x

2
2) + e−5((x1−0.5)

2+(x2−0.5)
2)

+ e−15((x1+0.2)
2+(x2+0.4)

2) + e−9((x1+0.8)
2+(x2−0.8)

2) ,

respectively. We test the error indicators using data sets with or without noise.
In the case of noise, it is modeled as a normally distributed random variable
with mean zero and variance 0.05. The data sets of these two model problems
consist of 1× 106 data points that are uniformly distributed on [0.05, 0.95]2

and [−0.9, 0.9]2, respectively. The maximum distance between data points dx
of these two data sets are about 0.9× 103 and 1.8× 103, respectively.

The error ε of the discrete smoother is estimated using the rmse, which
is popular among data fitting techniques [2]. This experiment compares
the performance using the discrete smoother rmse against the number of
nodes m in the finite element grid. We also measure the efficiency of grids
using c = εm , which is shown in the legend of error convergence plots. A
small c value suggests a given error is achieved using a small number of nodes.
An adaptively refined grid is considered more efficient if it reaches a certain
accuracy with fewer nodes than other grids. The iterative adaptive refinement
process begins with an initial uniform grid with 25 nodes and is refined for
eight iterations or until the stopping criteria are satisfied.

Two adaptively refined grids generated using the norm-based error indicator
are shown in Figure 1. The exponential function has a steep peak at the
centre of the domain and has been used to test the performance of adaptive
refinement [4]. The Franke function has a more oscillatory surface and is
nonzero at some of its boundary, which is more complicated to model.

The optimal smoothing parameter α is small if the observed data is not
perturbed by noise [3]. When both dx and α are small, h becomes the
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(a) 6400 nodes (b) 6528 nodes

Figure 1: Adaptively refined grids using the norm-based error indicator for
(a) the exponential function; and (b) the Franke function.

dominating factor of the error. The error convergence of the exponential
function and Franke function without noise is shown in Figures 2(a) and 2(b),
respectively. The error convergence rates of adaptive grids using the three
error indicators are similar and are significantly higher than that of the
uniform grid for the exponential function. Adaptive refinement concentrates
its refinement on the peak, which requires finer elements to model, as shown
in Figure 1(a). The resulting adaptive grids are mostly twice as efficient as the
uniform grid. The error convergence for the Franke function is similar to the
adaptive grids and have higher error convergence rates than the uniform grid.
However, the error convergence rates of adaptive grids are only slightly higher
than the uniform grid since the Franke function’s surface contains several
peaks and requires refinement on more regions of the domain, as shown in
Figure 1(b).

When data is perturbed by noise, the iterative refinement process often
terminates earlier than eight iterations. Figure 3 shows the error convergence
rates of uniform and adaptive grids two iterations before the termination.
Figure 3(a) shows the error convergence for the exponential function perturbed
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(a) (b)

Figure 2: rmse of uniform and adaptive grids for data sets without noise of
(a) the exponential function; and (b) the Franke function. Numbers in the
legend are efficiency values c of final grids.

by noise. The error of uniform and adaptive grids decrease rapidly in the
first few iterations and then slows down and stabilises at about 0.05. While
further refinement may further reduce the rmse of the discrete smoother,
the efficiency of the grid will deteriorate. Both the uniform and adaptive
grids terminate with a similar rmse; however, the adaptive grids are all more
efficient than the uniform grid. Figure 3(b) shows similar error convergence
results for the Franke function perturbed by noise. The error convergence of
adaptive grids is slightly higher than that of the uniform grid with close final
efficiency values.

The error convergence rates of all adaptive grids are higher than that of the
uniform grid in this numerical experiment. Adaptive refinement produces
more efficient grids by focusing on refining elements in regions that are complex
to model and it performs well for the two model problems considered here.
The performances of the three error indicators are similar in the numerical
experiment. However, their efficiency may also be affected by other factors
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(a) (b)

Figure 3: rmse of uniform and adaptive grids for data sets perturbed by
noise of (a) the exponential function; and (b) the Franke function. Numbers
in the legend are efficiency values c of final grids.

not explored here, such as the smoothing parameter α and the maximum
distance between data points dx. Fang [4] provided more details.

6 Conclusion
A new iterative adaptive refinement process and three error indicators of the
discrete smoother are presented in this article. The new process utilises the
generalised cross-validation and new stopping criteria to produce optimal
finite element grids. Two model problems were chosen to evaluate the error
indicators’ performance in producing efficient adaptive grids. The resulting
error convergence rates and grid efficiency of the three error indicators show
significant improvement over uniform refinement. When data is not perturbed
by noise, the adaptive grids reach low errors with fewer nodes than the uniform
grid. In the presence of noise, the error indicators still produce adaptive
grids that reach the required accuracy with coarser grids. Current results are
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obtained using data sets with a large number of data points that are uniformly
distributed. The performance of the error indicators may be affected if the
uniformly distributed data points assumption no longer holds, especially in
the presence of noise. Further work is being done to measure the performance
when this assumption does not hold.
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