
This document is downloaded from the
VTT’s Research Information Portal
https://cris.vtt.fi

VTT
http://www.vtt.fi
P.O. box 1000FI-02044 VTT
Finland

By using VTT’s Research Information Portal you are bound by the
following Terms & Conditions.

I have read and I understand the following statement:

This document is protected by copyright and other intellectual
property rights, and duplication or sale of all or part of any of this
document is not permitted, except duplication for research use or
educational purposes in electronic or print form. You must obtain
permission for any other use. Electronic or print copies may not be
offered for sale.

VTT Technical Research Centre of Finland

Oops! Examples of I&C design issues detected with model checking
Pakonen, Antti

Published in:
International Symposium on Future I&C for Nuclear Power Plants, ISOFIC 2021

Published: 15/11/2021

Document Version
Publisher's final version

Link to publication

Please cite the original version:
Pakonen, A. (2021). Oops! Examples of I&C design issues detected with model checking. In International
Symposium on Future I&C for Nuclear Power Plants, ISOFIC 2021: Proceedings Okayama University.

Download date: 06. Jul. 2022

https://cris.vtt.fi/en/publications/d8e1d101-59c5-4be8-b667-8ac22b5e1ed4

Oops! Examples of I&C design issues detected with model checking

Antti PAKONEN

VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Espoo, Finland
(antti.pakonen@vtt.fi)

Abstract—Since 2008, VTT has used a formal verification
method called model checking to verify instrumentation
and control (I&C) application logic design in practical
projects in the Finnish nuclear industry. In this paper, we
present seven examples of the 66 confirmed design issues
that we have detected. We then discuss potential causes why
only formal verification revealed the otherwise hidden
issues. We hope the examples will be useful in case studies
related to verification and quality assurance of I&C.

Keywords—instrumentation and control; model checking;
verification and validation, function block diagram

I. INTRODUCTION

Model checking [1] is a formal verification method,
where a software tool (called a model checker) is used to
prove if a model of a system satisfies stated formal
properties. In Finland, the method has been applied for
over a decade to verify instrumentation and control (I&C)
application logic design in two new-build projects
(Olkiluoto 3 EPR, and the functional design for the
Hanhikivi-1 AES-2006) and an I&C renewal project (for
the two Loviisa VVER-440 units). To date, in all these
projects combined, VTT has detected 66 confirmed
design issues of varying probability and safety relevance.
We discuss the tools, the work process, and the
limitations in [2], and the customer projects in more detail
in [3].

In this paper, we reveal seven examples of the design
issues we have detected. We have modified and
simplified the designs in order to mask their origin, and
focus on the parts that caused the issues. Similar
examples can also be found in our previous publications
[2][3][4][5][6][7][8]. We have detected all of the issues using
the free, open source model checker NuSMV [9].

II. EXAMPLES OF DESIGN ISSUES

We recorded the analysis times below on an Intel Core
i7-6600U CPU with a clock rate of 2.6 GHz.

A. Example 1: Exact timing of input signals produces
unwanted response

The intended functionality for the “design pattern” in
Fig 1. is that an active CRITERION leads to a minute long
pulse of ACT, but if CRITERION is reset, so is ACT.
However, if ACT only flashes on very quickly, and then
becomes permanently active exactly one minute later, the
Pulse element will not react to the latter rising edge, and
the function is not actuated (save for the very short pulse
at the start). The “design pattern” was used in several
functions of the verified system.

In just 0.04 seconds, NuSMV generates a counter-
example for the LTL [1] property: G (¬CRITERION ∧ X
CRITERION → X ACT).

Fig 1. The logic and the counterexample (as a timing diagram)
for example 1

B. Example 2: Two connected safety functions
permanently frozen

The intended functionality for the two safety functions
A and B, as simplified in Fig 2., is that if A is set, and then
(within 5 seconds) B is set, then function A will be reset.
However, in the (counterintuitive, in its original context)
scenario where B is not active in the 5-second time
window after A’s actuation, the logic ends up in state
where A is permanently set, and B permanently reset. (To
reactivate the Pulse and set ACT_B to TRUE, ACT_A
would first need to be reset to FALSE, which is not
possible as long as ACT_B remains FALSE.)

Fig 2. The logic and the counterexample for example 2

The originally verified model consisted of 17 function
blocks. NuSMV takes 0.38 seconds to produce the
counterexample for the LTL property: G (ACT_A → X
X X X ((¬SET_A ∧ SET_B) → ¬ACT_A)).

C. Example 3: Instantaneous process variable drop
leaves the function unactuated

The intended functionality for the logic in Fig 3. is to
initiate a function (ACT) when a certain process variable
(VAR) drops below 10, and then stop the order when the
variable proceeds to drop below 8 (actual values masked).
However, in the physically very unlikely scenario where
the variable would drop instantaneously (within a
processing cycle) from above 10 to below 8, the function
is never actuated.

Fig 3. The logic and the counterexample for example 3

The originally verified model consisted of 60 function
blocks. NuSMV takes 8.6 seconds to generate the
counterexample for the LTL property: G ((VAR > 10) ∧
X (VAR < 10) → X ACT).

Fig 4. The logic and the counterexample for example 4

D. Example 4: Valve left in incorrect position after
fluctuating inputs

The intended functionality for the logic in Fig 4. is to
open a certain valve if the pressure is high (HIGH_P) and
the process conditions (COND) otherwise allow for it.
When the pressure returns to normal (¬HIGH_P), the
logic shall again close the valve. However, Fig 4. shows a
scenario where (1) HIGH_P is first active for a short time
while COND is not, (2) HIGH_P is then again active
while COND is also TRUE, and (3) HIGH_P then again
resets, before 10 seconds have passed since the last time
it was FALSE. In this scenario, the closing-side Pulse
block does not respond to the second falling edge of
HIGH_P (as it still processing the earlier 10-second
pulse), and the logic leaves the valve open.

NuSMV takes 0.17 seconds to generate the
counterexample for the LTL property: G ((COND ∧
HIGH_P) ∧ X (COND ∧ ¬HIGH_P) → X (CLOSE ∧
¬OPEN)).

E. Example 5: Contradictory commands to an actuator
(on fluctuating inputs)

The intended functionality for the logic in Fig 6. is that
when the process condition (COND) changes to TRUE,
the START output is active for 10 seconds. When the
process condition then resets, STOP is active for one
second. However, Fig 5. shows a scenario, where (1)
COND is first set, (2) COND is then reset, (3) soon
afterwards, COND is again set, and (4) exactly one second
after step 2, COND is again reset. In this scenario, the left-
side (STOP) Pulse does not react to the rising edge of its
input on step 4, as it is just at the end of the previous pulse.
The actuator receives contradictory commands, and no
separate STOP at the end.

Fig 5. The logic and the counterexample for example 5

The originally verified model consisted of 156 function
blocks. NuSMV takes 5.1 seconds to generate the
counterexample for the LTL property: G (COND ∧ X
¬COND → X STOP).

F. Example 6: Several channels inhibited
simultaneously

The intended functionality for the logic in Fig 6. is that
when an operator inhibits a channel by turning a switch
(SWT), a signal is sent to the other channels, preventing
them from being inhibited at the same time. However, if
many switches are turned at the exact same time (which
the operators are not supposed to do), each channel is
inhibited, as the signals from the other channels are
received on the next cycle.

Fig 6. The logic and the counterexample for example 6

The originally verified model consisted of 118
function blocks. NuSMV takes 1.9 seconds to generate the
counterexample for the LTL property: G ¬(INH_1 ∧
INH_2).

G. Example 7: Contradictory commands to an actuator
(on contradictory inputs)

The intended functionality for the logic in Fig 7. is that
an actuator is started when the measurement is below 8
units, and stopped when the measurement is above 10

units. The logic performs a type of majority vote by
starting based on the second-lowest measurement, and
stopping based on the second-highest measurement.
However, on the kind of highly unlikely measurement
data (perhaps attributable to multiple equipment failure)
shown in Fig 7., the controlled actuator receives
contradictory commands.

Fig 7. The logic and the counterexample for example 7

The originally verified model consisted of 19 function
blocks. NuSMV takes 14 seconds to generate the
counterexample for the LTL property: G ¬(START ∧
STOP).

III. DISCUSSION

Most of the designs we verified in the practical
projects had already been subjected to verification and
validation (V&V) based on more conventional methods
(e.g., testing). Therefore, the detected issues often have
some features that make them hard to find without formal
verification. A potential cause is that the scenario needed
to reveal the issue is highly unlikely and/or
counterintuitive. In Table 1, we list common features of
the issues and the scenarios (counterexamples) that
revealed them.

Table 1 Features or causes of the issues

Feature / cause Issues Share Examples

Spurious actuation 22 33% 4,[2][8]

Exact timing 21 32% 1,5,6,[2][6][7][8]

Human user actions 19 29% 6,[2][3][6][7][8]

Uncharacteristic input 14 21% 2,3,7

Signal validity logic 6 9% [2]

Frozen (deadlock) 5 8% 2

33% of the issues feature spurious actuation, which is
otherwise hard to analyze [2]. In testing, for example, it is
much easier to address the intended functionality. 32% of
the issues feature exact (millisecond-level) timing, which
might not be possible to reproduce in a test field or plant
simulator [7]. In 29% of the scenarios, operators or
maintenance personnel perform ill-advised or ill-timed
actions.

By “uncharacteristic input”, we refer to scenarios
where the inputs of the model that represent process
measurements have values that are not likely (or even
possible) when we consider the actual physical and
chemical processes of the controlled plant. More exactly,
we mean scenarios where (1) the process variables show
a combination of values that is physically unlikely, or (2)
a process variable changes its value faster than is
physically likely. We do not model the controlled plant,

so the model inputs can have arbitrary values at each
counterexample step. (Sometimes, the analyst is able to
alter the scenario first produced by the model checker into
a more likely one, but here we refer to scenarios where
such modification was not possible.) Such input data are
one of the causes in 21% of the issues.

In 9%, the issue is at least partially caused by signal
validity processing, a common feature [2] in fault-tolerant
nuclear I&C logics (see [2] for an exemplar issue). Finally,
in five cases, the logic permanently froze to some output
state.

Another potential cause that makes the issues hard to
detect without formal verification is the complexity of the
logic design. Function block diagrams make it relatively
easy to understand the “flow” of control from input to
output values. Elements that interfere with this flow make
it harder to figure the logic out, leaving room for the
designer to make a choice that enables unintended
behavior (and making it harder for a reviewer to detect the
issue). In Table 2, we show the prevalence of such
elements in the logics that then contained design issues.

Table 2 Design elements in the logics behind the issues

Element in logic Issues Share Examples

Memory 43 65% 2,3,[2][3][5][6][7][8]

Delay 43 65% 1,2,4,5,[4]

Feedback loop 20 30% 2,6,[4][7]

65% of the logics contained a memory (bistable latch,
flip-flop) block. 65% contained a delay element (with a
configurable delay time). 30% contained a feedback loop.
(A cycle delay block used to specify the processing order
in a feedback loop also acts as a type of memory/delay.)

We have significantly simplified the original logics
for this paper, and included in the examples only the
minimum number of blocks needed to recreate the issues.
As stated above, the original logics could contain up to
156 function blocks, and the problematic elements were
not necessarily as close to one another on the diagram.
What can look like an obvious mistake in this paper was
not necessarily as apparent in the original context, at least
for manual review.

IV. CONCLUSIONS

Designing fault-free I&C software is hard. What is
also hard is to invent interesting, credible application
software design errors. Observations of nuclear safety
I&C systems failing during operation are actually so rare,
that it is making software probabilistic safety assessment
(PSA) hard [10]. The contribution of this paper is a set of
real-world examples of actual design issues. We hope that
the examples prove useful in different case studies to
support research on testing, test automation, simulation,
model checking, theorem proving, run-time verification,
and other V&V activities.

In addition, we of course hope that our examples help
prove the point that formal verification methods should
already be in much wider use.

ACKNOWLEDGEMENT

Our research on nuclear I&C model checking has been
funded by Finnish Research Programme on Nuclear
Power Plant Safety 2018–2022 (SAFIR 2022). We also
wish to thank VTT’s clients in the Finnish nuclear
industry for permitting the use of highly confidential
customer project data for our research. The NuSMV
model checker has been developed by Fondazione Bruno
Kessler (FBK).

REFERENCES

[1] E. Clarke, O. Grumberg, D. Peled, Model checking, 2nd
Ed., MIT Press, 2001.

[2] A. Pakonen, I. Buzhinsky, K. Björkman, Model checking
reveals design issues leading to spurious actuation of
nuclear instrumentation and control systems, Reliability
Engineering & System Safety, Vol. 205, 107237, 2021.

[3] A. Pakonen, Model-checking of I&C logics — insights
from over a decade of projects in Finland, Proceedings of
the 12th ANS International Topical Meeting on Nuclear
Plant Instrumentation, Control, and Human-Machine
Interface Technologies (NPIC & HMIT 2021),
Providence, RI, USA, pp. 792-801, 2021.

[4] A. Pakonen, Model-checking infinite-state nuclear safety
I&C systems with nuXmv, Proceedings of the 19th IEEE
International Conference on Industrial Informatics
(INDIN 2021). Palma de Mallorca, Spain, 2021.

[5] A. Pakonen, P. Biswas, N. Papakonstantinou,
Transformation of non-standard nuclear I&C logic
drawings to formal verification models, Proceedings of
the 46th Annual Conference of the IEEE Industrial
Electronics Society (IECON 2020), Singapore, pp. 697-
704, 2020.

[6] A. Pakonen, I., Buzhinsky, V. Vyatkin, Counterexample
visualization and explanation for function block diagrams,
Proceedings of the 16th IEEE International Conference on
Industrial Informatics (INDIN 2018), Porto, Portugal, pp.
747-753, 2018.

[7] A. Pakonen, T., Tahvonen, M., Hartikainen, M., Pihlanko,
Practical applications of model checking in the Finnish
nuclear industry, Proceedings of the 10th ANS
International Topical Meeting on Nuclear Plant
Instrumentation, Control, and Human-Machine Interface
Technologies (NPIC & HMIT 2017), San Francisco, CA,
USA, pp. 1342-1352, 2017.

[8] A. Pakonen, K. Björkman, Model checking as a
protective method against spurious actuation of industrial
control systems, Proceedings of the 27th European Safety
and Reliability Conference (ESREL 2017), Portoroz,
Slovenia, 2017.

[9] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, A. Tacchella,
NuSMV 2: An OpenSource Tool for Symbolic Model
Checking, Proceedings of the International Conference
on Computer-Aided Verification (CAV 2002).
Copenhagen, Denmark, pp. 359-364, 2002.

[10] M. Jockenhövel-Barttfeld, A. Taurines, C. Hessler,
Quantification of application software failures of digital
I&C in probabilistic safety analyses, Proceedings of the
13th International Conference on Probabilistic Safety
Assessment and Management (PSAM13), 2016.

