
This document is downloaded from the
VTT’s Research Information Portal
https://cris.vtt.fi

VTT
http://www.vtt.fi
P.O. box 1000FI-02044 VTT
Finland

By using VTT’s Research Information Portal you are bound by the
following Terms & Conditions.

I have read and I understand the following statement:

This document is protected by copyright and other intellectual
property rights, and duplication or sale of all or part of any of this
document is not permitted, except duplication for research use or
educational purposes in electronic or print form. You must obtain
permission for any other use. Electronic or print copies may not be
offered for sale.

VTT Technical Research Centre of Finland

Change-based causes in counterexample explanation for model checking
Ovsiannikova, Polina; Pakonen, Antti; Vyatkin, Valeriy

Published in:
IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society

DOI:
10.1109/IECON48115.2021.9589122

Published: 16/10/2021

Document Version
Peer reviewed version

Link to publication

Please cite the original version:
Ovsiannikova, P., Pakonen, A., & Vyatkin, V. (2021). Change-based causes in counterexample explanation for
model checking. In IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society (pp. 1-6).
[9589122] IEEE Institute of Electrical and Electronic Engineers.
https://doi.org/10.1109/IECON48115.2021.9589122

Download date: 06. Jul. 2022

https://doi.org/10.1109/IECON48115.2021.9589122
https://cris.vtt.fi/en/publications/c2a858c3-3923-49dc-97ae-96c08f59e16f
https://doi.org/10.1109/IECON48115.2021.9589122


Change-based causes in counterexample explanation
for model checking

Polina Ovsiannikova∗†, Antti Pakonen‡, and Valeriy Vyatkin∗†§
∗Computer Technologies Laboratory, ITMO University, Saint Petersburg, Russia

†Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
§Department of Computer Science, Computer and Space Engineering, Luleå Tekniska Universitet, Sweden

‡VTT Technical Research Centre of Finland Ltd., Espoo, Finland
Email: polina.ovsiannikova@aalto.fi, antti.pakonen@vtt.fi, valeriy.vyatkin@aalto.fi

Abstract—Formal verification by means of model checking
avails in discovering design issues of safety systems at the early
stages. However, a significant amount of time and effort is
required to decipher its results and localize the failure, especially
in complex logic. This work continues our previous study on
the visual explanation of failure traces and introduces change-
based causes. Additionally, inspired by the types of properties
that revealed model failures in projects of VTT in the Finnish
nuclear industry, we define a new form of explanation – a hybrid
influence graph. The new approach was implemented in a tool
called Oeritte and evaluated using two practical examples of
failures in nuclear instrumentation and control systems.

Index Terms—counterexample explanation, user-friendly
model checking, causality, function block diagrams

I. INTRODUCTION

This work is a continuation of our previous investigation [1]
of causality in counterexample explanation for model check-
ing [2]. The problem arose from the fact that model checking
being a powerful instrument for formal model verification
lacks user-friendliness in the representation of its results in
case the model behavior is incorrect. In brief, to model check
a system, one needs (1) to obtain its formal model, (2) to create
its specification using formal languages, and (3) to provide it
as input to a tool, model checker. The output of the latter
is then the answer “Yes” if the specification holds, and a
counterexample otherwise. A counterexample of length l, in
turn, is a sequence of system states, each of which is a set of
all variables of the system with their values. Such sequence
can be finite or infinite, in the second case, it consists of a
finite prefix and a loop. A counterexample, generally, is a
model trace where, at some point, the system property violates,
however, being a table of values, it does not avail in subsequent
model debugging.

In the previous work, we reduced the problem of counterex-
ample explanation on a function block diagram (FBD) to a
search for a union of all the inclusion minimal causes (IMCs)
for a value of a variable at a particular counterexample step
(an assignment). Intuitively, our IMC is a minimal set of
assignments that are required to infer the explanation target
after a finite number of steps of logical inference in the

This work was supported, in part, by the Finnish Research Programme on
Nuclear Power Plant Safety 2018-2022 (SAFIR 2022) and by the Government
of the Russian Federation under Grant 08-08.

direction of the information flow. An example of such an
explanation is shown in Figure 11.

The practice showed that the explanation in form of all the
IMCs reduces the diagram area to be analyzed, however, it still
might occur too crowded with highlighting and include the
assignments that are not connected to the actual issue. There-
fore, in this paper, we present an approach that complements
the previous one and aids the analyst to focus on the variables
that changed their values and influenced the verification result.
Take as an example a specification formulated in terms of
linear temporal logic (LTL). It can hold on some finite prefix
of length m of a counterexample but turn false in the state
m + 1 (m < l). Showing such changes gives an analyst
immediate clues about the dependencies between variables and
points to the assignments, which, had they different values,
the fault would have been avoided. It is especially useful in
process of model debugging, as we noticed that when it is
not a major design fault, the crucial element can be found
locally by searching for a minimal set of assignments that
should be changed in order to obtain the expected value of
the explanation target. Therefore, as the main contribution of
the current work, we (a) formulated a new kind of a cause –
a change-based cause, (b) incorporated it in a new kind of
explanation – a hybrid explanation graph, and (c) implemented
it in our tool, Oeritte.

II. PREVIOUS WORK AND INCLUSION MINIMAL CAUSES

In [1], we proposed a definition of inclusion minimal
causes (IMC). Here, we briefly revisit the key concepts and
explain the definition from the intuitive point of view. For the

OR1
AND1

OR2 0
1

u1u2

u3u4

u5 0
00

10

Fig. 1: Blue highlighting corresponds to explanation of the value of u5 at
counterexample step n with IMCs. The union of its IMCs include values of
the following variables at step n: u3 and u4 (inputs of the FBD), two inputs
and the output of OR2, the input and the output of AND1, and u5 itself.

1Here and in further figures 0 and 1 correspond to false and true.



formal definitions, we invite the reader to examine Section
II.A and Section III of [1].

In this paper, as well as in [1], our models are function block
diagrams (FBD)2. They consist of function blocks (or blocks)
which compute values of their output variables based on values
of their input and internal variables. We denote input and
output variables as interface variables, which can be connected
to each other, thus, having their values equal. Output variables
may have any finite number of outgoing connections, while
input variables are bounded with one incoming connection at
most. We say that two blocks are connected if there exists at
least one connection between their interface variables.

Function blocks are divided into atomic and modular. The
first kind represents atomic operators or simple functions. In
this work, we use the same set of atomic block types as in [1].
A modular block, in turn, internally, is a net of interconnected
blocks of any type, decomposable into a net of a finite number
of atomic blocks. Therefore, an FBD itself is a modular block
that is not nested into any other modular block.

Our models are discrete-time and, on each time instant,
values of all the variables included in an FBD are updated.
The integer time step is not a variable directly accessible
in the model without modifications but is defined on the
model execution sequence as a number of an execution. The
execution semantic of an FBD is synchronous, the output
values of each block are functions of its input values from
the current or the previous time step (custom initialization
may be applied on the first time step, and input variables
without incoming connections are assigned the same default
values at all time steps) and the signals are propagated through
connections instantly. Delay function blocks help to prevent
infinitely fast information flow in FBDs with feedback loops.
Such blocks delay the signal by a single time step and each
FBD may have a finite number of delay blocks.

The most basic terms of our work that require repeating their
definitions are an assignment and a counterexample. Assume
having FBD D with its finite set of variables U = {u1, ..., un}.

Definition II.1 (Assignment). An assignment a is a tuple
(u, vu,j , j), where vu,j is the value of variable u at discrete
time step j. By v(a) we denote the value of this assignment
and by s(a) its step. If u ∈ U is a variable of D then there
exists an index i ∈ [1, n] for u, and we denote the assignment
of u = ui at time step j as ai,j .

Definition II.2 (Counterexample). A counterexample X of
length l is a set of assignments of the variables from U for
each time step j: X = {(ui, vi,j , j) | i ∈ [1, n], j ∈ [1, l]}.

Essentially, X is a sequence of model states (or the sets of
values of all the variables at the corresponding time steps).

Now, our initial task is to explain the false outcome of an
LTL formula on counterexample X of FBD D using its blocks
and variables. However, as soon as the formula failure might
be explained with a set of assignments [3], [4] of formula

2Our approach is not limited to the programming language called FBD
in the IEC 61131-3 standard. We use “FBD” in a more general sense.

variables, we reduce this task to the explanation of a single
assignment from X in D and call such an assignment an
explanation target.

Each function block infers its outputs based on the defined
rules, therefore, imposing logical constraints on the values
of its variables. Also, each connection can be described as
a constraint on the values of two variables. Suppose that each
assignment is a statement. Then, it is possible to define a
cause intuitively as a set of statements C ⊆ X which is
sufficient to infer the explanation target if the allowed rules are
limited to using constraints of each individual atomic block or
connection in the direction of the information flow. If there is
no other subset of C satisfying mentioned condition, then C
is an inclusion-minimal cause. Therefore, our explanation is a
union of all IMCs of the explanation target.

The algorithm that finds all IMCs of an assignment was
implemented in the graphic tool, Oeritte3, that visualizes
counterexamples in an FBD and explains them (1) using only
variables of an LTL formula and (2) using the model as a
whole.

III. CHANGES-BASED EXPLANATION

In this section, we provide an additional view on the
same problem of counterexample explanation reduced to the
explanation of a single assignment (or an explanation target t)
from X on D and reshape our explanation from [1].

A. Explanation as a graph

Earlier we stated that our explanation is a set of assign-
ments, which, even though can be displayed as a tree in our
counterexample explanation tool, Oeritte, essentially, are not
interconnected. However, due to the fact that the definition
of an IMC is based on inference, each assignment in the
explanation, except for the explanation target, is included in an
IMC of some assignment in the explanation. Also, as multiple
outgoing connections are possible in an FBD, one assignment
can be included in several IMCs.

This brings us to a conclusion that the assignments from the
union of IMCs of the explanation target can be organized into
a directed IMC influence graph, where nodes are assignments
and edges are ordered pairs (a, a′), where a, a′ are such
assignments that a′ is included into the local IMC of a. For
further convenience we will define an influence graph in a
generic way, i.e., its nodes are A ⊆ X and edges are ordered
pairs of assignments from A connected with particular relation.
The graph will be named according to this relation, e.g., in this
case, IMC influence graph.

Therefore our explanation now is not just a set of assign-
ments but an IMC influence graph in which a set of nodes
correspond to the union of IMCs of t.

B. Change-based causes

As a verification result, we might get a scenario where
the specification is satisfied on some finite prefix of the
counterexample but starts failing if we include the next step to

3https://github.com/ShakeAnApple/cxbacktracker/

https://github.com/ShakeAnApple/cxbacktracker/


OR1
AND1 OR2

u1u2

u5
u20OR3DELAY(0, 1, 0) (0, 0, 1)

(1, 1, 0)
(1, 1, 1)

(1, 1, 1)

u4
u6
u7 u8 u9

u13
u14

u11
u12 u17

u16
(1, 1, 1) u19u10 u18

u15u3
(0, 0, 1)
(0, 1, 1)(1, 1, 0)
(1, 1, 1)

Fig. 2: Example of a hybrid explanation visualized in an FBD. Here, we assume that the counterexample consists of three states. Triples next to the names
of the variables or above the connections indicate values of the corresponding variables at each step starting with step one if reading from left to right. The
change-based explanation is marked with orange highlighting, while blue corresponds to inclusion-minimal causes explanation from [1].

the trace. This might happen because some variables changed
or because variables, that should have changed, preserved their
values (or if we deal with numeric variables, changed in an
inappropriate way). In the first situation, it is important to
direct the attention of the analyst to the specific process that
prevented the property to be fulfilled. Therefore, we define
a new type of cause, a changed-based cause that is defined
through a local changed-based cause.

Definition III.1 (Local change-based cause). A local change-
based cause C̃∗ ⊆ X of t is such a set of assignments that is
included into the union of local IMCs of t and ∀ai,j ∈ C̃∗ :
v(ai,j) 6= v(ai,j−1).

Our local change-based cause, generally, will include a
subset of assignments of inputs of an atomic block or an
assignment if the opposite side of a connection, depending
on if the target is an output or an input. This subset contains
not only assignments that have changed at the last step (with
respect to t) but which also influence the value of t as they
are chosen from its IMCs. Consider an FBD in Figure 2. A
local change-based cause of an output u10 at step 3 here is a
singleton containing assignment (u9, 1, 2). As soon as u9 is
always assigned the value of u8, a local change-based cause of
a9,2 is the same as of a8,2 which is {(u6, 1, 2)}. Now, as we
know all the variables of the system and there are no hidden
processes that may influence their values, we can say that a
change in the value of one variable cannot happen without
premises, i.e., changes in the values of some other variables,
which, in turn, also require premises. Thus, we can expand the
definition beyond the local explanation scope and formulate a
change-based cause.

Definition III.2 (Change-based cause (CBC)). A set of assign-
ments C∗ ⊆ X is a change-based cause (CBC) of a target t
if there exists such sequence of sets of assignments from X ,
Y0, ..., Ym : C∗ = Ym, t ∈ Y0, where each Yk+1, k ∈ [0,m−1]
extends Yk with one or more local change-based causes of any
assignments from Yk.

This means that local CBCs are also CBCs. Intuitively, we
say that if assignment a is a local CBC of t, and assignment
a′ is a local CBC of a, then a′ is also a CBC of t, or, as in
our example in Figure 2, C∗ = {(u6, 1, 2)} is a CBC of a10,3.

As a result, our change-based explanation is a CBC influ-
ence graph where the set of nodes corresponds to a union
of all CBC of t and edges assignments are connected with a
change-based causal relation.

(u19,1,3)(u19,1,3)(u17,1,3)(u17,1,3)
(u18,1,3)(u18,1,3)(u16,1,3)(u16,1,3)

(u15,1,3)(u15,1,3)(u12,1,3)(u12,1,3)

(u3,1,2)(u3,1,2)(u6,1,2)(u6,1,2)(u8,1,2)(u8,1,2)(u9,1,2)(u9,1,2)
(u13,1,3)(u13,1,3)(u10,1,3)(u10,1,3)

(u2,1,3)(u2,1,3)

Fig. 3: Explanation (hybrid influence graph) for assignment (u19, 1, 3) from
the FBD in Figure 2. The ovals with blue and orange background correspond
to assignments included into IMCs and CBCs respectively.

IV. HYBRID EXPLANATION

Change-based causes effectively point to critical processes
taking place in a model, however, their usage is limited to
failure scenarios where the satisfactory system operation is
interrupted by the unexpected deviation. In this case, such
instant changes draw the attention of the analyst to the diagram
areas which should not allow the combinations of values
found, or to the fact that the LTL property checked should
be reformulated if the counterexample is spurious.

On the other hand, this work was inspired by the practical
cases of applying model checking in the Finnish nuclear
industry and is aimed to avail in explanation of failures of
the most common types of LTL properties in this domain.
In [5], the authors collected and categorized specifications that
were of interest throughout a two-year experience of VTT in
the nuclear industry. Out of 1079 properties in total, 87%
were formulated using LTL and 92% can be described as
implication with a leading type G(p → q). Such a formula
fails if anywhere across the state space of a model statement
p∧¬q is true and this failure, for example, might mean that
despite some criteria was satisfied, the expected outcome was
not obtained.

Investigating counterexamples for properties of this type,
we found out that the most usual failure scenario that a model
checker discovers comprises of a prefix where both p and q
are false followed by a state where p becomes true but q
does not change. Considering that q commonly represents a
predicate formulated using output or internal variables of the
model verified, the question of the analyst interest here is why
q remains false while it should change.

Consider the case where q is a predicate of a single variable.
Here, CBC helps to reveal a situation when this variable stayed
unchanged despite other changes taken place and indicates
that some concurrent event happened that canceled the effect
of the change. But there also exists a scenario where none of
the variables, whose assignments are included in the union of
local IMCs of t, changed from the start of a counterexample



a

b

Fig. 4: Main view of Oeritte, a tool for visual counterexample explanation. Blue selection in diagram (b) highlights nodes of a hybrid influence graph that
are reachable from the chosen node, which is, in this case, the rightmost highlighted node, pointed with the red triangle (not a part of the tool user interface),
and edges between them.

till the failure step, which leaves the analyst empty-handed.
This fact motivated us to search for a hybrid explanation ap-
proach that includes both change-based and inclusion-minimal
causes.

A. Explanation approach

In our hybrid explanation of t, we synthesize explanation
approaches based on CBSs and IMCs. Therefore, our explana-
tion is a hybrid influence graph, where (1) edges assignments
are connected with inclusion minimal or change-based causal
relation, (2) each assignment node ai,j is included into the
union of all IMCs of t and if v(ai,j 6= v(ai,j−1)) then ai,j is
also included into the union of all CBCs of t and (3) paths
from assignments from CBCs can end only in assignments
from CBCs. Thus, unless an assignment a has a local CBC,
it is connected to the assignments from its union of local
IMCs, otherwise, a is further explained only through changes.
Figure 2 visualizes on a diagram the hybrid explanation of the
value of u19 at counterexample step 3, provided in Figure 3.

To infer such a graph we need an adjusted version of
Algorithm 1 from [1]. More specifically, now, after finding
the IMCs for an output of an atomic block in line 7, we
check if some of the result assignments have changed since the
previous step. If yes, then we only append them to the result,
otherwise, we append all the found assignments. Besides, as
now an explanation is defined as a graph, we also create and
update the list of its edges.

B. Implementation in Oeritte

Since [1] the user interface of Oeritte has been slightly
changed (Figure 4). We removed the diagram and formula ex-
planation result panels and moved the clickable counterexam-

ple steps list (Figure 4 (a)) to the lower area of the main view.
In the freed-up space, we built the control which displays a
hybrid influence graph for a chosen assignment (Figure 4 (b)).

To address the need to learn why the variable of the explana-
tion target remained unchanged during several counterexample
steps, we decided to implement an experimental feature and
run an explanation procedure for each of such steps. The
result graphs for each of the steps are then merged by the
same assignments and displayed in the graph control. In this
control, gray and orange boxes are the assignments included
into causes, IMC or CBC respectfully, gray and blue lines
represent edges. Each assignment has a small button in the
top left corner, click on which highlights all the paths in the
graph from the current node with blue. For nodes that were
changed at some point in the past but not at the previous step,
we display when the last change took place.

V. CASE STUDY

For the evaluation of our new approach, we use two exam-
ples from our previous works and types of LTL properties that
are often verified in nuclear industry projects in VTT [4], [7].

A. PID control of a safety actuator

As our first practical example, we use a PID control of a
safety actuator and its design issue from [6], Figure 6 presents
its slightly modified FBD. Here, MEASURE is defined based on
second-minimum voting over four redundant signals. In the
control mode, this value is memorized and then used as a
SETPOINT for the controller. In case of measurement fault
or when the control mode is switched off, the controller is
disabled.



Fig. 5: Part of the hybrid explanation graph for the design issue from [6] for the system in Figure 6. Here we can see that the explanation for variable
SETPOINT at step 1 includes explanation for RS001.OUT at the same step and they both are included in a cause of an LTL formula failure.

OROR
R SR S

2nd Max2nd Max F2nd Max F

HOLD

HOLDAnalog memory HOLD

HOLDAnalog memory

CONTROLONCONTROLOFFMeasurement(1..4)

MEASURE SETPOINT ENABLE

OR_2001

RS001

_MAX001

MEM_ANA001

Fig. 6: PID control logic example (the PID controller itself, was omitted to
save space). Block [R, S] stands for a memory with reset priority. We put
names of the blocks in NuSMV model in italic to the right of the blocks.

We were interested in the same property as in [6], i.e.,
“assuming that the valid (actual) measurement is never zero,
then zero shall never be selected as the setpoint”, which
is equivalent to LTL formula “G¬(MEASUREMENT = 0 ∧
¬MEASUREMENT FAULT) → G¬(SETPOINT = 0 ∧ ENABLE)”.
This property was proved to be false by the NuSMV [8]
model checker and Oeritte showed that the formula failed
at the second counterexample step, where the right part of
the implication became true. This happened because the
value of SETPOINT was equal to 0 and the controller was
enabled at the same time. Checking the explanations for both
of these variables we notice that the one for the SETPOINT

at step 1 (the tool numbers steps starting 0) includes the
explanation for ENABLE (which is equal to RS001.OUT) at the
same step (Figure 7). Here, the change that happened in the
system causes the important variable to preserve its value.
The explanation graph shows that ENABLE was set to true

because the control mode was switched on at step 1, which
made the analog memory preserve its value that was set to 0 at
the previous step (step 0, the initial state). In other words, due
to measurement fault at step 0, the second-maximum block
outputs a default preset initial value of 0, not a value based
on real measurements. This value is then memorized as the
set point.

B. Set point selection logic

In our second experimental evaluation, we use a set point
selection logic that was described in [7]. Here we analyze
the same simplified and masked version of the original design

and its issue. A diagram of the logic—slightly modified from
[7]—is provided in Figure 8.

We formulated the model in terms of NuSMV verifier and,
as in [7], checked that “When the temperature has returned
to normal level, the operator can reset the set point to normal
value”, which was represented in LTL as “G(((ACTUATE ∧
HIGH SETPOINT∧¬RESET)∧X(NORMAL TEMP∧ RESET))→
X LOW SETPOINT)”. The model checker produced a coun-
terexample, where the left part of the implication became true
at step 1 but the value of LOW SETPOINT remained false

at the next step. The part of the hybrid influence graph
produced by Oeritte is shown in Figure 7. Here we can see
that the value of LOW SETPOINT remained false despite the
changes happened in the system. More precisely, output of
LOW TRESH003 (which corresponds to NORMAL TEMP) together
with RESET became true at step 2. As they both are inputs of
AND 2002, the output of the latter also became true and set
the output of flip-flop SR001, which, in turn, being received
by AND 2001 inverted, set its value to false. However, as the
graph points us, AND 2001 did not have a chance to result in
true as its another input was set to false by the ACTUATE

signal that also became false at step 2. This false signal
was propagated to AND 2008 whose output corresponds to
LOW SETPOINT. The analyst infers that the issue here is that
the operator uses the reset option while the temperature is still
high.

VI. DISCUSSION AND RELATED WORK

The definition of a change-based cause in this work can be
considered as counterfactual [9], as it follows the logic “Unless
event A had happened, event B would not have happened”,
where events A and B, in our case, are particular assignments.
However, despite CBCs avail in exploring fault propagation
paths, we found pure counterfactual definition insufficient to
form an explanation and developed a hybrid approach that
includes the general type of causes from the previous work.

Our novel hybrid approach not only reduces the explanation
but also reveals the reasons behind the situations when a vari-
able preserved its value despite the change performed or when
it changed contrary to what was expected. The synthesis of two
explanation methods, change-based and inclusion-minimal,
was especially highlighted in our first case study example in
Section V-A, where the value of ENABLED could be explained
only with CBCs, while SETPOINT required inclusion-minimal
explanation at the beginning.



Fig. 7: Part of the hybrid explanation graph for the design issue from [7] for the system in Figure 8. The problem here is that LOW SETPOINT remained false
at step 2. This happened because values of some input variables were changed in a way that another input of AND 2008 became false and was propagated
to LOW SETPOINT.

S RS R
R SR S

ANDAND
ANDAND

LOW_TRESHLOW_TRESH
LOW_TRESHLOW_TRESH

ANDANDAND

ZZ_TEMPACTUATE RESET

ALLOW LOW_TEMP
NORMAL_TEMP

HIGH_SETPOINT
LOW_SETPOINT

AND_2008
AND_2002

AND_2001

SR_001

LOW_TRESH003

Fig. 8: Set point selection logic example. Blocks [S, R] and [R, S] correspond
to memory with set and reset priority, a circle between the arrow and the
block means that this input is inverted. We put names of the blocks which
are important in the explanation in italic to the right of the blocks.

To save space, we do not provide a full literature review on
the current problem since it was performed in our most recent
work. However, we mention the closest works to ours which
are [3], [10] in the scope of explanation using specification
and [11]–[13] in explanation using the model itself. The closest
related approach is still [14], from which we differ now also
in our new change-based causes.

VII. CONCLUSION

In the presented work we developed a new approach to
the explanation of the violated LTL properties. This task was
reduced to the explanation of a single assignment using CBCs
and IMCs. To evaluate the new approach, we implemented
it in Oeritte and explained two design issues taken from the
practice of VTT in the Finnish nuclear industry.

In our implementation, we not only display immediate
CBCs and IMCs but also show when each variable included
in the explanation changed its value the last time. Also,
when the user requires the explanation of the variable that
preserved its value during several counterexample steps, we
show its explanation for all the previous steps where the
value remained. Nevertheless, the last feature requires more
computational resources and, presumably, a more compact
representation of the influence graph to fully assist the user.

Another substantial remark is that the explanation is more
beneficial if the system model supports user-friendly design
(e.g, NuSMV modules are named after their functions, vari-
ables names follow a single convention).

Our future work is aimed at improving the user experience
with the influence graph and reducing the computational
resources required to perform the explanation of variables that
preserve their values.

REFERENCES

[1] P. Ovsiannikova, I. Buzhinsky, A. Pakonen, and V. Vyatkin, “Oeritte:
User-friendly counterexample explanation for model checking,” IEEE
Access, vol. 9, pp. 61 383–61 397, 2021.

[2] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT press,
Cambridge, Massachusetts, 1999.

[3] I. Beer, S. Ben-David, H. Chockler, A. Orni, and R. Trefler, “Explaining
counterexamples using causality,” Formal Methods in System Design,
vol. 40, no. 1, pp. 20–40, 2012.

[4] A. Pakonen, I. Buzhinsky, and V. Vyatkin, “Counterexample visualiza-
tion and explanation for function block diagrams,” in 2018 IEEE 16th
International Conference on Industrial Informatics (INDIN), 2018, pp.
747–753.

[5] A. Pakonen, C. Pang, I. Buzhinsky, and V. Vyatkin, “User-friendly
formal specification languages – conclusions drawn from industrial expe-
rience on model checking,” in 2016 IEEE 21st International Conference
on Emerging Technologies and Factory Automation (ETFA), 2016, pp.
1–8.

[6] A. Pakonen, I. Buzhinsky, and K. Björkman, “Model checking reveals
design issues leading to spurious actuation of nuclear instrumentation
and control systems,” Reliability Engineering & System Safety, vol. 205,
p. 107237, 2021.

[7] A. Pakonen, “Model-checking of I&C logics – insights from over a
decade of projects in Finland,” in 12th International Topical Meeting on
Nuclear Plant Instrumentation, Control and Human Machine Interface
Technologies (NPIC & HMIT). American Nuclear Society, 2021.

[8] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV 2: An OpenSource
tool for symbolic model checking,” in International Conference on
Computer Aided Verification (CAV). Springer, 2002, pp. 359–364.

[9] D. Lewis, “Counterfactuals and comparative possibility,” in Journal of
Philosophical Logic. Springer, 1973, vol. 2, pp. 418–446.

[10] A. Ek, “Explanation of counterexamples in the context of formal verifi-
cation, Bachelor’s thesis, Uppsala University, Department of Information
Technology,” 2016.

[11] A. Groce, D. Kroening, and F. Lerda, “Understanding counterexamples
with explain,” in International Conference on Computer Aided Verifica-
tion. Springer, 2004, pp. 453–456.

[12] F. Leitner-Fischer and S. Leue, “Causality checking for complex system
models,” in International Workshop on Verification, Model Checking,
and Abstract Interpretation. Springer, 2013, pp. 248–267.

[13] C. Wang, Z. Yang, F. Ivančić, and A. Gupta, “Whodunit? causal anal-
ysis for counterexamples,” in International Symposium on Automated
Technology for Verification and Analysis. Springer, 2006, pp. 82–95.

[14] T. Bochot, P. Virelizier, H. Waeselynck, and V. Wiels, “Paths to property
violation: A structural approach for analyzing counter-examples,” in
2010 IEEE 12th International Symposium on High Assurance Systems
Engineering, 2010, pp. 74–83.


	Introduction
	Previous work and inclusion minimal causes
	Changes-based explanation
	Explanation as a graph
	Change-based causes

	Hybrid explanation
	Explanation approach
	Implementation in Oeritte

	Case study
	PID control of a safety actuator
	Set point selection logic

	Discussion and related work
	Conclusion
	References

