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ABSTRACT

Power-to-gas technology has been proposed as one component for future energy systems facing decarbonization
targets. This paper presents a power-to-gas focused open optimization model for studying cost efficient design
and operation of future urban energy system. The model is able to distinguish the benefits of different
configurations of power-to-gas by modelling several energy vectors, including electricity, heating, and cooling
alongside with different plant components. The usefulness of the built multi-vector model is illustrated by
a case study where the benefits of power-to-gas are studied in the context of a medium-sized Nordic city.
The results show that the city is able to reach carbon neutrality with the help of power-to-gas. Power-to-gas
provides cost savings by reducing the need of heat storages and transmission capacity. The savings are greatest
when the emission reduction goal is high and transmission capacity expansion is expensive. Direct air capture
appears as the superior carbon dioxide source when compared to post combustion capture from flue gases due

to costs and annual availability. The case study shows no economic benefit for distributed power-to-gas.

1. Introduction

To limit global warming below 1.5°C, carbon dioxide (CO,) emis-
sions should decline by 40%-60% by 2030 and reach net zero close
to 2050 [1]. To reach this target, installation of massive amount of
variable renewable energy (VRE) generation, mainly wind and solar,
will be essential [2]. Fossil carbon needs to be removed from all energy
sectors including heating, cooling, and transport while at the same
time power system needs to cope with a large variability of generation.
Chemical storage of electrical energy has been proposed as a key option
in tackling the challenge [3]. Power-to-gas (P2G), which refers to
production of both hydrogen and methane using electrical energy, has
been suggested as an option for chemical energy storage [4]. Synthetic
methane and up to some extent, hydrogen, can substitute natural gas in
existing gas networks. In recent years, a great number of studies have
been published about the role of P2G in national and continental energy
systems [5].

In addition to international emission reduction targets, targets have
been also set on local level. For example, the Covenant of Mayors [6]
urges cities to pursue energy efficiency and emission reductions. Energy
system analysis which focuses on single city can help to reach the
targets in a cost-efficient way by providing additional information on
local conditions and operation environment. The fact that cities’ share
of the global energy demand and carbon emissions is approaching
80% [7] also advocates the need for city level analyses. European
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district heating (DH) and cooling systems, which are major energy
consumers in cities, are still mainly based on fossil fuels [8], most
commonly on natural gas [9]. From the energy system studies point
of view, analysing local systems is attractive because it allows more
attention to detail which would, because of computational limitations,
be beyond reach in national or continental analyses. The presence of
energy storages, including chemical energy storages, can significantly
increase the system optimization complexity [10].

While renewable energy integration in urban energy systems has
been widely studied [11], the contribution of P2G on the security of
supply, carbon emissions and economic affordability in urban energy
systems has not yet been fully addressed. Analysing the role of P2G on
the city level is interesting because of its interactions with other energy
vectors [12]. Especially in Nordic countries district heating networks
are normally present and allow cost-efficient exploitation of waste
heat from large point sources. P2G produces waste heat and benefits
from economies of scale. P2G needs CO, as input, which is currently
produced in large quantities by power and heating plants in cities [13].
If on the other hand CO, is extracted from ambient air, district heating
may serve as an affordable heat source for the process. District cooling
is a relatively new technology, which can act as a source of excess heat
or a sink of cooling. Cities are also major electricity consumers and it
is important to consider also the effect of grid restrictions on P2G [14].
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1.1. Literature review and contributions

The analysis of future scenarios where novel technologies become
available is usually performed with the aid of an energy system model.
As there is a trade-off between model features and computational
feasibility, one is advised to select a suitable model for each applica-
tion [16]. We need a model which can consider several energy vectors
to analyse the contribution of P2G in urban energy systems . We
can thus approach the research question from two directions. Firstly
there are studies concentrating on planning and optimization of multi-
vector energy systems. Secondly, there are several categories of studies
focusing on P2G [5]. These include also cost optimization studies. From
the point of view of the current study, the intersection of these two lines
of research is most interesting.

A number of studies which pay attention to multiple energy vectors
and include also P2G have been published. These differ in terms of
the energy vectors and technologies included, availability of options
to import and export, and the extent of optimization. Some studies
employ simulation approach rather than cost optimization. Study [15]
simulated the use of electric and gas driven heat pumps (HP), combined
heat and power (CHP), and P2G to satisfy heat demand at three
different temperature levels in three example cities. P2G was only used
to convert excess VRE to gas. Study [8] investigated the supply of
electricity and district heat by VRE in a Finnish rural town, using P2G
for reaching net zero consumption of natural gas. Using rule-based
dispatch it was determined that electrolysis of 1.2MW capacity was
needed to reach zero emissions, which is approximately 1/6 of the
peak DH load. In the analysis [17] the capacities of different conversion
technologies were given as input and their effect was investigated. The
heat sector was included with given heat price. The authors found that
P2G was not able to reduce the average cost of electricity unless very
low capital cost was assumed.

Study [18] used rule-based dispatch and capacity optimization to
study the effect of increasing share of renewable electricity in the
Berlin—-Brandenburg region. P2G entered the cost-optimal capacity mix
at very high renewable electricity shares. However, the heat sector
was not included. Conversely study [19] performed only dispatch
optimization on a system comprising power, heat, and gas vectors.
Genetic algorithm was applied as solution method to take account also
transmission constraints.

Some studies carry out both system planning (i.e. optimize plant ca-
pacities) and operational optimization. The German Rheinland-
Palatinate region was considered an electrical island with 100% renew-
able energy penetration in study [20]. The heat sector was included
as sink with exogenous price of heat. P2G entered the cost optimal
system when its investment cost decreased below 2500€/kW. Con-
versely in [21] limits for renewable energy share were not set but the
effect of taxes and natural gas price on P2G and power-to-heat (P2H)
profitability. Price of electricity was externally given. The effect of gas
price on the P2G, which could exploit CO, from a biomass combined
heat and power (CHP) plant, was studied in [22]. In that study the
model city could also trade with external power market. Study [23]
considered heat and electricity vectors but only a limited number of
technologies. In that study the objective was not minimization of cost
but minimization of emissions. Multiple energy vectors were included
in study [24] but the heat sector was missing.

A group of studies includes optimization of plant capacities and
multiple energy vectors but take the perspective of a single plant.
Study [25] created a process model for the P2G plant, which was then
linearized for the purpose of optimization against electricity market.
The study paid particular attention to oxygen revenues and very high
oxygen prices were also considered. Study [26] studied the optimal
sizing of a building-scale P2G plant producing both methane and oxy-
gen. Methane and oxygen could be consumed in an oxyfuel boiler with
carbon capture from fluegases, producing heat for local consumption.
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As mentioned, another stream of literature concerns optimal system
planning and scheduling in multienergy systems. In these studies, P2G
is not normally modelled but could possibly be added to the models
with reasonable amount of work. Study [27] developed a mixed integer
quadratic programming model for simultaneous electricity and cooling
production and applied it to a group of office buildings. Study [28]
applied the energy hub concept to a system comprising electricity, gas
and heat flows and solved the energy cost minimization problem using
gravitational search algorithm. Review [29] found that the interaction
between gas and electricity grids has been widely studied in optimal
planning models but heat networks are much less commonly included.
Furthermore, the review suggested economic value of energy systems
integration as well as the optimal level of integration (transmission or
distribution) as future research topics.

P2G can produce both methane and hydrogen. In existing literature
normally only one product is analysed. Hydrogen can be fed into
existing gas networks in certain quantity; varying concentration limits
have been set in different countries. In study [30] it was envisioned
how to convert of the gas distribution of one whole city from natural
gas to hydrogen. In that study methane steam reforming (SMR), which
needs to be accompanied by carbon sequestration, was considered as
the main hydrogen production technology. Electrolysis was given only
an augmenting role due to high cost of electricity and large land foot
print of carbon-free electrical generation.

In this study we perform planning and dispatch optimization for
an urban multi-energy system of the near future. We concentrate on
economic affordability and examine if P2G can contribute to reduction
of costs when emission reductions are pursued. The novelty of the paper
lies in an unique combination of modelling features. We seek to provide
cost optimal solutions by optimizing both capacity investments and
the day-to-day operation of the system. Compared to most previous
studies, we consider cost optimal ways of fulfilling heat, cooling, gas
and electrical demand. A variety of technologies for generation of
electricity, heat and cooling are included. Unlike in most studies, where
the attention has been given to the rest of the system [5], we also touch
upon the process design of the P2G plant by modelling several plant
components separately. P2G needs CO, and we consider two different
options for CO, supply: direct air capture and post-combustion capture
from flue gases. We also consider both hydrogen and methane products
of P2G. By-products waste heat and oxygen are also considered.

We also consider the significance of the electrical grid and other
energy grids from several viewpoints. One of the trends of the energy
sector is the emergence of distributed energy resources. We include
technologies such as distributed P2G and electric vehicles, which may
also provide flexibility and help to reduce emissions. The trade-offs
between electrical grid reinforcement and P2G are studied both for
centralized and distributed P2G. We apply the model to a Nordic city
and clearly show the economic benefits of P2G at different levels of
ambition of emission reductions.. The model is also made available to
the research community.

1.2. Paper organization

The analysis is performed by building and running an energy system
planning and scheduling model. In Section 2.2 the model is introduced
and balancing the computational burden and model detail is discussed.
The modelling of P2G and other relevant conversion and storage tech-
nologies are explained in Section 2.3. In addition, we justify the choices
of relevant technical and financial parameters. Section 2.4 defines a
case study to produce practical results and illustrate functioning of the
model. Results of the case study are shown in Section 3 and the results
are discussed in Section 4. Finally, Section 5 concludes the insights of
the paper.
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2. Materials and methods
2.1. Modelling the urban area

Fig. 1 shows the schematic layout of the conversion units and
flows of energy vectors in the model. To avoid cluttering of figure,
some details of the system are presented later in Section 2.3. The
four energy vectors modelled are electricity, heat, cooling, gas, and
hydrogen. Electricity can be produced by combined cycle gas turbine
(CCGT) combined heat and power (CHP) plant, gas engines or turbines,
solar PV, and wind turbines. Short-term storage is possible with battery
electric storage system (BESS). District heat can be produced by the
CHP plant, gas and electric boilers, and different types of heat pumps.
Hydrogen can be produced by electrolysis plant, stored and fed to
the methanation plant or directly to gas grid. CO, for methanation
is captured from CHP flue gases at post combustion capture plant or
directly from ambient air. Methanation produces SNG which substitutes
fossil natural gas. District cooling can be produced by heat pumps,
compression chillers or free cooling using seawater. In addition, heat
and cooling are available as byproducts of the power-to-gas process.
District heating and cooling networks are local to the city, but electric-
ity and natural gas can be imported from or exported to the national
transmission grids.

2.2. Optimization

The optimization problem considered in this work can be stated in
concise form as follows. Given

» Demand profiles and weather data

+ Available technologies, their costs, performance data and opera-
tional constraints

» Reduction goal of fossil fuel usage

Determine:

» Selection of technologies to invest in

» Operation profiles of different units

+ Management strategy of the storage systems
» Energy import and export profiles

* Grid reinforcement investments

This is done subject to:

+ Technical constraints of conversion units
+ Fulfilling demand of electricity, heat and cooling

The open-source Backbone modelling framework [31] was chosen as
the optimization framework because of its adaptability and capability
of including multiple energy sectors. Backbone allows the specification
of both investment (generation expansion planning) and short-term
scheduling models (also called production cost models). However, un-
like in traditional generation expansion and scheduling models [32],
also other flows besides electricity can be modelled.

As the first step in the optimization process, the investment model
is used to determine the optimal capacities of different plant com-
ponents (conversion units in Backbone model terminology). This is
unlike e.g. the method used by Mazzoni [27] where the plant capacities
and their operation is optimized simultaneously. The benefit of using
separate models is that the emphasis of modelling simplifications can be
set separately so that it serves the purposes of each model. For example,
when performing scheduling optimization, the emphasis is normally
in the short-term horizon of few days. The investment model must
consider a longer horizon but this would in our case be computationally
intractable using high temporal resolution.

Several methods exist for reducing the number of time steps in the
model without sacrificing accuracy proportionally. One approach is to
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select representative slices of the original time series [33]. Represen-
tative slices are subsets of the original time span which is considered
in optimization. One or more slices can be specified. The slices are
normally not adjacent and rules must specify how state variables (such
as state of charge of storages) behave upon the transition from one slice
to the next. Some studies assume cyclic constraints which do not allow
change in the state of charge over a slice [34]. The rules applied in
Backbone for state variables are similar to the ones presented in [35].
However, they are simplified in the respect that there is not explicit
allocation of every time step of the original time span into certain
representative slice.

The length and number of representative slices must be chosen
to balance the computational load of the investment model and its
accuracy. Studies [33,36] found that the accuracy of results (in terms
of total cost deviation) generally increases as function of the temporal
extent of the representative slices. Study [33] reached good results with
35 representative days, divided into five slices. Study [36] reached
good results already with 28 representative days in a power-only model
and suggested that comparable temporal extent reduction assumptions
may be justified for similar models. Concerning the computation time,
both the current study and study [36] found that it increases rapidly
as more days are added. Consequently, in this study 40 representative
days were chosen and they were divided into four slices. The represen-
tative slices were selected from a full year time series using random
sampling as explained in [33]. These slices normally do not include
extreme periods. There is no general consensus about the best way to
select slices for extreme periods in multi-vector energy systems [37].
In this study, a slice was selected from the period of peak heat and
electrical load.

There are several attribute time series which one may consider in
the sampling process of a multi-vector model. Heat demand is clearly
an important attribute when heat must be produced within the sys-
tem [38]. The same can be said about cooling demand, however, as it is
inversely correlated with heat demand, it was not included as separate
time series. From the point of view of P2G and many heat production
technologies electricity price should be modelled accurately. Thus four
attributes were used in the sampling: electricity price, heat demand and
wind and solar PV capacity factors. If the results showed that local VRE
is insignificant, a second sampling round was done with only electricity
price and heat demand profiles.

As shown in Fig. 2, the resulting portfolio of unit capacities is fed
as input to the scheduling model. Scheduling models often consider
rolling time horizons between 24h to 48h [32]. Computation time,
which may increase up to exponential rate with the number of time
steps [36], limits the horizon [39]. In our model the time horizon could
be increased considerably because Backbone allows variable time steps
in optimization. We specify optimization horizon of one year, where the
time step gradually increases from one hour (up to 24-hour horizon)
to one month. The long horizon helps the scheduling optimization to
take account annual constraints such as maximum annual usage of
fossil natural gas. To create results with hourly time resolution, the
scheduling model is run multiple times with rolling horizon so that one
year is covered.

2.2.1. Objective function

In this study, the objective is minimization of the total annual cost
of the system, as the inadequacy of the widespread levelized cost of
electricity (LCOE) metric as objective has been recognized [40]. The
total annual cost includes capital costs as well as fixed and variable
annual costs of conversion units and grid connections. The total annual
cost is calculated as

LEV _ INV Fom VoM startup E
CHEV = 3 (a,CINY 4+ CFOM 4 CYOM 4 cyom 4. CF )

g
F INV
+2 G+ agiaCg <1>
g f
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where Cg’ NV, CgF oM, C;’OM ) Cg'“”"" ) C£ ; and Cf are capital costs, an-
nual fixed operation and maintenance costs, annual variable operation
and maintenance costs, start-up costs, fuel costs, and emission costs for
conversion unit g using fuel f, respectively. C! %V is the total amount
of grid reinforcement investments. The capital recovery factor [41]
L
0 =TI @
A +nte—1

where L, is the economic lifetime of unit g and r is the discount rate.
a,,;4 is the corresponding factor for grid investments. Here fuels are
only those energy vectors which have an external cost, such as electric-
ity, fossil gas, and biogas. Only CO, emissions are considered and their
only source is gas (fossil gas or SNG). Emissions of imported electricity
are not accounted for. This is justified by the small amount of fossil
based generation in the projected electricity production scenario [42].
As result of the electricity market functioning, the emission cost is
also included in the import electricity price. Notice that there are no
separate terms for fuel import and export in Eq. (1): the model includes

special units which are responsible for importing and exporting fuels
and these costs are thus included in CgF .

2.2.2. Constraints

Besides technical constraints at each conversion plant, the model
contains system-wide constraints. Capacity investments are limited by
land use considerations. Electricity, heating and cooling demands must
be fulfilled at all times. Electricity may be imported and exported
subject to limit in the grid connection capacity. While the connection to
the gas transmission grid has also certain capacity, the major constraint
is the annual fossil gas use limit. The net fossil gas consumption is first
calculated when no constraints are set as in Eq. (3).

Ugas = X (Vi) = V25 0)) ®
1
where ¥, 8(1) is gas import to the model region and V3" (1) is gas

export frorn the model region at time t. The asterisk refers to the result
value from the optimization model. We can now define a coefficient
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which states the relative net usage goal u,
constraint is then set as in Eq. (4).

X (Ve - VES®) < (1 = 15Uy, @
t

2.2.3. Electricity supply

As the geographical scope of the built Backbone multi-energy model
is one city, electricity markets are exogenous to the model. The power
market was modelled using a separate production cost model as de-
scribed in [43]. The marginal cost of electricity c,,,(t), which in per-
fectly competitive markets should approach the market price, was fed
as input to the Backbone model. The time-dependent elasticity of the
market price cannot be calculated exactly in the model framework.
As an approximation we assume a time-invariant linear dependency of
the market price of total demand in the market area. Considering that
the power market is a uniform price auction, a single large consumer
also faces linear dependency of her marginal electricity cost of her
demand. To keep our model within the class of mixed integer linear
programming (MILP) models, the price increase is approximated with
a stepwise curve, described as below:

s Of fossil gas. Gas usage

Vo= S viso ;

VeleC ) < V,fyf;ezct " ”

it = X (et st v i
1

where Ve’e"(t) is the imported amount of electricity and Celec(t) is its
cost. Cem(l) is the market price. V.“l“ "% and c”d‘f are constant terms
describing the elasticity of price when import increases. Electricity
export is also possible but because of its small significance in the
studied case, the price elasticity was not implemented for exports.

To physically access the power market, transmission capacity must
be present. Depending on the scenario, transmission capacity was speci-
fied exogenously as K 0” d.y OT Was subject to investment. Transmission
constraints within the city were not considered. However, to study the
effect of distributed resources, a separate low voltage (LV) bus was
created. Several technologies connect to the LV bus: distributed PV,
EV and distributed P2G. Dimensioning of the grid connection between
the main city electrical bus and the LV bus was a responsibility of
the investment model; distributed technologies can thus contribute to
deferral of the grid investment. The grid investment costs are calculated
as

INV _ INV
Cgrld Cgrld HVKg”d HV + and LVKgnd Lv (8)

where cg’ NV 4y is the unit cost of grid reinforcement investments in the

transmission capacity to the national grid and K,,;, i is the invested
capacity (see Fig. 3).

Distribution grid charges for major electricity consuming units were
modelled using three components, reflecting the existing tariff struc-
ture. Connection fees were included in plant investment costs Cg’ NV,

CINV CINV base + (Ihlz’tl/ Ke (9)

where K¢ is the electrical capacity of the unit and ¢!NV is the con-
nection fee to distribution network. Capacity-based demand charge,
applied in many European countries [44], was included in the fixed
annual costs of each plant. This was also charged based on the installed

electrical capacity of the plant:

FOM _ ~FOM base | .FOM
CFOM = FOM.buse 1 FOM ke (10)
where ¢fOM is the demand charge per unit of capacity. The third

component was electricity distribution energy fee, which were collected
based on the consumed electricity. Electricity is considered as fuel in
the model and the total distribution energy fees are thus calculated as

cr =

i f(I)VF cons(t) (11)
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F. base VOM

gf(t) =c,7 b M), f € {electricity} 12)

and c; (¢) is the specific fuel cost of fuel f at time ¢, VF ”"”(t) is the
consumption of fuel f by unit g, and /9™ (z) is the dlstrlbutlon energy
fee.

2.3. Modelling of conversion units

2.3.1. Electrolysis

Electrolysis is the most mature hydrogen production technology
which can use renewable electricity as input [45]. Requirements for
electrolysis in P2G applications include ability for dynamic behaviour
and low lifetime cost [13]. While alkaline electrolysis is currently the
most commercialized technology, an expert elicitation study [46] found
that proton exchange membrane electrolysis (PEMEL) was estimated to
be most suitable technology for production of renewable hydrogen into
the natural gas grid in 2030. Bohm et al. [47] estimated that PEMEL
will take over alkaline electrolysis in market share in 2030’s. Solid
oxide electrolyser cell systems have so far mainly been developed on
laboratory and pilot scale. Consequently in this study PEMEL has been
modelled.

It is important to distinguish the different definitions of conver-
sion efficiency [48]. The scope of the system for which efficiency
is calculated may include the electrolysis stack, auxiliaries such as
rectifiers and pumps, compressors for the product gas. The present
day efficiency of PEMEL system without external compression, was
stated as 5.0kWh/Nm® to 6.5kWh/Nm> (yy,, = 55%-71%) [48].
For 2030 42kWh/Nm® to 5.6kWh/Nm® (ngy, = 63%-84%) [46],
40kWh/Nm® to 4.8kWh/Nm® (7,4, = 74%-90%) [49] and
4.72kW h/Nrn3 (g gy = 75%) [50] was predicted. It has to be noted
that this is the efficiency of a new device and it will decrease with
ageing.

In part load operation efficiency clearly increases because of re-
duction of overpotentials which impact the cell voltage [51]. For
example the efficiency of a 6 MW PEMEL in Energiepark Mainz rises
from 65% to 76% when operated at 27% part load [48]. Nonlinear
characteristics such as plant efficiencies are often linearized but re-
ducing the efficiency term to a constant can lead to high degree of
inaccuracy [39]. Here we adopt piece-wise linear approximation of
the electrolysis production function. Unlike argued in [39], the piece-
wise efficiency approximation does not require fixing the electrolysis
capacity exogenously. In the Backbone model framework, the varying
efficiency can be described with piece-wise linear approximation using
the incremental heat rate presentation [31]. This involves presenting
input power P and hydrogen mass flow V¥ as sum of J components:

J
P= Z P, 13)
j=1

J
hyd _ hyd
yhyd = z{ v/ 14
iz

The component variables P; and Vhyd

and limited by operating pomts 0;:

are then tied by efficiencies

P =V Ve, s)

VI < (0,0, ) viimes e 1, (16)

The coefficients 4™’ were chosen at equal intervals so that the
minimum and maximum efficiencies are equal to the chosen values
(see Table 3). The total efficiency can be increased by exploiting the
generated heat and it can exceed 90% (HHV) when waste heat is
exploited [52]. 15% of input energy was assumed to be available as
heat [53]. As explained in Section 2.3.8, a heat pump must be used to
lift the temperature to match DH supply.

Investment cost estimates ranging from 400€/kW to 950 €/kW [52]
and 500€/kW to 1300€/kW [46] have been presented for PEMEL for
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Fig. 3. Layout of the low-voltage bus of the city energy system model. The low-voltage bus was connected to the main electrical bus via transformer whose capacity is set by the

variable K,y -

year 2030 . In this study 600€/kW was used for Cg’ NV.base The elec-
trolysis stack, which accounts for 40% of the initial investment [54],
needs periodic replacement due to degradation. Consequently in this
study cost of the stack has been modelled as combination of interest
payments due to the initial investment and variable cost. The variable
cost was calculated based on assumed stack lifetime of 80000 h [46,49],
resulting in 3€/MW h. Fixed operating and maintenance (OM) costs
(CgF OM.basey yere set to 12 €/kW/a [49,50] and variable operating and
maintenance costs to 0.5€/(MW h) [50].

Grid connection costs and demand charges, as discussed in Sec-
tion 2.2.3, must be added to these figures. Other supplementary invest-
ment costs are typically included in Lang factors [55] which may differ
between technologies. As reliable values for them are not available,
they are not included in this work.

2.3.2. Hydrogen storage and grid injection

Hydrogen storage may be needed to decouple the operation of
electrolysis and methanation. In power-to-gas plants tank storages are
preferred [56]. Investment costs from 400€/kg (10€/kW hyyy) to
more than 800€/kg (20€/kW hyyy) have been mentioned for tank
storages [57-59]. The storage pressure (300-800 bar) has an increasing
effect on the investment cost [45]. In this study we use 15€/kW hyyy
as investment cost.

Compression work of charging the storage is calculated by the
equation [60]

(1
W=nZT1}/yTRN <12>N( y)—l

17
1 P a7

where Z is the compressibility factor, T; is the inlet temperature, R is
the specific gas constant, » is the molar flow rate, y is the heat capacity
ratio, N is the number of stages in the compression train, p, is the inlet
pressure and p, is the tank pressure. For the purpose of our model it is
sufficient to linearize Eq. (17) with respect to n. Assuming an average
storage pressure of 200 bar and 20 bar PEMEL output pressure we obtain
energy consumption of 1.6kWh/kg. A piston compressor is needed to

charge the storage. The compressor itself is not included in the storage
cost; it requires an additional investment of 100€/kWy, yyy [59].

Small quantities of hydrogen may be allowed in the gas grid. For
feeding hydrogen into the gas grid an injection station is needed.
This was modelled as a separate conversion unit. Investment cost
for injection station of 6.9 MW capacity, has been stated as 560 000
€ [61]; study [50] assumed 75000€ irrespective of the capacity. In
this study we used 20€/kWgy\g yyy- Feeding into the grid is limited by
the maximum allowed hydrogen concentration in natural gas, which is
affected by all legacy gas consuming appliances in the grid and may
range between 1% (vol) to 10% (vol) [62]. Here we consider the gas
grid as one node where gases are perfectly mixed.

Next we consider the hydrogen concentration limit in the model.
Let 4,4 be the admissible energetic hydrogen fraction in the gas grid.
Then we obtain the constraint

(1= Anya) D V1) < Ay (2 VES@) + max (Vi) - I/eijj(t>,o)>

g g
(18)

where Vghyd is the hydrogen feed-in by unit g, VF* is the methane
feed-in by unit g, Vii‘;f is gas import and V% is gas export to gas
transmission grid. The formula becomes nonlinear due to the fact that
both V5" and V5" can assume positive values at the same time. Consid-
ering the small value of 4,,,, the computational cost of adding binary
variables to model Eq. (18) is excessive. To linearize the equation, we
exploit the fact that gas consumption and production normally do not

take place simultaneously. The approximated equation becomes

(1 - lhyd) Z I/ghyd(t) < }'hyd (Z I/ggas(t) + 2 Vggas,conS(t)>
4

g g

19)
where VE““"" is the gas consumption by unit g.
2.3.3. Methanation

Methanation can transform hydrogen and CO, into methane by the
Sabatier reaction [4]. The advantage of methanation is that methane
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Fig. 4. Flowchart of the CHP plant and PCC steam consumption in the energy system model. The CHP unit is modelled as four conversion subunits, which convert between gas,
steam, electricity and heat. PCC withdraws energy from between these subunits. The PCC also represents an electrical load.

can be fed into the gas grid without restrictions [56]. It can be seen as
a way of recycling carbon. Catalytic methanation is considered here
because of its suitability for large-scale operation. The methanation
reaction is exothermic and the maximum chemical efficiency of con-
version of hydrogen to methane is 78% [63] and that has been reached
in the Etogas plant in Germany [64]. Ref. [61] uses 79.4% based on
HHV. Uebbing estimated 76% based on HHV [65]. In addition, at least
10% of the input energy can be extracted as heat which is suitable
for district heat supply [64,65]. Auxiliary electricity consumption for
chemical methanation was estimated at most 3.8% of methane output
(0.4kW h/méNG) [66] and 5.7% of methane output [65]. Here 3.8% was
used. Ramp rate limit of 0.5 %/min was enforced [67].

Literature review [47] of the current investment cost
of catalytic methanation revealed a wide range 140€/kWgnGuny to
1800€/kWgnGuny- The same study estimated that by 2030 the in-
vestment cost could decrease approximately 10%. Study [61] states
1000€/kWgyg in 2030. Gorre et al. estimate 375€/kW [50] for 6 MW
. For injecting the product into the natural gas distribution grid, an
injection station is needed. Investment cost of the station was assumed
to be equal to the hydrogen injection station and was included in the
methanation plant cost. Fixed O&M costs were assumed to be 5% of
investment [47,50]. The variable O&M, stated as 1.1€/(MW hgyg) [50],
was neglected because it is partly included in the auxiliary electricity
cost.

2.3.4. CO, capture from flue gases

Methanation requires a source of CO,. Ideally it should be supplied
with low energetic and economic cost and adaptable flow rate [13].
Capturing and storing or utilizing CO, emissions (CCUS) has been
discussed since 1980s [68] but lack of economic incentives as well as
uncertainties related to the storage solution have prevented large-scale
deployment of the technology.

While there are several technologies for CO, capture [69], post-
combustion capture (PCC) is considered here because of its high tech-
nical maturity and wide applicability [70]. Retrofits to existing plants
are possible. Commercial PCC solutions exist with monoethanolamine
(MEA) as solvent. The drawback of this solution is the large amount of
process heat needed for solvent regeneration [68,71]. The process heat
is normally provided as steam. More than half of the steam normally
entering the low pressure turbine may be required for the solvent
stripper [72]. However, in case of CHP plant the waste heat produced
by the PCC plant may be recovered and reused.

The model used here has been fitted to the analysis results of
Laine [73] and Karki et al. [74] of combined cycle natural gas CHP
plant equipped with PCC. Fig. 4 shows the schematic layout of the PCC
model in the model framework. The model assumes that the PCC draws

steam from different turbine stages of the CHP plant in proportion to
the processed flue gas. We note that the operation of PCC is highly
flexible [75] and dynamic constraints were not set for the plant. CO,
capture rate in current PCC designs is approximately 90%, which was
also assumed in our case. However, it is also possible to increase the
capture rate subject to additional costs and losses [76]. CO, output
pressure of 20 bar was assumed.

The investment cost of the PCC plant was assumed to be
1080 € h/kgcq,, fixed annual OM costs 40 € h/kgcp,, and variable OM
5.0€/tcop, [71]. In comparison study [76] gives investment cost
1170€h/kgco, and the same cost for CO, avoided as study [71].

2.3.5. Direct air capture

CO, can also be captured directly from ambient air, technology
known as Direct Air Capture (DAC). DAC is able to operate in dis-
tributed locations where point sources of CO, are not available [77].
Viebahn et al. [78] classify DAC into three subtechnologies of which
they classify low-temperature DAC based on solid adsorbent as most ad-
vanced. Fasihi et al. [79] reviewed the solid adsorbent technology and
projected the capital and operating costs up to 2050. They estimated
the current investment cost for low-temperature DAC as 730 €/(t/a)
and their conservative estimate for 2030 was 338 €/(t/a). The process
consumes 250kWh to 700kW h electricity and 1500kWh to 2100kW h
heat per tonne CO, at temperature of approximately 100 °C.

DAC is an emerging technology and its future costs are highly
uncertain [69]. The cost estimate, which Fasihi et al. consider reliable
for low-temperature DAC (their estimate for year 2020) was used in
this study. Electrical consumption of 500kW h/t was assumed, which
includes compression to output pressure 20 bar.

2.3.6. CO, storage

The temporal operation of SNG production may differ from that of
gas consumption. This is naturally the case when the gas grid is used
as energy storage. Consequently some type of CO, storage is needed
and it can be seen as a counterpart of the grid gas storage: when gas is
consumed, the CO, for filling the storage is available, and when SNG
is fed to the grid, the CO, storage must be emptied. CO, may be stored
in large quantities in liquid form in tanks or underground caverns.
For tanks the conditions near the triple point (-56.6°C, 5.2 bar) are
preferred. Storage at higher pressures and temperatures is also possible
but the higher cost of storage vessels offsets the savings in liquefaction
and reliquefaction of boil-off gas [80,81]. The investment cost of CO,
tanks was estimated to be 2400 <€ /tcg, [81].

Liquefaction of CO, can employ external or internal refrigeration.
The process with external refrigeration was found most cost effi-
cient [82]. The investment cost of the liquefaction plant was estimated
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as 180€h/kgcp,. As shown in Fig. 5, the liquefaction process consumes
electricity. The electricity consumption of CO, liquefaction is 40 kWh/t
from the inlet pressure of 20 bar [80]. Upon regasification of the liquid
CO,, approximately 100 kWh/t cooling capacity can be exploited for
district cooling.

2.3.7. Distributed P2G

A separate instance of the P2G plant was placed in the LV bus
as explained in Section 2.2.3. Because the main focus of the study
was in the centralized P2G, the distributed P2G was modelled in a
simplified manner. It included electrolysis, hydrogen storage, metha-
nation and DAC components. The size of the hydrogen storage was
fixed to 20 MW h. Due to economics of scale effects [50] the costs of the
components was set higher than the centralized components, as shown
in Table 2.

2.3.8. Waste heat capture and heat pumps

Capturing waste heat from different sources and recirculating it
as useable heat has been considered as potential method to reduce
emissions in the heat sector [83]. While a number of heat sources
are possible [84], five different sources were modelled in this study.
Exploiting waste water effluent is an existing practise [85]. The tem-
perature of the waste water normally remains above 10 °C all year [86].
District cooling return water represents another source of waste heat at
temperature of approximately 15 °C. Because of the similar temperature
levels, these two heat sources acted as sources for a single heat pump
plant in the model, which we call waste water heat pump (WWHP).

There is growing interest in exploiting deep (1 km or more) bore-
holes for heat collection because of their great potential: 10 MW /km?
on unobstructed land has been estimated [87,88]. We refer to the
heat pumps exploiting this source as deep ground-source heat pumps
(DGSHP). However, the investment cost of the borehole is high;
3700€/kW,, was estimated as the current cost but cost reductions
are possible [88]. In this study 3000€/kW,, was used. The borehole
temperature does not remain constant. In Finnish conditions after
10 years of operation a borehole could supply water at 8 °C [88].

Fourth possible heat source is the waste heat from the electroly-
sis plant. As explained in the section concerning electrolysis, it was
assumed that 15% of the input energy can be extracted as heat. Fi-
nally, large-scale air-source heat pumps (ASHP) can use the ambient
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Table 1
Approximation polynomial coefficients for efficiency f,,, and for power
pp for ASHP (Calefa Ltd. personal communication).

i Bers P

0 2.54 0.5

1 0.048 0.014

2 5x1074 1.7x 1074

air as heat source. They are more affordable than DGSHP but suffer
from lower efficiency during cold periods. Their maximum output also
strongly decreases during cold periods.

Heat pumps are needed to provide the temperature lift to normal
heat supply temperatures. If Q is the thermal output, the mechanical
power of the heat pump is given by [89]

g Q To Tsink,out >

Wiy = == (1 - In
nhp v Txink,our - Tsink,[n Tyink,in

where Tj, is the heat source temperature, Tj;, ;, is the temperature of
the water entering the heat pump condenser, Ty, ,, is the delivery
temperature of water, Q the heat output, and y the exergy efficiency,
which depends on the heat pump design and includes motor losses.
We choose y = 0.50 [90]. At 85°C delivery temperature the resulting
coefficients of performance (11y,,) were 3.2 and 3.0 for the waste water

and ground source HP, respectively.

(20)

For the efficiency of ASHP a temperature dependent empirical
polynomial function was used.

2
0] .
Wiy ; Bes s Tamp 1)

where T, is the ambient air temperature in Celsius. Similarly for the
output capacity, which is positively correlated with 7,,,, we use the
polynomial

Qo _

2
T 22
QO ; ﬂP,l amb ( )

where Q, is the nameplate output of the ASHP. The coefficients g have
been listed in Table 1.

Heat pump delivery temperature normally cannot exceed 85°C
temperature without significant decline in efficiency [85]. In current
district heating networks the supply temperature during peak load
commonly exceeds this value to avoid transmission bottlenecks. In this
study the supply temperature was set externally as

T,(t) = a + bT,,,, (1) 23)

where T,,,,(?) is the ambient air temperature at time 7, a = 79.7°C and b
= -1.22. In the model heat pumps were operated at maximum Ty;, ,,; =
85 °C delivery temperature. The possible remaining temperature lift to
T, was covered by electric or gas boilers in cost optimal manner.

The investment cost of DGSHP was set to 600 €/kWy, [90] (exclud-
ing the borehole). As the boreholes and DGSHP should be dispersed
over a large area, an additional 200 €/kW,, was allowed for the DH
and electrical grid connections [91].

2.3.9. Battery energy storages

The cost of battery energy storages (BESS) has decreased in recent
years and they are being considered for energy arbitrage, grid support
and other applications. Here the BESS aimed at deferring transmission
and distribution upgrades was modelled [92]. The battery has 6h
storage duration at maximum discharge. In Table 2 the assumed capital
cost is shown in relation to discharge capacity (as opposed to energy
capacity). For round-trip efficiency 86% was assumed [93].



J. Ikdheimo et al.

Table 2
Financial parameters adopted for conversion and storages units.
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Technology Investment cost Fixed OM cost  Variable OM cost
€/kW €/(kWa) €/(MW h)

BESS 2100 6.9 3.6
CO, storage 1.0¢ 0.03
CO, liquefaction 220° 8.8°
DAC 58407 X X
Gas boilers 1.0
Gas engines 900 9.3 5
Electric boiler 60 1.0 1.0
Electrolysis 600 12 3.5
Electrolysis (distributed) 750 12 4.2
Heat pump (GSHP) 38001 2 3.6
Heat pump (ASHP) 880¢ 16 3.6
Heat pump (other types) 600 2 3.6
Heat storage 4.1° 0.08"
Hydrogen storage 15° 0.3
Hydrogen compressor 100 4
Hydrogen grid feed 20 0.2
Methanation 580 28
Methanation (distributed) 670 32
Offshore wind 2500 36 2.7
PCC 1080° 40° 0.05¢
SOFC 2000 100 1
Rooftop solar PV 800 12

*€/kgcoa/h.

b€/kWh.

“€/kgcop-

dIncluding grid connection.

2.3.10. Gas to power

Direct use of hydrogen for power generation was allowed with solid
oxide fuel cells (SOFC) in CHP mode. The technology is in early stage
of commercialization and its cost is still high [90] (see Table 2). As an
alternative power generation technology, investments into natural gas
fired gas engines were possible.

2.3.11. Heat storages

Large heat storages are being constructed in Finnish DH systems.
Unpressurized tank heat storages can store district heating water at
temperatures below 100°C. To maintain model linearity, the temper-
ature of the storage was not explicitly tracked but was assumed to be
high enough for discharging when the supply temperature T, was below
95°C. Similar to heat pumps, when T, exceeded 95 °C, additional tem-
perature lift by electric or gas boilers was required upon discharging.
The investment cost of 4.1€/kW h,;, [34,94] was assumed.

2.3.12. Electric vehicles

EV’s can provide flexibility to the grid and can thus affect the
results. The fleet of electric vehicles was modelled as a single large elec-
tricity storage with time-dependent capacity and charging constraints.
The methodology was adapted from [95]. Charging efficiency of 90%
was assumed [96].

2.4. Case study

To study the role of power-to-gas in reaching carbon neutrality of
a city energy system, the above methodology was applied to build a
model of the energy system of a medium-sized Finnish city. The purpose
was not to create a detailed model of a specific city but most parameters
were set according to Espoo, a city of 280,000 inhabitants in southern
Finland. The city has set a goal to achieve carbon neutrality by 2030.

Rooftop area suitable for solar PV in Espoo totals 4.7 km? [97].
Availability factor of 60% was applied to this figure to account for mod-
ule spacing and obstacles [98]. Using DC power density of 170 W/m?
this results in total potential of 480 MW. Ground-mounted PV was not
considered because of competing land uses and high price of land.
Onshore wind power potential was also considered zero because of
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Table 3
Technical parameters adopted for conversion units.

Unit type Parameter Value

CCGT Electrical efficiency (max) 58%
Total efficiency (max) 92%
Start-up cost 120€/kW

EV Charging efficiency 90%
Battery capacity 40kW h

Electrolysis Efficiency (max) 79.4 %HHvV
Efficiency (min) 70.9 %HuV
Recoverable heat output 15%

Methanation Efficiency 72
Auxiliary elec. consumption 0.4
Recoverable heat output 13%
Max ramp rate 0.5 %/min
Start-up cost 20€/kW to 100€/kW
Minimum load 40%

BESS Round-trip efficiency 86%
Charge and discharge rate C/6

SOFC Electrical efficiency 60%
Total efficiency 90%

PCC Capture rate 90%

DAC Heat consumption 2.0MWh/t
Electricity consumption 0.5MWh/t

dense inhabitation. Coastal regions in Finland generally offer good
offshore wind potential. Offshore wind was included in the case study
with no specific capacity upper limit. Solar PV and wind power tem-
poral profiles for Espoo were extracted from Renewables Ninja [99].
Weather data of year 2011 was used. The average diurnal generation
profiles are shown in Fig. 7. Year 2011 was chosen because the heat
demand, measured by heating degree days, was slightly below the
long-term average. Because of climate change, average heat demand is
expected to decrease. The year accommodated also cold periods, which
is required for realistic system design. Annual wind and solar power
production were near the average level.

Demand profiles for electricity, district heat and cooling were not
directly available for Espoo. They were estimated by fitting a linear
model to the data published for a Finnish medium-sized city [100].
The explanatory variables in the model were the type of day (week-
day/weekend), hour of day and ambient temperature. The model was
then used to forecast demand for Espoo by scaling the total demand
to the 2018 historical values [101]. The annual cooling demand was
estimated based on [102]. The demand values have been listed in
Table 4 and the diurnal profiles are shown in Fig. 6 The time resolution
of all input time series was one hour.

Certain conversion units were assumed to be present as legacy units.
These include a CCGT CHP plant (220MW,), gas boilers and WWHP.
These types of plants currently exist in Espoo. New investments into
these units were not allowed because the CHP plant appeared not
economical; gas boilers were assumed to provide DH reserve capacity in
contingencies and their capacity was thus not limited; WWHP capacity
(70MW,,) was set according to the available waste water and cooling
demand. A small biogas engine (15MW,) was also present.

The initial capacity of the power transmission network connection
was set based on estimated current demand as Kg”. aqy = 465MW,.
Similarly for gas transmission the capacity was set to 800MW,,. As
explained in Section 2.2.3, reinforcement investments were possible for
the electrical grid. The grid reinforcement cost of the transmission grid
connection ¢,y ;ry is highly case specific. Based on study [103] we use
100€/kW as base value but sensitivity analysis is done with 50€/kW
to 300€/kW.

Connection fee for individual conversion units (e.g. heat pumps
and electrolysis) to the electrical distribution grid ¢¥” was set as
60€/kW [61]. Capacity-based demand charge for MV grid connections
was set as 20€/(kW a), which is close to the level charged by Finnish
DSO’s. Time-of-use tariff was assumed for the energy fee for electric-
ity distribution. It was set to 6€/MW h at weekends and nights and
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12€/MW h at other times. These values are based on existing tariffs.
Gas transmission fee was set to 5.3<€/(MW h), which is close to current
Finnish transmission tariff.

Concerning the electricity market, a scenario describing the year
2030 was built into the multinational production cost model. To be
consistent, year 2011 weather data was used also in this model. The
average resulting market price was 31.3€/(MWh). The size of EV
fleet was set based on the current number of EV’s in Espoo and the
nationwide projected number of EV’s in 2030. Energy taxes or subsidies
were not included in the analysis. Discount rate r was set to 6% in all
scenarios [104,105].

2.5. Scenarios

Several scenarios were defined to study how P2G can contribute to
the energy system to reach the carbon neutrality target. Availability
of P2G was naturally chosen as one distinguishing parameter for the
scenarios; availability of investments into new transmission capacity
between the city and the national grid was another parameter. In
the Trans scenarios the transmission capacity could be doubled to
930MW. To study CO, supply, DAC availability was varied. If DAC
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Table 4

Demand and price parameters used for the city in the case study.
Parameter Value Source
Annual electricity demand 2.1TWh [101]
Annual DH demand 2.0 TWh [101]
Annual district cooling demand 150 GWh [102]
Number of EV 19,000
Gas price 35€/MWh [106]
Gas transmission charge 53€/MWh
Admissible hydrogen concentration A, 8.0 %vol
Distribution demand charge c;9M 20€/(kW a) [107]
Distribution energy charge 6€/MWh to 12€/MWh
Transmission capacity to national grid K., 465MW
Distribution grid reinforcement cost ¢, 11 200€/kW [108]
Transmission grid reinforcement cost c,,;y 17y S0€/kW to 300€/kW
CO2 emission cost 60€/t [109]
Oxygen price 36€/t [110]

is not available, P2G can use a PCC plant as the CO, source (No
DAC scenario). The purpose of the PV scenario is to study the effect

of exogenously introduced small-scale PV capacity. Notice that PV
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Table 5
The studied scenarios. “x” denotes that the technology is available in the scenario.
The table also shows which values of relative gas usage reduction u,,, were studied in

each scenario.

s

Scenario Uggs P2G DAC  Grid reinforcement  Distributed PV~ EV
Base 0-0.9 - - - - X
P2G 0-1 X X - - X
No DAC 0.97 X - - - X
Trans 1 - - X - X
Trans P2G 1 X X X - X
PV 1 X X X X X
No EV 1 X X X - -

could also be activated endogenously by the investment model in any
scenario. EV was present in all other scenarios except in “No EV”. The
scenarios are summarized in Table 5.

For each scenario different values of annual gas usage reduction
Ug,s were studied. In addition sensitivity analysis was performed with
electricity market price and transmission investment cost.

2.6. Implementation

The Backbone model has been implemented on the GAMS platform.
The IBM Ilog Cplex solver was used for solving the resulting MILP
model. The investment model could be solved on typical laptop PC in
15 min to 3 h and the scheduling model in less than 20 min for one
scenario. The integrality gap for the MILP solution was set to maximum
0.1% for the investment model and 0.01% for the scheduling model.

3. Results
3.1. Capacity investments

The Base and P2G scenarios follow the same path in terms of
investments until 75% reduction in fossil gas usage (ugas = 0.75)
after which they diverge. Most of the investments are made in the
heat sector. The air-to-water heat pump is sufficiently affordable to
command 315MW new installed capacity even when fossil gas usage is
unrestricted. The capacity grows to 760 MW in the Base scenario when
90% reduction in fossil gas usage is pursued (u,,, = 0.9). As gas usage
is reduced, the number of installed heat storages also rapidly increases.
At ug,, = 0.9 their capacity reaches 31.2 GW h, equal to approximately
one hundred typical tank storages. We find that reaching zero fossil gas
usage is infeasible in the Base scenario.

Investments into different conversion and storage technologies
needed for coping with the reduced fossil gas usage in these two
scenarios differ mainly with P2G and heat storages. These investments
are shown in Fig. 8. The abscissa shows u,,, as percent. In the P2G
scenario P2G first enters the optimal investment portfolio at u,,, =
0.85. P2G is composed of electrolysis, methanation and DAC. The
technologies in the Base scenario are also present in the solution, but
instead of large number of heat storages the P2G scenario is able to
reach the gas usage limits using P2G technology with DAC as the
CO, source. At ug,, = 1, the optimal investments comprise 32MW
electrolysis, 17MW,,, methanation and DAC of 3.1t/h capacity. The
absence of ASHP doubles the optimal electrolysis capacity to 63 MW
and other P2G components are scaled proportionally. In this case ASHP
is replaced mainly by DGSHP.

Turning to the scenarios where reinforcement of the connection
to the national electricity grid is possible, grid reinforcement is not
needed when fossil gas can be freely used. At u,,, = 1, the presence
of P2G (Trans P2G scenario) clearly reduces the need of transmission
capacity. As shown in Table 6, optimal grid reinforcement K,y yy
strongly depends on the cost ¢, ;,- There is also a positive depen-
dency between the gas transmission cost and K,,;, - Compared to the
P2G scenario, a smaller electrolysis plant is needed in the Trans P2G
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Table 6
Optimal transmission grid reinforcement K,,;, ;, and electrolysis capacity as function
of the grid reinforcement cost ¢,y 7y in two different scenarios.

Scenario Corid, HV Keria v K; (Electrolysis)
€/kW MW MW
Trans P2G 50 152 13
100 116 15
200 82 17
300 57 20
Trans 100 415 0

scenario (15MW). The optimal P2G capacity is positively correlated
with grid reinforcement cost c,,,; 1y and the level of electricity price.
The optimal P2G capacity weakly decreases with the gas transmission
cost.

The P2G scenario without DAC (No DAC scenario) is reduced to the
base scenario except at high values of u,,; (approximately above 0.95).
In the cost optimal solution at u,,, = 0.97 the gas CHP is augmented
with a PCC plant which can handle 58t/h flue gas CO, emissions. CO,
Storage of12 800t is used for seasonal storage of the captured CO,. The
P2G capacity (electrolysis of 22 MW capacity) is in line with the P2G
scenario (see Fig. 9). Reaching zero fossil gas usage is infeasible also in
this scenario. Because of the more costly CO, supply, hydrogen direct
injection reaches its maximum capacity in this scenario.

Large capacity of behind-the-meter PV installations (PV scenario)
thus did not change the cost optimal P2G capacity, nor did it induce
investments into distributed P2G in the LV bus of our model. Similarly,
the results show that the presence of EV did not have effect on the
optimal P2G investments.

Investments into Rooftop PV, offshore wind power, BESS, SOFC or
gas engines did not reduce total costs in any scenario.

3.2. Costs

The composition of annual costs in the Base and P2G scenarios
is shown in Fig. 10. As u,, increases, there are savings in gas and
emission costs but the increasing cost of heat pumps, heat storages
and imported electricity more than offset the savings. The total annual
cost increases 13% in the P2G scenario as fossil gas use goes to zero.
P2G total annual costs at u,,, = 1 sum to 6.6 M€ per year when the
electricity cost is not included. P2G receives also direct income in the
form of oxygen. At u,,, = 1 this amounts to 0.9 M€ per year

Cost composition of other scenarios at u,,; = 1 is shown in Fig. 11.
The differences between the scenarios are not very large. The No
DAC scenario is the most expensive one due to PCC, CO, storage and
large number of heat storages. The category others includes electrolysis
(2.0M€), methanation (0.8 M€), CO, storage. Compared to the P2G
scenario, the Trans P2G scenario saves in P2G and heat pump costs
but suffers from higher imported electricity and grid reinforcement
cost. In the Trans P2G scenario oxygen revenue amounts to 0.6 M€
per year while hydrogen direct injection only allows a cost saving of
approximately 0.1 M€.

Fig. 12 summarizes the total annual cost as function of annual
gas usage. The P2G scenario clearly performs better than the Base
scenario at high u,,, values. Grid reinforcement allows a significant
cost reduction and also in this case the scenario where P2G is present
(Trans P2G) dominates the scenario without P2G by 3.9 M<. Notice
that the Trans P2G scenario does not quite reach zero gas usage. This
is because the scheduling model makes suboptimal decisions due to
its aggregated time steps. We approximate the value of the additional
23 GW h gas usage using the marginal cost of gas consumption, given
by the investment model (Fig. 13). Accounting for the difference in
gas consumption, the annual cost difference between Trans and Trans
P2G scenarios is reduced to 2.0 M€. The cost difference is increased to
4.3 ME€ if the grid reinforcement cost c,,,; py is increased to 200 €/kW.
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Fig. 8. Investments into selected technologies in the Base and P2G scenarios as function of gas usage limit. The numbers refer to the output capacity of units except in case of
electrolysis input electrical capacity. For hydrogen storage the capacity in MWh is given and for heat storages the capacity in GWh is given.

<
& 80 -
=
~ 60 o
o
P
a 40 A
©
(9]
©
3 20
(%]
(0]
g
— 0 A
No DAC P2G
Scenario

Fig. 9. Investments in the No DAC, P2G and Trans P2G scenarios when net gas usage reached its minimum (u

PCC

Methanation
Hydrogen storage
Electrolysis

DAC

Trans P2G

= 0.97 for the No DAC scenario, u,,, = 1 for other scenarios).
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For hydrogen storage the capacity in MWh is shown. For CO, storage the capacity is given in tens of tonnes.

The marginal cost of gas consumption, which can be obtained from
the shadow price of Eq. (4), follows roughly the same pattern as the
total costs. As shown in Fig. 13, in the Base scenario the marginal
cost increases steeply when u,,; approaches 1, reflecting the fact that
reaching zero gas usage is not possible. The same is true for the No
DAC scenario. In the P2G scenario the marginal cost flattens when
Ug,s approaches 1 and reaches 90€/(MW h). Notice that this value of
marginal cost assumes that the additional unit of gas is consumed
within the system.

The marginal abatement cost of the measures to reduce gas usage
is obtained by dividing the marginal cost of gas by the emission factor
180kgcp, /(MW h) (HHV). As most natural gas in Finland is of Russian
origin, for the supply chain emissions we use 50kgcq,/(MW h) [111].
In the P2G scenario we obtain 389 € /t-o, and for Trans P2G scenario
364€/tcy at gy, = 1.

3.3. Operation

The system mostly relied on imported electricity in all scenarios,
with the exception of small amount of CHP generation at low values
of ug,, (74GWh, 2.7% of total demand) and in the No DAC scenario.
Because SOFC did not appear cost-efficient, conversion from hydrogen
to power or heat did not take place. Local VRE generation (PV) con-
tributed only when it was exogenously specified in the PV scenario.
Biogas engines produced 130 GW h in all scenarios.

The bulk of district heat was produced by ASHP and WWHP in
all scenarios. As shown in Fig. 14, when fossil gas consumption was
not limited, gas boilers produce approximately one quarter of all heat.
Their share was diminished to 5% in the P2G scenario at u,,, = 1

and the share of ASHP increases accordingly. The contribution of waste
heat from methanation and electrolysis is quite significant considering
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the size of the plant, 2.5% in the P2G scenario. We note that DAC
constitutes an additional heat consumer in this scenario. In the Trans
scenarios the role of electric boilers is more prominent because of better
electricity availability. District cooling was produced almost solely by
heat pump in all scenarios, with the CO, regasification playing a
marginal role in the No DAC scenario. Other alternatives, free cooling
and compression chillers, were not economical.

Local SNG production reaches 98 GW h in the P2G scenario (capacity
factor of 63% for electrolysis). As mentioned, P2G is positively cor-
related with electricity price in the Trans P2G scenario. This can be
understood because the high electricity price makes grid reinforcement
less beneficial and thus the solution of the Trans P2G scenario ap-
proaches that of the P2G scenario. Given the relatively small capacity
of methanation, the gas grid capacity did not present a constraint to its
operation.

Hydrogen direct injection was exploited to its maximum limit,
stemming from the hydrogen concentration limit 4,,,, in all scenarios
involving P2G. Due to the low value of 4, ,, total injection remained
at maximum 3.2GWh in the P2G scenario. Hydrogen injection capa-
bility becomes valuable during gas import periods, when according to
Eq. (19) it can operate independently from methanation.

As hydrogen storage capacity remained small in all cases, its de-
coupling effect between electrolysis and methanation was also small.
Methanation start-up cost had a clear effect on the frequency of start-
ups and the hydrogen storage capacity. On reducing the start-up cost
from the base value of 100€/MWgyg to 10€/MWgyg, the number
of start-ups increased ten-fold from 4.4 to 45 whole plant start-ups.
Notice that as continuous relaxation was used for methanation online
status, also certain part of the plant could be started. At the same time
hydrogen storage capacity could be reduced from 16 MW h to 9 MW h.
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In scenarios involving DAC, CO, storage is not needed. CO, extrac-
tion takes place when its is needed in methanation reactor. Most of the
time CO, presents a cost to the methanation reactor but in summer
when heat is abundant, CO, extraction presents an economic benefit,
considering the emission cost of 60€/t. In the No DAC scenario the PCC
must charge the long-term CO, storage during the short period (the
peak load period) when the CHP is running. It is then discharged most
of the year to keep P2G utilization factor high (Fig. 15). Unfortunately,
the PCC experiences a very low utilization factor.
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The absence of EV did not have effect on the optimal P2G operation.
Similarly, exogenously given PV installation in the PV scenario did
not have effect on the optimal P2G operation. This is understandable
because the P2G plant was already operating at full power at times
when PV generates power.

3.4. Accuracy of the optimization with representative slices

As explained in 2.2, for computational reasons we need to resort to
approximation of the temporal axis when optimizing investments. This
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approximation is one source of error. As mentioned in Section 2.2, the
results presented in literature increase our confidence on the accuracy
of the results. We can obtain an estimate of lower limit of the error by
running the investment model with different samples of representative
slices, which are available from the random sampling process. As
shows in Fig. 16, we obtain very consistent results for the optimal
capacities of the main P2G components. In the Trans P2G scenario the
standard deviation of optimal electrolysis and methanation capacities
was 2.4MW and 1.3 MW respectively.
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4. Discussion

The results for the case study indicate that achieving the carbon
neutral energy system is possible. With our assumptions of costs, avail-
able technologies and factors influencing electricity price, P2G can
contribute to the cost optimal carbon neutral energy system. P2G shows
economic benefits only at high emission abatement targets. Ending
consumption of fossil gas altogether was not possible without invest-
ment into P2G or transmission grid expansion. The results show that
exploiting P2G can help defer transmission grid expansion and allow
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Fig. 16. Variation of the optimal investments in different technologies in the (a) P2G scenario (b) Trans P2G scenario when 30 different samples of sets of representative slices
were used in the optimization. The values for DAC have been scaled so that 1 MW corresponds to 0.1t/h.

cost savings. This is important because transmission grid reinforcement
could be also limited by public opposition [112].

By adding simplified models of process components such as CO,
capture and gas storages into the model we were able to make ob-
servations about the importance of each component. The importance
of DAC is evident in the results. As DAC is independent of any CO,
producing process, it allows great flexibility to P2G operation. When
P2G was equipped with DAC, it offered great cost reductions at low
emission target levels. Resorting to CO, capture from CHP plant flue
gases is problematic. In this case P2G could contribute to cost reduction
only at very low emission target levels, resulting also in very high total
cost. This could be different if the CHP could profitably be operated
for longer periods. The poor performance is also due to loss of CO,
to the atmosphere, which renders zero gas usage impossible without
additional sources of CO,. The capture rate could be increased with
additional costs [76], the analysis of which is an interesting topic of
future study. A large CO, storage needs to accompany the capture
plant. Approximately 6000 m? of land would be needed for the resulting
12800t storage if steel tanks are used [113]. This could be a problem
in tightly built sites. Storage in underground rock caverns has been
envisioned but practical experience of the technology is still lacking. In
addition, great attention should be paid to the potential hazards from
the storage [114]

In scenarios where carbon neutrality was reached, the illustrated
example city was highly dependent on imported electricity. Higher
electricity prices leads to higher SNG production costs [115] and thus
normally lower demand of SNG. However, when the system is domi-
nated by electricity intensive technologies such as ASHP and electric
boilers in the Trans P2G scenario, electricity price increase can have a
positive effect on P2G. As P2G appears as robust investment under a
range of electricity prices, the investment becomes more attractive.

Direct injection of hydrogen into the gas grid was found to be an at-
tractive option. This can be understood as there are additional losses in
the methanation process. Hydrogen concentration limits in the gas grid,
however, keep the significance of direct injection from the system point
of view very small. These findings are in line with [116]. However,
study [116] found that because of seasonally varying gas consumption,
the annual hydrogen contribution can be even lower than suggested
by the concentration limit. This problem did not manifest itself in this
study. A synergy appears between methanation and direct hydrogen
injection. The presence of methanation, which can feed SNG into the
gas grid in any proportion, supports higher electrolysis capacity, so that
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the concentration limit may become the binding constraint. Hydrogen
injection can also operate during gas import periods and as a result
reduce the gas transmission costs. Optimal hydrogen storage capacity
remained small in all scenarios. In essence, the optimization ended up
with one of the strategies suggested by Gorre et al. [50] where the
hydrogen storage is just large enough to compensate different ramp
rates of electrolysis and methanation.

Heat pumps appear as import producers of renewable heat, which
is in line with [11]. ASHP is the dominant technology; DGSHP is
activated only if ASHP is not available. We can also see a connection
between the DH production portfolio and optimal P2G capacity. If the
portfolio consists of more expensive low-carbon technologies (DGSHP
and electric boilers), larger P2G capacity is needed. Local VRE was not
activated because of the fairly low electricity price. Especially for PV
the problem is that grid constraints become active only in winter and
PV is not available at that time.

In our scenarios the example city reached zero net usage of gas
but essentially was using the gas grid as an energy storage. In the
north European region there is, however, more existing gas storage
capacity than what is needed in our example city per inhabitant [117].
Of course, the existing storage is needed for other functions and not all
of it is available for SNG storage. The maximum withdrawal capacity
of the storages may also form a limitation. In our model, some of
the storage costs are included in the gas transmission tariff. If the
storage capacity becomes scarce, this could be analysed by increasing
the transmission tariff. Of course, if a number of cities follow the same
path, the declining gas usage would also lead to an increase in the
transmission tariff.

Achieving emission reductions by reducing gas usage is expensive,
partly because of the low emission factor of natural gas. In the case
study, the resulting emission abatement cost of more than 360€/t
is far higher than the predicted marginal abatement cost in 2030.
Thus it is evident that P2G is not introduced in the mid-term without
strict emission reduction goals. In 2050 however, the cost level is
conceivable [118]. Some uncertainty exists about the fugitive emissions
in the gas production chain [111], and somewhat lower abatement cost
cannot be excluded.

The number of EV’s is growing rapidly and as they present a flexible
load, we hypothesized that EV’s may have an effect on the optimal
capacity of P2G. We see two reasons why this was not the case: Firstly,
gas is mostly consumed during peak load period. EV’s minimize their
charging costs and thus concentrate charging periods outside of the
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peak load period. Hence, they contribute rather little to the availability
of power during the peak load period. Secondly, the combined storage
capacity of the EV fleet in the case study was still small compared to
the annual gas consumption.

The question at which level should the different energy grids in-
teract has been presented. The presented model is suited to study
the question. In the case study, we found no benefit of distributed
P2G. In Nordic systems, power grids must be dimensioned according
to the winter peak load, and consequently there was no congestion
in the distribution grid which distributed P2G could solve. In other
words, distributed P2G was in direct competition with centralized P2G,
which was a more cost efficient alternative. Our assumption was that
transformer backfeed does not present a problem [119].

Here we have focused on economic affordability and carbon emis-
sions of the system. Third aspect of the energy system is security of
supply [40]. From the point of view of security of supply, the P2G sce-
nario may have positive effects because it supports the existence of the
gas grid, diversifying energy supply. Security of supply was previously
studied in context of integrated gas and power networks [120] but
inclusion of heat demand and power-to-gas was suggested as subject
of future study. In future studies, additional production forms could be
included, e.g. biomass boilers, although the overall emissions of the fuel
are debated [121].

5. Conclusions

Cities are trying to reach carbon neutrality. In this study, we built
an investment and dispatch model for an urban energy system, which
is trying to achieve carbon neutrality. The model considered both
capacity investments and day-to-day operation of the system. We con-
centrated on a system where the main fossil fuel is natural gas. The
model was applied to an example city, assuming cost and technology
estimates projected for 2030. Results of the case study indicate a
positive future for power-to-gas. The results are relevant also to other
cities in cool climates and the published model can be used to study
other locations. In future studies, the developed model can easily be
extended for analysing cost-efficient decarbonization in other types of
urban energy systems, as well as the system level effects of carbon
neutral cities on the power system and national emission reduction
costs.
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