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Abstract. It is widely recognised that swarms are the likely next step
for Unmanned Aerial Vehicle (UAV) or drone technology. Although sub-
stantially increased autonomy for navigation, data collection and decision-
making is very much part of the “collective artificial intelligence” vision,
this expected development raises questions about the most productive
form of interaction between the swarm and its human operator(s). On
the one hand, low-level “micro-management” of every unit clearly nulli-
fies many of the advantages of using swarms. On the other, retaining an
ability to exercise some control over the swarm’s objectives and real-time
behaviour is obviously paramount. We present two families of control
methods, direct and indirect, that we believe could be used to design
suitable, i.e. simultaneously intuitive, easy to use, powerful and flexible,
Graphical User Interfaces (GUI) that would allow a single operator to
choreograph a swarm’s actions. Simulation results are used to illustrate
the concept and perform a quantitative performance analysis of both
control methods in different scenarios. Human factors aspects related to
drone swarm control are identified and both control methods are dis-
cussed from the human operator’s usage point of view. We conclude that
the direct approach is more suitable over short time-scales (“tactical”
level), whilst indirect methods allow to specify more abstract long-term
objectives (“operational” level), making them naturally complementary.

Keywords: Drone Swarms · Direct Control · Indirect Control · Human
Factors · Autonomous Systems · Self-Organisation.

1 Introduction

Drones (or unmanned aerial vehicles, UAVs) are increasingly becoming an ev-
eryday tool [9] in a growing number of application areas [17], as a convenient and
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cost-efficient way of remote sensing [4] or to gather information best acquired
from a vantage point not easily accessible by other means (e.g., [18, 2]).

In the vast majority of cases, these benefits are achieved by combining remote
control by a human operator with relatively simple autonomous features, such
as attitude control [22, 24], obstacle avoidance, and return-to-base functions. In
the case of beyond visual line of sight (BVLOS) operations, the assumption is
often that the human in the loop uses a real-time video feed to pilot the drone
as if he/she were on board (see Figure 1).

Fig. 1. A TNO reconnaissance drone departing for BVLOS flight during the (now
concluded) EU funded ALFA (Advanced Low Flying Aircrafts Detection and Tracking)
project [5] where it facilitates automatic threat evaluation for border security and
surveillance. The pilot uses the control interface to see what the drone can see.

However, another paradigm is gaining momentum that is poised to challenge
this mode of operation: fleets or swarms of drones. Simple common sense suggests
that it is possible to achieve more with several units working as a team than with
a single UAV and, accordingly, that an ability to leverage drone swarms would
have a multiplicative effect on the usefulness of the technology. However, this
trivial statement hides the considerable underlying complexity of orchestrating
or choreographing the joint operation of a collective dozens or hundreds strong.

In the case of exploration or surveillance, for instance, it is obvious that n
identical drones have the potential to cover an area roughly n times larger in the
same amount of time as a single unit (notwithstanding restrictions imposed by
battery life or shared point of origin). However, this implicitly assumes division of
labour, i.e., no or limited overlap between flight paths, to avoid the duplication
of effort. Even in this simplest of cases and without any real-time change of
objectives, this would require assigning each drone to a particular zone in the
area of interest. Furthermore, short of having one human operator per drone,
each one would have to fly its respective patrol route autonomously, without
real-time supervision. This in itself poses various safety concerns [20].
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In the area of drone swarms, there are a number of concrete research questions
[9]. For example, what interface design would best allow the user to monitor
and operate a drone swarm? Furthermore, is there a suitable trade-off between
micro-management (i.e., directly piloting every unit in real-time) and assigning
global objectives to the entire fleet? And if the answer to the previous question is
‘yes’, what autonomous features are required and what kind of useful collective
behaviour is possible? Finally, what control functions would allow to the operator
of a drone swarm to achieve maximum utility for minimum complexity?

As a starting point, it does seem useful and necessary to create a “taxonomy”
of control functions and associated distributed algorithms for drone swarms. A
first distinction would be between those that involve directly piloting a subset
of units (possibly a single one) and those that instead specify abstract collec-
tive goals. It is worth noting that these two approaches, although functionally
different, are not mutually exclusive and could govern different aspects of fleet
operations in parallel / at the same time.

The former (direct control) could be used on a short time-scale to coordinate
the movement of the swarm into a chosen direction through formation flying.
In this scenario, the human operator pilots the remote-controlled “leader” unit
and the other members of the swarm use simple autonomous features (relative
positioning) to spread out around it, forming a pattern. This would result in the
type of collective behaviour most often cited as an example of swarming, i.e.,
flocking. More advanced functions could be introduced in the form of a simple
ability to update key parameter values in real-time. For instance, how tight or
loose the formation is could easily be controlled by fine-tuning the separation
distance. Other basic commands could involve, e.g., instructions to follow, spread
around or align with the leader perpendicularly to the direction of movement.
Similar commands could be used to control altitude, determining, for instance,
whether “subordinate” units should distribute themselves in the same horizontal
plane as the leader or form a 3D lattice (with upper and lower bounds).

The latter (indirect control through abstract collective goals) is likely to be
more useful on a longer time-scale and/or when the swarm is expected to ful-
fil its mission without direct human control or supervision. For instance, the
drone “colony” could be tasked with patrolling a region of interest over an ex-
tended period (hours, days, or more). This would require much more complex
autonomous features in the form of decentralised resource-management and col-
lective decision-making to ensure that the airborne contingent balances the need
to recharge with that to visit every part of the target area regularly. In this
scenario, the challenge is to create an interface that allows the user to specify
and subsequently update such abstract goals intuitively. For example, the ability
to “paint” a region of arbitrary size and shape on a digital map to designate it
as being of interest and communicate this information to the swarm would be
paramount. In both direct and indirect control, human factors aspects need to
be considered in the design of the system and its related user interfaces.
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2 Human Factors Aspects in Drone Swarm Control

As has occurred in many other highly automated domains (e.g., industrial pro-
cess control, ship navigation, and traditional aviation), conducting drone oper-
ations will also eventually evolve to become more of a supervisory task than
an active manual control. Consequently, similar human factors problems that
have been identified in these other domains will then become prevalent. These
issues include, but are not limited to, operator trust in automation [23], exces-
sive mental workload in exception situations [25], situation awareness issues [12,
13], operator boredom [11], work vigilance [6] and the integrity of the artificial
intelligence [26]. Additionally, with higher automation levels supported with AI,
the supervisory control of multiple UAVs will become possible. To approach the
human factors problems of controlling a drone swarm, various approaches have
been discussed in the literature, only a fraction of which is discussed here.

To analyse, optimise and divide the tasks to be conducted by humans and
by the AI/automated system in drone swarm control, task/work analyses are
a key approach. They are especially suitable to consider the human limitations
and support the definition of human operator’s meaningful tasks and decision-
making in the design phase of the system [1]. As a one guideline for design
when considering human-automation task allocation in drone swarm control, it
has been found out that instead of management by consent (automation as an
assistant to the operator), management by exception improves the operator’s
performance [10]. According to [16], management by exception means that the
automation decides to take an action based on some set of predetermined criteria
and gives operators only a chance to veto the automation’s decision.

In systems engineering, defining a Concept of Operations (ConOps) for the
drone swarm control in the start of the system design is essential [14]. From the
human factors point of view, this ConOps typically includes a clear description of,
for example, the division of tasks between human and the automation, operator
tools, roles/responsibilities, and procedures [3]. This ConOps should work as
a boundary object (see, e.g., [29]) and allow the relevant stakeholders (e.g.,
engineers, users, and designers) to discuss about the system under development
and the related aims in a manner understandable for all involved parties.

On a methodological level, for example, ecological interface design (EID) has
been successfully applied to the control of UAV swarms by [15]. The results
of this study showed that EID-inspired interface design enabled operators to
control a drone swarm and successfully resolve failures during mission execution
[15]. Particularly, the ecological interface designs promoted creative problem-
solving activities to scenarios that could not have been solved by following a
fixed procedure (see details in [15]).

Regarding detailed control systems, for example, [19] have provided a re-
view of human-system interface (HSI) solutions for the management of swarms
of drones. Their main conclusion from this review was that allowing user and
mission-specific customization to user interfaces and raising the swarm’s level
of autonomy to reduce the cognitive workload shouldered by the operator are
beneficial and improve operators’ situation awareness [19].
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There have also been some studies about different interaction modalities for
drone swarm control, such as gesture and touch [21]. However, the benefits of
user interfaces with novel input paradigms remains unclear compared to tradi-
tional point-and-click interfaces. In general, in drone swarm control HSI design
it is important to ensure that the operator has adequate means to first observe
and then direct the automation’s functioning in order to be responsive to po-
tential situation specific changes [8]. Therefore, both the hardware and software
solutions developed to monitor and control the swarm need to be suitable for
the specific situation and task at hand without cumbersome interaction solutions
that may hinder safe and efficient operations.

3 Direct Control Methods

The most straightforward method for controlling a fleet of semi-autonomous
UAVs, at least over short time-scales (of the order of a drone’s battery life), is to
pilot one or a few participating units directly and use parameterised formation
flying to orchestrate the collective behaviour of the rest of the swarm. This
“leader” may very well differ from the other members of the “flock”. For instance,
it could be a special drone with enhanced capabilities (e.g., for reliable long-range
communication and telemetry), or a manned aircraft that the swarm is meant
to escort or “extend” (acting as a network of distributed sensors).

Notwithstanding such specifics, the difficulty lies in identifying the right bal-
ance between precise control and ease of use. The human operating the swarm
may have limited time or cognitive resources to allocate to this task, as other
activities may require his or her urgent attention. Therefore, to minimise men-
tal workload, orchestrating the UAV collective should be as easy and seamless
as possible instead of a fastidious exercise with real time fine-tuning. To use a
common metaphor: the swarm should “feel” like a mere extension of the user’s
own sensing and actuation capabilities. This aim means that identifying the
right parameters, a range of suitable values for them, and a suite of intuitive,
user-friendly tools to pick or change one or more of these parameter values is
paramount. Clear and illustrative visualisations of the swarm’s behaviour as well
as ‘what if ’ scenarios in the user interfaces are also essential for fluent operations.

There is no proven or “one size fits all” approach to solving this conundrum.
The framework we present here is meant as an illustration of a possible “swarm
interface” design, not as a final product. Different applications will undoubtedly
require specific additional functions that we do not discuss here, as they would
require restricting our findings to a particular mission-specific domain.

UAVs, as physical devices, are defined by hardware characteristics that act
as constraints over what can and cannot be achieved. Some of these traits, such
as, for example, battery life, are of critical importance when considering longer
time-scales (days or weeks) but are not particularly relevant for short periods
(which we previously argued is the context in which direct control methods are
likely to be most useful).
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Other limiting factors also play an essential role in formation flying, such as:

– Positioning accuracy
– Maximum speed
– Maximum acceleration
– Sensor/communication range

Here, it is good to note that fixed-wing aircraft represent a special case in
that they rely on lift to stay airborne (and so have a minimum speed thresh-
old too) and cannot accelerate in any direction, but rely on course correction.
What follows assumes that the swarm is comprised of rotary-wing drones (e.g.,
quadcopters or (remote controlled or autonomous) helicopters [7]).

Positioning accuracy is a tricky parameter to take into account, but it is
mostly relevant for close formations such as the ones used for aerobatics display.
In most other applications, the target separation distance between units will
be considerably higher (sometimes by over one order of magnitude) than the
average positioning error. For instance, GPS is typically accurate down to a few
meters, so if drones are attempting to maintain a separation of 50+ meters even
based solely on broadcasted GPS coordinates, the error will already not have
much impact. Furthermore, other methods such as dead reckoning, radio signal
triangulation and attenuation analysis, or even real-time computer vision can
be used to improve accuracy of (relative) positioning. In the remainder of this
section, the coordinates are assumed to be the ones reported by the UAVs, which
means that the actual location might slightly differ, but not to the extent that
it will significantly affect the configuration of the swarm.

Speed and acceleration are another matter. Not only do their maximum pos-
sible values, imposed by aerodynamic characteristics, represent an upper bound
to which instructions given to the swarm must conform, they also less directly
but significantly affect flying patterns.

Our simulation results suggest that active/deliberate modulation of the tar-
get speed (V ) and acceleration (delta-V ) by the swarm operator can be one of
the simplest and most efficient way to control collective behaviour through a
single pair of parameters. It is important to understand here that, whereas max-
imum values are hardware constraints, target acceleration and speed are not. For
instance, a quadcopter may not be capable of accelerating at a faster rate than
10m

s2 but there is nothing preventing on-board software from targeting a lower
value if so instructed. Since lower acceleration means greater inertia, under the
influence of the same “forces” (e.g., a tropism), different target delta-V s will
result in different movement patterns.

If we consider the case of a single rotary wing UAV, acceleration is the result
of its tilting into the direction of intended movement, converting some lift into
thrust. The angle of the tilt, combined with a possible change in the speed of
the rotors/blades, is what determines the value of the delta-V. If we hypothesise
that the rotors automatically adjust their speed to keep lift (and so altitude)
constant by default, then acceleration can be controlled via tilt angle only.
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For instance, a drone might have a maximum “safe” tilting angle (determined
by physical constraints such as the top speed at which rotors can spin) allowing
for a maximum horizontal acceleration of 10m

s2 . At this angle, it will take such
a device 1s to go from hovering (stationary) to traveling at a target velocity of
10m

s , during which time it will have travelled 5m into the intended direction. It
will take another 1s (and another 5m) for it to slow down and return to hovering
mode (N.B. these figures assume a negligible drag coefficient).

Let us consider the situation in which a drone traveling East at a cruising
speed of 10m

s is instructed to change direction and go North, using the maxi-
mum allowable acceleration. Such a device will first need to stop its Eastward
movement (1s, 5m), then accelerate North (again 1s, 5m). The change of course
takes 2s and the drone will reach its new heading and cruising speed at a point
5m East (slowing down) and 5m North (reaccelerating) of the position where the
instruction was received. Had the tilting angle been such that the acceleration
rate was only 5m

s2 instead of 10m
s2 , the same manoeuvre would have taken twice

the time (4s) and the drift east during deceleration would have been 10m.

3.1 Two drones interaction

These relatively trivial calculations become more subtle when the intended di-
rection of travel depends on the relative location of multiple UAVs attempting
to coordinate their movements to achieve a certain objective (e.g., spatial dis-
tribution pattern). Figures 2 and 3 visualize these interaction dynamics.

Fig. 2. Visualisation of the two drones interaction dynamics: the evolution of the po-
sition over time on the axis the origin of which is the mid-point between the two units
(cf. Figure 3 for speed vs. position). The oscillatory regime after 2.5s is clearly visible.
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For example, if two drones start hovering 100m apart and the target separa-
tion distance is 50m, they will accelerate toward each other, say at the maximum
allowable delta-V (10m

s2 ). They will reach their cruising speed after 1s, having
travelled 5m each, in opposite directions, i.e., 90m apart. Another two seconds
later, they will have travelled another 20m each and be 50m apart as instructed.
However, at this point, they are flying toward each other at 10m

s . If they start
decelerating immediately, they will be only 40m apart by the time they are sta-
tionary (overshooting the target separation). Intuitively, this means that they
should now accelerate in the opposite direction to open the gap. If they do so,
they will be 50m from each other again one second later, but traveling at 10m

s .
This will initiate an oscillation around the target separation distance, with an
amplitude of 20m. This is illustrated in Figures 2 and 3.

Fig. 3. Visualisation of the two drones interaction dynamics: the speed vs. position
(for comparison, cf. Figure 2 for the evolution of the position over time). The “spindle-
shaped” part corresponds to the oscillation, when the two drones travel back and forth
around the equilibrium point. Arrows indicate the passage of time (the closed and
indefinitely repeating loop corresponding to the oscillatory regime).

Had they been limited to a tilt angle and acceleration of 5m
s2 , the scenario

would be qualitatively identical but quantitatively different. Indeed, the two
UAVs would have reached their cruising speed (10m

s ) not one but two seconds
later and 80m apart instead of 90. Having reached the target separation distance
1.5s later instead of 2, they would require another two seconds to come to a halt,
closing the distance between them to 30m (instead of 40). Accelerating away
from each other, still at the same reduced rate of 5m

s2 , then slowing down after
reaching the 50m separation target, they will be 70m apart before they have
returned to hovering mode. The oscillation is now double the amplitude, the
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distance between the two drones varying between 30m and 70m. The perhaps
somewhat counter-intuitive conclusion is that a higher acceleration rate results
in a reduced deviation from the target separation at steady state.

These effects could of course be counteracted by simply anticipating the
overshoot and decelerating pre-emptively, but what would be an easy calculation
in the above example (with just two drones traveling along a single dimension)
becomes almost impossible in a swarm dozens of units strong, “pushing and
pulling” each other in 2D or 3D space.

3.2 Multiple drones interaction

We used simulation extensively to investigate the collective dynamics of a swarm
controlled by combining direct piloting of a single unit (“leader”) with real-time
modification of the aforementioned parameter values (target speed, acceleration
and separation). The results of these numerical experiments are summarised in
this section. We present the user interface (Figure 4) as well as screenshots of
the swarm in various configurations together with the corresponding parameter
settings (in Figures 6 and 7), to emphasise the link between them.

In order to ensure reproducibility of our findings, we must first disclose the
“hidden” rules of interaction, i.e., those that are, so to speak, “hard-coded” into
the rules governing drone behaviour and not tied to any modifiable parameter.
It is important to understand that these rules are ad-hoc in nature and that we
make no claim of having investigated them in any meaningful way: they were
simply found to be suitable to illustrate the type of collective activity pattern
that the end user can elicit in the swarm by altering the value of the controllable
parameters. The tunable parameters used are shown in Figure 4.

Fig. 4. The user interface with the tunable parameters. Figures 6 and 7 show the sliders
to indicate the varied parameters and their respective settings. This could be regarded
as an early prototype for a real-world user interface, with the exception of the “Leader”
sub-panel, which is a very crude approximation for an actual remote-control station.
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We simulated a group of 37 drones, one of which is assumed to be remote-
controlled and the other 36 semi-autonomous (in the sense that they plan and
execute their own movement based on interaction rules and parameter values).
The remote-controlled unit (swarm “leader”) depends entirely on the human
pilot’s instructions to perform any action other than hovering in position.

Fig. 5. Clustering process for the default parameter values (maxV = 10m
s

, delta-V =
10 m

s2
, separation = 50m) from random initial locations (top-left corner). Screenshots

are 10 seconds apart. Arrows are the speed vectors; the screen / display is always
centered on the swarm leader, indicated in red.

We hypothesise that all drones are constantly broadcasting their location
and that they can all reliably communicate with each other (so every member
of the swarm can potentially use the location of any other as input for planning
its own movement). In the chosen rule-set, every drone is only using the location
of the leader and of its two nearest neighbours (the identity of the two nearest
neighbours may of course change over time as the swarm reconfigures itself).
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The location of these three other units influences path planning as follows:

– Each one exerts a force inversely proportional to the distance (i.e., 1
r ).

– For distances < target separation this is repulsive, otherwise attractive.
– If the distance falls below half the target separation, this force is multiplied

by 10 and a flag is raised (similar to a collision avoidance mechanism).
– The three attraction/repulsion vectors are then added up and the resulting

vector is normalised (indicating the direction of acceleration, not intensity).
– This vector is then multiplied by the chosen acceleration rate (delta-V ) un-

less the “collision avoidance” flag is raised, in which case the maximum value
is always used (20m

s2 in our experiment). NB: because of the 1
r rule and of the

multiplicative factor applied to the repulsion force exerted by a neighbour
less than half the target separation away, when in danger of collision, this
vector tends to point directly away from the nearest neighbour.

The resulting acceleration vector is then used to update the drone’s airspeed,
until the target velocity is reached. This is done synchronously (i.e., all speeds
and positions are updated simultaneously), with an integration step of 0.01s.

Fig. 6. Controlling the swarm through global parameters only. Each screenshot is a
typical illustration of the type of distribution pattern observed at steady state for
different combinations of values. Shown are (A): “Flocking”, (B): tight regular lattice.
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Unless specified otherwise, units start at a random location within one square
kilometre centred on the leader (coordinates origin x = 0, y = 0), with the only
constraint that no two drones can be closer to each other than half the default
target separation (25m). The default values for acceleration and maximum (or
target) speed are 10m

s2 and 10m
s . The sequence shown in Figure 5 illustrates the

typical clustering process taking place if no actions are taken by the operator
(i.e., all parameters are at their default value and the leader remains stationary).

As illustrated in Figures 6 and 7 it is possible to control the behaviour of the
swarm by changing the values of the three previously identified key parameters
for relative movement and positioning (maxV , delta-V and separation).

Some changes will result in a “quantitative” difference (e.g., tighter or looser
lattice, cf. 6(B), 7(A)) others may bring about a “qualitative” change (e.g., from
holding position, 7(A), to adopting a random search pattern, 7(B)).

Fig. 7. Controlling the swarm through global parameters only (continuation of Figure
6). Each screenshot is a typical illustration of the type of distribution pattern observed
at steady state for different combinations of values. Shown are (A): loose regular lattice,
(B): “Exploration”. The swarm will continously self-organize and transition, seemingly
spontaneously, between these states as the human operator updates parameter value(s).

Figures 6 and 7 show typical examples. The precise influence of each param-
eter can be analysed using statistical methods, which should inform the design
of the graphical user interface (e.g. by identifying suitable maximum and mini-
mum parameter values). Such principled investigation is also critical to discover
possibly “unsafe” combinations (e.g. if the ratio between maxV and delta-V is
such that it increases the risk of collision beyond an acceptable level).
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To illustrate this approach we present an analysis of a numerical experi-
ment designed to study how changing the acceleration rate (delta-V ) affects
the swarm’s ability to form and maintain a regular lattice. Figure 8, shows the
resulting frequency distribution.

Fig. 8. Frequency distribution of the distance from the centre (“leader”), at or close
to steady state (10′ after take-off), for a fleet of 37 drones and 3 different values of the
delta-V parameter and for a target separation of 50m (max. velocity = 10m

s
). The bars

indicate the corresponding distribution in a perfect hexagonal mesh. 1000 independent
realisations from randomised initial conditions per parameter value.

The results shown in Fig. 8 provide at least two useful pieces of information:

1. The distributed algorithm being used is capable of reliably generating a
close approximation of a regular hexagonal lattice, which means that, by
positioning the “leader” at its centre and letting the swarm self-organise,
homogeneous coverage of a region of interest (the area of which is controlled
solely by the target separation distance) can be obtained. See Figures 6(B)
and 7(A) for an illustration.

2. Delta-V has a strong influence on the accuracy and stability of the lattice,
with lower values (5m

s2 ) resulting in the near disappearance of a discrete
second and third “rings”, replaced by a more diffuse “cloud” in the same
annular region (≈ 80 − 160m). One can also observe that the effect of the
acceleration parameter is nonlinear, with the difference between 10m

s2 and
15m

s2 being much lower than between 10m
s2 and 5m

s2 .
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3.3 Direct Control: Summary and Conclusions

The practical implication for the operator of a swarm is that by modulating the
value of three global parameters shared by all drones, target separation distance,
speed and acceleration, he/she can trigger a variety of collective movement pat-
terns. A high delta-V and low target speed will tend to “lock” individual units
in a regular mesh (in 2D, a hexagonal one) the density of which is controlled
by the separation distance. Conversely, a high target speed and low acceleration
rate will favour a much more dynamic and less predictable behaviour in which
UAVs follow complicated “orbits” around the geometric centre of the swarm.
Clearly, the former may be suitable for certain mission types (e.g., homogeneous
coverage or systematic survey), the latter for others (e.g., escorting a potential
target by scouting all possible attack vectors).

Critically, alternating between these two types of collective behaviour can be
achieved simply by broadcasting updates to the corresponding parameter values
without any need for “micro-management” or path-planning.

All this requires adaptivity from the user interface designed to supervise and
control the swarm. For example, mission-specific customizations are needed par-
ticularly for the acceleration control. Visualisations of the effects of different
parameter values are essential for the user to understand their effect in practice.
Furthermore, to predict the effects before making the actual changes, simula-
tion capabilities are needed to show the operator ‘what if ’ type of scenarios in
order for optimal decision-making. Finally, to minimise mental workload, the
user interface needs to support the operational situations in a sufficient level of
abstraction for the human operator.

4 Indirect Control Methods

By indirect control methods, we refer to any algorithmic framework designed to
make the swarm work towards achieving a certain goal without any real-time
intervention by a human operator being necessary. In that sense, it is analogous
to “management-by-exception” [10], whereby a system or organisation is capable
of operating smoothly by default and only needs new instructions or temporary
takeover occasionally, when circumstances or objectives change.

The chosen scenario to illustrate this concept is long-term surveillance, spe-
cific cases of which could be patrolling a remote border or protecting a wilderness
area by deterring damaging human activity (e.g., poaching or illegal logging).
Because such a mission would typically vastly exceed a drone’s battery life, this
implies the presence of at least one and probably several “bases” at which indi-
vidual units can land and recharge. Simple navigation methods can be used to
guarantee that a drone’s flight path never exceeds its autonomy and that it can
safely land either at its point of origin (round-trip) or at another base located
at the end of a one-way flight.

The challenge is elsewhere and consists in finding ways of leveraging coopera-
tive effects to ensure good coverage (i.e., no “blind spots”) and avoid duplication
of effort (i.e., several drones patrolling the same area simultaneously).
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We found that a suitable way to achieve cooperation with minimal need for
explicit coordination and communication is to let all drones access a shared
real-time simulation of the world, also known as so-called Digital Twin (DT),
and modify it to exchange relevant information (a method of interaction known
as stigmergy). However, the focus of the present paper being user interfaces
and methods for orchestrating or choreographing swarms, we will not go into
a detailed description and performance analysis here. This is the subject of a
separate publication by the same authors team [27].

Fig. 9. Images from the user interface for a simulation of the proposed control through
area designation paradigm. White indicates areas not under consideration, the colour
spectrum indicates how close/recently a particular zone has been patrolled by at least
one drone (green ≈ nearby and/or a short time ago, red ≈ far and/or a while ago. The
panel on the left shows some initial area for the swarm to operate in. Shown are three
bases (square, blue) and six drones (one of which is currently at a base). The panel
on the right shows the same area after it has been extended towards the North East,
using a “drag-click” tool of the interface.

Our opinion is that, in the long-term surveillance scenario, interaction be-
tween the swarm and its human master should also take the form of modifications
to the DT. For instance, the obvious first step would likely consist in designating
the default target area for which the user wants the swarm to “take responsi-
bility”. The easiest and most intuitive way to do so is to access the real-time
simulation through a graphical interface in which standard “paint” or “click-
and-drag” functions can be used to seamlessly add or subtract geographic zones
to or from the region of interest. This is illustrated by Figures 9 and 10.

Using this functionality, the human user has added a rectangular area to the
North East as well as a connecting corridor. While the number of drones has
remained the same, an additional location for a base has also been designated
in the middle of the new area.

In essence, when preparing its upcoming flight plan, a departing drone ac-
cesses the DT and uses the information it contains to determine the most desir-
able patrol route at this point in time, based on a suitable utility function.
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Fig. 10. Control through area designation: the area from Figure 9 (right panel) is
amended even further. The panel on the left further modifies the area using “paint”
toadd an irregular region to the South-West. The panel on the right shows the area
after using “ctrl-paint” to remove certain areas from the swarm’s “territory”.

In the surveillance scenario, the objective is to ensure that no part of the
designated area of interest (the boundaries of which can be modified at runtime
as shown in Figures 9 and 10) remains unobserved for too long, which is repre-
sented in the DT by a “heat-map”. This heat-map indicates the concentration of
a diffusing virtual signal that is created when no drone is present and is removed
when visited. So in order to maximise its contribution to the swarm’s mission,
a departing unit only has to “climb” the gradient to ensure that it is heading
toward an area that needs inspection.

Accordingly, a human operator can also influence the swarm priorities by ma-
nipulating the signal. Removing a region from the swarm’s territory is effectively
done by removing and stopping production of the signal in the corresponding
area. Symmetrically, adding a region takes the form of starting production of the
signal where it was absent before. Obviously, dropping a large “quantity” of the
diffusing signal at a given location (“honeypot”) will result in a gradient that
will attract drones to this area, a method that can be used to “bias” the swarm
in favour of patrolling a particular zone. This can be regarded as the indirect
control equivalent of an explicit command to “go there”.

5 Comparison and Conclusion

To conclude this paper we reflect on what as discussed and proposed. In line with
the rest of the article, we are considering two main view points: that of someone
concerned primarily with the control aspect of a swarm and the accompanying
considerations regarding control, from a human factor point of view.
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From the control methods point of view, perhaps the most useful lesson
to be learned is that it is relatively straightforward to foster the emergence
of desirable collective behaviour by leveraging self-organisation. This paradigm
is exceedingly familiar in complexity science and its potential will come as no
surprise to experts in the field, from Physics to Biology, but it still appears under-
exploited in technology and engineering in general and in distributed robotics in
particular. This could be about to change with the increasingly realistic prospect
of drone swarms performing various useful tasks in the physical world. Quite
simply, if we want to make the most of this opportunity to delegate various
complex tasks to machines, self-organisation and collective artificial intelligence
will cease to be an optional design choice to become a practical requirement.

It should however be remembered that undesirable emergent properties are
as common as desirable ones, which is why the principled study of global dy-
namics in a system governed by local rules is extremely important, not least
because they can be counter-intuitive or at least not obvious. We encountered
this kind of unexpected behaviour during the course of the present investigation,
which led to some adjustments. For instance, in the direct control algorithm, the
decision to always include the “leader” in the trio of influencers was made after
it was noticed that not doing so could result in the formation of isolated clusters.
After modification, this effect is still present but now transient because the cor-
responding configuration is usually unstable (see intermediate stages in Figure
5). Retrospectively, this could have been easily anticipated, but some emergent
dynamics are more subtle.

This simulation-based “trial-and-error” approach, where candidate algorithms
are tested, modified, then re-evaluated using quantitative and qualitative mea-
sures of performance, may appear ad-hoc in nature, but it is surprisingly ef-
fective. The reason is that, after being trained in complex systems modelling, a
human designer can gain an intuitive understanding of what particular technique
could solve a particular problem, much as a skilled craftsman knows what tool
is most suitable to perform a certain task. We expect this type of expertise to
become increasingly in demand over the coming decade, not only at design time
but also for everyday operations. Indeed, the end user of a drone swarm will
rely upon the same familiarity with emergent properties and self-organisation
to orchestrate collective behaviour effectively and efficiently, particularly in the
face of unexpected events or circumstances. This has clear implications for the
design of user interfaces that are fit for purpose.

From a human factors perspective, some conclusions can be drawn re-
lated to both control methods. It is clear that direct control requires more active
and hands-on user operation than indirect control. The direct control mode of
operation may allow the operator to stay better “in-the-loop” as regards to what
is happening with the swarm at each moment.

However, for efficient control of large swarms in complex operations, indirect
control is needed to mitigate, for example, potential human operator workload
issues. One clear future research issue in indirect control is in how to achieve the
necessary level of operator situation awareness about what the swarm is currently
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doing. In addition, questions such as how to design the user interface to support
operator SA at an appropriate level, how to support the calibration of user trust
in the user interface, and how to make the indirect drone swarm control to be an
engaging activity are relevant. When combining the direct and indirect control
modes to a single user interface, the issues of mode transitions (see e.g., [28])
and handover implementation from indirect to direct control become essential.
Clearly, more human factors research is needed in this challenging area.
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